Традиционный и экструдированный пенопласт, их плотность
Разбираем свойства этих двух видов пенопласта. Утеплением стен с их использованием имеет высокую эффективность. Традиционный пенопласт при показателе плотности 25 требует использование плиты в 40-50 мм. Узнайте больше фактов и свойств из материала статьи.
Обзор экструдированного пенополистирола
Плотность является главной характеристикой полистирола. Классификация производится именно по этому признаку. В зависимости от его показателей будут меняться и направления, в которых его используют. Данный материал активно используется при работах по утеплению квартир и частных домов.
Метод экструдирования (экструзия)
Само понятие носит в себе описание процесса изготовления. Этот термин буквально значит продавливание с применением специально разработанных отверстий.
Эта технология придает конечному продукту множество качеств, например:
- Надежные показатели в сопротивлении воде.
- Придание минимальных значений в показателе теплопроводности.
- Уменьшение теплоемкости .
Пенопласт уступает своему аналогу, получаемому методом экструдирования, в плотности. Проигрывает пенопласт и в легкости (экструзия имеет 25-45 кг на м3, а пенопласт 40 кг на м3). Температурные показатели отличаются опять же не в пользу пенопласта: от -50 до +60 °С против от -50 до +75°С.
Классификация
Маркировка 31С
Маркировка 31С зарекомендовала себя как качественный элемент изоляции ненагруженных участков сооружений. Отличным примером в этом направлении служат работы со стенами фундамента. Эту маркировку можно отыскать в продукте теплых полов.
31С нашло широкое применение также в работах по утеплению канализационных систем. Эксплуатация предназначена исключительно в конструкциях которые защищены от огня, поскольку его уровень сопротивления огню соответствует категории Г4.
Маркировка 35
Маркировка 35 имеет существенные отличия от 31С. Они заключаются в разнице показателей удельной массы и общем уровне сопротивления огню. В создании пенополистирола с маркировкой 35 применяется антипирен, при помощи которого удается повышать огнестойкость.
За счет своих качеств в сопротивлении к огню (слабогорючесть) изделие оказалось популярным также при кровле. Самая популярная работа, в которой задействуют пенополистирол марки 35 — изоляция всевозможных конструкций, которые выполняют ограждающие функции.
Маркировка 45
Пенополистирол с маркировкой 45 превосходит первые два варианта за счет того, что его прочность сжатия имеет огромный запас. Он может быть успешно задействован не только в утеплении, все свои возможности он открывает в таких масштабных работах как сооружение дорог. Пенополистирол маркировки 45 активно используют также в работах с взлетно-посадочными полосами.
Характеристики:
- Удельный вес пенополистирола оказывает слабое влияние на показатели сохранения тепла.
- Показатель удельного веса имеет влияние на характеристики прочности.
- На эффективность утепления (термоизоляции) влияет толщина листа.
Маркировки пенополистирола 31 и 31С имеют в основном схожие качества. Самое разительное отличие этих двух марок заключается в категориях, которые отвечают за огнеустойчивость. 31 имеет категорию Г1, а 31С Г4.
Противоположный пример это маркированный пенополистирол 45 и 45С. В отличие от пенополистирола 31 и 31С, эти несут в себе отличие буквально по всем пунктам. Один из немногих показателей который объединяет эти марки пенополистирола — устойчивость огня на уровне Г4.
Пенопласт для утепления стен
Пенопласт является выгодным с экономической точки зрения материалом. Экономическая выгода проявляется не только на этапе строительства, но и на этапе последующей эксплуатации. Это достигается за счет высоких показателей в сохранении тепла для утепления стен и прочих элементов конструкции, а также надежным уровнем сопротивления огню.
В вопросе утепления стен пенопласт занимает все более лидирующие места с каждым годом. Утепление стен пенопластом оправдало себя, имея высокую эффективность в этой области. До 50% экономии денежных средств принесет утепление стен пенопластом. Также свою эффективность пенопласт проявляет и в летний период, сохраняя прохладу.
При монтаже должны соблюдаться стандарты по толщине плит. Для наружных стен этот показатель составляет 50 мм, а для внутренней 30 мм. Плотность — 25.
С использованием этого материала можно провести работы по наружному и внешнему утеплению стен. Снаружи процесс монтажа происходит с применением цементных растворов, различных монтажных приспособлений, клея и прочего. Внутренняя сторона при монтаже пенопласта будет иметь хороший уровень защиты от шумов. Необходимо применять гипсокартонные листы. Можно воспользоваться и альтернативным вариантом — штукатурка.
Плиты, которые задействованы в процессе крепления для наружной части должны соответствовать показателям толщины в 50 мм. Внутренняя же сторона потребует от 30 мм. Стена, которая находится на наружной части помещения, предварительно должна быть обработана цементным раствором. Его нанесение происходит при помощи специальной сетки из металла. После завершения работ можно считать, что пенопласт успешно монтирован.
Плотность. Показатель
При работе по утеплению стен пенополистирол имеет показатель плотности в 25. Наружная стена с листом в 50 мм будет иметь высокие показатели сохранения тепла, а также дополнительная звукоизоляция.
Пенопласт с плотностью 25 выглядит довольно выгодно на фоне своего аналога, плотность которого 15. Главные отличия в качестве. Большую разницу в качестве пенопласта с плотностью в 25 и 15 вы можете ощутить, даже не начав их эксплуатировать.
Представленные ранее в статье марки экструдированного полистирола имеют следующие показатели плотности:
- 31С (от 28,5 30,5 кг).
- 31 (от 28 до 34 кг).
- 45 (от 38,1 до 45 кг).
Свойства паропроницаемости
Показатель паропроницаемости напрямую влияет на эффективность обмена воздуха, который происходит между внутренней частью помещений и внешней. Это случается из-за того что воздух снаружи имеет более низкий температурный показатель чем внутренний.
Когда проходит обмен воздуха из внутренней части к наружной, уровень проницаемости должен увеличиваться. По показателям паропроницаемости традиционный пенопласт выигрывает у экструдированного.
Показатели:
- Традиционный пенопласт имеет 0,063 мг/(м*ч*Па).
- Экструдированный пенопласт имеет 0.013 Мг/(м*ч*Па).
Внешнее утепление необходимо делать исключительно традиционным пенопластом (плотность 25), экструдированный пенополистирол (плотность 15) подходит для внутреннего.
Почему это так? Если при внешнем утеплении вы используете экструдированный пенополистирол, это приведет к нежелательным последствиям. Его низкая паропроницаемости имеет высокий уровень изолирования, это приведет к накоплению влаги что не позволит материалам засыхать и вентилироваться.
Утепление стен
Как нам стало известно из материала выше, для разных частей стен необходимо использовать разные материалы. Если вы не хотите чтобы, например, в вашей деревянной бане сконструированной с XPS начались процессы гниения и разрушения — установка экструдированного пенополистирола исключена. Правильно очень простое и придерживаться его не сложно.
Плотность традиционного пенопласта для утепления стен имеет показатель 25, экструдированного 15. В работе с традиционным пенопластом лучше всего использовать плиты с толщиной 50 мм, экструдированный пенополистирол требует таких же показателей. Можно обойтись толщиной и в 30-40 мм.
Сферы применения экструдированного пенополистирола — Блог о строительстве
Экструдированный пенполистирол — продукт современных технологий, был разработан сравнительно недавно, около 20 лет назад, и с тех пор весьма широко применяется для теплоизоляциии.
Экструдированный пенополистирол дороже пенопласта. Но его все равно приобретают и применяют. Потому что материал обладает особенными свойствами, которые делают его незаменимым в некоторых случаях.
Содержание
- 1 Экструдированный пенополистирол – легкий теплоизолятор
- 2 Пароизоляционные свойства
- 3 Не поглощает воду
- 4 Высокая механическая прочность
- 5 Еще о свойствах экструдированного пенополистирола
- 6 Утеплитель для нагреваемого фундамента
- 7 Теплоизоляция ленточного фундамента с боков и цоколя
- 8 Для бетонных полов
- 9 Утепление комнат изнутри
- 10 Термоизоляция трубопроводов в земле, или других конструкций контактирующих с водой
- 11 Где не рекомендуется применять пенополистирол
- 12 Что такое экструдированный пенополистирол?
- 13 Преимущества и недостатки
- 14 Сферы применения продукта
- 15
Экструдированный пенополистирол – один из видов современных пенопластов, созданный по технологии экструзии полистирола.
Благодаря такой методу производства гранулы полистирола плотно прикипают друг к другу, образовывая прочную, стабильную структуру материала. - 16 Основные преимущества
- 17 Схема производства экструдированных пенополистиролов
- 18 Недостатки экструдированного пенополистирола
- 19 Сфера применения экструдированного пенополистирола
- 20 Ведущие производители знают о недостатках ЭППС и постоянно работают над их устранением. Например, вместо «чистых» листов экструдированного пенополистирола, все больше материалов для утепления жилых построек выпускают в виде сэндвичей. Это тот же ЭППС, но обклеенный листами из водостойкого и негорючего материала.
- 21 Использование экструдированного ППС в домашнем и промышленном строительстве
- 22 Но по-настоящему качества экструдированного полистирола проявились при утеплении стен и коммуникаций. Традиционные стекловата и минеральные волокна всегда страдали одним существенным изъяном. При использовании слабых пароизоляционных мембран волоконные маты быстро поглощали дождевую влагу и конденсат, вес базальтового волокна из-за поглощенной воды мог увеличиться почти вдвое, что нередко приводило к обрыву утеплителя. Даже большинство индивидуальных застройщиков давно сообразили, что проще обклеить стены дома листами легкого экструдированного пенополистирола и закрыть слой утеплителя цементной штукатуркой, чем морочить голову с капризной и непредсказуемой базальтовой ватой.
- 23 Заключение
Экструдированный пенополистирол – легкий теплоизолятор
Коэффициент теплопроводнсти составляет — 0,03-0,034 Вт/м?С. Это меньше чем у пенопласта и большинства других утеплителей.
По этому показателю материал уступает разве что пенополиуретану. Соответственно, и слой утепления для достижения требуемых параметров потребуется меньший. Плотность выпускаемого материала обычно находится в пределах 25..55 кг/м?.
Пароизоляционные свойства
Сырье для изготовления пенопласта и экструдировнного пенополистирола применяется одно и то же. Но особенная технология (метод экструзии) позволяет получить материал, у которого мельчайшие капсулы с воздухом (0,1 – 0,2 мм) почти все закрытые и не проницаемые.
Поэтому через пенополистирол воздух и водяной пар практически не проходят. Коэффициент его паропроницаемости составляет около — 0,015 м2ч Па/мг. Что значительно меньше чем у железобетона (0,03 м2ч Па/мг) и у пенопласта (0,05 -0,23 м2ч Па/мг).
Сопротивление движению пара, а также способность к водонакоплению, имеют большую значимость при выборе материалов для теплоизоляции. По этим характеристикам у экструдированного пенополистирола своя особая область применения.
Низкая паропроницательность, с одной стороны, ограничивает область применения материала. Но, с другой стороны, его можно и нужно применять как пароизляционный барьер и как материал, не накапливающий внутри воду.
Не поглощает воду
Водопоглощение пенполистирола эктрудированного составляет всего 0,4 % по объему. Это делает возможным применять его в непосредственном контакте с водой и с грунтом без ограничения срока. А также использование как гидробарьер на наружной стороне конструкций.
Низкое водопоглощение выделяет пенополистирол из ряда других утеплителей.
Высокая механическая прочность
Прочность на сжатие составляет от 0,25 МПа, для плотности материала 35 кг/м куб., до 0,5 МПа для плотности 50 кг/м куб.Высокие показатели механической прочности позволяют применять эструдированный пенополистирол как конструкционную часть нагруженных конструкций. Или как утепляющий и подстилающий слой.
Еще о свойствах экструдированного пенополистирола
Нужно отметить, что экструдированный пенополистирол не горит самостоятельно, а только под воздействием источника пламени.
Затухание при прекращении воздействия происходит не позже чем через 3 секунды. При горении (а так же при нагревании и плавлении!) выделяет опасные вещества. Поэтому применение его внутри зданий без ограждения трудносгораемой (40 минут) оболочкой не желательно.
Не лишне напомнить, что все пенополистиролы при легком не пожарном нагреве (свыше 60 градусов) начинают ускоренно разлагаться и выделять вредные вещества.
Поэтому прокладка горячих трубопроводов с непосредственным контактом с этим утеплителем не допускается. То же самое и с электрическими проводниками, розетками, и т. п.
Экструдированный пенополистирол, так же как и пенопласт ускоренно разрушается от воздействия ультрафиолета. Поэтому снаружи он должен защищаться от воздействия солнечного света как при хранении, так и при эксплуатации.
Утеплитель для нагреваемого фундамента
Водоупорные и высокие прочностные свойства пенополистирола дают возможность применить его в качестве теплоизолятора под фундаментом сделанным по типу «шведская плита».
Это плитный отапливаемый фундамент, который одновременно является и основой теплых полов. Слой пенополистирола экструдированного при этом составляет 10 — 20 см. Такие фундаменты весьма популярны в западных странах и позволяют достигать высоких показателей энергосбережения для малоэтажных легких домов и обеспечивают высокий уровень комфорта.
Сюда и уходит львиная доля выпускаемого материала.
Теплоизоляция ленточного фундамента с боков и цоколя
Все чаще прибегают к утеплению обычного ленточного фундамента, цоколя, а также ростверка на сваях, с боков по наружному периметру, что экономит тепловую энергию, уходящую из стен в грунт. И к тому же дополнительно защищает фундамент от воды.
Экструдированный пенополистирол наклеивают на слой гидроизоляции фундамента и засыпают песком толщиной от 20 см. Выше уровня грунта пенополистирол используется как брызгозащитный утеплитель для цоколя. Обычный слой возле поверхности и выше — 10 сантиметров, ниже 0,5 метра от уровня земли — 5 см.
Для бетонных полов
Под бетонными стяжками в основном используется экструдированный пенополистирол. Прочная минеральная вата в этих случаях, или не подходит вовсе, из-за возможного попадания пара и воды из подполья, или ее применение под стяжкой пола рискованное.
Экструдированный пенополистирол к тому же выступает здесь преградой лишней влажности, что во многих случаях востребовано. Материал повышенной плотности и прочности применяют в гаражах под стяжками, на которые наезжают автомобили.
Утепление комнат изнутри
В редких случаях, когда не возможно утепляться снаружи, прибегают к утеплению изнутри. Так чаще утепляют подвальные помещения, но бывает и дома и квартиры, у которых «фасад-недотрога».
Тогда нужен утеплитель, который не пропускает пар, что бы соблюдался принцип паропроницаемости слоев — внутри теплого помещения самый изолирующий слой.
Это позволяет уменьшить риски намокания несущей конструкции, а также решает вопрос плесени и повышенной влажности внутри помещения, которых не избежать с паропроницаемыми утеплителями.
Единственное – придется утеплитель внутри закрывать штукатуркой не менее 3 см толщиной армированной стальной сеткой, либо двойным листом гипсокартона — 35 мм, что даст необходимое время при воздействии пламени, пока пенополистирол начнет плавится.
Термоизоляция трубопроводов в земле, или других конструкций контактирующих с водой
Очень удобно экструдированным пенополистиролом утеплять трубопроводы находящиеся в земле. Производители выпускают скорлупу различных конфигураций, для утепления фигурных объектов.
Материал широко применяется в промышленности в самых разных случаях. Также массово применяется в портах, в судостроении.
А в строительной отрасли этим утеплителем покрывают плоские кровли, так как он не боится замокания, в случае протечки верхнего покрытия.
Где не рекомендуется применять пенополистирол
На стенах снаружи в большинстве случаев экструдировнный пенополистирол не применяют. Потому что высокоизолирующие свойства в отношении пара создают риск намокания внутренних прочных конструкций (пароизоляция не абсолютная). Нарушается принцип паропроницаемости слоев.
Но внутри трехслойной стены пенополистирол может быть применен совместно с дополнительным паробарьером (пленкой) — используется принцип полного разделения слоев. Но здесь может быть применим практически любой утеплитель.
К тому же этому материалу трудно конкурировать с гораздо более дешевым пенопластом. А ведь утепление должно окупаться как можно быстрее… согласно тех же нормативов.
Также не желательно присутствие экструдированного пенополистирола на деревянных конструкциях, нарушение парообмена которых, приводит к тому что дерево преет. Внутри помещения, как было указано, пенополистирол не применяется в открытом виде по пожарным соображениям, а при внутреннем утеплении дополнительно закрывается гипсовыми (цементными) защитными экранами.
