Menu Close

Расчет объема воды в системе отопления: Как рассчитать объем теплоносителя в системе отопления

Как рассчитать объем теплоносителя в системе отопления

Расчет объема воды (теплоносителя), заполняющего систему отопления, будет одним из первых при выборе котла.

Это необходимо для понимания какой оптимальный объем может прогреть ваш котел или другой источник тепла. Параметры труб очень сильно влияют на данный показатель: при наличии насоса вы смело можете выбрать трубу меньшего диаметра и установить больше секций отопления.

Если выбрать трубы большого диаметра, то при максимальной мощности котла можно получить недогрев теплоносителя: большой объем воды будет раньше остывать, прежде чем дойдет до крайних точек системы отопления. Что в свою очередь приведет к дополнительным финансовым расходам.

Приблизительный расчет объема воды в системе отопления производится из соотношения 15 л воды на 1 кВт мощности котла.

Чтобы определить какой объем воды нужен для системы отопления дома, рассмотрим простой пример.

Мощность котла 4 кВт, тогда объем системы равен 4 кВт*15 литров = 60 литров. Но необходимо учитывать размеры и количество секций радиаторов при этом.

Если у вас дом на 4 комнаты, то это не значит, что надо ставить по 12-15 секций в каждую: у вас будет очень жарко, котел будет работать неэффективно. Если комнат больше, то и экономить на радиаторах не стоит: 1 современная секция эффективно отдает тепло для 2…2,5 м2 площади.

Формулы для расчета объема жидкости (воды или другого теплоносителя) в системе отопления

Объем воды в системе отопления можно рассчитать как сумма составляющих:

V =V

(радиаторов)+V(труб)+V(котла)

Объем системы должен учитывать объем воды в трубах, котле и радиаторах. В расчет объема теплоносителя не входит объем расширительного бака. Объем бачка учитывается при расчете критических состояний работы системы (когда вода будет поступать в него при нагреве).

Формула для расчета объема жидкости в трубе:

V (объем) = S (площадь сечения трубы) * L (длина трубы)

Важно!

Размеры могут отличаться у различных производителей, в зависимости от типа

Как рассчитать объем воды в системе отопления Монтаж системы отопления Статьи

« Назад

Как рассчитать объем воды в системе отопления  17.02.2015 01:09

При производстве монтажных и ремонтных работ систем отопления бывает нелишним представлять себе внутренний объем погонного метра труб различных типоразмеров, что позволяет оперативно рассчитать объем рабочей среды. Так же обязательно надо прибавить объем самого отопительного котла и объем радиаторов отопления. Данная таблица также поможет подобрать объем расширительного бака для системы отопления.

Так как вода при нагреве на 70 С° увеличивается в объеме примерно на 3%, то приблизительно можно посчитать какого объема требуется установить расширительный бак. Но точный расчет может предоставить только проектная организация, которая проектирует системы отопления.

Предлагаем рассмотреть приблизительный расчет объема системы отопления.

Объем гидроаккумулятора для системы отопления должен составлять 10-12 % объема всей воды в системе. Последняя цифра складывается из объема воды во всех радиаторах отопления, плюс объема воды в котле отопления, плюс объем воды в трубах для отопления. Объем воды в радиаторах складывается из объема воды в каждой секции радиатора, помноженном на количество секций. Это значение указывается в технических паспортах на радиаторы. Например, объем воды в одной секции чугунных радиаторов 500 мм равен примерно 1,5 литра. У биметаллических радиаторов это значение может быть в 10 раз меньше. Надо смотреть технический паспорт.

Объем воды в котле отопления указывается в паспорте. Этот объем полезно знать также при спуске воды из отдельных частей системы отопления.

Объем воды в трубах вычисляется как сумма произведений объемов воды в метре трубы каждого диаметра на количество метров труб данного диаметра. Таким образом, расчет объема воды в трубе представляет собой достаточно простую арифметическую задачу.