27.10.2017
Экструдированный пенополистиролуже давно используется во многих видах строительных работ. Это объясняется тем, что данный материал обладает высокой влагостойкостью, достаточной жесткостью и склонностью сохранять тепло. К тому же он не поддается разнообразным химическим воздействиям, благодаря чему имеет высокий срок эксплуатации.
Сфера его применения достаточно широка, но основная его функция остается неизменной – теплоизоляция. Современные магазины стройматериалов предлагают покупателям широкий ассортимент экструдированного пенополистирола, поэтому перед покупкой желательно изучить все его преимущества и недостатки.
Что такое экструдированный пенополистирол?
По другому такой продукт называют еще экструзионным пенополистиролом. На рынке строительных материалов он известен уже более пятидесяти лет.
Аналогов данному пенопласту так и не получили, поэтому многие мастера продолжают использовать его для утепления зданий. Этот продукт обладает достаточно однородной структурой и состоит из небольших ячеек закрытого типа. Он имеет некоторые особенности в производстве – для того, чтобы его получить, необходимо смешать гранулированный полистирол со вспенивающимися веществами, например, двуокисью углерода.
Благодаря такому производству получаемый продукт обладает большой устойчивостью ко всевозможным химическим соединениям, которые чаще всего используются в строительных работах.
Экструдированный пенопласт не теряет свои функциональные показатели в процессе взаимодействия с солями, кислотами, спиртами, красителями различных видов, цементом и т. д. Однако стоит быть осторожным с бензином, солярной кислотой или керосином – эти вещества могут существенно навредить целостности экструзионного пенополистирола.
Преимущества и недостатки
Конечно же, отсутствие аналогов для экструдированного пенопласта делает его довольно незаменимым стройматериалом. Однако, не стоит забывать, что он подходит далеко не всем. Фирмы-производители сегодня пытаются убедить целевую аудиторию, что эта продукция является универсальной, но это далеко не так.
Среди преимуществ материала можно выделить следующие:
- высокая степень теплоизоляции;устойчивость к сильным порывам ветра;гидроизоляция (в большинстве случаев не пропускает влагу).
Все эти особенности ставят экструдированный пенополистирол на ступень выше таких утеплителей, как минеральная или базальтовая вата.
Но, не стоит забывать про его минусы. Самым главным из них можно отметить то, что такой стройматериал не позволяет помещению «дышать», то есть закупоривает его и может превратить в душное пространство. Поэтому купить экструдированный пенополистирол следует тем, кто уверен в том, что помещение нуждается в настолько сильном утеплении.
Сферы применения продукта
Экструдированный пенополистирол используют во многих видах стройработ, исходя из его главного предназначения:
Укладывание дороги. Многим асфальтированным поверхностям тяжело пережить слишком холодную зиму. Экструзионный пенопласт намного облегчил эту задачу – он не просто утепляет дороги, не позволяя грунту разрушаться от сильных морозов, но и способен выдержать большие нагрузки от разного вида транспорта.
Это позволяет существенно увеличить сроки эксплуатации дороги.Утепление кровли. Благодаря простому монтажу экструдированных плит многие люди сегодня выбирают именно их в качестве утеплителя для крыши зданий. А устойчивость к влаге поможет предотвратить появление плесени или грибка.Теплоизоляция фасада и фундамента.Утепление складских помещений.
Как вы видите, область использования экструдированного пенопласта достаточно широка. Благодаря своей износостойкости и качеству этот материал завоевал большую популярность строителей. Приобрести экструдированные плиты можно в различных интернет-магазинах стройматериалов, например, в магазине Строймаг (www.strojmag.ua)цена на пенополистирол одна из самых низких на рынке Украины.
Экструдированный пенополистирол – один из видов современных пенопластов, созданный по технологии экструзии полистирола. Благодаря такой методу производства гранулы полистирола плотно прикипают друг к другу, образовывая прочную, стабильную структуру материала.
Основные преимущества
- высокая степень водонепроницаемости;очень низкая степень теплопроводности;высокий уровень устойчивости к механическому воздействию;высокая устойчивость к растворителям;способность выдерживать высокие температуры;долговечность материала;небольшой вес изделия.
Благодаря высокому уровню водонепроницаемости экструдированный пенополистирол очень часто применяют при проведении работ по восстановлению и утеплению помещений с высокой степенью влажности.
Его также используют в кровельных работах и для теплоизоляции чердачных помещений. Популярен утеплитель и в холодильной сфере. Его часто устанавливают в качестве теплового изолятора в морозильных и холодильных установках, для изоляции стен термических фургонов и других помещений для хранения продуктов.
За счет большого содержания воздушных фракций в составе, утеплитель имеет превосходные звукопоглощающие качества. Его часто устанавливают на балконах и лоджиях в качестве утеплителя с нулевым восприятием к воздействию биологических организмов. Грибок, плесень и другие патогенны ему не страшны.
Читайте также: Как выбрать бензиновый генератор
Одним и, наверное, главным недостатком утеплителя является его подверженность к воспламенению. Из-за слабой огнестойкости материала его иногда пытаются заменить на более безопасные в этом плане утеплители.
- тепловая изоляция полов промышленных зданий и сооружений;теплоизоляция подвальных и чердачных помещений с высокой степенью влажности;теплоизоляция наружных и внутренних стен и перегородок помещений;использование при сооружении инверсионных и наклонных кровель;использование при заливке несъемной опалубки;применение при дорожном строительстве;использование для производства тротуаров с подогревом.
Для теплоизоляции полов больших промышленных сооружений и торговых комплексов утеплитель не требует особых подготовительных работ.
Он может устанавливаться, как на предварительно подготовленную поверхность, так и прямо на выровненную грунтовую площадку. Его высокая устойчивость к воздействию влаги, температуры и химических элементов позволяет использовать материал в довольно экстремальных условиях. Высокие прочностные показатели позволяют использовать утеплитель в бытовом строительстве еще и в качестве грунтового теплоизолятора для фундаментов и заглубленных в грунт сооружений и конструкций.
В производстве современных комплектующих материалов для строительства также широко применяется полистирол подверженный экструзии. Его используют в качестве высокопрочного и теплоизолирующего наполнителя в сэндвич панелях.
Читайте также: Полиуретановый настил: преимущества и недостатки
Для отделочных работ при строительстве утеплитель прекрасно подходит, так как имеет ровную и гладкую поверхность, а теплоизолирующие свойства только придают конструкции долговечности и надежности. Благодаря прикреплению утеплителя к внешней стороне зданий, он не только усиливает температурные показатели внутри, но и полностью меняет облик снаружи.
Использование вспененных полимеров — это реалии сегодняшней жизни. Пенопласт и экструдированный пенополистирол доказали свою эффективность в качестве теплоизоляторов, поэтому современное строительство вряд ли откажется от его использования в ближайшие десятилетия. Сегодня практически нет материала, равноценного экструдированным вспененным полистиролам по техническим характеристикам и стоимости производства.
Схема производства экструдированных пенополистиролов
Уже из одного названия становится ясно, что полистирол экструдированный является формой более глубокой переработки вспененного полимера, полученного конденсацией стирола под действием катализаторов в органическом растворителе.
Описание процесса экструзионного производства во многом объясняет преимущества и недостатки экструдированного пенополистирола, сокращенно ЭППС:
- Исходное сырье — мельчайшие гранулы помещаются в реактор, где при высокой температуре и давлении они насыщаются газообразующим агентом;При сбрасывании давления масса резко начинает расширяться, подобно пене, и одновременно охлаждаться, приобретая свойства твердого тела;Горячую и вязкую массу продавливают через экструдеры, в результате чего пенополистирол уплотняется и одновременно становится более похожим на слоистый пластик.
В результате получается экструдированный материал, в объемной структуре которого полистирол занимает 1-2%, остальное — это воздух, очищенный от водяных паров, а значит, обладающий минимальной теплопроводностью. У ЭППС он всего лишь на несколько долей процента выше, чем у пенопласта.
Среди особенностей экструдированного пенополистирола можно отметить нулевое пропускание влаги и газов.
ЭППС, в отличие от минеральной ваты, не пропускает водяной пар, не обводняется и не теряет теплоизоляционных свойств, даже в случаях, когда из-за неграмотного проектирования теплоизоляции точка росы и выпадения конденсата приходится на поверхность утеплителя. Для минеральной ваты дождь или выпавший внутри волоконного мата конденсат практически означает выход утепления из строя.По сути, ЭППС нельзя называть экструдированным пенопластом из-за разницы в удельном весе и механической прочности материала. Плотность экструдированного вспененного полистирола достигает 45-50 кг/м3, тогда как для пенопластов удельный вес находится в интервале 10-35 кг/м3.
Недостатки экструдированного пенополистирола
Принято считать, что экструдированный пенополистирол и пенопласт при нагреве способны разлагаться с выделением большого количества ядовитых и токсичных газов. В реальности вспененные полимеры могут разлагаться с выделением газов только в случае скрытого тления, когда к поверхности полимера при высокой температуре идет небольшой приток воздуха. Этого объема не хватает для горения, но достаточно для саморазогрева пенополистирола с выделением полупродуктов термолиза.
Точно так же ведут себя при пожаре древесина, полихлорвинилы, лакокрасочные покрытия, если в состав пластика не добавлены специальные соли или добавки, препятствующие горению.
Сегодня, после многочисленных случаев возгорания утеплителей из ЭППС и пенопласта, все сертифицированные облицовочные марки экструдированных пенополистиролов и пенопластов выпускаются с антипиреновыми добавками.Важно!Единственное ограничение использования экструдированного материала, на котором настаивают специалисты, заключается в неприменении пенополистирола в качестве утеплителя деревянных полов на цокольных и первых этажах, без выполнения бетонной стяжки поверх утеплителя. Существует более серьезная угроза, чем пожар.Это загрязненность исходного сырья для ЭППС остатками непрореагировавшего стирола и толуола. Практически все производители пенопластов и экструдированных пенополистиролов знают об этом, но очистить полимер, особенно китайского производства, очень дорого и сложно. Следует признать, что в этом отношении экструдированный пенополистирол намного безопаснее пенопластов.Справочные данные на экструдированный пенополистирол говорят, что ЭППС под большой нагрузкой способен поглотить до 0,4% воды, при паропроницаемости в 15 г на метр квадратный в час.
Более пористый пенопласт способен поглотить почти на порядок больше, для отдельных марок водопоглощение достигает 3-4%, при паропроницаемости до 28 г на квадрат.Если пенопласт или экструдированный пенополистирол будет долго находиться в воде или влажной среде, то влага, как более плотное вещество, будет просачиваться по порам и выдавливать все остатки химических веществ, застрявших во вспененной массе. Если для плиты из ЭППС толщиной в 50мм и площадью в 1 м2максимальное выделение остатков растворителей и газообразующих агентов составит всего 4-7 г, то для пенопласта 40-70 г. На одну комнату в 20 м2выделения из пенополистирола и обычного пенопласта могут составить соответственно 80 г и 800 г.
Сфера применения экструдированного пенополистирола
Несмотря на запрещение в США и отдельных странах Европы использования пенополистирола, объемы производства и потребления ЭППС растут с каждым годом на 3-4%. Запрет в большей части касался производства ЭППС, а не его использования, и прежде всего из-за применения фреонов. Сегодня фреон и углекислый газ используют в производстве экструдированных материалов только Китай и Россия.
Экструдированный пенополистирол является материалом номер один для утепления построек малой и средней этажности и практически всех коммуникаций и подземных строений.
Причины массового использования ЭППС связаны с его техническими и эксплуатационными характеристиками:
- Высокие теплоизолирующие качества ЭППС, лист пеноплекса, толщиной в 20 мм, эквивалентен 40 мм минерального волоконного мата и 200 мм деревянного бруса. Средняя теплопроводность ЭППС составляет 0.03 Вт/м∙К;Благодаря повышенной плотности и частичной упорядоченности структуры ячеек экструдированный материал способен выдерживать серьезные контактные и изгибающие нагрузки, в пределах 0,4-1,0 кг/см2. Для пенопласта данный показатель в 20 раз меньше;Устойчивость экструдированного пенополистирола к разрушительному действию грибковой и бактериальной микрофлоры, повышенной кислотности, загрязнению, перепадам температур.
Важно!Единственное, чего боится любой пенополистирол, – это воздействия ультрафиолетового излучения и органических полярных растворителей — спирта, ацетона, дихлорэтана, а также жидких непредельных и ароматических углеводородов.
Ведущие производители знают о недостатках ЭППС и постоянно работают над их устранением. Например, вместо «чистых» листов экструдированного пенополистирола, все больше материалов для утепления жилых построек выпускают в виде сэндвичей. Это тот же ЭППС, но обклеенный листами из водостойкого и негорючего материала.
Использование экструдированного ППС в домашнем и промышленном строительстве
Прежде всего, стоит отметить, что с появлением ЭППС в строительной сфере была кардинально решена проблема утепления фундаментов, цокольных этажей и оснований дорожного полотна.
Использование керамзитовой отсыпки, гранулированной глины, пеностекла не позволяло достичь нужного эффекта. Кроме того, благодаря высокой контактной прочности экструдированный материал выдерживал самые экстремальные формы пучения грунта и осадки зданий. Сегодня практически все подземные и цокольные сооружения изолируются экструдированным пенополистиролом.
Но по-настоящему качества экструдированного полистирола проявились при утеплении стен и коммуникаций. Традиционные стекловата и минеральные волокна всегда страдали одним существенным изъяном. При использовании слабых пароизоляционных мембран волоконные маты быстро поглощали дождевую влагу и конденсат, вес базальтового волокна из-за поглощенной воды мог увеличиться почти вдвое, что нередко приводило к обрыву утеплителя.
Даже большинство индивидуальных застройщиков давно сообразили, что проще обклеить стены дома листами легкого экструдированного пенополистирола и закрыть слой утеплителя цементной штукатуркой, чем морочить голову с капризной и непредсказуемой базальтовой ватой.
Заключение
Более чем двадцатилетняя практика практического применения экструдированных пенополистиролов показала, что большинство проблем и претензий к ЭППС легко устраняются укладкой защитного слоя, можно использовать бетонные стяжки, цементные и гипсовые штукатурки, облицовку из листового материала. Стоимость утепления пенополистиролом все равно будет меньше, при более высокой эффективности и надежности.
Источники:
- teplodom1.ru
- www.e-joe.ru
- sxteh.ru
- bouw.ru
Пеноплекс или пенополистирол что лучше: изготовление материалов, сравнение
Содержание статьи:
Для защиты дома от потерь тепла используется пеноплекс или пенополистирол. Оба материала производятся способом вспенивания полистирола, но пеноплекс проходит дополнительную обработку методом экструзии. Свойства утеплителей различаются, они имеют разную теплопроводность, влагопроницаемость, прочность и применяются на разных поверхностях.
Изготовление пеноплекса и пенополистирола
Пенопласт является исходным веществом для производства пеноплекса
Второе наименование пеноплекса — экструдированный пенополистирол. Пенопласт проходит техпроцесс переплавки и прессования в агрегатах. Масса пенопласта закладывается в экструдер и обрабатывается давлением и температурой. Плавление превращает исходное сырье в пену с маленькими воздушными ячейками.
Технология производства пенополистирола состоит во вспенивании гранул сырья в емкости под паровым давлением. Увеличенные гранулы сушатся и спекаются в общую массу в специальных формах под давлением. Полученные блоки выдерживаются от 15 до 30 суток для естественной сушки от влаги, затем режутся на плиты.
Изготовление материалов проходит по технологическим циклам и на выходе получаются утеплители с отличиями в основных характеристиках.
Общие свойства
Пеноплекс – это материал, который получен благодаря иному методу обработки пенопласта
Общим является сырье, которое применяется при выпуске материалов. Используются известные полимеры (пластмассы).
Категория исходного сырья:
- полиуретановые гетероцепные полимеры;
- поливинилхлориды;
- полистирол;
- карбамиды – формальдегиды.
Оба материала имеют общий недостаток – непроницаемость для пара и воздуха. Пенополистирол и пеноплекс одинаково невыгодно работают в качестве изоляции от шума. Они защищают от ударного стука по перекрытию или стене, но общий гул не удаляют.
Пеноплекс, обработанный пропитками, и пенополистирол относятся к средней категории опасности при пожаре, одинаково выделяют химические вещества и затухаю
Экструдированный пенополистирол технические характеристики
Содержание статьи:
Сравнение пенопласта и экструзионного пенополистирола
Несмотря на сходный состав, утеплители изготавливаются по совершенно разным технологиям, поэтому значительно различаются по техническим характеристикам.