Таблица объема воды в неармированных и армированных алюминием полипропиленовых трубах:

Номинальный размер (внешний диаметр), ммВнутреннее сечение, мм кв.Объем воды в метре трубы, литрыВнутренний диаметр, ммСоответствующий им диаметр стальных дюймовых труб, дюймы
20136,70,13713,21/2
25216,30,21616,63/4
32352,80,35321,21
40555,40,55526,6
1 1/4 (дюйм с четвертью)
50865,30,86533,21 1/2
631384,71,385422
751962,51,963502 1/2
9028262,826603
1104206,24,20673,2

Следует отметить, что приведенные цифры являются ориентировочными. У различных моделей труб внутренний диаметр, внутреннее сечение и объем воды в трубе могут незначительно отличаться. Однако этой погрешностью можно пренебречь, так как она не велика. Например, в полипропиленовых трубах, армированных стекловолокном, внутренний диаметр немного больше, чем у обычных полипропиленовых труб или полипропиленовых труб, армированных алюминием. Объем же воды в стальных трубах значительно больше количества воды в соответствующих пластиковых трубах.

Таблица объема воды в стальных трубах:

Номинальный размер, дюймыВнешний диаметр, ммВнутренний диаметр, ммВнутреннее сечение, ммОбъем воды в метре трубы, литры
1/413,59,529,830,03 (30 миллилитров)
3/817131330,133
1/2 (полдюйма)21,316,32090,209
3/426,821,83730,373
133,527,96110,611
1 1/4 (дюйм с четвертью)42,336,710571,057
1 1/2484213851,385
2605422892,289

Сравнив обе таблицы, легко заметить, что внутренний диаметр и объем воды в стальных трубах больше, чем в соответствующих им полипропиленовых.

Однако тут нет противоречия. Проходное сечение (или проходной диаметр) этих труб приблизительно равны, так как внутренняя поверхность пластиковых труб гладкая, а стальных труб шероховатая. В результате пластиковых трубы (как и медные) меньшего диаметра пропускают столько же воды, сколько и стальные трубы, имеющие больший внутренний диаметр. Однако очевидно, что объем воды в стальных трубах заметно больше, чем в соответствующих им по условному пропускному сечению пластиковых, медных, металлопластиковых и полипропиленовых.

Определение расхода теплоносителя для подбора циркуляционного насоса

Главная Выбор циркуляционного насоса для системы отопления. Часть 2

Циркуляционный насос выбирается по двум основным характеристикам:

  1. G* — расходу, выраженному в м3/час;

  2. H — напору, выраженному в м.

*Для записи расхода теплоносителя производители насосного оборудования пользуются буквой Q. Производители запорной арматуры, например, Данфосс для расчета расхода пользуется буквой G. В отечественной практике также используется эта буква. Поэтому в рамках объяснений этой статьи мы также будем пользоваться буквой G, Но в других статьях, подойдя непосредственно к разбору графика работы насоса, для расхода мы все же будем использовать букву Q.

Определение расхода (G, м3/час) теплоносителя при выборе насоса

Отправной точкой для подбора насоса служит количество тепла, которое теряет дом. Как это узнать? Для этого нужно сделать расчет теплопотерь.

Это сложный инженерный расчет, предполагающий знание многих составляющих. Поэтому в рамках этой статьи мы опустим это объяснение, а за основу количества теплопотерь возьмем одну из распространенных (но далеко не точных) методик, которой пользуются многие монтажные фирмы.

Ее суть заключается в некоем среднем показателе потерь на 1 м2. Эта величина условна и составляет 100 Вт/м2 (если дом или комната имеют неутепленные кирпичные стены, да еще недостаточной толщины, количество тепла, теряемого помещением, будет значительно больше.

И наоборот, если ограждающие конструкции дома сделаны с применением современных материалов и имеют хорошую теплоизоляцию, потери тепла будут снижены и могут составлять 90 или 80 Вт/м2).

Итак, предположим, что вы имеете дом площадью 120 или 200 м2. Тогда условленное нами количество теплопотерь для всего дома будет составлять:

120 * 100 = 12000 Вт или 12 кВт.

Какое это имеет отношение к насосу? Самое прямое.

Процесс теплопотерь в доме происходит постоянно, а значит и процесс нагревания помещений (компенсация теплопотерь) должен идти постоянно.

Представьте, что у вас нет насоса, нет трубопроводов. Как бы вы решили эту задачу?

Чтобы компенсировать теплопотери вам пришлось бы сжигать какой-то вид топлива в отапливаемом помещении, например, дрова, что в принципе тысячелетиями люди и делали.

Но вы решили отказаться от дров и использовать для обогревания дома воду. Что вам пришлось бы делать? Вам пришлось бы брать ведро( -а), наливать туда воду и греть ее на костре или газовой плите до температуры кипения. После этого брать ведра и нести их в комнату, где вода отдавала бы свое тепло помещению. Затем брать другие ведра с водой и снова ставить их на костер или газовую плиту для нагревания воды, а затем нести их в комнату взамен первых. И так до бесконечности.

Сегодня за вас эту работу выполняет насос. Он заставляет воду двигаться к устройству, где она нагревается (котел), а затем для передачи сохраненного в воде тепла по трубопроводам направляет ее к отопительным приборам для компенсации теплопотерь в помещении.

Возникает вопрос: сколько нужно воды в еденицу времени, нагретой до заданной температуры, чтобы компенсировать теплопотери дома?

Как это посчитать?

Для этого нужно знать несколько величин:

  • количество тепла, которое необходимо для компенсации тепловых потерь (в этой статье за основу мы взяли дом  площадью 120 м2 с теплопотерями 12000 Вт)
  • удельная теплоемкость воды равная 4200 Дж/кг * оС;
  • разница между начальной температурой t1 (температура обратки) и конечной температурой t2 (температурой подачи), до которой нагревается теплоноситель (эта разница обозначается как ΔT и в теплотехнике для расчета систем радиаторного отопления определяется в 15 — 20 оС).


Эти значения нужно подставить в формулу:

G = Q / (c * (t2 — t1)), где

G — требуемый расход воды в системе отопления, кг/сек. (Этот параметр должен обеспечи

РАСЧЕТ ТЕПЛОПОТЕРЯ И РАСЧЕТЫ ДЛЯ МОНТАЖА

РАСЧЕТ ТЕПЛОВЫХ ПОТЕРЬ И РАСЧЕТЫ ПРИ МОНТАЖЕ

ПРИБЛИЗИТЕЛЬНЫЙ РАСЧЕТ ТЕПЛОВЫХ ПОТЕР И ВЫБОР КОМПОНЕНТОВ СИСТЕМЫ

РАСЧЕТ ТЕПЛОПОТЕРЯ:

Инжиниринг:

С помощью этого метода лист расчета потерь тепла, лист радиатора и подробный расчет, лист расчета значений потерь и лист расчета труб заполняются отдельно для каждой среды во время расчета потерь тепла.

В таблице расчета теплопотерь расчеты производятся с учетом направления объема, для которого производится расчет теплопотерь, толщины стены-перекрытия и площади внешних стен-полов-окон. Лист радиатора и подробный расчет используется при выборе радиаторов и размещении на архитектурном проекте после расчета объемных тепловых потерь. В таблице значений потерь (удельного сопротивления) указаны потери, затрудняющие прохождение воды в трубах, S-образных частях, скобах, разделениях и т. Д., и вызвать потерю давления. В таблице расчета труб каждая часть трубы в системе пронумерована, и лист заполняется такими параметрами, как количество тепла, проходящего через каждую часть, длину, скорость и коэффициент трения.

Примерный метод:

Обогреваемые объемы имеют приблизительные расчетные значения 3 м по среднегодовым температурам.

Для 3 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

19

28

30

40

Мезонин

17

25

26

35

Подвал

19

28

30

40

Для -3 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

22

30

40

50

Мезонин

20

28

32

40

Подвал

22

30

35

45

Для -6 ​​ o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

25

33

45

55

Мезонин

22

30

35

43

Подвал

25

33

40

50

Для -12 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

28

38

50

60

Мезонин

24

34

38

46

Подвал

28

38

44

54

Для -21 o C:

Изоляция защищенная

Ккал / чм 3

Утепленный свободный

Ккал / чм 3

Неизолированный защищенный

Ккал / чм 3

Без утепления бесплатно

Ккал / чм 3

Пентхаус

35

45

60

70

Мезонин

30

40

44

55

Подвал

35

45

53

63

Приблизительные потери тепла желаемого объема можно рассчитать с помощью этих таблиц. Котел выбирается исходя из рассчитанного значения теплопотерь.

Например, приблизительная теплопотеря неизолированного защищенного помещения площадью 20 м² с высотой крыши 3 метра, расположенного в мезонине, составляет:

20x3x32 = 1920 ккал / ч.

Таким же образом, примерные потери тепла для дома площадью 150 м²:

150x3x32 = 14400 ккал / ч.