Пенополистирол только на 2% состоит из полимера. Остальную часть занимает воздух, герметично запаянный внутри капсул и потому остающийся без движения.
Как известно, именно такая недвижимая воздушная прослойка обеспечивает хорошую теплоизоляцию. Теплопроводность пенополистирола ниже, чем у дерева (в 3 раза) и тем более ниже, чем у кирпича (в 17 раз). Благодаря этой особенности для утепления стен, толщиной 21 см, понадобится плита утеплителя, толщиной 12 см.
Пеноплекс благодаря большей плотности превосходит пенополистирол по показателю теплопроводности, но различие невелико. Так, если теплопроводность пенопласта составляет 0,04 Вт/мК, то соответствующий параметр у пеноплекса составляет 0,032 вт/мК. Если говорить применительно к материалам, то для теплоизоляции вместо плиты пенополистирола, толщиной 25 см можно брать плиту пеноплекса в 20 см, и результат будет тот же. Впрочем, эти показатели могут различаться в зависимости от производителя и конкретной марки материалов.
Еще одно преимущество материала — звуконепроницаемость. Для того, чтобы добиться полной звукоизоляции, понадобится тонкая плита в 3 см.
Бесспорным преимуществом обычного пенополистирола является водонепроницаемость. Максимальный объем поглощения влаги — не более 3% от массы самого материала. При этом даже при максимальном поглощении влаги характеристики пенопласта не меняются.
Если экструдировать полимер, можно добиться еще более высоких результатов. Так, максимальный показатель поглощения влаги для пеноплекса не превышает 0,4%. Поэтому при утеплении фасада экструзионным пенополистеролом допускается пренебречь пароизоляцией. Если же выбор пал на пенопласт, то пароизоляцию лучше все-таки провести.
Если говорить о прочности, то и тут выигрывает пеноплекс как более плотный материал. Пенопласт из-за крупных микропор с течением времени неизбежно снижает устойчивость к различным воздействиям.
Прочность на сжатие пенопласта составляет лишь 0,2 Мпа, тогда как у пенополистирола, изготовленного с помощью экструзии – 0,5 Мпа. Если же сравнивать прочность на сжатие двух плит одинаковой толщины, то пенопласт оказывается менее прочным в 4 раза.
Достоинства, недостатки и особенности популярного материала
Схема скрепление пенополистирола с фанерой: а) склейка на гладкую фугу; б) склейка на микрошип; в) склейка на зубчатый шип 10мм; г) “шпунт-гребень”; д) вставной шип (“шпонка”).
Экструзионный пенополистирол — это пластик, пористый материал с равномерной закрытой структурой мелких ячеек (пор), изготовленный на основе органических полимеров. При его производстве в экструзионной установке воздействуют высокое давление и температура, также вспенивающие вещества (двуокись углерода, фреоны), введенные инжекцией (впрыскиванием). Масса проходит всю технологию изготовления, выдавливается из оборудования. В результате формируются плиты ЭППС, которые требуется просушить для использования по назначению. Благодаря технологическому процессу экструзии экструдат получает однородность состава, формируется особая ячеистая структура, также высокие рабочие характеристики, обуславливающие его широкое применение.
Достоинствами ЭППС являются:
- низкое водопоглощение;
- низкая теплопроводность;
- морозоустойчивость;
- высокое сопротивление сжатию;
- устойчивость к процессам гниения, биологического разложения;
- стойкость к воздействию химических агентов;
- экологичность;
- маленькая масса;
- устойчивость к температурным перепадам;
- низкая паропроницаемость;
- при воздействии перепадов температур материал не изменяет рабочих характеристик;
- прост в монтаже, обработке;
- работа с материалом может проводиться при температуре от -50° до +70°;
- хорошее сочетание с другими материалами;
- прочность;
- долговечность.
Расположение сетки для последующего нахлеста и стыка.
Недостатки материала:
- при горении материала выделяются фенолы;
- легкая возгораемость;
- высокая стоимость;
- при воздействии органических растворителей, сложных углеводородов, ультрафиолетовых лучей материал разрушается;
- существуют ограничения в применении при теплоизоляции скатных кровель, саун, бань.
Промышленность выпускает ЭППС со специальными добавками — антипиренами, они способствуют устойчивости к воспламенению, что становится актуальным при эксплуатации материала в зонах повышенной пожарной опасности.
Вернуться к оглавлению
Преимущества экструдированного пенополистирола
Технические характеристики, которыми обладает этот материал, в большей степени проявляются в виде преимуществ, главными из которых можно назвать следующие:
- Стойкость к критически низким температурам и нейтральность к процессам гниения позволяют ЭПП выдерживать непростые условия эксплуатации российского климата.
- По причине невосприимчивости к температурным колебаниям экструдированный пенополистирол может быть размещен для хранения на улице без защитных укрытий.
- ЭПП отличается продолжительным сроком службы, благодаря которому он может не терять своих свойств на протяжении 50 лет.
- Плиты этого материала отличаются отсутствием сложностей в установке.
- Материал обладает доступной ценой, что позволяет использовать его для решения различных задач подавляющим большинством населения нашей страны.
- В этом материале нашли проявления уникальные свойства, которые обуславливают его популярность. Подобный пластик способен заменить обычную гидро- и теплоизоляцию, а также различные объекты и конструкции.
- ЭПП не оказывает вреда здоровью, что также положительно сказывается на его применении.
- Плиты этого материала имеют весьма незначительную толщину (около 20 мм), чем выгодно отличаются от пенопласта и минеральной ваты, чьи показатели составляют 30 м и 40 мм соответственно.
Особенности использования и выбора материала
Хотя экструзионный пенополистирол обладает множеством положительных качеств, все же для эффективного его использования рекомендуется учитывать некоторые важные моменты, касающиеся его эксплуатации.
- Плиты ЭПП способны демонстрировать высокую долговечность в диапазоне температур от — 50 градусов до + 75 градусов. Ведь только в подобном промежутке температур пенополистирол сохраняет неизменными свои физические и теплотехнические характеристики.
- Листы материала могут устанавливаться сразу на этапе строительства объекта или же на его основе может быть создан дополнительный слой теплоизоляции во время проведения отделочных работ.
- Свои особенности имеются и относительно хранения: при размещении на открытом воздухе желательно не извлекать его из «родной» упаковки, а держать его следует в тех местах, где на него не будут падать прямые солнечные лучи.
- Внимательно следует подойти к выбору клеящего состава. Важно убедиться, чтобы последний не нанес вреда пластику.
Каждый владелец должен неукоснительно соблюдать правила пользования ЭПП. Если пренебречь ими, то, выбрав неподходящий тип клея, можно столкнуться с таким неприятным явлением, как усадка плит. Следует избегать совместного использования экструдированного пенополистирола со следующими материалами:
- Разбавители красок;
- Каменноугольная смола;
- Ацетон;
- Нефтяной толуол;
- Этилацетат;
- Материалы на водной основе, которыми обрабатывается древесина в целях ее защиты, а также содержащие растворители.
Чтобы не ошибиться с выбором экструдированного пенополистирола, вначале необходимо смотреть не на цену, а ознакомиться с сертификатами качества изделия. В случае отсутствия документов есть вероятность, что вам предлагают дешевые аналоги, использование которых не только может отрицательно сказаться на эксплуатационных качествах конструкции или объекта, но и навредить здоровью.
Вот уже на протяжении нескольких лет в США не прибегают к пенопласту при проведении работ, которые ранее выполнялись с его использованием. Все больше стран отказывается от применения малоэффективных материалов, отдавая предпочтение экструдированному пенополистиролу. Это тенденция постепенно наблюдается и в нашей стране.
Технология производства и состав
По химическому составу материал похож на пенопласт. Его основным компонентом являются гранулы пенополистирола. Их смешивают с антипиренами, снижающими горючесть, и веществами, повышающими прочность и улучшающими характеристики пенополистирола, и затем плавят при повышенных температурах. После получения однородной расплавленной массы в нее под высоким давлением вводят пенообразующим агент – углекислый газ.
После этого материал проходит процесс экструзии. Полученная горячая масса продавливается чрез прямоугольное отверстие экструдера. По мере падения давления до нормального уровня углекислый газ расширяется и вспенивает массу. С помощью размеров отверстия экструдера регулируется толщина и ширина получаемой в результате полосы. Полоса XPS распиливается на плиты заданных размеров.
Использование экструдированного пенополистирола соответствует требованиям СНиП 21-01-97 «Пожарная безопасность зданий и сооружений». Федеральным законом № 123 регламентируется показатель токсичности продуктов горения. Качественный ЭППС имеет показатель Т2 и относится к умеренно опасным утеплителям. Такой же показатель имеют материалы из дерева, например, паркеты. Производство, методы испытаний, маркировка экструзионного пенополистирола регламентируются требованиями ГОСТ 32310-2012.
Пенопласт vs Экструдированный пенополистирол
В различных интернет-источниках может содержаться достаточно противоречивая информация относительно вопроса пеноплекс или пенопласт что лучше. Эти материалы имеют определенную схожесть, так как они изготовлены из одинакового компонента — полистирола. Но даже несмотря на это отличия между пенопластом и экструдированным полистиролом есть много схожестей.
- Пенопласт не отличается прочностью.
- Технология изготовления.
Пенополистирол состоит из полистирола, имеющего гранулированное строение, плавится под воздействием высокой температуры. В результате образуется единая структура, которая используется для утепления и звукоизоляции.
Для получения пенопласта материал обрабатывается сухим паром. В результате чего из гранул не образовывается цельная масса, а они просто сцепляются друг с другом.
- Экструдированный пенополистирол изготавливается методом экструзии, благодаря чему имеет более низкое значение влагопоглащения по сравнению с . Что касается пеноплекса, сквозь его ячейки вода хоть и медленно, но может просачиваться. Доступ воды возможен только в ячейки, которые находятся на боковых поверхностях. то есть вся плита материала не поглощает извне пар и влагу.
- С шумоизоляцией дело обстоит аналогично.
- Экструдированный пенополистирол имеет плотность, которая в 4 раза превышает плотность пенопласта. Пенополистирол немного тяжелее пеноплекса, а значит способен выдержать большую нагрузку.
Постепенная замена устаревшего пенопласта на более новый экструдированный пенополистирол уже стала мировой тенденцией. Например, в США его использовать уже запрещено, теперь там массово производится экструзивный пенополистирол.
Технические характеристики
При использовании любого материала должное внимание уделяется его характеристикам и свойствам. Технические характеристики экструзионного пенополистирола позволяют его использовать в разных эксплуатационных условиях
Плотность материала составляет 25-45 кг/м³, благодаря чему он имеет небольшой предельный вес. А вот низкая теплопроводность (0,029-0,034) гарантирует высокие теплоизоляционные свойства. Низкое водопоглощение, не превышающее 0,2-0,4%, позволяет использовать материал в условиях повышенной влажности и перепада температуры.
По горючести ЭПС относится к классу Г3-Г4, что считается еще одним недостатком материала. Но компенсируется это способностью к самозатуханию. При горении утеплитель выделяет токсичные вещества класса Т2. К такому же классу относится паркет, поэтому можно сказать, что экструдированный полистирол не токсичный.
Предельная прочность при сжатии, и деформации зависит от плотности материала. Утеплитель можно применять в широком температурном диапазоне, но максимальная температура не должна превышать – 75 градусов.
Где можно проводить утепление экструдированным пенополистиролом
Классификация и стоимость экструдированного пенополистирола зависит от типа и размера.
Экструдированный пенополистирол XPS имеет маркировку, зависящую от плотности материала, а она определяет назначение утеплителя:
- Пеноплекс ГЕО – выдерживает большие нагрузки и предназначен для утепления заглублённых, нагружаемых конструкций. Выступает эффективной теплоизоляцией под слоем цементно-песчаной стяжки или под другим защитным слоем. Применяется в строительстве жилых домов и утепления промышленном зданий, как утеплитель для конструкций с незначительными требованиями по огнестойкости.
- Пеноплекс Скатная кровля – плиты утеплителя формируют легкий и одновременно жёсткий слой теплоизоляции, устойчивый к воздействию влаги. Утеплитель хорошо переносит нагрузки и обладает низкой теплопроводностью, просто монтируется и не образует мостиков холода во время эксплуатации.
- Пеноплекс Фасад – идеальный утеплитель для стен, используется как для наружного, так и внутреннего утепления. Экструдированный пенополистирол устойчивый к влаге и механическим повреждениям, в составе вентфасада не требует установки ветрозащитной плёнки. Фрезерованная поверхность утеплителя в мокром фасаде повышает адгезию штукатурного слоя.
- Пеноплекс Основа – применим для теплоизоляции не нагружаемых конструкций. Широко применяется в гражданском строительстве для утепления цоколя, фундамента, внутреннего/наружного утепления стен, полов. Материал популярен для утепления кровли.
- Пеноплэкс 45 – материал высокой плотности, выдерживает большие нагрузки в 50тн/м.кв. Утеплитель применяется для термоизоляции дорожного покрытия, при строительстве железных дорог, аэродромов, для устройства нагружаемых инверсионных кровель.
Экструдированный пенополистирол, цена которого указана в прайсе, абсолютно не поддерживает горения. Благодаря антипиреновым присадкам он избавился от главного недостатка пенопласта.
Какой пенополистирол экструдированный лучше? Решать Вам! Но какой бы материал Вы ни выбрали, купить экструзионный пенополистирол со скидкой можно уже сейчас!
Технические характеристики пенополистирола
- Теплопроводность. Пенополистирол — это некое подобие уплотненной пены. Воздух, который находится внутри пузырьков полистирола, является отличным теплоизолятором. Коэффициент теплопроводности у материала колеблется в пределах 0,028-0,034 ватта на метр на Кельвин. Чем выше плотность, тем больше этот показатель. Наилучшими свойствами обладает экструдированный пенополистирол.
- Паропроницаемость. Этот показатель для утеплителя варьируется от 0,019 до 0,015 килограммов на метр-час-Паскаль. В отличие от пенопласта, который имеет нулевую паропроницаемость, пенополистирол формуют путем нарезания. Пар поступает сквозь эти разрезы, проникая внутрь газонаполненных ячеек.
- Влагопроницаемость. При погружении плотного экструдированного пенополистирола в воду он остается практически сухим. Вбирает влаги в себя он лишь около 0,4%. Беспрессовый материал впитает примерно 4% воды. При контакте с жидкостью утеплитель не повреждается.
- Прочность. У пенополистирола средней и высокой плотности связь между молекулами достаточно крепкая. Прочность статического изгиба у него составляет 0,4-1 килограмм на сантиметр в квадрате.
- Химическая стойкость. Пенополистирол не вступает в реакцию с содой, мылом, минеральными удобрениями, битумом, гипсом, цементом, асфальтовыми эмульсиями, известью. Повредить и даже растворить утеплитель могут такие вещества, как ацетон, скипидар, олифа, некоторые спирты, лаки, продукты нефтепереработки.
- Стойкость перед ультрафиолетом. Прямые солнечные лучи губительны для пенополистирола всех разновидностей и марок. Сначала ультрафиолет делает материал менее прочным и упругим, а впоследствии полностью разрушает.
- Способность к звукопоглощению. Утеплитель может приглушить ударный шум только в том случае, если проложен толстым слоем. Волны воздушных шумов пенополистирол не в состоянии поглощать и изолировать. Это объясняется особенностями конструкции теплоизолятора — газонаполненные ячейки жестко расположены и полностью изолированы.
- Биологическая устойчивость. Пенополистирол непригоден для размножения и распространения плесени и грибков. А вот грызуны и насекомые его легко повреждают. В пищу материал они не используют, но прокладывают по нему ходы к источникам тепла и еды.
- Экологичность. На открытом воздухе материал подвержен процессам окисления. При этом в воздух выделяется немало вредных веществ: толуол, бензол, метиловый спирт, формальдегид, ацетофенон. При горении также образуется много токсических компонентов: фосген, бромистый водород, синильная кислота. Если материал не подвержен атмосферным воздействиям, то никаких опасных соединений он не продуцирует.
- Огнестойкость. Пенополистирол — это горючий материал. При воздействии огня он выделяет большое количество едкого дыма. Для материала, который не включает в себя антипирены, коэффициент задымления составляет 1048 метров квадратных на килограмм. Для противопожарного пенополистирола этот показатель еще выше — 1219 квадратов на килограмм. Например, у резины этот коэффициент равен 850, а у дерева — 23. Утеплитель, который содержит в составе антипирен, маркируется буквой С. Он хуже возгорается и имеет класс Г2. Однако со временем свойства антипирена становятся слабее и материал получает пониженные классы пожаробезопасности — Г3 и Г4. Температура возгорания пенополистирола составляет 450 градусов по Цельсию.