Отопительный прибор подбирается по найденному значению теплопотерь. Например. обычный комбинированный котел, конденсационный комбинированный котел и центральное отопление должны выполняться индивидуально, в то время как центральный котел следует выполнять отопление центральной системы.

РАСЧЕТ МОЩНОСТИ ГОРЕЛКИ:

В случае использования котла продувочной системы; Расчет горелки, соответствующей мощности котла, производится по формуле:

Q к

B Br =

Н и . וּ Br

B Br : Производительность горелки (кг / ч)

Q k : Производительность котла (ккал / ч)

וּ Br : КПД горелки (проверено по каталогу)

H u : Низкая теплотворная способность топлива (ккал / ч)

H u значения:

Дизель: 10200 ккал /

кг

Мазут номер 4: 10100 ккал / кг

СУГ: 11800 ккал /

кг

Природный газ: 8250 ккал / м 3

Зонгулдакский карьер: 7000 ккал /

кг

Кокс: 6000 ккал / кг

Бурый уголь: 2000 — 5500 ккал /

кг

Ориентировочные значения וּ Br :

Бурый уголь: 0. 65

Кокс и каменный уголь: 0,72

Мазут: 0,82

Природный газ: 0,92

РАСЧЕТ РАЗМЕРА ТРУБЫ:

При расчете размеров трубы скорость воды при наименьшем значении в ответвлениях должна увеличиваться по мере увеличения размера трубы и достигать максимальной скорости на входе в котел. Однако скорость воды не должна быть выше 0,2-0,3 м / сек в системах водяного отопления 90 o C / 70 o C, 1 м / сек.в трубах до 2 дюймов и 1,5 м / сек. в трубах большего размера. Позже рассчитываются прямая труба и локальные потери давления, и для системы выбирается насос.

ВЫБОР КЛАПАНОВ РАДИАТОРА:

Вы должны решить, использовать ли радиаторные клапаны с внутренней регулировкой расхода или термостатические радиаторные клапаны (TRV). В случае TRV вы предотвратите нагрев объемов сверх заданной температуры и обеспечите экономию топлива (каждый последующий нагрев на 1 ° C означает дополнительные расходы топлива на 5%), а также получите более легкие комфортные условия и сделаете их постоянными.

Термостатический вентиль радиатора

ВЫБОР И РАЗМЕЩЕНИЕ РАДИАТОРА:

Панельные или чугунные радиаторы выбираются из соответствующих каталогов в соответствии с величиной потерь тепла, рассчитанной для объема. Чугунные радиаторы имеют ряд секций, а панельные радиаторы — длину радиатора. Для размещения выбирается место с наибольшими потерями тепла (например, днище окон). Однако вы должны обратить внимание на тот факт, что эти значения рассчитаны для радиаторов с открытой окружающей средой.В случае, если часть радиаторов должна оставаться в закрытом положении (кладка мрамора на радиатор, установка радиатора в нишу или сетку и т. Д.), К расчетным значениям вносятся дополнения. В этом случае тепловые характеристики радиатора могут упасть до 80%. Радиаторы необходимо ставить как можно больше на пол. Для идеального размещения достаточно места от стены 4 см и дорожного просвета 6 см.

В чугунных чугунных радиаторах с более чем 20 секциями и панельных радиаторах длиной более 1,5 м обратный патрубок необходимо брать с другого конца (поперечного соединения) радиатора.

Важное примечание: На практике ни одна система не работает на 90 & n

Справочник по воде — Открытые рециркуляционные системы охлаждения

В открытой рециркуляционной системе охлаждения для охлаждения технологического оборудования многократно используется одна и та же вода. Тепло, поглощаемое в процессе, необходимо отводить, чтобы можно было повторно использовать воду. Для этого используются градирни, разбрызгивающие бассейны и испарительные конденсаторы.

Открытые рециркуляционные системы охлаждения позволяют сэкономить огромное количество пресной воды по сравнению с альтернативным методом — прямоточным охлаждением.При открытом способе рециркуляции количество воды, сбрасываемой в отходы, значительно сокращается, а химическая очистка более экономична. Однако открытые рециркуляционные системы охлаждения по своей природе связаны с большим количеством проблем, связанных с обработкой, чем прямоточные системы:

  • охлаждение за счет испарения увеличивает концентрацию растворенных твердых частиц в воде, повышая склонность к коррозии и осаждению
  • относительно более высокие температуры значительно увеличивают коррозионный потенциал
  • более длительное время удерживания и более теплая вода в открытой рециркуляционной системе увеличивают тенденцию к биологическому росту
  • Переносимые по воздуху газы, такие как диоксид серы, аммиак или сероводород, могут абсорбироваться из воздуха, вызывая более высокую скорость коррозии
  • микроорганизмов, питательных веществ и потенциальных загрязнителей также могут поглощаться водой через градирню

ГИДРАВЛИЧЕСКИЕ БАШНИ

Градирни являются наиболее распространенным методом отвода тепла в открытых рециркуляционных системах охлаждения. Они предназначены для обеспечения интимного контакта воздуха и воды. Отвод тепла происходит в основном за счет испарения части охлаждающей воды. Некоторая ощутимая потеря тепла (прямое охлаждение воды воздухом) также имеет место, но это лишь небольшая часть общего отвода тепла.

Типы башен

Градирни классифицируются по типу тяги (естественная или механическая) и направлению воздушного потока (поперечный или противоточный). Башни с механической тягой подразделяются на башни с принудительной или вытяжной тягой.

Башни с естественной тягой. Башни с естественной тягой, которые иногда называют «гиперболическими» из-за характерной формы и функции дымоходов, не требуют вентиляторов. Они разработаны с учетом разницы в плотности между воздухом, поступающим в башню, и более теплым воздухом внутри башни. Теплый влажный воздух внутри градирни имеет более низкую плотность, поэтому он поднимается по мере того, как более плотный, прохладный воздух втягивается у основания градирни. Высокий (до 500 футов) дымоход необходим для обеспечения достаточного притока воздуха.Башни с естественной тягой могут быть противоточными или поперечными. Изображенная башня представляет собой модель с поперечным потоком. Заливка находится вне оболочки, образуя кольцо вокруг основания. В противоточной модели заполнение находится внутри оболочки. В обеих моделях пустой дымоход составляет большую часть высоты башни.

Механические тяговые башни. В градирнях с механической тягой используются вентиляторы для перемещения воздуха через градирню. В конструкции с принудительной тягой вентиляторы нагнетают воздух в нижнюю часть башни. Практически все градирни являются противоточными.В градирнях с принудительной тягой наверху установлен вентилятор для втягивания воздуха через градирню. В этих градирнях могут использоваться как поперечные, так и противоточные воздушные потоки, и они обычно больше, чем градирни с принудительной тягой.

Противоточные башни. В противоточных башнях воздух движется вверх, а не вниз по потоку воды. Такая конструкция обеспечивает хороший теплообмен, поскольку самый холодный воздух контактирует с самой холодной водой. Коллекторы и форсунки обычно используются для распределения воды в противоточных башнях.

Башни Crossflow. В градирнях с поперечным потоком воздух течет горизонтально, попадая в нисходящий поток воды. Конструкция с поперечным потоком обеспечивает более легкий путь для воздуха, тем самым увеличивая воздушный поток при заданной мощности вентилятора. Башни с поперечным потоком обычно имеют систему подачи под действием силы тяжести — распределительную площадку с равномерно расположенными измерительными отверстиями для распределения воды. Часто палубу покрывают, чтобы предотвратить рост водорослей.

Компоненты градирни

Заполнить раздел. Секция заполнения — самая важная часть башни.Для равномерного распределения воды и увеличения площади водной поверхности для более эффективного испарения используются насадки или насадки различных типов. Первоначально заливка состояла из «брызговиков» из красного дерева или обработанной под давлением пихты. Брызговики теперь доступны и из пластика. Другие типы заливки включают пластиковую решетку, керамический кирпич и пленочную заливку.

Пленочный наполнитель стал очень популярным в последние годы. Он состоит из плотно уложенных гофрированных вертикальных листов, которые заставляют воду стекать через градирню очень тонкой пленкой.Пленочный наполнитель обычно изготавливается из пластика. Поливинилхлорид (ПВХ) обычно используется в системах с максимальной температурой воды 130 ° F или ниже. Хлорированный ПВХ (ХПВХ) может выдерживать температуры примерно до 165 ° F.