- Срок эксплуатации. При правильном монтаже и использовании утеплителя пенополистирола он гарантировано будет служить не менее 30 лет. Для сохранения качеств и свойств необходимо его защищать декоративным отделочным слоем на стенах.
Пеноплекс — морковного цвета.
Экструдированный пенополистирол и его технические характеристики у разных производителей несколько отличаются. На отечественном рынке есть три бренда, которые продаются больше всего:
- Пеноплекс;
- Техноплекс;
- Урса.
Все они похожи, за исключением некоторых нюансов. Например, в Техноплекс добавляют графит, благодаря которому материал становится более прочным. Из-за графита утеплитель становится серым, в отличие от Пеноплекса, который морковного цвета, или Урсы, бледно-бежевого оттенка. Рассмотрим каждую из марок отдельно.
Нельзя допускать попадания прямых солнечных лучей и растворителя на экструдированный пенополистирол.
Пеноплекс – отечественный продукт, который применяется для гражданского и промышленного строительства. Линейка утеплителя представлена десятью позициями. Основные характеристики:
- экструдированный пенополистирол толщина: 2, 3, 4, 5, 6, 8, 10, 12 и 15 см;
- размеры листа: 60х120 см, 60х240 см;
- теплопроводность экструдированного пенополистирола 0,03-0,032 Вт/м*С;
- прочность на сжатие 0,2-0,5 Мпа;
- водопоглощение не более 0,4%;
- группа горючести Г4.
Также есть клиновидный утеплитель, который используется для скатных крыш. Уклон может быть1,7%, 3,4% и 8,3%. Техноплекс выпускается толщиной 3, 4, 5 и 10 см, стандартные размеры листов 60х120 см и 58х118 см. Отличие от Пеноплекса заключается в более высоком коэффициенте теплопроводности, он на 0,002 Вт/м*С лучше пропускает тепло. Он на 0,2% хуже впитывает влагу и за счет графита в своем составе более прочный на сжатие. Соответственно, материал лучше себя показывает при утеплении фундамента или стен цокольного этажа.
Урса – международная компания, у которой также есть представительства в России. Это один из ведущих производителей строительных материалов. Экструдированный пенополистирол выпускает трех видов. Общие характеристики:
- теплопроводность 0,032-0,034 Вт/м*С;
- прочность на сжатие 0,25-0,5 Мпа;
- впитывание влаги 0,3%;
- группа горючести Г4, кроме Ursa XPS N-III, у которой группа горючести Г3.
Экструдированный пенополистирол Урса размеры: толщина 3, 4, 5, 6, 8 и 10 см, длина и ширина у всех стандартно 60х125 см.
Качественное утепление бревенчатого дома начинается с конопатки межвенцовых щелей и углов. Для стен можно использовать только дышащие утеплители.
О том, как утеплить колодец на зиму читайте .
Внутреннее и внешнее утепление
Прежде чем приступить к утеплению стен необходимо определиться с методом утепления. Укладывать утеплитель снаружи или — индивидуальное предпочтение. Каждый способ имеет свои достоинства и недостатки. Особенности каждого способа утепления необходимо изучить еще на момент проектировки здания.
Утепление изнутри
Внутреннее утепление стен характеризуется следующими особенностями:
- затраты на утепление изнутри меньше, чем на внешнее утепление;
- сезон и погода не влияет на выбор времени для проведения работ;
- нет необходимости сооружать дополнительные подмостки для проведения работ по утеплению.
Отрицательными факторами по внутреннему утеплению являются:
- значительное уменьшение жилой площади;
- внешняя стена оказывается изолированной от обогрева из помещения;
- вероятность образования грибка внутри стены возрастает, так как точка росы формируется именно во внутренней части конструкции;
- при отключении отопления стены быстро остывают за счет малой инерционности утеплителя;
- место примыкания перекрытия к внешней стене невозможно оборудовать утеплителем, что ведет к образованию мостиков холода.
Способ утепления стен снаружи пользуется большей популярностью несмотря на то, что стоимость трудовых затрат и материалов для выполнения работ значительно выше метода внутреннего утепления.
Точка росы
Утепление снаружи
Преимуществом утепления стен снаружи является:
- в зимний период и в холодную погоду тепло сохраняется в стене достаточно долго;
- сохраняется проектная площадь помещения;
- внешняя теплоизоляция защищает внутренние стены от сырости.
Кроме того, внешние стены дополнительно защищены от воздействия атмосферных явлений, что значительно увеличивает срок службы сооружения.
Основными недостатками внешней теплоизоляции сооружения является:
- ограничение выполнения работ в соответствии с погодными условиями;
- увеличение затрат на используемые материалы.
С какой стороны стены производить утепление пенополистиролом
Утепление стен пенополистиролом целесообразно производить снаружи, так как материал не пропускает воздух, что может привести к образованию конденсата внутри стены при внутреннем утеплении, а также внутри помещения материал может выделять специфический запах.
Плюсы и минусы
Сегодня экструдированный полистирол известен как надежный и практичный материал, которому можно доверять. Его актуальность обусловлена множеством положительных качеств, о которых следует поговорить подробнее.
- Этот материал является водонепроницаемым. При неблагоприятном контакте с жидкостью заполняются полы пенополистирола – дальнейшего продвижения влаги при этом не происходит.
- Для экструдированного пенополистирола характерен низкий уровень теплопроводности. Если сравнивать его с другими изоляционными покрытиями, то можно сделать вывод, что коэффициент теплопроводности ЭППС меньше или равен (исключением из правил является только пенополиуретан).
- Характерной чертой ЭППС является низкая паропроницаемость. Коэффициент данного параметра считается минимальным среди изоляционных компонентов.
- Пенополистирол не подвержен деформированию даже спустя очень долгое время.
- Этому материалу не страшны температурные скачки. В таких условиях он не теряет своих полезных качеств и остается таким же практичным/эффективным. Его рабочая температура составляет от -100 до +75 градусов.
- Монтаж, как и демонтаж пенополистирола – дело несложное, да и времени занимает не так много, как многим кажется.
- Данный материал может похвастаться долгим сроком службы, на протяжении которого он не деформируется и не утрачивает своих качеств.
- По ходу эксплуатации экструдированный пенополистирол не подвержен разрушению.
- Экструдированный пенополистирол не боится неорганических растворителей.
- Работать с этим материалом очень легко и просто, поскольку он имеет малый вес и небольшую толщину.
- Стоит такой материал относительно недорого. Его смогут себе позволить многие потребители. В данном случае соотношение цена-качества не может не радовать.
- При укладке ЭППС можно обойтись без использования дополнительных гидро- и теплоизоляционных покрытий, что позволит существенно сэкономить средства.
- По словам специалистов, ЭППС не опасен для здоровья человека. Более того, при работе с ним у мастера не возникнет аллергических реакций.
- Подобный материал не боится низких температур, поэтому идеально подходит для нахождения в условиях сурового и переменчивого российского климата.
- Долговечность экструдированного пенополистирола подтверждается и тем, что он не подвержен гниению – этим качеством может похвастаться далеко не каждый строительный и отделочный материал.
Как можно заметить, достоинств у ЭППС очень много. Именно поэтому сегодня он занимает одну из лидирующих позиций на рынке изоляционных материалов. Однако такому практичному и надежному покрытию присущи и свои недостатки, о которых также следует знать перед его приобретением.
- Этот материал подвержен горению.
- Находясь в условиях температуры свыше 75 градусов, пенополистирол может выделять вредные вещества, опасные для здоровья человека.
- По словам специалистов, этот материал боится контакта с инфракрасными лучами.
- В ЭППС могут завестись мыши, хотя многие производители отрицают данный факт.
- При взаимодействии с различными растворителями этот материал может разрушаться.
Если перечисленные минусы вас не пугают, то можно смело переходить к приобретению этого современного материала – он применяется во многих сферах.
3 Сфера применения где используются материалы на основе полистирола
Несмотря на очевидные преимущества экструдированного полистирола очень многие потребители, особенно в нашей стране, отдают предпочтение именно пенопласту. Связано с это со стоимостью – цена на пеноплекс существенно выше, причем разница может достигать в несколько раз. Естественно, простые потребители, не зная, в чем разница между товарами, выбирают именно пенопласт.
Однако в некоторых страна, в том числе Западной Европы и США, использование пенопласта уже запрещено, что обусловлено выделением вредных и токсичных веществ в случае возгорания утеплителя. Специалисты в этой связи рекомендуют покупать надежный и качественный экструзионный полистирол. Но при этом следует понимать, он также к категории полностью экологически безопасных и чистых от токсинов товаров не относится.
Несмотря на то, что пеноплекс по многим показателям обходит пенопласт, последний все равно относится к категории очень качественных и прочных утеплителей, выигрывая в сравнении у большинства других конкурентов. К тому же в некоторых ситуациях возможна эксплуатации исключительно вспененного полистирола. Например, отделка фасадов зданий предусматривает именно пенопласт, так как он обладает идеальными для этого показателями воздухопроницаемости и влагопоглощения. Экструдированным же полимером отделывать стены в данном случае проблематично из-за недостаточного уровня адгезии.
Благодаря высоким качествам такой материал идеально подходит для утепления домов
Пеноплекс отлично подходит для утепления балконов и лоджий. Причем здесь дело не только в высоких показателях. Как правило, указанные помещения не отличаются большим простором, поэтому здесь требуется использовать тонкие листы утеплителя, которые сохранят как можно больше полезной площади. Естественно, разница в толщине листов не слишком велика, однако все-таки по 5 см с каждой стены выиграть получится.
Подвалы, цокольные этажи, а также фундамент следует утеплять также экструзионным пенополистиролом. Пенопласт не обладает соответствующими показателями качества, чтобы надежно защищать эти помещения от влаги и пара, в большом количестве здесь имеющиеся. В противном случае придется использовать очень толстые плиты пенопласта, чтобы добиться желаемого результата. Если же вам требуется утеплить пол в жилом помещении, то каких-либо особых требований не выделяется. Ведь оба материала отлично справляются с изоляцией помещений, даже достаточно плотный пенопласт с легкостью выдерживает любые тяжести в течение очень долгого времени.
Таким образом, разница между обычным вспененным пенопластом и экструдированным пенополистиролом все же имеется и довольно-таки значительная. Несмотря на полистирол, который применяется для изготовления обоих веществ, они отличаются по надежности, стойкости, влагопоглощению и, разумеется, цене. Но качество утепления в любом случае очень высоко, независимо от выбранной продукции.
Теплоизолирующие плиты из экструдированного пенополистирола
При строительстве и ремонте здания обязательно возникает вопрос о его утеплении. Теплый дом – это залог здоровья вашей семьи, а также возможность сэкономить на коммунальных платежах. Как только вы задались этим вопросом, появляется необходимость решения: а какой материал лучше выбрать в качестве утеплителя? В настоящее время рынок предлагает несколько вариантов утеплителей: стекловата, каменная вата, экструдированный пенополистирол или пенопласт.
Вам нужно выбрать один из этих материалов в зависимости от особенностей вашего жилища и конкретного участка работы: пол, балкон, стены и т.д. Есть определенные правила, которым нужно следовать при выборе утеплителя.
Практически универсальным материалом для утепления помещения и здания снаружи являются плиты из экструдированного пенополистирола. Он обладает следующими положительными качествами: влагостойкостью, прочностью, высокой теплозащитой, долговечностью и безопасностью для здоровья жильцов дома. Почему важны эти свойства материала, разберемся подробнее.
ВЛАГОСТОЙКОСТЬ.
Материал для утепления здания должен быть устойчив к поступлению влаги из окружающей среды, а также препятствовать накоплению конденсата внутри утепляемой поверхности. Если в процессе эксплуатации утеплитель будет скапливать воду, он потеряет свои теплозащитные свойства, и ваш дом будет холодны
Пенополистирол: характеристики, плотность, виды — Positroika-Doma.ru
Пенополистирол — это знакомый всем нам пенопласт. Это эффективный утеплитель, который, к тому же, отличается низкой ценой. По своей структуре пенополистирол представляет собой гранулы разного размера, соединённые между собой (застывшая пена). Материал на 98 % состоит из воздуха, но если разрезать гранулу, то полости с воздухом там не будет, следовательно, он находится в мелко распределенном виде. Есть и другие виды материала, называемого пенопластом, но пенополистирол — это классический лист, состоящий из относительно плотных и упругих белых шариков.
Виды материала
Пенополистирол классифицируется в зависимости от применённой технологии изготовления. Сейчас выпускается четыре подвида материала:
- Беспрессовый пенопласт (маркируется EPS — зарубежного производства, или ПСБ — отечественного). Самый обычный утеплительный материал для строительства. Имеет крупные гранулы и мягкую структуру. Есть модифицированные варианты с повышенной антипожарной защитой.
- Экструдированный (маркируется XPS и ЭППС, соответственно) отличается высокими характеристиками прочности на сжатие, благодаря чему применяется для утепления фундаментов и бетонных полов. Имеет мелкие зёрна и плотную структуру.
- Прессовый пенополистирол (например, ПС-1) и автоклавный сейчас не получили особого распространения в связи с нерентабельностью технологического процесса производства.
Характеристики пенополистирола
Основными характеристиками, по которым оценивается качество материала, являются плотность и теплопроводность. Многие люди думают, что плотность пенопласта как-то влияет на его теплопроводность, но на самом деле это не так. Самый плотный вид пенополистирола (имеющий самый большой вес куб. м.) по коэффициенту теплопроводности примерно равен самому лёгкому виду материала. Следовательно, плотность влияет только на прочность (ну, и на стоимость — плотный лист всегда дороже). Плотность современных видов пенополистирола варьируется от 15 до 50 кг/м³. Характеристики материала обычно указываются в маркировке, например, присутствие буквы С (в таком виде ПСБ-С) указывает на свойство «самозатухающий».
К несомненным преимуществам пенополистирола относятся его дешевизна, отличные теплоизолирующие качества и низкая водопоглотительная способность. Основной недостаток — опасность при пожарах. Материал выделяет при горении чрезвычайно ядовитый дым, поэтому не рекомендуется к использованию в помещениях с повышенной пожарной опасностью, например, на кухнях.
Сравнение характеристик пенопласта и экструдированного пенополистирола
№ п/п | Характеристики | ЭППС | Пенопласт |
1. | Водопоглощение, % по объему за 30 суток | 0,4 | 4 |
2. | Водопоглощение, % по объему за 24 часа | 0,2 | 2 |
3. | Паропроницаемость, мг/м.ч.Па | 0,018 | х |
4. | Теплопроводность, Вт/(мхС) | 0,028-0,034 | 0,036-0,050 |
5. | Предел прочности при статическом изгибе, (кг/см2) Мпа | 0,4-1 | 0,07-0,20 |
6. | Прочность на сжатие при 10% линейной деформации, Мпа, Н/мм2 | 0,25-0,5 | 0,05-0,2 |
7. | Плотность, кг/м3 | 28-45 | 15-35 |
8. | Диапазон рабочих температур, С | от -50 до +75 | от 50 до +75 |
Экструдированный пенополистирол (ЭППС): технические характеристики
По состоянию на сегодня экструдированный пенополистирол является практически самым распространённым и востребованным материалом для теплоизоляции жилищ. Это можно объяснить тем, что структура этого материала обеспечивает очень невысокое водопоглощение.
Утеплитель ЭППС
Получают методом экструзии – гранулы стирола смешиваются с агентом, который вспенивают через экструдер. Благодаря этому методу в материале снижается капиллярность, потому, что все полости воздушные получаются полностью закрытыми. По этой причине, очень невысокое водопоглощение. Вспененный пенополистирол – это стирол, полученный методом полимеризации, с добавлением порообразующего пентана.
Экструдер, который используют при изготовлении ЭППС, также применяется и при изоляции контейнеров с водой. Изготовленный таким методом, пенополистирол получается полностью гидрофобным, почти не поглощает воду. Поэтому его используют при наружном утеплении зданий. Этот материал получился полностью стойким к коррозии, перепадам температуры, минеральным растворителям.
ЭППС теперь используют при строительстве плоских кровель. Но используют его наоборот – не до гидроизоляции, а после неё. Тем самым защищая гидроизоляционный ковёр, а над ним делают цементно-песчаную стяжку. Такая кровля может прослужить около 30 лет и более. Экструдер также повсеместно используют при теплоизоляции железнодорожного полотна и автомобильного, при его использовании меньше портится асфальт и железнодорожные рельсы. Он очень практичный, он получается очень твёрдым, намного твёрже, чем пенопласт обычный.