Пленочный наполнитель обеспечивает большую охлаждающую способность в данном пространстве, чем заливной. Брызговик может быть частично или полностью заменен пленочным наполнителем для увеличения производительности существующей градирни. Из-за очень близкого расстояния пленочный наполнитель очень чувствителен к различным типам отложений. В некоторых системах происходило образование отложений карбоната кальция и загрязнение взвешенными твердыми частицами. Технологические загрязнители, такие как масло и жир, могут быть прямыми загрязнителями и / или приводить к сильному биологическому росту на заливке. Осаждение любого типа может серьезно снизить эффективность охлаждения градирни.

Жалюзи. Жалюзи. Жалюзи используются для того, чтобы направлять поток воздуха в градирню и минимизировать потери на ветер (разбрызгивание или вылет воды по бокам градирни).

Глушители сноса. Сепараторы капель. «Дрейф» — это термин, используемый для описания увлекаемых воздухом капель воды, покидающих верхнюю часть башни. Поскольку дрейф имеет тот же состав, что и циркулирующая вода, его не следует путать с испарением. Снос следует свести к минимуму, поскольку он расходует воду и может вызвать появление пятен на зданиях и автомобилях на некотором расстоянии от башни. Каплеуловители резко изменяют направление воздушного потока, передавая центробежную силу для отделения воды от воздуха. Ранние каплеуловители изготавливались из красного дерева в форме елочки.Современные каплеуловители обычно изготавливаются из пластика и бывают разных форм. Они более эффективны в устранении сноса, чем ранние версии из дерева, но вызывают меньший перепад давления.

Подход к влажному термометру, диапазон охлаждения

Градирни предназначены для охлаждения воды до определенной температуры при заданном наборе условий. «Температура по влажному термометру» — это самая низкая температура, до которой вода может быть охлаждена путем испарения. Конструировать градирню для охлаждения до температуры влажного термометра непрактично.Разница между температурой холодного поддона и температурой по влажному термометру называется «подходом». Башни обычно проектируются под углом 7-15 ° F. Разница температур между горячей обратной водой и холодной водой в поддоне называется «диапазоном охлаждения» (DT). Диапазон охлаждения обычно составляет около 10-25 ° F, но в некоторых системах может достигать 40 ° F.

ЦИКЛЫ КОНЦЕНТРАЦИИ, ВОДНЫЙ БАЛАНС

Расчет циклов концентрирования

Вода циркулирует через технологические теплообменники и по градирне со скоростью, называемой «скоростью рециркуляции».«Вода теряется из системы из-за испарения и продувки. Для целей расчета продувка определяется как все потери воды без испарения (ветер, дрейф, утечки и преднамеренная продувка).

Подпитка добавляется в систему для замены испарения и продувки.

Приблизительно 1000 британских тепловых единиц теряется из воды на каждый фунт испарившейся воды. Это эквивалентно испарению около 1% охлаждающей воды на каждые 10 ° F падения температуры в градирне.Следующее уравнение описывает эту взаимосвязь между испарением, скоростью рециркуляции и изменением температуры:

где: E = испарение, галлонов в минуту RR = скорость рециркуляции, галлонов в минуту

DT = диапазон охлаждения, ° F F = коэффициент испарения

Коэффициент испарения F равен 1, когда все охлаждение происходит за счет испарения. Для простоты часто предполагается, что это так. На самом деле F зависит от относительной влажности и температуры сухого термометра. Фактическое значение F для системы обычно находится между 0.75 и 1,0, но может достигать 0,6 в очень холодную погоду.

По мере испарения чистой воды в циркулирующей воде остаются минералы, что делает ее более концентрированной, чем в подпиточной воде. Обратите внимание, что продувка имеет тот же химический состав, что и оборотная вода. «Циклы концентрирования» (или «циклы») представляют собой сравнение уровня растворенных твердых частиц продувки с подпиточной водой. При 3 циклах концентрирования продувка имеет в три раза концентрацию твердых веществ в составе подпитки.

Циклы можно рассчитать путем сравнения концентраций растворимого компонента в потоках подпитки и продувки.Поскольку хлорид и сульфат растворимы даже при очень высоких концентрациях, они являются хорошим выбором для измерения. Однако результаты расчета могут оказаться недействительными, если в систему подается хлор или серная кислота в рамках программы очистки воды.

Циклы, основанные на проводимости, часто используются как простой способ автоматизации продувки. Однако циклы, основанные на проводимости, могут быть немного выше, чем циклы, основанные на отдельных компонентах, из-за добавления хлора, серной кислоты и химикатов для обработки.