В связи с этим его используют при строительстве полов, балконов, гаражей. Он по своему химическому составу получился намного практичнее других.
Область применения
Применяют экструдер в разных областях народного хозяйства. В строительстве применяется продукция двух типов: беспрессованного и экструзионного. Беспрессованный пенополистирол получается, когда вспененные гранулы стирола под большим давлением проходят полимеризацию в водной суспензии. А экструзионный получается, когда продавливают через экструдер расплавленной массы. Используют в основном для утепления полов и перекрытий при строительстве жилых домов. В связи с тем, что он по своему строению твёрдый его можно использовать при утеплении тех поверхностей, где возможны значительные нагрузки на поверхность.
Кроме этого, его можно использовать при теплоизоляции стен там, где его устойчивость к нагрузкам не такая важная. Но зато, там важна его повышенная теплоизоляционная характеристика. Ведь при использовании для утепления материалов с низким значением теплоизоляционного коэффициента в результате приходится утеплять еще чем-то здания так, как стены не обеспечивают нормальной теплоизоляции. В результате применения при утеплении дешевых материалов приходится демонтировать и, всё таки, использовать качественные материалы.
Размеры,толщина, плотность экструдированного пенополистирола
Стандартный размер плиты 0,6 метров на 1,2 метра. Встречается и размер 0,58 м x1,18 м.
Толщина бывает 30, 40, 50, 60, 80, 100 мм.
Плотность: 35 или 45 кг/кубический метр.
Технические характеристики
По своим техническим характеристикам экструдер намного превосходит большое количество утеплителей, а в некоторых случаях ему нет равных.
К техническим характеристикам относятся:
- Плотность, кг/м3
- Теплопроводность при 25С, Вт/мК
- Прочность на сжатие при деформации, мПа
- Прочность при изгибе, мПа
- Модуль упругости, Мпа
- Водопоглощение за 24 часа, %/к объёму
- Паропроницаемость, мг/м ч Па
- Капиллярное увлажнение
- Температура применения, С
Не все характеристики важны в повседневном понимании. Важным показателем является паропроницаемость. Это величина, которая равна количеству водяного пара в миллиметрах, которое проходит за 1 час через 1 м2 экструдера толщиной 1 метр. Этот показатель важен при проектировании жилых помещений. Этот показатель показывает, будет ли «дышать» поверхность после утепления выбранным материалом и насколько нормально будет ли дышать.
Также, важным показателем является теплопроводность. Это способность экструдера передавать тепловую энергию. Такая способность зависит и от такой характеристики как плотность. Так, как по плотности ЭППС превосходит многие материалы, то и по теплопроводности экструдированный пенополистирол также превосходит многих. Коэффициент теплопроводности — 0,028-0,03 Вт/(м •°С). Этот материал максимально долго удерживает тепло, намного лучше чем обычные дешёвые утеплители. Поэтому его выгодно использовать при утеплении как стен, так в ещё большей степени полов и перекрытий балконов и горизонтальных крыш.
Еще одной важной характеристикой является водопоглощение. По этому показателю описываемый материал даст фору почти всем утеплителям. ЭППС можно использовать для удерживания воды во многих местах с повышенным содержанием влаги. Он практически не пропускает воду.
Производители и ГОСТ
В России, как и в Украине, много фирм выпускает ЭППС. Известные фирмы-производители это: «ТехноНиколь», «Пеноплекс», «Dom Chemical», «Ursa», «Теплекс» и многие менее известные. Все они изготавливают материалы более-менее высокого качества. Конечно, западные производители предлагают продукцию высшего качества в плане токсичности, но и отечественные производители сейчас не уступают по качеству им.
Ведь качество производимой продукции регламентируется всякими ГОСТами и другими Законами, которые указывают, какого качества должна быть выпускаемая продукция. Поэтому и нет особой разницы между отечественными и импортными производителями ЭППС, ведь ГОСТы более-менее, всюду одинаковые, а некоторые параметры в наших ГОСТах более требовательны.
Мифы про вредность
Пенополистирол производится из полистирола и разделяется на два вида: вспененный полистирол и экструдированный. Это по ГОСТ 52953-2008. Они различаются между собой по физическим показателям. Производятся они из мономера стирола. По некоторым мифам он ядовит, но это только мифы. Он настолько ядовит в том количестве, что присутствует в пенополистироле, как моющее средство «Кристалл». Им все пользуются и при том, после мытья едят из посуды.
Подтверждением того, что пенополистирол является безопасным для здоровья — является тот факт, что из него производят упаковку для пищевых продуктов. На сегодняшний день практически не стоит вопрос, вреден ли этот материал. В Европе повсеместно в строительстве используется этот продукт химической реакции. Его превосходства используются при теплоизоляции стен и полов. Им можно изолировать и потолки, но он не звукоизолятивен.
Пенополистирол не относится к сильно горючим веществам. Температура самовозгорания выше четыреста градусов. При возгорании самостоятельно горит на протяжении 1 секунды. Можно констатировать, что этот материал входит в число самых безопасных в плане горения материалов. Наиболее широкое применение он приобрёл в строительной отрасли при теплоизоляции фасадов и очень редко в декоративной сфере. В результате довольно высокой паронепроницаемости этот материал используют при утеплении зданий, без дополнительного кондиционирования. Практически он позволяет дышать стенам приблизительно как дерево поперек волокон.
Обычно таким материалом не теплоизолируют стены внутри, а только снаружи. Это потому, что он устойчив ко многим атмосферным явлением, в особенности к действию воды. Если его использовать для утепления полов, то сверху него надлежит дать цементно-песчаную стяжку. Для теплоизоляции пола это вообще самый идеальный утеплитель.
Сравнение пенопласта и ЭСПП
Тем, кто имел дело со стройкой знаком вопрос выбора материала для утепления. И они не раз слышали свои плюсы и минусы и о пенопласте, и о пенополистироле. Несмотря на то, что по сути пенополистирол это производное от пенопласта, но отличие заключается в производстве этих материалов. Пенополистирол можно использовать в упаковочной и теплоизолятивной сферах. Пенопласт получается при обработке сырья водяным паром. В результате этой процедуры объём молекул увеличивается и они спекаются между собой. Но с ростом гранулы становятся больше микропор – это не очень хорошо.
Прочность пенопласта со временем резко падает. Под воздействием осадков и иных повреждений ослабевает связь между гранулами, и материал просто разлетается на мелкие шарики-гранулы. А вот пенополистирол производится методом экструзии. Это влияет на структуру материала. В результате того, что материал плавится, он имеет цельную структуру из закрытых ячеек, заполненных между собой газом.
При производстве огнестойкого варианта молекулы наполняются углекислым газом. Пенопласт лучше пропускает водяную пару, что в результате приводит к разрушению самого пенопласта. А пенополистирол в результате того, что имеет большую плотность – меньше пропускает пар, более устойчив к действию воды, но и стоимость из-за этого возрастает.
Можно выделить такие различия между пенопластом и пенополистиролом:
- Пенополистирол – это разновидность пенопласта
- Плотность пенополистирола выше
- Пенопласт пропускает влагу и пар извне
- Плотность у одного 10 кг/м3, а у другого доходит до 40
- Пенопласт имеет гранулы и их чётко видно
- Пенополистирол дороже при использовании его в теплоизоляции
Как итог нашей беседы можно сделать такие выводы. Экструдированый пенополистирол материал очень прогрессивный для использования в теплоизоляции стен, а особенно полов. Он мало токсичен, пожароустойчив, влагонепроницаем, водоотпорный. Его по сравнению с пенопластом срок службы намного выше. Он не распадается на мелкие гранулы.
Поэтому, хотя он и дороже, но использование его в теплоизоляции намного эффективнее.
Экструдированный полистирол XPS — Характеристики, преимущества и применение.
О приложении Экструдированный полистирол Styropan XPS — вспененный синтетический материал, широко известный во всем мире и применяемый в строительстве. Это материал с «закрытой ячеистой структурой», который в результате процесса полимеризации и непрерывной экструзии принимает форму теплоизоляционных панелей. |
Экструдированный полистирол Styropan XPS отличается от других типов изоляционных материалов следующими свойствами:
- Очень высокая механическая прочность (напряжение сжатия при 10% деформации, предел прочности при растяжении перпендикулярно поверхностям, прочность на сдвиг), следовательно, высокая несущая способность, что особенно важно для террас, полов и особенно полов промышленных объектов и т. Д.
- Очень низкое водопоглощение, что делает его идеальным изоляционным материалом для таких применений, как подземные стены, перевернутые или зеленые крыши и т. Д.
- Очень низкие значения коэффициента теплопроводности, обеспечивающие минимальный тепловой поток между оболочкой здания и окружающей средой, обеспечивая тепловой комфорт с минимально возможным потреблением энергии.
- Они на 100% пригодны для вторичной переработки и не содержат хлорфторуглеродов (CFC), гидрохлорфторуглеродов (HCFC) или гидрофторуглеродов (HFC).
- Они демонстрируют отличную адгезию к бетону или строительным растворам, поскольку могут изготавливаться без экструзионного покрытия и / или в виде рельефной ромбовидной поверхности (например,грамм. Стиропан XPS ETICS EMB).
ПРИЛОЖЕНИЯ
Продукты XPS наносятся на здание от фундамента до крыши, ориентировочные области применения:
- Крыши (на бетонных плитах, как для обычных, так и для инвертированных крыш)
- Этажи (жилые или производственные, включая подземные)
- Стены (как основная изоляция между стенами, внешний теплоизоляционный композит / системы ETICS , бетонные стены, изоляционные бетонные опалубки / ICF)
- Наклонные крыши (внутри или снаружи)
- Подземные сооружения (вокруг стен внутри или снаружи, перекрытия, фундаменты)
Пенополистирол (пенополистирол)
Пенополистиролобладает широким спектром физических свойств, что позволяет разработчикам упаковки решать задачи защиты и распределения.Эти свойства в сочетании с соответствующими соображениями инженерного проектирования обеспечивают гибкость конструкции, необходимую для создания действительно рентабельной защитной упаковки.
Это экономичный упаковочный пенопласт, который доступен с плотностью от 1 # до 3 # и легко формируется резкой, горячей разводкой, формованием и маршрутизацией.
Типичные свойства формованной упаковки из пенополистирола (температура испытания 70 ° F)
Плотность (pcf) | Напряжение при 10% Компрессия (фунт / кв. Дюйм) | Изгиб Прочность (psi) | на растяжение Прочность (фунт / кв. Дюйм) | Сдвиг Прочность (фунт / кв. Дюйм) |
1.0 | 13 | 29 | 31 | 31 |
1,5 | 24 | 43 | 51 | 53 |
2,0 | 30 | 58 | 62 | 70 |
2,5 | 42 | 75 | 74 | 92 |
3.0 | 64 | 88 | 88 | 118 |
3,3 | 67 | 105 | 98 | 140 |
4,0 | 80 | 125 | 108 | 175 |
Примечание: Значения основаны на краткосрочных условиях лабораторной нагрузки ASTM.И температура, и время загрузки могут повлиять на значения конечной точки.
XPS FOAM (экструдированный полистирол)
Это экструдированный полистирол, обладающий исключительной влагостойкостью, изоляционной эффективностью и разнообразной прочностью на сжатие в сочетании с уменьшением инфильтрации воздуха и экономией труда, что делает изоляцию XPS подходящим — даже предпочтительным — изоляционным материалом для использования в коммерческих, промышленных и жилых зданиях. , а также для критического использования в гражданском строительстве.
Эта пена производится компанией Dow Chemical и доступна в широком диапазоне плотности, размера и цвета. ПОЖАЛУЙСТА, ЗВОНИТЕ ДЛЯ НАЛИЧИЯ.
Пенополистирол, полиэтилен против полиуретана
Plastifoam производит индивидуальные упаковочные решения из следующих трех категорий пеноматериалов .
1. Пенополистирол
- Чрезвычайно экономичный, легкий и жесткий пенопласт
- Сравните с EPS марки Dow Styrofoam ™
- Конструктивно прочная, влагостойкая и хорошая теплоизоляция
- Резка с компьютерным управлением и двухмерное формование исключает необходимость в дорогих штампах
2.Полиэтилен
- Прочный и легкий пенопласт с закрытыми порами, используемый для упаковки более тяжелых предметов
- Превосходное гашение вибрации и высокая устойчивость к химическим веществам и влаге
- Ламинированный, экструдированный, полилам, сшитый полиэтилен
- Простая высечка / изготовление по индивидуальному заказу или нарезка подушек и блоков
3. Полиуретан
- Легкий пенопласт с открытыми порами
- Устойчив к истиранию, способен поглощать удары и быстро восстанавливать форму
- Идеально для защиты легких и хрупких предметов
- Легко вырезать / изготовить на заказ, разрезать на подушечки или свернуть (ящик для яиц)
Мы приглашаем вас загрузить спецификации Plastifoam для получения дополнительной информации.
Для получения предложений и оценок свяжитесь с Тэмми Тейлор, специалистом по продажам по телефону 603-641-9814 доб. 352 или воспользуйтесь формой, чтобы написать нам!
Упаковка из вспененного материала и упаковочные материалы доступны в переработанных, антистатических, мягких, жестких, толстых, тонких, листах, рулонах, блоках, кубах с перфорацией, насечками, разрывами и формами для вставок в коробки. В зависимости от указанной пены цвета включают черный, синий, розовый, угольный, серый, желтый, зеленый, фиолетовый, белый.
Выбор упаковочных материалов
В: О чем мне нужно думать при упаковке продукта для отправки?
A: Существует базовая отправная точка для любого проекта упаковки.
- Выберите правый внешний контейнер (и). Используйте жесткую коробку подходящей прочности.
- Защитите содержимое от ударов или вибрации. Используйте достаточно легкий упаковочный материал, чтобы содержимое не двигалось при встряхивании коробки.
В: Как выбрать лучшие упаковочные материалы для моего продукта?
A: В качестве отправной точки определите свои основные цели.
- Устранить порчу?
- Снижение затрат?
- Новый продукт?
- Есть проблемы с вашей нынешней упаковкой?
- Как будет доставлен товар; UPS, общий оператор связи и т. Д.?
- Сколько стоит отгружаемый товар?
- Насколько важна цена упаковки по отношению к стоимости продукта?
- Требуется ли для продукта индивидуальная защитная упаковка?
- Должна ли нестандартная упаковка соответствовать существующей коробке?
- Требуется ли для продукта антистатическая защитная упаковка?
- Нужна ли защита от влаги?
- Требуется ли для продукта поддержание определенной температуры?
- Насколько важны трудозатраты на упаковку вашего продукта?
- Насколько хрупок ваш продукт?
Q: Как измерить коробку?
A: Внутренние размеры всегда используются при перечислении размеров коробки и указываются в последовательности длины, ширины и глубины (высоты).Хорошее «практическое правило» состоит в том, что глубина (высота) — это то место, где открывается ящик, если бы вы вставили ярдовую палку в отверстие до противоположного конца; это глубина. Из оставшихся двух измерений длина самая длинная, а ширина самая короткая.
В: Что такое прибыль на акцию?
A: EPS — пенополистирол. Это легкий и жесткий пенопласт, который изготавливается из твердых шариков полистирола. Чрезвычайно экономичный упаковочный материал, он влагостойкий, хороший теплоизолятор (коэффициент сопротивления изоляции 4.0 на дюйм), и он структурно прочен (прочность на сжатие 1000 фунтов на квадратный фут). Он чрезвычайно универсален и может быть изготовлен в соответствующих формах и индивидуальных формах. Системы резки Plastifoam с компьютерным управлением могут дублировать любой линейный рисунок, устраняя необходимость в дорогих штампах или пресс-формах.
В: Что такое полиуретан?
A: Пенополиуретан бывает двух типов: гибкий и жесткий. Гибкие пеноматериалы, которые мы используем, представляют собой пенопласты с открытыми ячейками, которые используются для упаковки и доступны в широком диапазоне плотности и цвета.Он обладает способностью поглощать удары и быстро восстанавливать свою первоначальную форму. Его физические характеристики делают его идеальным для защиты хрупких предметов. Его можно разрезать или изготовить в различных форматах, таких как узлы торцевых крышек, верхние и нижние лотки, свернутые (ящик для яиц) или индивидуально подогнанные набивки.
Q: Что такое гофрированная пена для упаковки ящиков?
A: Это гибкий пенополиуретан, который имеет переплетенные выступы и впадины, которые мягко удерживают продукты, при этом надежно удерживая их на месте.Он доступен в различной плотности и цвете. Антистатическая розовая версия идеально подходит для амортизации печатных плат и других предметов, чувствительных к статическому электричеству.
В: Что такое полиэтилен?
A: Полиэтилен — это пластичный полимер, широко используемый в качестве упаковочной пены. Это прочный, эластичный, легкий вспененный материал с закрытыми порами, обычно используемый для амортизации относительно дорогих и умеренно хрупких предметов. Он доступен в широком диапазоне плотности и цвета.Он обладает высокой прочностью на разрыв и разрыв, поэтому выдерживает длительные периоды интенсивного использования. В зависимости от плотности он обычно очень жесткий, с меньшей податливостью, чем гибкий полиуретан. Это очень прочный и эластичный амортизирующий материал, который не повреждается при первых ударах и восстанавливается, чтобы поддерживать защиту от повторяющихся ударов. Его можно разрезать на подушечки или блоки или вырезать по индивидуальному заказу, чтобы соответствовать определенной форме.
В: Что подразумевается под плотностью пены?
A: Плотность относится к внутренней структуре конкретной пены и не является мерой прочности пены.Твердая пена — это не всегда пена высокой плотности. Плотность определяется как вес в фунтах одного кубического фута материала или фунтах на кубический фут (pcf.)
Пенополистирол | Пенный завод, Inc.
Пенополистирол изготавливается из гранул предварительно вспененного полистирола, которые нагреваются, выдерживаются, вставляются в формы в форме блоков и затем охлаждаются. В результате получается прочный, жесткий и легкий материал, обладающий множеством полезных физических свойств. Полистирол очень устойчив к плесени, бактериям и плесени, не привлекает насекомых и почти полностью устойчив к влаге и водяному пару.Это также отличный изолятор благодаря высокому термическому сопротивлению (коэффициент сопротивления R).
Конечная плотность блока пенополистирола контролируется степенью расширения шариков полистирола перед их формованием. Foam Factory производит листы пенополистирола трех различных плотностей: 1LB, 2LB и 3LB. В то время как полистирол различной плотности обладает схожими свойствами, более высокая плотность имеет лучшую термостойкость, более низкую проницаемость и может выдерживать большие нагрузки перед деформацией или разрушением.EPS любой плотности обычно используется в качестве упаковочных материалов, изоляции жилых помещений и материалов для морской флотации. Полистирол 1LB можно использовать для изготовления игрушек, декоративно-прикладного искусства; Полистирол 2LB часто используется для изготовления покрытий для гидромассажных ванн и декоративных вывесок из пенопласта; и полистирол 3LB часто используется для промышленной изоляции и строительства.
Наши листы пенополистирола доступны для немедленного заказа в стандартном размере 24 x 48 дюймов и толщине от 1 до 8 дюймов в виде отдельных листов или недорогой упаковки из 4 штук.Мы можем выполнять индивидуальные заказы размером до 48 x 96 дюймов и толщиной до 32 дюймов. Дальнейшее производство, такое как прецизионные формы и контуры, также может быть выполнено путем резки на заказ на наших станках гидроабразивной резки или горячей проволоки.
Компания Foam Factory Inc. гордится тем, что поставляет отличные продукты по доступным ценам. Если у вас есть какие-либо вопросы или проблемы при совершении покупок у нас, свяжитесь с нами, и один из наших сотрудников будет рад помочь вам в дальнейшем.
Часто задаваемые вопросы
Что такое пенополистирол?
Полистирол — синтетический полимер, обладающий термопластичными свойствами.Его получают из мономера на нефтяной основе, известного как стирол. Конечный результат — легкий, но прочный пенопласт с закрытыми порами. Полистирол идеален для широкого спектра применений, включая строительство, моделирование, изоляцию и многое другое.
Пенополистирол — это то же самое, что пенополистирол?
Вопреки распространенному мнению, пенополистирол и полистирол не обязательно одно и то же, несмотря на то, что они сделаны с использованием одного и того же мономера — стирола. Пенополистирол синего цвета изготавливается из экструдированного полистирола (XPS), а полистирол (EPS) белого цвета — из пенополистирола.Настоящее главное различие между этими двумя материалами — это процесс, в котором они созданы.
Для чего используется пенополистирол?
Пенополистирол чаще всего используется для строительства, изоляции и упаковки. По этой причине вы часто будете видеть, что его используют для изготовления кулеров, крышек для гидромассажных ванн и в упаковках с особыми потребностями. Благодаря устойчивости к влаге, плесени и гниению, он также подходит для применений, где могут присутствовать водяные пары.
Токсичен ли пенополистирол?
Пенополистирол тщательно изучается на протяжении десятилетий на предмет безопасности.Как и многие другие продукты, полистирол в больших количествах может нести определенную токсичность. Однако стирол встречается в небольших количествах в природе; его даже можно найти в продуктах, которые мы едим. Пенополистирол не токсичен при правильном использовании. На самом деле полистирол часто используется в пищевой упаковке. FDA сочло его безопасным материалом для этой цели, что говорит о его безопасности.
Безопасен ли полистирол для изоляции?
Благодаря природе с закрытыми ячейками и более высокому показателю сопротивления теплопередаче полистирол является отличным изолятором.Что касается безопасности, не было никаких убедительных доказательств того, что это не безопасный и жизнеспособный выбор для изоляции.
Опасен ли полистирол при пожаре?
Полистирол обычно не считается пожароопасным, но это не означает, что он пожаробезопасен. Большинство материалов в конечном итоге начинают гореть при воздействии огня, если не были нанесены огнезащитные добавки или покрытия. В целом, полистирол не представляет угрозы того, что он станет более горючим, чем другие материалы, при воздействии огня или сильной жары.
Термопластические пены: обработка, производство и характеристика
1. Введение
Полимерные пены широко используются в различных областях из-за их легкости, пониженной теплопроводности, высокого энергопоглощения и отличного соотношения прочность / вес. Сферы применения пенополимера очень разнообразны, например, для транспортировки, постельного белья, ковровых покрытий, текстиля, игрушек, спортивных инструментов, изоляционных устройств, а также в строительстве, биомедицине и автомобилестроении [1, 2, 3, 4, 5].Полимерная пена представляет собой смесь полимера и газа, которая придает материалу микропористую структуру. Полимерные пены могут быть гибкими или жесткими из-за геометрии их ячеек, такой как открытые ячейки или закрытые ячейки (рис. 1). Если газовые поры имеют примерно сферическую форму и отделены друг от друга полимерной матрицей, то этот тип называется структурой с закрытыми ячейками. Напротив, если поры в некоторой степени связаны друг с другом, что обеспечивает прохождение жидкости через пену, то это называется структурой с открытыми порами.Структура с закрытыми ячейками является хорошим кандидатом на роль материала спасательного жилета, в то время как структура с открытыми ячейками будет заболачиваться. Пенопласт с открытыми порами предназначен для изготовления постельных принадлежностей, звукоизоляции сидений автомобилей и мебели, тогда как пены с закрытыми порами подходят для теплоизоляции и, как правило, являются жесткими, что делает их предпочтительным легким материалом для автомобильной и аэрокосмической промышленности [6, 7, 8 , 9].
Рисунок 1.
Ячеистая структура пенопласта (а) с закрытыми ячейками (б) с открытыми ячейками.
Разработка полимерных пен началась в 1930-х годах с пенополистирола с крупными ячейками с размером ячеек более 100 мкм [10]. Продолжались разработки для обеспечения более мелких ячеек, и был применен метод твердотельного периодического вспенивания, и в 1980-х годах были получены вспененные ячейки диаметром менее 100 мкм. С тех пор методы обработки и формования полимерной пены быстро развивались. Помимо пенополистирола, популярным стал полиуретан. Однако в данной работе основное внимание уделяется наиболее часто используемым пенопластам с закрытой структурой ячеек.Подробно описаны процессы образования ячеек, их размер и плотность, механические свойства и процессы формования термопластичных пен. Эффект добавления наночастиц также обсуждается при создании многофункциональных материалов, пенополимерных нанокомпозитов.
2. Способы обработки термопластичного пенопласта
Принцип процессов вспенивания включает стадии насыщения полимера или пропитки вспенивающим агентом, обеспечивая получение сверхнасыщенной смеси полимер-газ путем резкого увеличения температуры или снижения давления, роста ячеек и стабилизация [11].В процессах вспенивания термопластов важно получать пенопласт с закрытой структурой ячеек с тонкими полимерными стенками ячеек, покрывающими каждую ячейку. Чтобы обеспечить эту структуру, рост клеток должен контролироваться посредством процесса. Температурный предел имеет решающее значение для получения микросотовой структуры. Если температура чрезмерно выше, то прочность расплава полимера может быть малоиндуцированной разрушением ячеек. С другой стороны, если температура слишком низкая, это приведет к увеличению времени вспенивания и увеличению вязкости полимера.Как следствие, рост клеток будет сдерживаться, и будут получены недостаточно вспененные продукты. Следовательно, условия процесса имеют серьезное значение для морфологии ячеек пенополимера. Наиболее известными процессами вспенивания термопластов являются периодическое вспенивание, вспенивание экструзией и литье пены под давлением.
2.1. Периодическое вспенивание
Периодическое вспенивание можно применять двумя различными способами, а именно: методом, вызванным давлением, и методом, индуцированным температурой. В методе, индуцированном давлением (рис. 2), полимер насыщается вспенивающим агентом в автоклаве, а затем происходит зарождение клеток путем внезапного сброса давления в системе до атмосферного.Окончательная морфология клеток получается либо путем охлаждения полимера в растворителе, либо путем охлаждения его на воздухе [10].
Рисунок 2.
Вспенивание партии под давлением.
При вспенивании партии при температуре (рис. 3) начало процесса аналогично вспениванию под давлением, но при более низких температурах. После завершения насыщения образец вынимается из автоклава и помещается в баню с горячим маслом при температуре 80–150 ° C на период времени, чтобы вызвать образование клеток.После этого шага образец помещается в охлаждающую баню с водой или растворителем. Важным моментом при вспенивании партиями является геометрия пластиковых образцов. Как правило, они представляют собой диск круглой, прямоугольной или квадратной формы толщиной 0,5–3 мм, чтобы не препятствовать диффузии газа [10].
Рис. 3.
Этапы вспенивания партии при температуре.
2.2. Экструзия пенопласта
При экструзии пенопласта экструзионная машина с тандемной линией оборудована подачей газа, как показано на рисунке 4.Типичными видами продукции являются вспененные листы на основе термопласта, трубы и расширенные трубы. Пеллеты, поступающие из бункера в бочку, плавятся под высоким давлением и пенообразователем. В полимер вводят газ CO 2 в сверхкритическом состоянии. Благодаря высокому давлению в стволе предотвращается зарождение ячеек пены. Поскольку полимер выходит из фильеры, из-за резкого перепада давления образуются ячейки пены. Заключительный этап — охлаждение, калибровка и резка экструдированных пен [11, 12].
Рис. 4.
Экструзия пенопласта.
Процесс экструзионного вспенивания может быть физическим или химическим. На Фигуре 4 показано физическое вспенивание, когда в экструдер интегрирован источник газа. В промышленных применениях химическая экструзия пенопласта также применяется из-за ее дешевизны в инструментах. При экструзии химической пены полимерные гранулы и химический пенообразователь смешиваются через цилиндр, и тепло в цилиндре разлагает химический пенообразователь, в результате чего образуется газ, который обеспечивает расширение полимеров на выходе из фильеры.Температура расплава имеет решающее значение для разложения пенообразователя. Давление должно быть достаточно высоким, чтобы удерживать растворенный газ в полимере до того, как он выйдет из фильеры. Если давление и температура установлены неправильно, пенообразователь не будет разлагаться и может вызвать образование оставшихся частиц или скоплений пенообразователя, что может привести к плохой морфологии клеток и плохому качеству поверхности [13]. Наиболее известным химическим пенообразователем является азодикарбонамид (ADC), экзотермический химический пенообразователь.Он выделяет большое количество газа N 2 вместе с CO 2 в меньшем количестве в полимер. Однако из-за токсичных побочных продуктов ACD используются коммерческие пенообразователи эндотермического типа, такие как Clariant’s Hydrocerol [13, 14].
2.3. Литье под давлением из пеноматериала
Литье под давлением из вспененного материала аналогично традиционному литью под давлением, но при использовании физического вспенивания в машину для литья под давлением интегрирован дополнительный газовый блок (рис. В настоящее время существуют три широко известные технологии литья под давлением для производства пенопласта с микроэлементами с использованием CO 2 в качестве физического вспенивающего агента.Это MuCell от Trexel Inc. (США), Optifoam от Sulzer Chemtech AG (Швейцария) и ErgoCell от Demag (Германия) [15, 16].
Рис. 5.
Литье пены под давлением.
Литье под давлением из пеноматериала имеет некоторые критические моменты, которые следует учитывать. Один из них — наличие противодавления. Если противодавление не применяется, смесь полимера и газа будет перемещать шнек в осевом направлении, и будет наблюдаться нестабильность дозирования полимера. Кроме того, пенообразователь будет расширяться в блоке пластификации и вытекать во время впрыска.Это предотвратит образование клеток в полимере. Вторым важным моментом при литье пены под давлением является выбор сопла с отсечкой иглы, которое предотвращает утечку из сопла и потерю газа [16].
При литье под давлением пенопласта может применяться физическое и химическое вспенивание. При химическом вспенивании химический вспенивающий агент добавляется в твердой форме либо из бункера литьевой машины с гранулами полимера, либо во время пластификации полимера через цилиндр. Пенообразователь растворяется в процессе.Физические пенообразователи вводятся непосредственно в расплавленный полимер. Отличие от экструзии пеноматериала — это движение шнека. При экструзии пенопласта вращение шнека выталкивает расплав вперед, а затем из фильеры экструдера, но при литье под давлением шнек вращается и движется назад из-за накопления пула газополимерной смеси на кончике шнека. Затем в полость под ним вводится полимерно-газовая смесь. При физическом вспенивании высокое давление и высокая температура в блоке пластификации обеспечивают сверхкритическое состояние пенообразователя [17].Такие газы, как азот (N 2 ) и диоксид углерода (CO 2 ), используются в качестве физических пенообразователей, и их применяют в сверхкритическом состоянии, чтобы получить высокую степень растворимости в расплавленном полимере [17]. В сверхкритическом жидком состоянии жидкость имеет низкую вязкость, низкое поверхностное натяжение и высокие диффузионные свойства, что обеспечивает превосходную растворимость в полимере. В зависимости от этого достигается улучшенная морфология клеток. Углекислый газ имеет сверхкритическую точку 73.84 бар при 37 ° C, азот 33,90 бар при −147 ° C. На рисунке 6 показана сверхкритическая фаза диоксида углерода.
Рис. 6.
Сверхкритический флюид CO2.
Для управления дозированием газа в систему интегрирована сверхкритическая дозирующая машина, как показано на рисунке 5. Кроме того, во время пластификации необходимо высокое противодавление для дозирования и гомогенизации пенообразователя в расплаве полимера [17]. По этим причинам для литья пенопласта под давлением необходима специально оборудованная машина, аналогичная традиционной для литья под давлением, как показано на рисунке 5.
Высокотехнологичные и дорогие системы физического вспенивания полимерных пен являются дорогостоящими. С другой стороны, химическое вспенивание менее сложно и может выделять газы при определенных условиях обработки либо в результате химической реакции, либо в результате термического разложения [13]. Химические пенообразователи добавляют к полимеру либо до, либо во время пластификации, подобно экструзии пены с помощью химических пенообразователей. Они могут быть экзотермическими или эндотермическими. Экзотермические типы выделяют энергию во время реакции, которая рассеивается через блок пластификации.По достижении температуры активации добавление энергии не требуется, и реакция продолжается до тех пор, пока пенообразователь полностью не завершит свою реакцию. При использовании эндотермических пенообразователей необходимо постоянно прикладывать энергию в виде тепла, чтобы реакция не прекращалась. Азодикарбонамид (AC) — наиболее известный экзотермический пенообразователь с высоким выходом газа. Он имеет температуру разложения от 170 до 200 ° C [13]. Бикарбонат натрия и бикарбонат цинка являются наиболее распространенными эндотермическими вспенивателями.В последние несколько лет коммерческий пенообразователь, гидроцерин, широко используется в качестве эндотермического пенообразователя. Гидроцерин имеет температуры разложения от 160 до 210 ° C и может добавляться непосредственно в бункер литьевой машины в виде гранул в пропорциях от 1% до 4 мас.% [13].
Вкратце, сравнение трех процессов вспенивания приведено в таблице 1.