Используя любой подходящий компонент:

Циклы концентрации можно также выразить следующим образом:

где: MU = подпитка (испарение + продувка), галлонов в минуту BD = продувка, галлонов в минуту

Обратите внимание, что зависимость, основанная на скорости потока в галлонах в минуту, является обратной зависимостью концентрации.

Если E + BD заменяется MU:

где:

E = испарение Решив для продувки, это уравнение принимает вид:

Это очень полезное уравнение для обработки охлаждающей воды.После определения циклов концентрирования на основе концентраций подпитки и продувки можно рассчитать фактическую потерю продувки из системы или продувку, необходимую для поддержания системы в желаемом количестве циклов.

Поскольку химические вещества для обработки не теряются при испарении, необходимо заменять только химические вещества, потерянные при продувке (все потери воды без испарения). Таким образом, расчет продувки имеет решающее значение при определении скорости подачи и затрат на обработку.

Факторы, ограничивающие циклы концентрации

Физические ограничения. Существует ограничение на количество циклов, достижимых в градирне. Ветровая нагрузка, снос и утечка — все это источники непреднамеренной продувки. Дрейфовые потери до 0,2% от скорости рециркуляции в старых градирнях могут ограничить количество циклов до 5-10. Дополнительные потери из-за утечек и ветра могут еще больше ограничить некоторые старые системы. Новые башни часто имеют гарантии дрейфа 0,02% от скорости рециркуляции или меньше.Вновь построенные системы, в которых используются башни с высокоэффективными каплеуловителями и не имеют посторонних потерь, могут быть механически способны выдерживать 50-100 циклов и более.

Химические ограничения. По мере увеличения уровня растворенных в воде твердых частиц возрастают тенденции к коррозии и осаждению. Поскольку коррозия — это электрохимическая реакция, более высокая проводимость из-за более высокого содержания растворенных твердых частиц увеличивает скорость коррозии (дальнейшее обсуждение см. В главе 24). По мере приближения удельной проводимости, превышающей 10 000 мкм, подавление коррозии становится все труднее и дороже.

Некоторые соли обладают растворимостью при обратной температуре; то есть они менее растворимы при более высокой температуре и, таким образом, имеют тенденцию к образованию отложений на трубках горячего теплообменника. Многие соли также менее растворимы при более высоком pH. По мере того, как вода в градирне концентрируется и pH увеличивается, тенденция к осаждению солей, образующих накипь, увеличивается.

Карбонат кальция, так как он является одной из наименее растворимых солей, обычно образует накипь в открытых рециркуляционных системах охлаждения. Также могут встречаться силикаты кальция и магния, сульфат кальция и другие типы отложений.В отсутствие обработки существует широкий диапазон относительной растворимости карбоната кальция и гипса, формы сульфата кальция, обычно встречающейся в системах охлаждения.

Отложения карбоната кальция можно качественно спрогнозировать с помощью индекса насыщенности Ланжелье (LSI) и индекса стабильности Ризнара (RSI). Индексы определяются следующим образом:

Индекс насыщения Ланжелье = pHa — pHs Индекс стабильности Ryznar = 2 (pHs) — pHa

Значение pH (pH насыщения) является функцией общего содержания твердых веществ, температуры, кальция и щелочности.pHa — это фактический pH воды.

Положительный результат LSI указывает на склонность карбоната кальция к отложению. Индекс стабильности Райзнара показывает ту же тенденцию при вычислении значения 6,0 или меньше. Более полное обсуждение LSI и RSI представлено в главе 25 «Системы контроля отложений и отложений — охлаждение».

С химической обработкой охлаждающей воды или без нее циклы концентрирования в конечном итоге ограничиваются невозможностью предотвратить образование накипи.

КОНТРОЛЬ ДЕПОЗИЦИИ

Как отмечалось ранее, в охлаждающей воде содержится много загрязнений, которые способствуют возникновению отложений.Здесь обсуждаются три основных типа отложений: образование накипи, общее загрязнение и биологическое загрязнение.