Критерии | Периодическое вспенивание | Экструзия пенопласта | Литье пенопласта под давлением |
---|---|---|---|
Небольшое количество (в г) | Большее количество (в кг) | Большое количество (в кг) | |
Предварительное формование | Необходимо | Не требуется, формовочный инструмент уже в процессе | Нет необходим, формовочный инструмент уже находится в процессе |
Состояние образца во время загрузки газа / температуры насыщения | Твердое вещество | Состояние расплава | Состояние расплава |
Диапазон плотности ячеек (клеток / см 3 ) | 10 6 –10 16 | 10 4 –10 11 | 10 4 –10 8 |
Равномерное распределение | Обычно равномерное, но иногда ячейки в ядре отличаются по размеру от тех, что находятся на краях | Трудно получить пену с однородными ячейками | |
Качество поверхности | Хорошее | Хороший и глянцевый | Обычно плохой |
Толщина поверхностного слоя (мкм) | Тонкий | Тонкий | Толстый |
Добавление зародышей / гибкость процесса | Пенообразователь фиксируется с самого начала.Должен быть выполнен в предыдущих процессах, таких как литье под давлением или экструзия и т. Д. | Состав можно изменить в любое время. Зародышеобразующие агенты могут быть введены в любой момент во время обработки | Зародышеобразующие агенты могут быть введены также в любое время во время обработки |
Подача пенообразователя | Образец насыщается пенообразователем до достижения равновесия | Пенообразователь дозируется, но не более чем может вместить расплав | Пенообразователь дозируется, но не больше, чем расплав может поглотить при определенных условиях обработки |
Стоимость инструмента | Дешевле, чем другие | Дорого в зависимости от мощности машины | Дорого в зависимости от машины емкость, а также пресс-форма оплачиваются дополнительно |
Таблица 1.
Сравнение периодического вспенивания, экструзии пенопласта и литья под давлением.
2.3.1. Морфология пен
При периодическом вспенивании можно получить однородный размер ячеек и однородное распределение ячеек. Полимерные детали вспениваются в твердом состоянии при периодическом вспенивании; следовательно, невспененный образуется очень крошечный поверхностный слой. При экструзии пеноматериала можно получить однородный размер ячеек, но ячейки в ядре экструдированной детали могут быть больше из-за нестабильности на стадии охлаждения.С другой стороны, морфология ячеек при литье под давлением пенопласта имеет локальные различия по толщине отформованной детали из-за колебаний температуры от стенки формы до сердцевины детали. Стенка формы имеет более низкую температуру, чем температура расплава полимера, что приводит к внезапному замерзанию полимера вблизи стенки формы. В этой зоне, которая называется слоем кожи, образование клеток подавлено. Пенообразователь, растворенный в полимере, остается в поверхностном слое и диффундирует из полимера.В результате в сердцевине расплава полимера создается фронтальный поток, как показано на рисунке 7. Это приводит к компактному поверхностному слою и вспененной сердцевине [18, 19, 20].
Рис. 7.
Изображение верхнего потока при литье пены под давлением.
Морфология вспененного полимера важна и влияет на механическую прочность материала. Ячейки малого диаметра повышают механическую прочность по сравнению с ячейками большего размера. Плотность пен можно определить по расстоянию между соседними ячейками.Обычно определяется как 0,04–0,30 г / см 3 . Расстояния ячеек показали, что они оказывают определенное влияние на механические свойства термопластичных пен [16, 19]. Морфологию впрыскиваемой части пены можно разделить на пять зон. Как показано на фиг. 8, зоны от одной стенки формы до другой формы в полости представляют собой поверхностный слой — внешняя сердцевина из пенопласта — внутренняя сердцевина из пенопласта — внешняя сердцевина из пеноматериала — слой оболочки. Внутреннее ядро имеет ячейки с наибольшим диаметром из-за медленной скорости охлаждения материала в области ядра, и ячейки успевают расшириться [16, 18, 19, 20].
Рис. 8.
Зоны инжектированных пенопластов в соответствии с морфологией ячеек (1) плотный скин-слой, (2) внешняя сердцевина из пенопласта, (3) внутренняя сердцевина из пенопласта [20].
Вкратце, морфология отлитых под давлением пенопластов имеет большое значение для таких свойств полимерных пен, как механические, оптические и теплопроводность. По этой причине правильная установка параметров литья под давлением и дозирование пенообразователя имеют решающее значение для улучшения свойств вспененного полимера.Помимо всего прочего, образование ячеек пенопласта эффективно для уменьшения потеков, внутренних напряжений деформации и усадки пенопласта, что делает выбор процесса впрыска пены в пластмассовой промышленности более предпочтительным.
3. Термопластические пены: обработка и нанокомпозиты
Широкий спектр термопластов, таких как полипропилен, полиэтилен, полистирол, поликарбонат, поливинилхлорид, полимолочная кислота и поликарбонат, был испытан в технологиях обработки пенопласта.В зависимости от их вязкости, прочности расплава изменяется морфология формирования ячеек пенополимера. В связи с требованиями улучшения морфологии и механической прочности полимерных пен в последнее десятилетие были разработаны полимерные нанокомпозиты, армированные наночастицами. Известно, что использование наночастиц при переработке полимерной пены улучшает морфологию клеток из-за поведения наночастиц в полимерной матрице с зародышеобразователем. Присутствие наночастиц также эффективно для улучшения механических, физических и химических свойств пенополимеров.В этом разделе рассматриваются наиболее опытные термопластические пенопласты в промышленных применениях и их композиты.
3.1. Пены на основе полипропилена
Полипропилен, входящий в группу линейных полиолефинов, имеет плохую растворимость диоксида углерода и низкую прочность расплава. Линейные олефины не показывают сильного упрочнения, вызванного деформацией, что является критическим требованием для противостояния растягивающей силе, возникающей на стадиях роста клеток. Chien et al. [21] исследовали пенополипропилен, полученный обычным литьем под давлением, и традиционный вспенивающий инжекционный метод, полученный с использованием химического вспенивающего агента, при различных условиях формования.Они наблюдали влияние параметров процесса, толщины детали и содержания пенообразователя на степень пенообразования. Были исследованы скорость впрыска, температура расплава, температура формы и противодавление на снижение веса и механические свойства. Химическим вспенивающим агентом был азодикарбонамид, использованный в их исследовании. Сообщалось, что более высокая скорость впрыска вызвала большее снижение веса из-за уменьшения количества вспенивания расплава в шнеке и обеспечила большее вспенивание расплава в полости.Более высокая температура плавления и температура формы привели к более высокому вспениванию расплава в полости; следовательно, наблюдалось снижение веса. Было оценено влияние содержания пенообразователя на снижение веса толстых частей, и было обнаружено, что вес уменьшается с увеличением содержания пенообразователя, но менее значительно. Результаты механических испытаний пенополистирола показали, что прочность на растяжение, прочность на изгиб, жесткость и вес детали уменьшались с увеличением температуры расплава, температуры формы и скорости впрыска, тогда как увеличивались с увеличением противодавления.
Sporrer и Altstadt [19] получили пенопласты методом физического вспенивания по технологии MuCell. Наблюдали влияние условий процесса на морфологию клеток. Были исследованы две различные температуры пресс-формы: 20 и 80 ° C. Когда они работали при более высоких температурах пресс-формы, толщина плотных поверхностных слоев была уменьшена на 20% по сравнению с частью, обработанной с использованием холодной пресс-формы. СЭМ-изображение приведено на рисунке 9. Форма с температурой 80 ° C дает толщину слоя 552 мкм, а форма с температурой 20 ° C дает 442 мкм поверхностного слоя.Более тонкий поверхностный слой является результатом более низкого температурного градиента между расплавом и литьевой сталью и менее быстрой теплопередачей в более горячей форме.
Рис. 9.
Морфология пенополистирола, обработанного при различных температурах формы (а) 40 ° C (б) 20 ° C [20].
На Рисунке 9 даны морфологии пенополипропилена, которые формованы литьем под давлением при температуре 20 и 40 ° C. Пена при 40 ° C давала более грубые и разорванные клетки, а пена при 20 ° C давала более толстый поверхностный слой. Причиной более толстого поверхностного слоя является внезапное замерзание слоя материала, когда он вводится в стенку холодной формы (20 ° C).
Xin et al. [22] применили химическое вспенивание с использованием азодикарбонамида для получения микропористой шины из полипропилена / отработанной резины (WGRT). Их цель заключалась в создании продукта с «добавленной стоимостью», используя отходы. Они наблюдали влияние критических параметров обработки на морфологию ячеек и физические свойства смесевых пен. Они наблюдали, что при одинаковых условиях формования образцы смеси микроклеточного PP / WGRT имели меньшие размеры ячеек и более высокую плотность ячеек, чем образцы микроклеточного PP.Они сообщили, что это произошло из-за поведения порошков отработанных резиновых покрышек в качестве зародышеобразователя, способствовавшего зарождению гетерогенных клеток, что привело к более высокой плотности клеток. С другой стороны, увеличение вязкости смеси PP / WGRT предотвращало рост клеток, что приводило к уменьшению размера клеток [23].
Realinho et al. [24], разработали огнестойкие полипропиленовые композитные пенопласты путем объединения основного гидратированного карбоната магния (гидромагнезита), вспучивающейся добавки на основе полифосфата аммония, органо-модифицированного монтмориллонита (ММТ) и нанопластинок графена с полипропиленом.Азодикарбонамид использовался при химическом вспенивании. Добавление гидромагнезита составило 60%, тогда как других наночастиц было около 1%. Они сообщили, что размер ячейки уменьшился до 100 мкм с 900 мкм с добавлением гидромагнезита. Присутствие наночастиц улучшало морфологию клеток. Они также упомянули, что твердые композиты были более успешными в улучшении огнестойкости, чем пенопласты.
Для улучшения механических свойств пенополистирола Hwang и Hsu [25] использовали полипропилен с частицами нанокремнезема.В их исследовании было применено физическое вспенивание, технология MuCell. Добавление частиц составляло от 2 до 10%. Они наблюдали, что при увеличении содержания кремнезема размер ячеек уменьшался, а их плотность увеличивалась. Однако в содержании кремнезема наблюдался порог, при котором размер ячеек выравнивался, когда содержание нанокремнезема составляло более 4%. Как и в предыдущих исследованиях, диспергирование наночастиц в матрице гомогенно улучшило морфологию клеток. Это связано с эффектом зародышеобразователя наночастиц, которые зарождаются в клетках на границе между полимерной матрицей и наполнителем.Hwang и Hsu [25] также испытали действие частиц микрокремнезема и сравнили их влияние на генерацию клеток. Они заметили, что при одинаковых концентрациях частиц наночастицы давали более плотные и меньшие по размеру клетки.
Наноглина — еще одна наночастица, используемая для улучшения свойств пенополипропилена. Частицы наноглины, как и силикат, действуют как зародышеобразователь и обеспечивают однородность по размеру клеток. Увеличение содержания глины уменьшало размер ячеек из-за высокой вязкости полимера [16, 26, 27].Кроме того, авторы предположили, что частицы глины действуют как вторичный слой, защищающий клетки от разрушения внешними силами. Другими словами, при двухосном потоке материала во время обработки пены наночастицы выстраиваются вдоль направления потока, которое является границей ячеек (Рисунок 10). Таким образом, частицы глины помогают клеткам противостоять растягивающей силе. В противном случае стенка ячеек сломается и ослабит механическую прочность вспененного полимера.
Рис. 10.
Иллюстрация выравнивания наночастиц в процессе вспенивания.
Дорук [28] изучал влияние частиц нанокальцита и микрокальцита на морфологию ячеек и механическую прочность пен ПП. Наночастицы смешивали с полимером в двухшнековом экструдере, а затем применяли литье под давлением пены с помощью химического вспенивающего агента (азодикарбонамида). Когда наблюдалась поверхность излома, как показано на рисунке 11, добавление наночастиц улучшало морфологию клеток. На Фигуре 12 приведены характеристики при растяжении пен ПП / кальцит, и было видно, что при той же концентрации добавленных частиц (1 мас.%), прочность на разрыв пены ПП / микрокальцит немного выше, чем у пены ПП / нанокальцит. Это происходит из-за улучшенного образования ячеек пены ПП / нанокальцита, как показано на рисунке 11. С другой стороны, образование ячеек у ПП / микрокальцита очень низкое, а пластичность ПП / нанокальцита явно выше, чем у ПП. /микро. С учетом потери веса нанокомпозитная пена показывает потерю веса 20,7%, в то время как микрокомпозитные пены имеют потерю веса 8,3%.
Рисунок 11.
Морфология ячеек пен ПП / кальцит (а) армированный нанокальцитом (б) армированный микрокальцитом [28].
Рис. 12.
Сопоставление свойств при растяжении пен ПП с мелкодисперсным и наноразмерным кальцитом (1 мас.%) [28].
Потребность в новых легких материалах с улучшенными транспортными свойствами для применения в электростатическом разряде, компонентах топливной системы и защите от электромагнитных помех, таких как топливные элементы, прокладки для электронных устройств, среди прочего, привела к созданию многофункционального материала, наночастиц на основе углерода. -армированные пенополимеры.Углеродные нанотрубки, графен, в последнее время стали привлекательными для многих приложений в электронной промышленности. Antunes et al. использовали углеродные нановолокна (CFN) с полипропиленом для улучшения тепловых и электрических свойств пенополипропиленовых композиционных материалов [29, 30]. В своем исследовании они подчеркнули важность выравнивания частиц во время генерации ячеек и важность этого для теплопроводности полипропилена. Вспенивание полипропилена с помощью CNF обеспечило своего рода сетку частиц через полимерную матрицу, которая увеличила теплопроводность полимера.Когда они сравнили свои результаты со вспененными и невспененными полимерными композитами, они отметили, что невспененный композит показал постоянную теплопроводность независимо от содержания CFN, в то время как пенопласты PP / CFN показали прирост теплопроводности по мере увеличения содержания CFN. Это показывает, что в полимере образовалась своего рода сеть УНВ, которая делает материал теплопроводным. Формирование этой сети похоже на выравнивание глины, как показано на рисунке 10.В другом исследовании, относящемся к пенам PP / CNF [31], была исследована электропроводность пенополимерных композиционных материалов. При сравнении невспененного и вспененного композитов более низкая концентрация CFN дает высокую электропроводность. Кроме того, ячеистая структура, образованная во время обработки, с ячейками, сильно вытянутыми в направлении толщины пены, увеличивала электрическую проводимость пен в сквозной плоскости по сравнению с плоскостной. Это указывает на важность морфологии клеток для электрических свойств пенополимеров.Точно разработанная ячеистая структура может помочь в разработке пен для полупроводниковых легких материалов [29, 30, 31].
Алтан [20] провел исследование пен полипропилен / нанооксид цинка (ZnO). Оксид цинка — еще один альтернативный материал для улучшения электрических свойств вспененного полимера. Концентрация ZnO составляла 1,5% по весу. При сравнении морфологии ячеек пены PP и пены PP / nano-ZnO было замечено, что присутствие наночастиц уменьшало диаметр ячеек и толщину скин-слоя и увеличивало плотность ячеек (Рисунок 13).
Рис. 13.
Поверхности разрушения пенополипропилена (а) чистый PP (б) PP / ZnO [20].
Графен — новейший наноматериал, применяемый в пенополимерах. Как и в случае с предыдущими нанонаполнителями, в литературе было замечено, что загрузка графена в ПП от 2,5 до 5 мас.% Имеет большое влияние на зарождение клеток [32]. Кроме того, более сильное расширение полимера в процессе вспенивания вызывает более сильное расслаивание графеновых нанопластинок в матрице ПП и обеспечивает более высокую механическую прочность [32].
3.2. Пены на основе полиэтилена
Полиэтилен (ПЭ) является членом полиолефиноподобного полипропилена. Полиэтилен высокой плотности (HDPE) и полиэтилен низкой плотности (LDPE) были испытаны при переработке пенопласта. Пенопласт LDPE используется в качестве термопластического материала для таких применений, как упаковка и вспененные листы, спортивные детали из-за его низкой плотности, высокой эластичности, водостойкости и низкой стоимости. Одна из распространенных проблем полимерных пен — это потеря прочности и пластичности материала из-за образования ячеек.Sun et al. [33] разработали механизм упрочнения смесей полиэтилена высокой плотности / полипропилена. Они получили сверхпластичные полимерные смеси с помощью микропористого литья под давлением. Они приготовили смеси ПП / ПЭВП и ПП / ПЭНП, которые были приготовлены при весовых соотношениях 75/25, 50/50 и 25/75 методом смешивания в расплаве, а затем с применением технологии MuCell. Было замечено, что во время испытания на растяжение вспененные детали 75/25 PP / LDPE были сильно фибриллированы в направлении растягивающей нагрузки в области сужения.Исследователи сообщили, что причина такого поведения — высокая пластичность пенополимера — связана с двумя причинами. Первая была обусловлена размером ячеек микропористой структуры пены менее 100 мкм, а вторая представляла собой несмешивающуюся, но совместимую вторичную полимерную фазу субмикронного размера. Во время испытания на растяжение субмикронная фаза смеси отделяется от матрицы, и полости разрушаются. Во-вторых, они соединяют между собой микромасштабные ячейки пены по направлению нагрузки. При этом образуется множество фибрилл, которые делают материал очень пластичным [33].
Подобно случаю пен из полипропиленовых нанокомпозитов, различные авторы сообщили о получении, характеристиках и свойствах пен из полиэтилена и нанокомпозитов [34, 35, 36, 37]. Arroyo et al. [37] разработали пенопласт из полиэтилена низкой плотности с диоксидом кремния с использованием химического вспенивателя. Они использовали разные концентрации диоксида кремния от 1 до 9%, а пенообразователь составлял 5% по весу. Добавление частиц диоксида кремния улучшило ячеистую структуру LDPE, улучшенную с увеличением плотности ячеек и уменьшением размера ячеек.Однако при концентрациях кремнезема более 6% сообщалось об увеличении размера ячеек. Существует несколько причин плохого качества морфологии ячеек пены при более высоких концентрациях наночастиц. Один из них — это возможные агломерации наночастиц при более высоких концентрациях, которые препятствуют образованию клеток. Кроме того, увеличение вязкости полимерного расплава из-за более высокой загрузки частиц затрудняет образование ячеек.
Глина — одна из наиболее часто используемых неорганических частиц для улучшения свойств пен на основе полиэтилена.Глина, такая как монтмориллонит (MMT), смешивается с полимерами, и механическая прочность полимеров увеличивается [36, 38]. В исследовании Hwang et al. [38] наблюдалось влияние ММТ на морфологию клеток полиэтилена низкой плотности (ПЭНП). Прежде всего, исследователи улучшили распределение наночастиц в полимерной матрице путем прививки полярного малеинового ангидрида (МА) на неполярный ПЭНП. Концентрация ММТ составляла от 1 до 5%. Их результаты аналогичны предыдущим исследованиям, согласно которым MMT и MA действуют как зародышеобразователи, которые приводят к более тонкой и однородной клеточной структуре.Когда дисперсия наночастиц является однородной, размер ячеек уменьшается, а распределение ячеек становится однородным.
Пенополиэтилен, как и другие термопластичные пенопласты, можно обрабатывать как периодическим вспениванием, так и литьем под давлением. Hayashi et al. [39] сравнили иономерные композитные пенопласты на основе оргоновой глины, полученные в результате периодической обработки и вспенивания под давлением. Влияние глины на морфологию пены ПЭ аналогично предыдущим исследованиям, согласно которым диспергированные частицы наноглины действуют как центры зародышеобразования для образования клеток, и рост клеток происходит на поверхности глин.В отличие от периодической обработки, при литье под давлением пенопласта формованные изделия имеют два плотных твердых поверхностных слоя и вспененную сердцевину. В обоих процессах вспенивания морфология пены может быть улучшена путем правильной установки условий процесса в зависимости от вязкости полимера, а также пределов температуры и давления газа. Hayashi et al. [39] сообщили, что в периодическом процессе ионно-сшитая структура обеспечивает более мелкие клетки, и слияние клеток предотвращается. С другой стороны, под действием сверхкритического газообразного азота в качестве вспенивающего агента во время процесса литья пены под давлением вязкость полимера снижалась, и это способствовало зародышеобразованию, а также коалесценции ячеек, особенно при высоких температурах.
3.3. Пены на основе полистирола
Полистирол (ПС) представляет собой аморфный полимер и имеет широкую область применения при переработке полимерной пены, такой как теплоизоляция, упаковочный материал, благодаря своей низкой стоимости, простоте обработки, устойчивости к влаге и возможности вторичной переработки. Компания Dow Chemical изобрела пенополистирол как «пенополистирол» в 1941 году. Пенополистирол в основном делится на две части; пенополистирол (EPS) и экструдированный полистирол (XPS). Пенополистирол имеет белый цвет и может использоваться в чашках для горячих напитков, изоляционном материале в белых товарах или в упаковочной промышленности.EPS состоит из 96–98% воздуха и 2–4% полистирола. Метод обработки — нагревание материала паром с последующим расширением материала. Экструдированный полистирол (XPS) имеет внутри меньшие воздушные карманы и изготавливается методом экструзии в виде плит разного цвета для идентификации типа бренда продукта. Zhang et al. [40] производил экструдированный пенополистирол (XPS), используя CO 2 и воду в качестве вспенивающего агента. Okolieocha et al. [41] провели на тандемной линии экструзии пеноматериала аналогичные исследования на XPS.Они использовали щелевую матрицу (0,5 мм), установленную на температуру 126 ° C. Для увеличения плотности ячеек они использовали 1 мас.% Термически восстановленного оксида графита. Однако полистирол общего назначения (GPSS) и ударопрочный полистирол (HIPS) подходят для литья под давлением и структурного вспенивания, а образование ячеек может быть обеспечено аналогично другим термопластам с помощью химических или физических пенообразователей. Кроме того, ПС не отличается низкой прочностью расплава, поэтому он подходит для литья под давлением пены.Hwang et al. [42] применил литье пенопласта под давлением через MuCell для получения пенополистирола, усиленного глиной. Глина использовалась для улучшения морфологии ячеек пенополистирола. Они получили композитные пены ПС / глина с ячейками небольшого размера, что делает этот материал очень подходящим для акустических и теплоизоляционных применений. С другой стороны, слои глиноподобного монтмориллонита (MMT) трудно полностью расслаиваются в матрице PS. ММТ был модифицирован стеарилбензилдим-хлоридом аммония перед смешиванием расплава с полистиролом, и концентрация ММТ в матрице находилась в узком диапазоне, равном 0.25-0,5-1-2-3% (мас.). Было замечено, что присутствие 1% органо-глины в матрице полистирола дает небольшие по размеру ячейки, что приводит к максимальной прочности на разрыв, термической стабильности и плотности ячеек.
3.4. Пены на основе полимолочной кислоты
Поли (лактидная кислота) или полилактид (PLA) — это биоразлагаемый и биосовместимый полимер, получаемый из таких возобновляемых источников, как кукурузный крахмал и сахарный тростник [1, 2, 3, 4]. Пенопласт PLA является конкурентоспособным материалом среди большинства других термопластичных пен из-за его биосовместимости и биоразлагаемости, PLA широко используется в тканевой инженерии, такой как кожа, кости, кровеносные сосуды, из-за их высокопористой структуры в качестве каркасов в последнее время [4] .Пористая поверхность пенопласта PLA увеличивает биологическую активность как засеянных, так и природных клеток. Высокая пористость важна для улучшения биологических свойств каркаса, таких как адгезия, пролиферация и миграция клеток. Однако механические свойства пен ухудшаются с увеличением пористости. Кроме того, высокая прочность и хрупкость PLA затрудняют его использование и переработку при вспенивании. Исследователи сосредоточены на создании PLA из различных полимеров или матричных композитов PLA [4].
Подобно другим термопластам, пенопласты PLA с однородной морфологией ячеек обычно получают с помощью физических вспенивающих агентов, таких как диоксид углерода и азот, при литье под давлением и экструзии пенопласта. Однако низкая прочность расплава PLA затрудняет получение улучшенной морфологии клеток. Существует несколько способов улучшить морфологию пенопласта PLA посредством улучшения прочности расплава полимера, например, с помощью удлинителей цепи, использования полимерных смесей PLA, добавления наночастиц и улучшения кинетики кристаллизации.Низкая прочность расплава PLA вызывает слияние клеток во время роста клеток. Добавление удлинителей цепей к PLA увеличивает реологические свойства PLA, и в зависимости от этого улучшается морфология клеток [43, 44, 45].
Кристаллизация является важным фактором повышения прочности расплава и вспениваемости термопластов. Низкой прочности расплава PLA может способствовать улучшение кинетики кристаллизации и плохие вязкоупругие свойства полимера. Однако высокая кристалличность отрицательно влияет на образование ячеек, подавляя расширение пены.С другой стороны, во время вспенивания зарождение клеток начинается вокруг кристаллов [46, 47]. Следовательно, улучшение кристалличности может быть уравновешено некоторыми зародышеобразователями, такими как добавки и нанонаполнители, которые ведут себя как зародышеобразователи. Существует несколько исследований нанокомпозитных пен PLA, в которых в качестве нанонаполнителя использовались кальцит, сепиолит и многослойные углеродные нанотрубки [46, 47, 48, 49]. В этих исследованиях было обнаружено, что добавление наноматериалов является зародышеобразователем для кристалличности и образования клеток. Усиленный глиной композитный пенопласт из PLA вызвал большой интерес из-за повышенного вязкоупругого поведения частиц глины в полимерной матрице, которое улучшает морфологию ячеек [48, 50].По мере увеличения наночастиц глины увеличивается плотность ячеек вспененных образцов. Сообщалось, что даже небольшое количество углеродных нанотрубок (УНТ) увеличивало плотность клеток из-за его влияния на зарождение клеток [47]. Интересный момент в отношении композитных пенопластов / УНТ заключается в том, что газ, используемый во время литья под давлением пены, вел себя как диспергатор для наночастиц, что можно было получить гомогенную дисперсию УНТ в полимерной матрице. Это связано с эффектом пластификации сверхкритической жидкой фазы CO 2 [43, 47].Следовательно, при экструзии пенопласта и формовании пенопласта под давлением вспенивающие агенты не только обеспечивают вспенивание, но и равномерно диспергируют частицы в матрице.
4. Заключение
Термопластичные пенопласты обычно получают периодическим вспениванием, экструзией пенопласта и вспениванием под давлением. Периодическое вспенивание дешевле, чем другие, из-за простого оборудования, но в каждом методе основная цель состоит в том, чтобы способствовать морфологии клеток за счет создания ячеек малого диаметра и высокой плотности ячеек в полимерной матрице.Термические свойства полимера, его вязкость, степень кристалличности и прочность расплава являются важными факторами в улучшении морфологии клеток. Есть несколько способов улучшить морфологию ячеек термопластов, например, приготовление полимерных смесей, использование удлинителей цепи или нанонаполнителей. Добавление нанонаполнителя популярно в последнее десятилетие из-за улучшения свойств пенополимера. Известно, что некоторые наночастицы трудно диспергировать в полимерной матрице, поскольку они имеют тенденцию к серьезной агломерации.Однако при переработке полимерной пены использование вспенивающего агента, такого как газы CO 2 или N 2 , улучшает диспергирование частиц за счет уменьшения эффекта пластификации. Равномерное распределение наночастиц способствует зарождению клеток.
Нанокальцит, наномонтмориллонит, наносиликат и углеродные нанотрубки являются наиболее часто используемыми наночастицами в полимерных пенах. Полимерные пены, армированные графеном, все еще исследуются. И углеродные нанотрубки, и пенопласты, армированные графеном, имеют область применения в качестве теплоизоляционных или электропроводных полимерных пен.Нанокальцит или наносиликат использовались для улучшения образования ячеек, увеличения механической прочности и повышения огнестойкости вспененного полимера. Было замечено, что добавление небольшого количества нанонаполнителя серьезно улучшило морфологию клеток.
Полипропилен и пенополистирол — это жесткие пенопласты, которые имеют широкую область применения в автомобильной и ветровой промышленности. С другой стороны, полимолочная кислота является многообещающим биоматериалом, а пена PLA является подходящим материалом для тканевой инженерии в качестве каркаса.Высокая пористость пенопласта PLA в качестве каркаса обеспечивает повышенную биологическую активность как засеянных, так и нативных клеток, и они могут замещать нативную ткань до тех пор, пока нативная ткань не заживет.
Моделирование больших деформаций и разрушения разрушаемой пенополистирола с помощью LS-DYNA
На начальном этапе исследовательской работы были проведены испытания квазистатического сжатия дробимого пенополистирола (EPS) для определения характеристик материала при низких скоростях деформации (s -1 ), чтобы получить кривые деформации.Полученные кривые напряжения-деформации хорошо сравниваются с литературными. Был проведен численный анализ испытаний на сжатие для проверки их соответствия экспериментальным результатам. Кроме того, были проведены испытания на падение под действием силы тяжести с использованием снаряда с длинным стержнем с полусферическим концом, который проникал в блок пенополистирола. Испытания на падение снаряда с длинным стержнем были смоделированы в LS-DYNA с использованием предложенных улучшений параметров, которые позволили точно рассчитать материальный ущерб и реакцию на отказ.Сообщается о корректировке параметров материала для успешного моделирования.
1. Введение
Измельчаемые пены являются подходящим решением в области смягчения ударов и поглощения ударов из-за их негорючести, стоимости, сложного поведения при сжатии и высокой способности поглощать энергию [1]. В приложениях безопасности точные прогнозы поведения материалов амортизаторов чрезвычайно важны, поскольку экспериментальная работа требует значительных ресурсов.
На протяжении последних лет диапазон применения измельчаемых пен становился все шире и шире, поскольку инженеры и дизайнеры постоянно изменяли микроструктуру пеноматериалов для достижения желаемых механических свойств и поведения, которые соответствуют требованиям, предъявляемым к их применению. Измельчаемые пены в основном используются для амортизации, смягчения ударов, поглощения энергии и обеспечения комфорта [2]. №
Одним из способов повышения жесткости и ударопрочности кузова автомобиля является использование местного армирования синтетическим пенополиуретаном.Измельчаемая пена имеет ряд преимуществ перед другими армирующими материалами из-за их высокой способности поглощать энергию в сочетании с их низкой стоимостью и весом [3].
Еще одно важное применение измельчаемых пен — это системы ограничения взлетно-посадочной полосы самолетов. Самолет может выйти за пределы доступной взлетно-посадочной полосы во время взлета или посадки. Системы с разрушающимся пенопластом снижают перебег, что предотвращает несчастные случаи, связанные с повреждением самолета и гибелью людей [4].
В области автомобильной безопасности измельчаемая пена используется в новых барьерах, снижающих энергию из стали и пены (SAFER).На многих гоночных трассах NASCAR простые измельчаемые блоки из пенополистирола размещаются между внешней стальной трубой и внутренней бетонной стеной. Этот БЕЗОПАСНЫЙ барьер имеет очень низкую стоимость и вес, и его легко изготовить [5, 6].
Еще одно применение дробимых пен — это обсадные трубы нефтяных скважин. Тепло выделяется из-за нормального бурения и добычи. При повышении температуры захваченные жидкости имеют тенденцию расширяться и потенциально могут создавать очень высокое давление. Наиболее эффективным решением для смягчения этого повышения давления является обертывание из пенопласта.Это позволит жидкости, захваченной в кольцевом пространстве обсадной колонны, расшириться. Измельчаемая пенная обертка должна разрушиться до того, как может возникнуть какое-либо потенциально опасное давление [7].
Была проведена обширная экспериментальная работа по определению механических свойств пенополистирола. При моделировании этих материалов возникают трудности, поскольку они зависят от степени окрашивания. Предыдущие исследования показывают, что поведение, зависящее от скорости, линейно зависит от логарифма скорости деформации [2].Кроме того, механические свойства полимерных пен зависят от их плотности [8, 9]. Следовательно, разработка модели материала зависит от плотности пен и их применений.
Сложность механического поведения измельчаемой пены является следствием ее ячеистой структуры. Сжатие — это наиболее распространенный вид деформации разрушаемых пен, поскольку они слабы при растяжении и сдвиге. Однако деформация растяжения и сдвига может происходить из-за сосредоточенных сжимающих нагрузок или геометрии разрушаемых пен [2].
При чистом сжатии существует три области зависимости напряжения от деформации: линейное сжатие, плато напряжений и нелинейное сжатие. При чистом сжатии коэффициент Пуассона незначителен. При чистом растяжении материал ведет себя линейно при низкой деформации. Однако при больших деформациях наблюдается нелинейное поведение [10, 11].
В предыдущей работе были разработаны модели материалов для пенополистирола. Эти модели оказались успешными в случаях равномерного сжимающего нагружения и низкоскоростных локализованных повреждений [5, 6, 12, 13].Однако во время локализованного сжатия с высокой скоростью материал подвергается комбинированному режиму сжатия и растяжения. В материале экспериментально наблюдаются хрупкий разрыв и зарождение трещин [14, 15].