Образование чешуек

Образование накипи в системе охлаждения можно контролировать с помощью:

  • минимизация циклов концентрации за счет управления продувкой
  • добавление кислоты для предотвращения осаждения веществ, чувствительных к pH
  • умягчение воды для снижения содержания кальция
  • с использованием ингибиторов образования накипи для обеспечения работы в условиях перенасыщения

Контроль продувки. Увеличение продувки для ограничения циклов концентрирования — эффективный способ снизить вероятность образования накипи в циркулирующей воде. Однако высокие скорости продувки не всегда допустимы и, в зависимости от качества воды, не всегда могут обеспечить полный контроль над отложениями. Во многих населенных пунктах запасы пресной воды ограничены и дороги.

Таблица 31-1. Скорость подпитки и продувки при различных циклах

Таблица 31-1. Скорости подпитки и продувки при различных циклах a

Циклы Макияж, галлонов в минуту Продувка, галлонов в минуту
2 2000

Определение относительной плотности — MEL Chemistry

Плотность воды часто используется для расчета относительной плотности. [Викимедиа]

Плотность — это физическая величина, равная отношению массы вещества к его объему.Это значение измеряется в г / см³ [кг / м³].

ρ = м / В.

Часто при определении плотности водных растворов для стандартной плотности используется плотность чистой воды, которая при нормальных условиях приблизительно равна 1 г / см³. Для удобства расчета часто используется относительная плотность вещества.

через GIPHY

Относительная плотность

Относительная плотность — это величина, определяемая как отношение плотности исследуемого вещества к плотности вещества, выбранного в качестве «стандарта» в данном случае.Относительная плотность — безразмерная величина, так как при ее определении одно значение плотности делится на другое. Учитывается не только изменение числового значения параметра, но и изменение его размерности — если размерность делится сама на себя, она полностью уменьшается:

d = P / P₀ (плотность данного вещества — Р, плотность стандартного вещества — Р).

Условия могут быть указаны после d. Например, d²⁰₄ означает, что плотность была рассчитана при 20 ᵒC (68 ᵒF), а плотность воды при 4 ᵒC (39.2 ᵒF) был принят за стандарт.

Щелкните здесь, чтобы провести интересные эксперименты с водой.

В случае воды обычно не наблюдается фундаментальных различий между плотностью вещества и его относительной плотностью, поскольку плотность воды округляется до 1. Наличие или отсутствие измерения значения помогает нам точно определить, какое значение определяется — родственник или нет.

[Викимедиа]

Иногда относительную плотность также определяют для газов по аналогичному принципу:

Dₐᵢᵣ = Mᵣ (газ) / Mᵣ ₐᵢᵣ (плотность газа по воздуху определяется как отношение относительной молекулярной массы газа к относительной молекулярной массе воздуха, которая всегда равна 29 ).Вместо воздуха в качестве стандарта можно использовать любой другой газ.

Что может повлиять на значение плотности

Значение относительной, так же как и обычной плотности, не является постоянным значением даже для одних и тех же веществ. В зависимости от температуры окружающей среды значение может увеличиваться или уменьшаться (зависимость плотности необходимого вещества от атмосферных условий может быть найдена из справочных таблиц или определена приборами в серии экспериментов с различными условиями).

Например, при 20 ᵒC (68 ᵒF) плотность дистиллированной воды составляет 998,203 кг / м³, а при 4 ᵒC (39,2 F) — 999,973 соответственно. При точном определении относительной плотности эти различия могут повлиять на конечный результат.

Пикнометр [Викимедиа]

Как измерить относительную плотность

Относительную плотность при той же температуре можно измерить пикнометром — сначала его взвешивают пустым, затем стандартным веществом (например, дистиллятом), а затем исследуемым веществом.В некоторых случаях для определения относительной плотности используется ареометр, но точность результатов ниже.

Примеры расчетов

Если плотности двух веществ задаются при решении задачи, чтобы найти относительную плотность, определенную плотность просто нужно разделить на стандарт. Например, если плотность раствора соляной кислоты составляет 1,150 кг / м³, а стандартная плотность серной кислоты составляет около 1.800 кг / м³, тогда плотность соляной кислоты , деленная на серную кислоту, составит:

3D-структура серной кислоты [Викимедиа]

d = P / P₀ = 1150/1800 = 0,64.

Для газов используется молекулярная масса. Таким образом, плотность хлора Cl₂, разделенного на воздух, составляет:

Dₐᵢᵣ = Mᵣ (Cl₂) / Mᵣ ₐᵢᵣ = 71/29 = 2,45.

Хлор [Викимедиа]

На практике расчеты относительной плотности часто используются для упрощенных оценок.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *