Утепление опилками и древесной стружкой
Утепление опилками широко применялось в 60 — 70-х годах в западных странах. Но позже опилки были заменены на современные высокоэффективные утеплители, более долговечные и надежные, которые проще укладывать.
Тем не менее, утеплять опилками может быть целесообразным и сейчас, если имеется возможность их «достать» бесплатно. До сих пор многие организации, обрабатывающие древесину, готовы отдать опилки и стружку бесплатно или совсем не дорого, остаются расходы на их транспортировку, на дополнительные материалы, которые укладываются в смеси с опилками, а также на повышенную трудоемкость применения этого утеплителя.
Но прежде чем рассмотреть, как можно утеплить с помощью опилок и стружки, определимся, сколько и каких опилок для утепления потребуется, какой слой нужно создать…
Какие опилки и древесную стружку нужно применить для утепления
Следует учитывать, что чем крупнее опилки, тем ими целесообразней утеплять – чуть меньше удельный вес коэффициент теплопроводности. Также с ростом размеров опилок резко падает зависимость от их влажности.
Фактически рекомендуется применять мелкую древесную стружку, закрученную колечками. Ею можно образовать упругий толстый ковер наполненный воздухом с объемным весом менее чем 200 кг/м куб. А мелкие опилки от распиловки лучше оставить в стороне.
Недопустимо применять мелкие опилки и стружку от распиловки фанеры, которой много на мебельных фабриках и которые никому не нужны. Эти отходы от фанеры перенасыщены формальдегидом, и не безопасны. Коэффициент их теплопроводности высокий.
Толщина слоя опилок
Коэффициент теплопроводности слоя опилок приблизительно равен 0,07 — 0,095 Вт/м?С в зависимости от влажности материала, его крупности и плотности укладки. Для проектирования и расчетов можно взять среднее значение 0,08 Вт/м?С.
Т.е. по сравнению с современными утеплителями (0,03 — 0,045 Вт/м?С) опилки имеют большую телопроводность примерно в два раза, и толщина их слоя потребуется в два раза больше.
Для регионов с климатом «Москва» при утеплении чердака дома понадобится толщина слоя опилок не менее 32 см чтобы достигнуть оптимального утепления согласно норматива, а лучше — 35 см. Для дома 100 м кв. на чердаке понадобится 30 м куб опилок, около 7 тонн.
На стене, для ее утепления должен быть слой опилок не менее 20 см. Под полом с положительной температурой — не меньше 26 см, что уже не помещается между лагами.
Именно из-за этих цифр и возникает вопрос, — «А целесообразно ли применение опилок в качестве утеплителя?». Но все же денежная экономия по сравнению с утеплением минеральной ватой может получиться внушительная при бесплатном материале, особенно если делать своими руками.
Как защитить от грызунов и разложения
Лучшее жилище для грызуна, чем опилки, пожалуй, сложно придумать. Да и все возможные насекомые, и микроорганизмы будут поедать опилки очень быстро. Поэтому в чистом виде засыпать их особого смысла нет, материал должен обрабатываться антисептиками. Наиболее расхожий и доступный это известь-пушонка. Но стоит она не дешево.
Рецепт использования — 20 объемов опилок, на один объем извести. В эту смесь добавляется вода, для того чтобы получилась взвесь и все опилки пропитались антисептиками. Но в воде дополнительно растворяется мыло, борная кислота, медный купорос (можно все вместе понемногу для комплексного, так сказать…). Материал укладывается во влажном виде, затем за неделю-другую вода испаряется, а сухой обработанный утеплитель остается на месте.
Скрепление состава
Дополнительно рекомендуется в данный раствор добавлять два объема цемента. В результате, после укладки опилки свяжутся между собой, упрочнятся, что предотвратит их дальнейшую усадку. При укладке в вертикальных щитах связывание опилок цементом или гипсом обязательно.
Недопустимо укладывать опилки, древесную стружку в непосредственном контакте дымоходами или подобными нагревающимися конструкциями. Необходим пожарный барьер из минеральной ваты не менее 30 см. Электропроводка прокладывается через опилки только в несгораемой оболочке (в металлических трубах).
Как использовать на перекрытиях
Опилки и древесная стружка это паропрозрачный материал, поэтому нужно воспользоваться обычными рекомендациями по применению таких утеплителей. На чердачном перекрытии со стороны дома обязательно устраивается паробарьер, он снизит влажность внутри слоя теплоизоляции и предотвратит его увлажнение в холодное время.
Поверх слоя оставляется обязательно вентиляционный зазор толщиной от 3 см до настила, ограждения. Обычно стружка насыпаются на пароизоляционную пленку между лагами, затем делается контробрешетка высотой от 15 см и смесь досыпаются с оставлением вент. зазора под верхним настилом.
Как применить древесную стружку для теплоизоляции стен
При утеплении стен древесную стружку можно расположить между стеной и сетчатым ограждением. Если стена толстая из плотных материалов, (не тонкий щит), то пароизоляция не нужна.
Устанавливается вертикальная обрешетка на подвесах с шагом 600 мм по толщине утеплителя — 20 см от стены, на которой закрепляется мелкая стекловолоконная сетка.
Между сеткой и стеной снизу вверх постепенно слоями по 20 см насыпаются увлажненная древесная стружка пропитанная цементом или гипсом. Чтобы сетка не сильно выдувалась, применяются щиты из фанеры временно установленные на обрешетку до высыхания утеплителя.
Поверх обрешетки набиваются брусья толщиной 30 мм для образования вентиляционного зазора, после чего монтируется сайдинг или другая облицовка.
Типичные ошибки при утеплении опилками
На данном видео об утеплении чердака с помощью опилок заметны некоторые действия, которые могут негативно сказаться на качестве утепления.
- Допущены щели при строительстве, которые заделываются монтажной пеной. Но эту пену в слоях утепления, где на перепаде температур конденсируется водяной пар, лучше не применять, так как она легко напитывается водой и поэтому разрушается, оставляя щели открытыми. Заменяется пенополиуретановым клеем.
- Отсутствует паробарьер со стороны помещения. В результате произойдет увлажнение утеплителя в холодное время года, потеря теплосберегающих свойств, с ускоренным разложением.
- Применяются чистые опилки без обработки антисептиками, вследствие чего в скором времени, возможно их гнилостное разложение и переувлажнение.
- Используется не оптимальная по экономической целесообразности толщина слоя — на глазок, по домыслам и рекомендациям… – как следствие потеря денег на недостаточном энергосбережении.
как утеплить пол в частном доме и баню? Опилки с известью и глиной, пропорции, теплопроводность древесных опилок, утепление крыши и стен
Плюсы и минусы
В современных условиях кризиса древесные опилки могут стать отличной альтернативой дорогим видам теплоизоляционных материалов, которые представлены в большом количестве на рынке. Утепление опилками нового или старого дома, бани или иных хозяйственных построек обеспечивает существенное сокращение затрат.
Несмотря на то, что теплопроводность этого материала существенно уступает таким утеплителям, как минеральная вата или пенопласт, у древесных опилок имеется большое количество преимуществ, к которым относятся:
- поддержание оптимального уровня влажности в течение всего года в помещении благодаря тому, что такой материал выводит наружу избыток накопившейся в доме влаги;
- отличная паропроницаемость, которой нет у других теплоизоляционных материалов промышленного изготовления;
- устойчивость к повышенной влажности и конденсату, который появляется на различных поверхностях при перепаде температур;
- способность впитывать и выпускать пар обратно при образовании слишком сухого воздуха в помещении.
Даже влага не может полностью испортить такой материал, если верно выбрать компоненты для него. Минвата, например, не обладает такими свойствами и сразу портится от влаги.
Это экологический материал, который создает здоровый микроклимат в доме.
Преимуществом опилок является их низкая стоимость по сравнению с промышленными утеплителями. При желании их можно бесплатно вывести с пилорамы или деревообрабатывающего цеха, заплатив только за транспортные расходы.
Это надежная теплоизоляция, которая может прослужить длительный период времени, если перед использованием обработать опилки антисептиком, который защитит их от вредителей, гниения, плесени и грибка.
Это универсальный утеплитель, который можно использовать для утепления всего здания. При работе с опилками не нужно использовать специальные инструменты. Засыпку материала можно проводить в любых труднодоступных местах, обеспечивая таким способом хорошую теплоизоляцию по всему контуру.
При наличии большого количества преимуществ опилки имеют и ряд недостатков:
- высокую степень горючести;
- способность привлекать грызунов, которые живут в сыпучих сухих материалов;
- склонность к слеживанию, в результате чего могут образовываться пустоты в местах теплоизоляции.
Эти минусы легко превращаются в плюсы, если обработать перед использованием древесную стружку противопожарными составами. Чтобы опилки не слеживались, их смешивают с составами, поддерживающими их первоначальный объем. Против грызунов используется борная кислота и гашеная известь.
Виды опилок для утепления
В ходе обработки древесины получают отходы различной фракции. Они имеют вид мелкой трухи, которая получается в процессе пиления. Деревянная стружка получается при строгании дерева. В качестве утеплителя предпочтение отдавать нужно опилкам средней фракции.
Перед использованием деревянную стружку нужно предварительно обработать составами, защищающими их от горения, гниения и слеживания. Обычно в сухую смесь добавляются компоненты, повышающие долговечность стружки и не дающие ей оседать. Если утепление проводится по технологии засыпного утеплителя, опилки смешивают с гашеной известью, с глиной или гипсом.
Кроме сыпучего утеплителя применяется твердая теплоизоляция. Ее делают из цементного раствора на основе опила. Одним из ее видов является арболит. Сначала сухие ингредиенты смешивают друг с другом в соотношении 9 частей опила и 1 часть цемента. Потом постепенно добавляют небольшое количество воды. Такой утеплитель получается легким и огнестойким. Чтобы теплоизоляция из него прослужила долго, блоки покрывают гидроизоляционным материалом.
Применяется дерево-блок из опила, обработанного медным купоросом, и цемента в соотношении 8 к 1. Сухую смесь засыпают в каркасные перегородки, образующие внутреннюю и наружную стену, покрытые изнутри гидроизоляцией, и утрамбовывают. В процессе уплотнения сухой смеси из опилок выделяется вода, которая смешивается с цементом и придает теплоизоляционному блоку прочность.
Опилкобетон делают в форме блоков из опилок, цемента, песка и воды. Сначала делают сухую смесь, взяв 8 частей деревянной стружки, 1 часть песка и 1 часть цемента. Все тщательно перемешивают, а потом постепенно добавляют воду.
Как правильно утеплять?
Подбор типа утеплителя из опилок зависит от материала, из которого построен дом. При выборе важно учитывать специфику связующего вещества и пропорции рабочей смеси. Если опилки смешивают с известкой, гипсом или цементом, то использовать их лучше для крыши. Для наружных стен или для бани лучше подходят опилки с вяжущим компонентом, способным выдерживать воздействие атмосферных явлений. На потолке следует применять ингредиенты с меньшим удельным весом и повышенной устойчивостью к влаге.
Правильный подбор пропорций и укрепляющих материалов позволит снизить потери тепла с минимальными затратами. В опилки всегда нужно класть известь-пушенку, которая будет отпугивать грызунов, не даст появиться плесени и грибкам.
Пол
Обычно утепляют пол на первом этаже в загородном доме, чтобы холодом не тянуло из подвала или от фундамента. Пол можно утеплить с помощью сухой засыпки или цементно-опилковым раствором.
Когда применяется сухой метод, необходимо просушить стружки и смешать их с гашеной известью в пропорции 1 часть пушенки на 10-15 частей опила.
Пол перед засыпкой при использовании любого метода утепления следует застелить гидроизоляционной пленкой и предусмотреть систему вентиляции.
При использовании «сухой» технологии перед смешиванием деревянную труху нужно обработать раствором борной кислоты, которая защитит ее от гниения. После этого опил нужно просушить.
Сухая засыпка производится в два слоя. Сначала создается нижний слой из стружки толщиной в 10-15 см, после чего его утрамбовывают. На него насыпают опилки мелкой фракции для заполнения оставшихся пустот в стружке. Созданный слой тщательно уплотняют. В итоге толщина теплоизоляции должна быть 30 см и более. После укладки нужно дать утеплителю осесть в течение двух суток. Нужно следить, чтобы между теплоизоляцией и напольным покрытием оставался вентиляционный зазор.
Для защиты от холода, поступающего с пола, применяется цементно-опилковый раствор. Также в качестве связующего элемента можно использовать вместо цемента глину. При использовании рабочего раствора из опилок сначала на основании нужно создать подушку из песка. После этого приготовить рабочий раствор, взяв 10 частей опила, 1,5 части цемента и 1 часть воды. Все тщательно перемешивается в сухом виде, а потом постепенно добавляется вода.
Также при замешивании раствора можно в качестве антисептика добавить медный купорос.
После этого раствор выкладывается на песчаную подушку между лагами слоем в 10-15 см толщиной. Нужно дать составу высохнуть, после можно укладывать чистовое напольное покрытие.
Потолок
Потолочные перекрытия в одноэтажном частном доме можно утеплять как сухими опилками, так и смешанными с уплотнителями. Сначала подготавливают потолочное основание, обшив его досками со стороны жилого помещения. Потом заделывают все щели на чердачном основании потолка с помощью монтажной пены.
Следующим этапом проводят укладку теплоизоляционного слоя. Засыпка сухой смесью проводится в несколько этапов. Каждый слой тщательно трамбуется. Высота теплоизоляции должна быть в один уровень с высотой перекрытий. Затем на опилки насыпается зола тонким слоем, которая будет защищать их от плесени и грибка. По такой же технологии укладываются опилки, смешанные с гипсом, глиной или цементом. Укладывается вязкий состав тоже постепенно, чтобы не образовывалось пустот. Каждый слой трамбуется. Когда утеплитель затвердеет, на него укладывают пароизоляционный материал, прикрепляя его к балкам перекрытий с помощью строительного степлера. Кто хочет на чердаке сделать мансарду, сверху теплоизоляции должен настелить доски.
При проведении теплоизоляции деревянного дома укладку утеплителя проводят со стороны чердака, используя хорошо высушенный опил.
Когда используется смесь из опилок, гипса, глины или цемента, то следует дать хорошо высохнуть утеплителю. На это может уйти до 30 дней.
Стены
Утепляют вертикальные поверхности обычно в каркасных деревянных домах. Опилки перед использованием следует хорошо просушить. Засыпка такого утеплителя проводится между внутренних и внешних перегородок, образующих стены каркасных строений. Засыпка может быть сухой и с уплотнителем. Перед сухой засыпкой следует изнутри перегородок установить гидроизоляцию, которая не даст влаге попадать в опилки.
При сухой технологии используется состав, приготовленный из 90% опила и 10% гашеной извести, которая отпугнет грызунов, защитит от плесени и грибка. Пространство между перегородками поэтапно заполняется сухой смесью. Каждый слой нужно тщательно утрамбовывать. Когда сухой состав даст осадку, нужно поднять стены и досыпать состав чтобы избежать образования пустот.
Чтобы застраховаться от усадки, можно использовать утепляющие смеси с отвердителями. Для приготовления твердого утеплителя берется 8 с половиной частей опилок, гашеной извести – 10 частей, гипса – 5 частей.
Сухие компоненты смешивают, а потом постепенно добавляют воду. Укладка раствора проводится поэтапно. Уложенный слой следует разровнять и утрамбовать.
Закрывать стену нужно после того, как утеплитель полностью затвердеет.
Использование обычных опилок, которые зачастую можно забрать бесплатно на лесопилке, позволит сократить расходы на покупку дров, угля или газа. Такой природный утеплитель отлично подходит для теплоизоляции стен, пола и потолка. Освоить технологию сухой и жидкой засыпки сможет даже человек, не имеющий строительного опыта. Правильно подобрав добавки для материалов, из которых построены дом или баня, можно создать хорошую теплоизоляцию своими руками, потратив на это немного денег.
Подробнее о том, как правильно делать утепление опилками, смотрите в следующем видео.
Теплопроводность опилок древесных и минваты сравнить
Да, в нашей стране, в отличие от стран с жарким климатом, бывают лютые зимы. Именно поэтому нужно строиться из теплых материалов с использованием специальных утеплителей. В ином случае все дорогое тепло от котлов и печей будет уходить через стены и другие перекрытия.
Нам нужно точно знать, какие из современных популярных материалов для утепления наиболее эффективны.
Что такое теплопроводность?
Теплопроводность можно описать как процесс передачи тепловой энергии до наступления теплового равновесия. Температура, так или иначе, будет выровнена, вопрос только в скорости этого процесса. Если применить это понятие к дому, то ясно, что чем дольше температура внутри здания выравнивается с наружной, тем лучше. Проще говоря, насколько быстро дом остывает это вопрос того, какая теплопроводность его стен.
В числовой форме этот показатель характеризуется коэффициентом теплопроводности. Он показывает, сколько тепла за единицу времени проходит через единицу поверхности. Чем выше этот коэффициент у материала, тем быстрее он проводит тепло.
Теплопроводность утеплителей — это наиболее информативный показатель, и чем он ниже, тем материал эффективнее он сохраняет тепло (или прохладу в жаркие дни). Но существуют и другие показатели, которые влияют на выбор утеплителя.
Таблица теплопроводности утеплителей
В таблице указаны данные по наиболее широко применяемым утеплителям, которые используют в частном строительстве: минеральной ваты, пенополистирола, пенополиуретана и пенопласта. Также приведены сравнительные данные по другим видам.
Таблица теплопроводности утеплителей
Сравнение «+» и «-» поможет определить, какой утеплитель выбрать для конкретных целей.
Полезные показатели утеплителей
На какие основные показатели нужно обратить внимание при выборе утеплителя:
- Теплопроводность при выборе утеплителя материала является основным показателем. Чем она ниже, тем лучшая теплоизоляция у этого материала;
- Плотность напрямую влияет на массу материала, от нее зависит, какая дополнительная нагрузка придется на стены или перекрытия дома. Это очень просто вычислить, зная объем утеплителя и его плотность. Обычно теплоизоляционные свойства падают с ростом плотности материала. Чем легче утеплитель, тем проще с ним работать, а нагрузка на перекрытия будет минимальной;
- Паропроницаемость показывает, как материал пропускает водяной пар. Высокий коэффициент говорит о том, что материал может увлажняться. Наоборот, низкий коэффициент указывает то, что материал не пропускает пар и образует конденсат. Материалы можно делить на 2 вида: а) ваты – материалы, состоящие из волокон. Они паропроницаемы; б) пены – это затвердевшая пенная масса особого вещества. Не пропускают пар ;
- Водопоглощение — это способность вещества впитывать воду. Чем она выше, тем менее материал пригоден для утепления, тем более для наружных теплоизоляционных работ, ванной, кухни и других мест с повышенной влажностью;
- Горючесть довольно понятный показатель, очевидно, что наилучшие материалы для утепления те, которые не горят. Также пригодны самозатухающие варианты;
- Прочность на сжатие — это способность материала сохранить свою форму и толщину при механическом воздействии. Многие материалы хороши как утеплитель, но могут сжиматься, при этом снижаются их теплоизоляционные качества;
- Хрупкость нежелательна для утеплителя, хотя и не является основополагающим качеством при выборе;
- Долговечность определяет срок службы материала;
- Толщина материала определяет, сколько пространства будет занимать теплоизоляция. При внутренних работах это важно, ведь чем тоньше слой материала, тем меньше полезного пространств он «съест»;
- Экологичность материала особенно важна при выполнении внутреннего утепления. Нужно обратить внимание, не разлагается ли утеплитель на опасные составляющие, а также не выделяет ли он при пожаре токсичных веществ.
Кто на свете всех теплей?
Цель такого тщательного изучения утеплителей одна — узнать, какой из них лучше всех. Однако, это палка о двух концах, ведь материалы с высокой термоизоляцией могут иметь другие нежелательные характеристики.
Пенополиуретан или экструдированный пенополистирол
Нетрудно определить по таблице, что чемпион по теплоизоляции – это пенополиуретан. Но и цена его гораздо выше, нежели у полистирола или пенопласта. Все потому что он обладает двумя наиболее востребованными в строительстве качествами: негорючесть и водоотталкивающие свойства. Его трудно поджечь, поэтому пожарная безопасность такого утепления высока, к тому же он не боится намокнуть.
Но у пенополиуретана появилась настоящая альтернатива – экструдированный пенополистирол. По сути это тот же пенопласт, но прошедший дополнительную обработку – экструдировку, которая улучшила его. Это материал с равномерной структурой и замкнутыми ячейками, который представлен в виде листов разной толщины. От обычного пенопласта его отличает усиленная прочность и способность выдерживать механическое давление. Именно поэтому его можно назвать достойным конкурентом пенополиуретану. Единственный недостаток монтажа отдельных плит – швы, которые успешно заделываются монтажной пеной.
А уж чем вам удобнее пользоваться – жидким утеплителем из баллончика или плитами, выбирать только вам. Но помните, что эти материалы не «дышат» и могут образовывать эффект запотевших окон, так что все утепление может уйти из форточки во время проветривания. Поэтому утеплять такими материалами нужно разумно.
Минеральная вата или пенопласт
Если сравнивать минеральную вату и пенопласт, то их теплопроводность находится на одном уровне ≈ 0,5. Поэтому выбирая между этими материалами, неплохо было бы оценить и другие качества, такие как водопроницаемость. Так, монтаж ваты в местах с возможным намоканием нежелательна, поскольку она теряет свойства теплоизоляции на 50% при намокании на 20%. С другой стороны, вата «дышит» и пропускает пар, так что не будет образовываться конденсата. В доме, который утеплен ватой из базальтового волокна, не будут запотевать окна. И вата, в отличие от пенопласта, не горит.
Другие утеплители
Весьма популярны сейчас эко-материалы, такие как опилки, которые смешивают с глиной и используют для стен. Однако, такой приятный по цене материал как опилки, имеет много недостатков: горит, намокает и гниет. Не говоря уже о том, что набирая влагу, опилки теряют теплоизоляционные свойства.
Также набирает популярности дешевое и экологичное пеностекло, которое можно применять только без нагрузок, поскольку он весьма хрупок.
Выбирая утеплитель
Цены на энергоносители растут, и вместе с тем растет популярность на утеплители. В нашей статье представлена таблица теплопроводности материалов для утепления и сравнительный анализ популярных видов утеплителей. Главное, что хотелось бы отметить — хорошие показатели вы получите, приобретая только качественный сертифицированный продукт. Выбор теплоизоляционных материалов на рынке весьма широк и один вид утеплителя предлагается более чем пятью производителями. Много из них могут вас огорчить своим качеством, поэтому ориентируйтесь на отзывы тех, кто испытал конкретные торговые марки на «своей шкуре».
- Автор: Вадим Николаевич Лозинский
Оцените статью:
(0 голосов, среднее: 0 из 5)
А-н-д-р-е-й Именно это хотелось бы именно от Вас услышать по подробнее
И без понтов, по делу и чётко. Тогда и поспорим…об IMHO или ИМХО если бы улавливаете разницу между этими аббревиатурами
А-н-д-р-е-й Именно это хотелось бы именно от Вас услышать по подробнее
И без понтов, по делу и чётко. Тогда и поспорим…об IMHO или ИМХО если бы улавливаете разницу между этими аббревиатурами
IMHO или ИМХО. Думал это одно и то же. Посмотрю в поисковике.
Мои рассуждения:
Бетон плотнее дерева, дерево плотнее пенопласта. При одинаковой толщине стены пенопласт теплее дерева, дерево теплее бетона.
Вывод1-й: меньше плотность-меньше теплопроводность(теплее).Почему? Помимо теплопроводности самого материала, участвует воздух в массе(порах, промежутках) материала. У воздуха тоже имеется теплопроводность, которая меньше, чем у материала.
Вывод2-й: чем больше воздуха в материале, тем он «теплее».
Но при дальнейшем уменьшении плотности и возрастании процента воздуха появляется внутри материала конвекция воздуха, которая выносит тепло и повышает теплопроводность. Материал становится «холоднее».
Вывод3-й: конвекция воздуха внутри материала ухудшает его теплосопротивление.
Например: в стеклопакете два стекла или четыре = конвекция внутри одного объёма будет или внутри трёх. Разделение конвекции произошло по горизонтали и происходит только по вертикали. А если внутри стеклопакета наставить горизантальные перемычки, то ограничим конвекцию по вертикале. Это наблюдается в пенопласте: шарики = закрытые объёмы воздуха и конвекция происходит внутри шариков. Но если очень уменьшить плотность пенопласта, то появится конвекция между шариками. И пенопласт станет «холоднее».Именно это и происходит в брусе, опилках, стружках.
Опилки теплее бруса потому, что в них содержится воздух который уменьшает теплопроводность. А конвекция, в обьёме, затруднена т.к. плотно уложены.
А в стружке конвекция происходит лучше. То есть воздух не стоит на месте как теплоизолятор, а наоборот движется унося тепло.Вот так длинно получилось
В моей работе достаточно часто бывает необходимо уточнить теплопроводность различных материалов.
Чтобы каждый раз не искать в справочниках, я решил собрать данные по теплопроводности строительных материалов в таблицу.
Каковую здесь для Вашего удобства и выкладываю. Пользуйтесь!
И не забывайте советовать друзьям.
Таблица теплопроводности материалов
Материал Плотность,
кг/м3 Теплопроводность,
Вт/(м·град) Теплоемкость,
Дж/(кг·град) ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300 Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840 Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21 — Альфоль 20…40 0.118…0.135 — Алюминий (ГОСТ 22233-83) 2600 221 840 Асбест волокнистый 470 0.16 1050 Асбестоцемент 1500…1900 1.76 1500 Асбестоцементный лист 1600 0.4 1500 Асбозурит 400…650 0.14…0.19 — Асбослюда 450…620 0.13…0.15 — Асботекстолит Г ( ГОСТ 5-78) 1500…1700 — 1670 Асботермит 500 0.116…0.14 — Асбошифер с высоким содержанием асбеста 1800 0.17…0.35 — Асбошифер с 10-50% асбеста 1800 0.64…0.52 — Асбоцемент войлочный 144 0.078 — Асфальт 1100…2110 0.7 1700…2100 Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680 Асфальт в полах — 0.8 — Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22 — Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700 Базальт 2600…3000 3.5 850 Бакелит 1250 0.23 — Бальза 110…140 0.043…0.052 — Береза 510…770 0.15 1250 Бетон легкий с природной пемзой 500…1200 0.15…0.44 — Бетон на гравии или щебне из природного камня 2400 1.51 840 Бетон на вулканическом шлаке 800…1600 0.2…0.52 840 Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840 Бетон на зольном гравии 1000…1400 0.24…0.47 840 Бетон на каменном щебне 2200…2500 0.9…1.5 — Бетон на котельном шлаке 1400 0.56 880 Бетон на песке 1800…2500 0.7 710 Бетон на топливных шлаках 1000…1800 0.3…0.7 840 Бетон силикатный плотный 1800 0.81 880 Бетон сплошной — 1.75 — Бетон термоизоляционный 500 0.18 — Битумоперлит 300…400 0.09…0.12 1130 Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680 Блок газобетонный 400…800 0.15…0.3 — Блок керамический поризованный — 0.2 — Бронза 7500…9300 22…105 400 Бумага 700…1150 0.14 1090…1500 Бут 1800…2000 0.73…0.98 — Вата минеральная легкая 50 0.045 920 Вата минеральная тяжелая 100…150 0.055 920 Вата стеклянная 155…200 0.03 800 Вата хлопковая 30…100 0.042…0.049 — Вата хлопчатобумажная 50…80 0.042 1700 Вата шлаковая 200 0.05 750 Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840 Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840 Вермикулитобетон 300…800 0.08…0.21 840 Войлок шерстяной 150…330 0.045…0.052 1700 Газо- и пенобетон, газо- и пеносиликат 300…1000 0.08…0.21 840 Газо- и пенозолобетон 800…1200 0.17…0.29 840 Гетинакс 1350 0.23 1400 Гипс формованный сухой 1100…1800 0.43 1050 Гипсокартон 500…900 0.12…0.2 950 Гипсоперлитовый раствор — 0.14 — Гипсошлак 1000…1300 0.26…0.36 — Глина 1600…2900 0.7…0.9 750 Глина огнеупорная 1800 1.04 800 Глиногипс 800…1800 0.25…0.65 — Глинозем 3100…3900 2.33 700…840 Гнейс (облицовка) 2800 3.5 880 Гравий (наполнитель) 1850 0.4…0.93 850 Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840 Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840 Гранит (облицовка) 2600…3000 3.5 880 Грунт 10% воды — 1.75 — Грунт 20% воды 1700 2.1 — Грунт песчаный — 1.16 900 Грунт сухой 1500 0.4 850 Грунт утрамбованный — 1.05 — Гудрон 950…1030 0.3 — Доломит плотный сухой 2800 1.7 — Дуб вдоль волокон 700 0.23 2300 Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300 Дюралюминий 2700…2800 120…170 920 Железо 7870 70…80 450 Железобетон 2500 1.7 840 Железобетон набивной 2400 1.55 840 Зола древесная 780 0.15 750 Золото 19320 318 129 Известняк (облицовка) 1400…2000 0.5…0.93 850…920 Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680 Изделия вулканитовые 350…400 0.12 — Изделия диатомитовые 500…600 0.17…0.2 — Изделия ньювелитовые 160…370 0.11 — Изделия пенобетонные 400…500 0.19…0.22 — Изделия перлитофосфогелевые 200…300 0.064…0.076 — Изделия совелитовые 230…450 0.12…0.14 — Иней — 0.47 — Ипорка (вспененная смола) 15 0.038 — Каменноугольная пыль 730 0.12 — Камни многопустотные из легкого бетона 500…1200 0.29…0.6 — Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99 — Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99 — Камень строительный 2200 1.4 920 Карболит черный 1100 0.23 1900 Картон асбестовый изолирующий 720…900 0.11…0.21 — Картон гофрированный 700 0.06…0.07 1150 Картон облицовочный 1000 0.18 2300 Картон парафинированный — 0.075 — Картон плотный 600…900 0.1…0.23 1200 Картон пробковый 145 0.042 — Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390 Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06 — Каучук вспененный 82 0.033 — Каучук вулканизированный твердый серый — 0.23 — Каучук вулканизированный мягкий серый 920 0.184 — Каучук натуральный 910 0.18 1400 Каучук твердый — 0.16 — Каучук фторированный 180 0.055…0.06 — Кедр красный 500…570 0.095 — Кембрик лакированный — 0.16 — Керамзит 800…1000 0.16…0.2 750 Керамзитовый горох 900…1500 0.17…0.32 750 Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840 Керамзитобетон легкий 500…1200 0.18…0.46 — Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840 Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840 Керамика 1700…2300 1.5 — Керамика теплая — 0.12 — Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8 — Кирпич диатомовый 500 0.8 — Кирпич изоляционный — 0.14 — Кирпич карборундовый 1000…1300 11…18 700 Кирпич красный плотный 1700…2100 0.67 840…880 Кирпич красный пористый 1500 0.44 — Кирпич клинкерный 1800…2000 0.8…1.6 — Кирпич кремнеземный — 0.15 — Кирпич облицовочный 1800 0.93 880 Кирпич пустотелый — 0.44 — Кирпич силикатный 1000…2200 0.5…1.3 750…840 Кирпич силикатный с тех. пустотами — 0.7 — Кирпич силикатный щелевой — 0.4 — Кирпич сплошной — 0.67 — Кирпич строительный 800…1500 0.23…0.3 800 Кирпич трепельный 700…1300 0.27 710 Кирпич шлаковый 1100…1400 0.58 — Кладка бутовая из камней средней плотности 2000 1.35 880 Кладка газосиликатная 630…820 0.26…0.34 880 Кладка из газосиликатных теплоизоляционных плит 540 0.24 880 Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880 Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880 Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880 Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880 Кладка из малоразмерного кирпича 1730 0.8 880 Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880 Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880 Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880 Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880 Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880 Кладка из ячеистого кирпича 1300 0.5 880 Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880 Кладка «Поротон» 800 0.31 900 Клен 620…750 0.19 — Кожа 800…1000 0.14…0.16 — Композиты технические — 0.3…2 — Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000 Кремний 2000…2330 148 714 Кремнийорганический полимер КМ-9 1160 0.2 1150 Латунь 8100…8850 70…120 400 Лед -60°С 924 2.91 1700 Лед -20°С 920 2.44 1950 Лед 0°С 917 2.21 2150 Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470 Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470 Липа, (15% влажности) 320…650 0.15 — Лиственница 670 0.13 — Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840 Листы вермикулитовые — 0.1 — Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840 Листы пробковые легкие 220 0.035 — Листы пробковые тяжелые 260 0.05 — Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084 — Мастика асфальтовая 2000 0.7 — Маты, холсты базальтовые 25…80 0.03…0.04 — Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840 Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем
(ГОСТ 9573-82) 50…125 0.048…0.056 840 МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038 — Мел 1800…2800 0.8…2.2 800…880 Медь (ГОСТ 859-78) 8500 407 420 Миканит 2000…2200 0.21…0.41 250 Мипора 16…20 0.041 1420 Морозин 100…400 0.048…0.084 — Мрамор (облицовка) 2800 2.9 880 Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3 — Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23 — Настил палубный 630 0.21 1100 Найлон — 0.53 — Нейлон 1300 0.17…0.24 1600 Неопрен — 0.21 1700 Опилки древесные 200…400 0.07…0.093 — Пакля 150 0.05 2300 Панели стеновые из гипса DIN 1863 600…900 0.29…0.41 — Парафин 870…920 0.27 — Паркет дубовый 1800 0.42 1100 Паркет штучный 1150 0.23 880 Паркет щитовой 700 0.17 880 Пемза 400…700 0.11…0.16 — Пемзобетон 800…1600 0.19…0.52 840 Пенобетон 300…1250 0.12…0.35 840 Пеногипс 300…600 0.1…0.15 — Пенозолобетон 800…1200 0.17…0.29 — Пенопласт ПС-1 100 0.037 — Пенопласт ПС-4 70 0.04 — Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260 Пенопласт резопен ФРП-1 65…110 0.041…0.043 — Пенополистирол (ГОСТ 15588-70) 40 0.038 1340 Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340 Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600 Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470 Пенополиуретановые листы 150 0.035…0.04 — Пенополиэтилен — 0.035…0.05 — Пенополиуретановые панели — 0.025 — Пеносиликальцит 400…1200 0.122…0.32 — Пеностекло легкое 100..200 0.045…0.07 — Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840 Пенофол 44…74 0.037…0.039 — Пергамент — 0.071 — Пергамин (ГОСТ 2697-83) 600 0.17 1680 Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850 Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860 Перекрытие монолитное плоское железобетонное 2400 1.55 840 Перлит 200 0.05 — Перлит вспученный 100 0.06 — Перлитобетон 600…1200 0.12…0.29 840 Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050 Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050 Песок 0% влажности 1500 0.33 800 Песок 10% влажности — 0.97 — Песок 20% влажности — 1.33 — Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840 Песок речной мелкий 1500 0.3…0.35 700…840 Песок речной мелкий (влажный) 1650 1.13 2090 Песчаник обожженный 1900…2700 1.5 — Пихта 450…550 0.1…0.26 2700 Плита бумажная прессованая 600 0.07 — Плита пробковая 80…500 0.043…0.055 1850 Плитка облицовочная, кафельная 2000 1.05 — Плитка термоизоляционная ПМТБ-2 — 0.04 — Плиты алебастровые — 0.47 750 Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840 Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300 Плиты из керзмзито-бетона 400…600 0.23 — Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082 — Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680 Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840 Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104 — Плиты камышитовые 200…300 0.06…0.07 2300 Плиты кремнезистые 0.07 — Плиты льнокостричные изоляционные 250 0.054 2300 Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058 — Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054 — Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044 — Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840 Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76) 200 0.064 840 Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840 Плиты минераловатные на синтетическом и битумном связующих — 0.048…0.091 — Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840 Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045 — Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038 — Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029 — Плиты перлито-битумные ГОСТ 16136-80 300 0.087 — Плиты перлито-волокнистые 150 0.05 — Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076 — Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044 — Плиты перлитоцементные — 0.08 — Плиты строительный из пористого бетона 500…800 0.22…0.29 — Плиты термобитумные теплоизоляционные 200…300 0.065…0.075 — Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300 Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300 Покрытие ковровое 630 0.2 1100 Покрытие синтетическое (ПВХ) 1500 0.23 — Пол гипсовый бесшовный 750 0.22 800 Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2 — Поликарбонат (дифлон) 1200 0.16 1100 Полипропилен (ГОСТ 26996 – 86) 900…910 0.16…0.22 1930 Полистирол УПП1, ППС 1025 0.09…0.14 900 Полистиролбетон (ГОСТ 51263) 200…600 0.065…0.145 1060 Полистиролбетон модифицированный на
активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060 Полистиролбетон модифицированный на
композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060 Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060 Полистиролбетон модифицированный на
шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060 Полиуретан 1200 0.32 — Полихлорвинил 1290…1650 0.15 1130…1200 Полиэтилен высокой плотности 955 0.35…0.48 1900…2300 Полиэтилен низкой плотности 920 0.25…0.34 1700 Поролон 34 0.04 — Портландцемент (раствор) — 0.47 — Прессшпан — 0.26…0.22 — Пробка гранулированная 45 0.038 1800 Пробка минеральная на битумной основе 270…350 0.28 — Пробка техническая 50 0.037 1800 Ракушечник 1000…1800 0.27…0.63 — Раствор гипсовый затирочный 1200 0.5 900 Раствор гипсоперлитовый 600 0.14 840 Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840 Раствор известковый 1650 0.85 920 Раствор известково-песчаный 1400…1600 0.78 840 Раствор легкий LM21, LM36 700…1000 0.21…0.36 — Раствор сложный (песок, известь, цемент) 1700 0.52 840 Раствор цементный, цементная стяжка 2000 1.4 — Раствор цементно-песчаный 1800…2000 0.6…1.2 840 Раствор цементно-перлитовый 800…1000 0.16…0.21 840 Раствор цементно-шлаковый 1200…1400 0.35…0.41 840 Резина мягкая — 0.13…0.16 1380 Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400 Резина пористая 160…580 0.05…0.17 2050 Рубероид (ГОСТ 10923-82) 600 0.17 1680 Руда железная — 2.9 — Сажа ламповая 170 0.07…0.12 — Сера ромбическая 2085 0.28 762 Серебро 10500 429 235 Сланец глинистый вспученный 400 0.16 — Сланец 2600…3300 0.7…4.8 — Слюда вспученная 100 0.07 — Слюда поперек слоев 2600…3200 0.46…0.58 880 Слюда вдоль слоев 2700…3200 3.4 880 Смола эпоксидная 1260…1390 0.13…0.2 1100 Снег свежевыпавший 120…200 0.1…0.15 2090 Снег лежалый при 0°С 400…560 0.5 2100 Сосна и ель вдоль волокон 500 0.18 2300 Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300 Сосна смолистая 15% влажности 600…750 0.15…0.23 2700 Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482 Стекло оконное (ГОСТ 111-78) 2500 0.76 840 Стекловата 155…200 0.03 800 Стекловолокно 1700…2000 0.04 840 Стеклопластик 1800 0.23 800 Стеклотекстолит 1600…1900 0.3…0.37 — Стружка деревянная прессованая 800 0.12…0.15 1080 Стяжка ангидритовая 2100 1.2 — Стяжка из литого асфальта 2300 0.9 — Текстолит 1300…1400 0.23…0.34 1470…1510 Термозит 300…500 0.085…0.13 — Тефлон 2120 0.26 — Ткань льняная — 0.088 — Толь (ГОСТ 10999-76) 600 0.17 1680 Тополь 350…500 0.17 — Торфоплиты 275…350 0.1…0.12 2100 Туф (облицовка) 1000…2000 0.21…0.76 750…880 Туфобетон 1200…1800 0.29…0.64 840 Уголь древесный кусковой (при 80°С) 190 0.074 — Уголь каменный газовый 1420 3.6 — Уголь каменный обыкновенный 1200…1350 0.24…0.27 — Фарфор 2300…2500 0.25…1.6 750…950 Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500 Фибра красная 1290 0.46 — Фибролит (серый) 1100 0.22 1670 Целлофан — 0.1 — Целлулоид 1400 0.21 — Цементные плиты — 1.92 — Черепица бетонная 2100 1.1 — Черепица глиняная 1900 0.85 — Черепица из ПВХ асбеста 2000 0.85 — Чугун 7220 40…60 500 Шевелин 140…190 0.056…0.07 — Шелк 100 0.038…0.05 — Шлак гранулированный 500 0.15 750 Шлак доменный гранулированный 600…800 0.13…0.17 — Шлак котельный 1000 0.29 700…750 Шлакобетон 1120…1500 0.6…0.7 800 Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840 Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840 Штукатурка гипсовая 800 0.3 840 Штукатурка известковая 1600 0.7 950 Штукатурка из синтетической смолы 1100 0.7 — Штукатурка известковая с каменной пылью 1700 0.87 920 Штукатурка из полистирольного раствора 300 0.1 1200 Штукатурка перлитовая 350…800 0.13…0.9 1130 Штукатурка сухая — 0.21 — Штукатурка утепляющая 500 0.2 — Штукатурка фасадная с полимерными добавками 1800 1 880 Штукатурка цементная — 0.9 — Штукатурка цементно-песчаная 1800 1.2 — Шунгизитобетон 1000…1400 0.27…0.49 840 Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840 Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75)
и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840 Эбонит 1200 0.16…0.17 1430 Эбонит вспученный 640 0.032 — Эковата 35…60 0.032…0.041 2300 Энсонит (прессованный картон) 400…500 0.1…0.11 — Эмаль (кремнийорганическая) — 0.16…0.27 —
отличия и характеристики дубовых, березовых, еловых, ольховых, сосновых, буковых и иных лиственных и хвойных пород
Опилками называют отходы, возникающие в результате валки и переработки древесины.
Несмотря на общее название, они различаются по многим параметрам, которые и определяют дальнейшее применение этого материала.
В статье мы расскажем о различных типах опилок и основных отличиях, влияющих на их применимость для тех или иных работ.
Что это такое
Опилки — это отходы переработки древесины, полученные в результате ее распиловки.
Они отличаются от стружки и щепы:
- способом получения;
- размерами.
Принятый в СССР и РФ ГОСТ 18320-78 называет опилками отходы распиловки древесины, но не относит к ним отходы, полученные в результате распиловки:
- фанеры;
- ДСП;
- других продуктов переработки древесины.
Прочитать этот документ вы можете здесь.
Кроме того, ГОСТ 23246-78 делит такие продукты переработки древесины на два вида:
- любые;
- технологические, пригодные для производства целлюлозы и древесных плит, а также для гидролизного и лесохимического производств.
Основные отличия
Все опилки можно поделить по таким факторам:
- порода древесины;
- качество древесины;
- часть дерева, из которого они получены.
Порода древесины влияет на:
- цвет;
- теплотворную способность;
- плотность при определенной влажности;
- теплопроводность.
От качества древесины зависит сохранят ли опилки стандартные значения для этой породы дерева или окажутся хуже по одному или нескольким параметрам. Ведь только у здоровой древесины отходы пиления соответствуют этим параметрам.
Если древесина поражена:
- гнилью;
- плесенью;
- другими болезнями,
то у нее, а значит и у опилок из нее:
- снижается теплотворная способность;
- меняется цвет;
- снижается плотность при определенной влажности;
- возрастает теплопроводность.
Старая или больная древесина, а также отходы ее пиления, сильней подвержены воздействию болезнетворных бактерий, поэтому их сложней защитить от:
- гнили;
- плесени;
- других бактериальных повреждений.
Опилки, полученные из разных частей дерева, отличаются по своим основным характеристикам:
- Кора (пробка) – обладают минимальной плотностью, крайне низкой теплотворностью и низкой теплопроводностью. Подходят только для художественного применения и утепления.
- Кора (луб) – более плотные, чем пробки, но также обладают крайне низкой теплотворностью и низкой теплопроводностью. Подходят для художественного применения и утепления.
- Древесина – обладают стандартными для этой породы свойствами.
- Сердцевина – имеют меньшую, чем из древесины, теплотворность, по остальным параметрам аналогичны.
Кроме того, опилки отличаются по:
- смолистости;
- влажности;
- содержанию примесей;
- составу.
Смолистость, то есть количество и тип смол в составе древесины, зачастую является определяющим фактором, от которого зависит применение отходов пиления.
Влажность опилок влияет не только на их плотность, но и на пригодность к различным технологическим процессам.
Поэтому иногда проще привести материал к нужной влажности, чем регулировать влажность имеющихся в наличии отходов пиления древесины.
Под содержанием примесей подразумевают включения любых веществ и фрагментов, не являющихся опилками.
К примеру, на лесозаготовках это:
Состав опилок – это процентное соотношение опилок разных пород и частей древесины.
Виды по породе древесины
Опилки делят как на хвойные или лиственные, так и по породам древесины, в зависимости от потребностей того или иного производства. К примеру, на целлюлозно-бумажном производстве важно обеспечить определенное соотношение между хвойными и лиственными материалами, поэтому нет необходимости выискивать отходы пиления определенных пород дерева.
Исключение составляют те случаи, когда в общую массу опилок необходимо включение материала определенной породы, например, тополя.
Такое включение придает бумаге требуемые свойства, чего очень сложно добиться другими способами.
Не менее важно использовать определенный сорт древесины при копчении продуктов, ведь каждый сорт из-за особенностей химического состава и других факторов производит в продуктах определенный запах.
Поэтому неправильный выбор может если не испортить копченость, то сильно ухудшить ее:
Также очень важно подбирать материал определенной породы древесины при изготовлении топливных пеллетов и брикет.
Чем выше:
- теплотворная способность;
- плотность
древесины, тем более теплотворными получится и топливо из нее.
А чем выше теплотворная способность, тем выше цена такого топлива, поэтому правильный подбор опилок позволит увеличить доходы от производства пеллет и брикетов.
Вот породы хвойных деревьев, опилки из которых пользуются наибольшей популярностью:
- сосна;
- ель;
- лиственница;
- кедр.
Вот лиственные породы, опилки из которых пользуются наибольшей популярностью:
- береза;
- дуб;
- бук;
- вяз;
- акация;
- груша;
- яблоня;
- вишня.
Хвойные
Опилки хвойных пород дерева отличаются от лиственных пород высокой смолистостью.
Хвойная древесина содержит много различных смол, из-за этого при сгорании выделяется дым с резким запахом, поэтому отходы пиления хвойных пород древесины не применяют для копчения.
Их также нежелательно использовать для изготовления топливных брикетов и пеллет из-за:
- невысокой теплотворной способности;
- высокой зольности.
Исключение составляют лиственница и кедр, но стоимость их древесины гораздо выше, чем сосны или елки.
По этой причине многие предприятия, работающие с древесиной этих пород, стараются продать отходы их распиловки максимально дорого.
Несмотря на то, что хвойные породы подходят для большинства способов применения, необходимо помнить следующее:
- Если вы используете отходы распиловки хвойных пород древесины для удобрения огорода и создания компоста или перегноя, а также для отсыпки дорожек, то вместе с ними добавляйте древесную золу, ведь они немного увеличивают кислотность почвы. Поэтому для некоторых растений такая почва может оказаться вредной, что негативно повлияет на их рост и плодоносность.
- Если вы используете хвойные опилки в качестве подсыпки для домашних животных, то помните – они сохраняют резкий запах 1–3 недели. При этом запах хвои может сохраняться в доме или квартире 4–6 недель. Если вас это не смущает, то используйте их для подсыпки, однако если такой запах раздражает, лучше применяйте березовые или буковые отходы.
Сосновые
Отличительная черта отходов пиления сосны – общедоступность.
Ведь сосна – основной материал для изготовления:
- окон и дверей;
- плинтусов и наличников;
- лестниц;
- домокомплектов;
- заборов;
- сараев и гаражей.
Пиломатериалы из сосны обходятся гораздо дешевле кедра или лиственницы, а также большинства лиственных пород древесины, поэтому их широко используют в:
- строительстве;
- различных производствах.
Из-за высокой смолистости сосновые опилки не очень подходят для изготовления топливных пеллетов и брикет.
Но в регионах, где не добывают или массово не перерабатывают более подходящие породы дерева, топливо делают и из сосновых отходов.
Тем не менее, их нежелательно использовать в котлах и печах, не рассчитанных на топливо с высокой зольностью.
Отходы распиловки сосны очень светлые, почти белые с небольшой желтизной, обладают сильным смолистым запахом, который исчезает через несколько недель. Они универсальны и подходят для большинства видов переработки, а также для изготовления древесноволокнистых плит.
Благодаря высокой смолистости они лучше сохраняются в опилкозасыпных домах. Опилкобетон (арболит) на основе сосновых опилок получается более стойким к высокой влажности из-за обилия смол в составе опилок. Более подробно об этом материале читайте здесь.
Еловые
Этот тип отходов распиловки древесины тоже очень доступен, ведь ель – не менее популярный строительный материал, чем сосна.
Еловые опилки темней сосновых и обладают тем же резким смолистым запахом.
Пеллеты и брикеты из них тоже оставляют много золы после сгорания, поэтому их нельзя использовать в котлах и печах, рассчитанных на малозольное топливо.
Очень часто еловые и сосновые отходы идут вперемешку, ведь на:
- лесоповале;
- пилораме;
- в столярном цеху
не видят разницы между елью и сосной.
Как и сосновые опилки, еловые при сгорании выделяют дым с большим содержанием смол, поэтому в котлах и печах с низкой температурой дыма или неутепленным дымоходом топливо из них приводит к образованию дегтевого конденсата.
Из-за этого даже белые (то есть состоящие из древесины и не содержащие частицы коры) пеллеты и брикеты нужно применять с осторожностью, ведь деготь разъедает как металл, так и кирпич.
Кедр и лиственница
Отходы пиления этих пород дерева отличаются от продуктов переработки ели и сосны:
- более насыщенным и темным цветом;
- особым запахом.
Древесина этих пород:
- более плотная, чем ель и сосна;
- более насыщена смолами,
поэтому теплотворная способность гораздо выше и сопоставима с теплотворной способностью таких пород, как:
- береза;
- вяз;
- акация.
Кедр и лиственница сгорают с получением большого количества пепла, поэтому на них распространяются все те же ограничения, что и на ель или сосну.
Отходы распиловки лиственницы более стойкие к воде, поэтому их не используют для домашнего получения спирта путем естественного разложения.
Опилки из кедра и лиственницы широко применяют для изготовления биотоплива промышленным способом, ведь химический гидролиз с применением серной кислоты дает такой же результат, как и с любой другой древесиной.
Из-за более высокой:
- плотности;
- стойкости к гнили и плесени
эти материалы, если есть возможность приобрести их бесплатно или очень дешево, широко применяют для:
- утепления домов;
- производства опилкобетона.
Лиственные
Отходы распиловки древесины лиственных пород менее доступны, ведь такие породы дерева редко используют для строительства.
Чаще всего лиственные породы используют для изготовления:
- мебели;
- фанеры;
- различных отделочных работ.
Вот основные отличия лиственных опилок от хвойных:
- меньшее содержание смол;
- широкая палитра цветов;
- более высокая теплотворная способность;
- менее сильный запах;
- меньшее образование золы при сгорании.
Березовые
Отходы распиловки березы обычно белого или светло-кремового цвета.
Если они светло-коричневые, то получены из старой и больной древесины, поэтому их характеристики гораздо хуже, чем у нормальных.
Опилки березовые заметно превосходят еловые и сосновые по теплотворной способности и находятся на одном уровне с:
- вязом;
- акацией;
- лиственницей.
У них очень низкая теплопроводность, поэтому применение березовых опилок хорошо подходят для утепления домов.
Если опилки получены из здоровой березы, спиленной весной и в первой половине лета, когда древесина наполнена соками, то после сушки они гораздо эффективней противостоят любым бактериальным инфекциям.
После сгорания они оставляют минимальное количество золы, поэтому из них получаются очень хорошие топливные пеллеты и брикеты.
Подходят отходы пиления березы и для любых других работ, поэтому их применение ограничено лишь ее доступностью, потому что из березы делают в основном:
- мебель;
- столярные изделия;
- лестницы.
Они подходят для любого применения, в том числе для:
- подсыпки хомячкам и другим домашним грызунам;
- подсыпки курицам, нутриям и мелкому рогатому скоту;
- выращивания грибов;
- утепления домов;
- отсыпки дорожек и удобрения земли;
- изготовления поделок и получения биотоплива или пиролизного газа.
Дубовые
Цвет этого материала от светло-кремового до бежевого или светло-коричневого.
Они остроконечные, на ощупь сильно отличаются от:
- сосновых;
- еловых;
- полученных из древесины фруктовых пород.
Запах даже свежих отходов распиловки очень слабый, едва различимый.
Дубовые отходы – лидер по теплотворной способности. Кроме того, они очень плотные, поэтому при одинаковой влажности и объеме тяжелей большинства отходов пиления других пород древесины.
При сгорании они оставляют мало золы, поэтому очень востребованы у тех, кто производит топливные пеллеты и брикеты.
Они также востребованы в таких операциях, как:
Несмотря на невысокое содержание смол, дуб обладает высокой стойкостью к большинству бактериальных инфекций, то есть:
- гнили;
- плесени.
Благодаря этому дубовые опилки, засыпанные между стенами дома или на чердаке, не разлагаются, из-за чего их (если есть возможность достать) используют в качестве утеплителя.
Основной фактор, ограничивающий применение этого материала, связан с малой распространенностью предприятий, работающих с древесиной дуба.
Применение дубовых опилок возможно не только для копчения продуктов и утепления домов, но и для:
- получения технического спирта;
- изготовления различных поделок и обоев;
- производства пиролизного газа;
- выращивания грибов;
- отсыпки дорожек в огороде;
- подкормки растений;
- изготовления качественного опилкобетона.
Буковые
Цвет такого материала от светло-желтого, почти белого, до светло-коричневого. Из-за высокой твердости древесины буковые опилки, как и дубовые, на ощупь кажутся острыми, а их плотность гораздо выше, чем у отходов пиления большинства других деревьев.
По теплотворной способности они сопоставимы с дубом и при сгорании образуют небольшое количество золы.
Минимальное количество смол позволяет использовать топливо из этого материала даже в печах и котлах с неутепленным дымоходом, ведь образование дегтевого конденсата минимально.
Древесина бука очень чувствительна к воде и бактериальным болезням, поэтому отходы распиловки нежелательно применять для утепления домов без серьезной обработки.
При этом бук и отходы его переработки очень востребованы в химической и целлюлозной промышленности из-за высокой прочности волокон на разрыв.
Поскольку бук используют только для изготовления:
- дорогой мебели;
- столярных изделий,
найти чистые буковые опилки весьма сложно.
Акация
Цвет этих опилок может быть, как белым, так и светло-зеленым или даже темно-коричневым. Свежие отходы пиления обладают довольно приятным, чуть сладковатым маслянистым запахом, который исчезает через 3–10 дней.
По теплотворной способности сопоставимы с лиственницей или буком, к тому же при сгорании оставляют мало золы, а также содержат очень небольшое количество смол, поэтому хорошо подходят для изготовления топливных пеллет и брикетов.
По плотности они сопоставимы с опилками из бука, но из-за меньшей прочности древесины опилки на ощупь не кажутся острыми.
Благодаря необычному цвету такие отходы распиловки очень востребованы в различных поделках, а также подходят для создания:
- картин;
- украшений.
Из-за высокой прочности волокон они также хорошо подходят для самостоятельного изготовления обоев.
Акацию используют не только как материал для изготовления мебели и столярных изделий, но и как средство для:
- разделения сельскохозяйственных полей на участки;
- снижения эрозии почвы,
поэтому опилки из нее достать проще, чем буковые или дубовые.
Древесина фруктовых пород
Цвет опилок фруктовых пород может быть от светло-зеленого до светло-коричневого, запах свежих отходов распиловки слабый, нечеткий, зависит от:
- породы дерева;
- места, где дерево выросло.
Древесина фруктовых деревьев мягкая, поэтому и опилки на ощупь сопоставимы с отходами акации или кедра.
Теплотворная способность зависит от:
- породы древесины;
- возраста дерева;
- места, где деревья выросли.
Но в среднем теплотворная способность сопоставима с кедром и несколько ниже, чем у большинства лиственных деревьев плотных пород.
Содержание смолы зависит от:
- породы древесины;
- времени валки древесины;
- условий произрастания.
В среднем смолистость в несколько выше, чем у большинства лиственных пород, поэтому такие опилки не слишком подходят для изготовления топливных пеллет и брикетов.
Еще один фактор, ограничивающий применение таких опилок – малая доступность, ведь из плодовых деревьев изготавливают мебель, но на производство столярных изделий (окна и двери) такая древесина не идет.
Также ее не применяют для изготовления досок, которые можно применить в строительстве.
Поэтому отходы пиления фруктовых пород чаще всего применяют для:
- изготовления различных самоделок;
- домашнего применения.
Виды по составу
Несмотря на то, что все отходы распиловки четко разделены по:
- породам древесины;
- частям дерева, из которых они получены,
встречаются ситуации, когда опилки разных пород или частей идут вперемешку.
Ценность таких опилок определяется их составом, к примеру, сосново-еловые опилки из деловой древесины ничем не отличаются от хороших сосновых или еловых опилок.
При распиле неокоренных бревен получают отходы с большим содержанием коры, поэтому их теплотворная способность ниже, а теплопроводность выше.
Иногда такие опилки, как и топливные пеллеты или брикеты из них, называют «серыми». Поэтому при выборе отходов пиления для любых работ необходимо обязательно уточнять их состав, это относится к опилкам из любых пород дерева.
При выборе опилок очень важно обращать внимание на отсутствие в них посторонних добавок.
К примеру, на лесопилке вы сможете набрать материал, который будет содержать в себе:
- кусочки земли;
- листьев;
- высохших сучков.
На пилораме, если в ней установлена ленточная пила, материал будет с большим содержанием машинного масла, поэтому его можно пускать только на отопление или утепление.
Мульчевание огорода такими опилками приведет лишь к загрязнению почвы и снижению ее урожайности на много лет.
Где применяют
Мы составили краткий список того, что можно сделать из опилок и прикрепили к нему ссылки на соответствующие статьи, в которых тот или иной способ применения описан более подробно:
- Удобрение огорода, отсыпка дорожек, мульчевание и защита корней растений от холода.
- Подсыпка кроликам, курицам и мелкому рогатому скоту.
- Подсыпка хомячкам, птицам, собакам, кошкам и мелкой домашней живности.
- Выращивание грибов.
- Копчение различных продуктов.
- Поделки, папье-маше и аппликации.
- Самодельные стильные обои.
- Утепление стен, потолка и полов.
- Отопление.
- Изготовление топливных пеллет и брикетов.
- Изготовление опилкобетона и арболитовых блоков.
- Биотопливо (технический спирт).
- Пиролизный газ, пригодный для использования в отопительных котлах и автомобилях.
Более подробно об этих и других способах применения опилок вы можете прочитать в этой статье (Применение опилок).
Мы составили таблицу, из которой вы сможете узнать о том, какие виды опилок применяют для тех или иных операций и действий.
В таблицу мы включили все наиболее известные способы применения опилок, а также белые опилки различных пород древесины. Чтобы все виды опилок поместились в статью, мы заменили их начальными буквами названия пород:
- А – Акация;
- Б – Бук;
- Бр – Береза;
- Д – Дуб;
- Е – Ель;
- К – Кедр;
- Л – Лиственница;
- П – Плодовые деревья;
- С – Сосна.
Кроме того, мы использовали градацию эффективного применения от 1 до 5, где 1 – нельзя использовать из-за крайне негативных последствий, а 5 – обеспечивают лучший результат при применении.
Применение | Породы древесины | ||||||||
А | Б | Бр | Д | Е | К | Л | П | С | |
Отопление опилками | 5 | 4 | 5 | 5 | 1 | 1 | 1 | 3 | 1 |
Изготовление топливных пеллет и брикетов | 5 | 4 | 5 | 5 | 2 | 2 | 2 | 3 | 2 |
Создание опилкобетона | 5 | 4 | 4 | 5 | 5 | 5 | 5 | 3 | 5 |
Утепление опилками | 4 | 3 | 4 | 5 | 5 | 5 | 5 | 4 | 5 |
Использование в целлюлозно-химической промышленности | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Изготовление бумаги | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Отсыпка дорожек в огороде | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Мульчевание растений | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 5 | 4 |
Создание перегноя | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Выращивание грибов | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Домашнее изготовление биотоплива и спирта | 5 | 5 | 5 | 5 | 4 | 4 | 2 | 5 | 4 |
Промышленное изготовление биотоплива и спирта | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Получение пиролизного газа | 5 | 5 | 5 | 5 | 3 | 4 | 4 | 5 | 3 |
Создание ДВП, ДСП и других стройматериалов | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Подсыпка хомячкам и другим домашним питомцам | 5 | 5 | 5 | 5 | 3 | 4 | 3 | 4 | 3 |
Подстилка для кур, кроликов и других животных | 5 | 5 | 5 | 5 | 4 | 5 | 4 | 5 | 4 |
Использование для создания поделок | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Копчение | 5 | 4 | 4 | 4 | 1 | 1 | 1 | 5 | 1 |
Полезное видео
В данном видео вы можете увидеть, как вид опилок влияет на качество опилкобетона:
Вывод
Чтобы правильно подобрать опилки для тех или иных работ, необходимо четко понимать, чем же они отличаются.
Прочитав статью, вы узнали о:
- различных видах опилок;
- качествах, которые отличают один тип опилок от другого.
Кроме того, вы узнали, какими свойствами обладают различные виды опилок и для каких работ подходят лучше других.
Вконтакте
Одноклассники
Мой мир
гранулированные древесные опилки в мешках, теплопроводность и плотность. Что это такое? Строительные сосновые и другие опилки, вес
Дерево – это один из самых популярных видов сырья. Ценными являются как целостные древесные материалы (например, брус), так и сырье, которое образуется в ходе переработки дерева. Так, например, одним из востребованных материалов являются древесные опилки.
Древесные опилки – это материал, который находит свое применение в различных областях человеческой деятельности. Сегодня в нашей статье мы рассмотрим основные характеристики и существующие разновидности используемых опилок.
Что это такое?
Для начала необходимо определиться с тем, что представляют собой опилки. По сути, это мелкая стружка, которая образуется в результате распила древесины.
К отличительным характеристикам материала можно отнести достаточно низкую стоимость, соответственно, высокую доступность для каждого (вне зависимости от экономического и социального положения человека в обществе).
Если подробно рассматривать свойства сухих опилок, то следует отметить их небольшой вес. Показатели плотности находятся на уровне 220-580 кг на кубометр (данный показатель может изменяться в зависимости от уровня влажности сырьевого материала). А коэффициент теплопроводности составляет 0,06 Вт/ (м2 на°С). Размер опилок обычно не превышает 5 мм.
Особого внимания заслуживает и химический состав опилок, обычно материал содержит такие компоненты:
- лингин;
- целлюлозу;
- гемицеллюлозу;
- азот;
- водород;
- кислород;
- углерод.
Вообще говоря, все свойства и характеристики, которые должны быть присущи опилкам, подробно описываются в официальном ГОСТе 23246-78.
Обязательно ознакомьтесь с данным документом, прежде чем приобретать и использовать материал.
Следует сказать о том, что к особенностям сырья можно отнести большое количество свойств и характеристик, с которыми необходимо внимательно ознакомиться. Благодаря такому ответственному подходу, впоследствии вы не пожалеете о своей покупке.
Важно. Уникальной чертой этого строительного материала является экологичность. Опилки являются безопасными для окружающей среды и для здоровья человека, соответственно, их использование допустимо в самых разных и неожиданных сферах (например, материал используют для наполнения детских игрушек или подушек).
Из какой древесины делают?
На сегодняшний день на строительном рынке можно найти большое количество разновидностей стружки, изготовленной из различных пород дерева (причем можно приобрести сырье, как из ценного материала, так и из дешевого горбыля).
Для удобства пользователей и производителей принята общая классификация материала, которая включает в себя 2 основные группы: хвойную и лиственную.
Хвойные
Хвойные типы образуются из таких пород как туя, сосна, а также еловые и кедровые деревья. Такой материал активно используется в садоводстве, так как имеет свойство повышать кислотность грунта. Так, например, сосновую стружку используют при выращивании помидоров, огурцов и моркови.
Лиственные
Лиственный тип распространен шире, чем хвойный. Рассмотрим подробнее характеристики и свойства различных подгрупп лиственных опилок.
- Березовую стружку активно используют для создания грибных ферм. Сырье засыпают в полиэтиленовые пакеты и туда же помещают грибные споры. После этого в пакетах проделывают отверстия. При этом, в обязательном порядке, нужно следить за уровнем влажности, чтобы избежать появления плесени.
- Осиновый материал часто используют для садоводства. Такие опилки очень хорошо подходят для выращивания лука, чеснока и клубники. При этом важно отметить тот факт, что подобный сырьевой материал приостанавливает рост и развитие сорной травы, что облегчает уход за участком.
- Основной составляющей липовых опилок является фосфор. Кроме того, в состав сырья входят смолы с ярко выраженным запахом, который является привлекательным для медоносов. Очень часто липовые опилки применяют как подстилку или укрывающий материал для разнообразных цветущих культур.
- По общему правилу, дубовые опилки не используются как самостоятельный материал (особенно, если это касается применения материала в садоводстве). Зачастую их сочетают с другими материалами (например, с компостом) – в таком «тандеме» сырье проявляется все свои положительные качества.
- В состав сосновых опилок входят такие вещества как масла и кислоты, которые отличаются высоким уровнем полезности.
- Что касается каштановой разновидности опилок, то такой сырьевой материал характеризуется возможностью поглощения большого количества влаги. В связи с такими характеристиками можно отметить тот факт, что данные опилки активно используются для осуществления разного рода теплоизоляционных работ.
Помимо описанных выше лиственных разновидностей древесных материалов, популярностью пользуется сырье из лиственницы, а также фруктовые, буковые и опилки из ольхи. Причём ольховые материалы традиционно популярны при приготовлении копчёностей.
Благодаря такому разнообразию видов опилок, каждый человек сможет подобрать для себя такой материал, который будет на все 100% соответствовать его целям, пожеланиям и потребностям.
Виды
На сегодняшний день существует несколько видов древесных опилок. Рассмотрим подробнее их ключевые характеристики.
- Наиболее распространенный и широко используемый тип сырья – это опилки, которые продаются в мешках. Они являются достаточно дешевыми и доступными, соответственно, их может приобрести практически любой человек.
- Гранулированные древесные опилки используются в процессе ухода за домашними животными, так как они представляют собой наполнитель для лотков, который отличается высоким уровнем практичности. Древесные опилки в гранулах пользуются популярностью среди владельцев домашних котов и кошек, а также различного вида грызунов (например, крыс или хомячков).
- Прессованные деревянные опилки активно используются для отопления. Они обладают как положительными, так и отрицательными характеристиками. Так, к достоинствам материала можно отнести легкость использования, возможность применения в котлах длительного горения и простоту хранения. С другой стороны, среди недостатков традиционно выделяют большие габариты.
- Клееные опилки – это еще одна разновидность материала, которая используется для разных целей.
Помимо этого, опилки различаются по своему размеру: они могут быть мелкими и крупными. Каждая из этих разновидностей используется для разных целей и отличается по уровню насыпной плотности.
Сферы применения
Как было сказано выше, древесные опилки пользуются большой популярностью и востребованностью среди пользователей. Их использование распространяется на несколько сфер жизнедеятельности человека.
В строительстве
Опилки являются популярным строительным материалом, который используется для производства и изготовления таких изделий как древесно-стружечные и древесно-волокнистые плиты, гипсоопилочные бетоны (в этом случае опилки применяются в сочетании с гипсом) и т. д. Кроме того, сырье часто используется в процессе обустройства туалетов (или биотуалетов), а также для наполнения лотка для животных.
Такое разнообразное и широкое использование объясняется, в первую очередь, доступной ценой материала.
Для мульчирования
Еще одна сфера использования материала – это сельское хозяйство и садоводство. Опилки представляют собой достаточно ценный мульчирующий материал, который используется в процессе ухода за земляникой, клубникой и малиной, при этом толщина слоя опилок должна составлять около 5 см.
Также следует учитывать тот факт, что для мульчирования можно использовать только перепревшую стружку, если материал сырой – то его нужно предварительно подготовить.
При этом саму по себе процедуру мульчирования рекомендовано проводить только в летний период времени – ведь именно тогда почва теряет большое количество ценной влаги.
Как утеплитель
Очень часто опилки используются в качестве утеплительного материала. Это связано с отличительными характеристиками материала, а именно, с высоким уровнем насыпной плотности.
С другой стороны, существуют и негативные характеристики сырья, например, высокая вероятность воспламенения, а также горючесть.
В связи с этим, прежде чем использовать опилки как утеплитель (например, на потолок), необходимо произвести их предварительную обработку. Так, опилки смешивают с гипсом, цементом, глиной или известью, а затем поливают раствором медного купороса. Такие действия снижают показатели пожароопасности опилок.
Для мебели
Сырье очень часто применяется для создания мебели. На первом этапе опилки прессуются в ДСП и ДВП, а уже из этих строительных материалов в дальнейшем изготавливают мебель. При этом следует отметить тот факт, что применение опилок способствует созданию разнообразных интерьерных и декоративных решений.
Кроме того, из опилок могут быть изготовлены различные предметы оформления интерьера, например, материал используют для набивки сувенирных игрушек.
Для копчения
Для копчения пригодными являются только несколько типов стружки. Это связано с тем, что если использовать неподходящую разновидность, то конечный продукт (например, рыба или мясо) будет обладать не только неприятным запахом, но и горьким вкусом. В связи с этим для копчения чаще всего применяют опилки из таких пород дерева как дуб, бук и фруктовые разновидности. При этом можно использовать опилки разного вида, как по отдельности, так и в сочетании друг с другом.
Для топки
Одна из самых распространенных сфер применения сырья – это отопление. Материал выступает в качестве горючего для печей и других отопительных систем. При этом стоит учитывать тот факт, что для топки подходят не все типы опилок – всё зависит от таких показателей как уровень влажности и плотности сырья.
Как выбрать?
Очень важно правильно, внимательно и ответственно подойти к процессу выбора опилок. При этом следует учитывать несколько ключевых параметров и факторов.
- Для начала вам следует определиться с тем, для каких целей и в какой сфере вы будете использовать опилки. От этого будет зависеть то, какой тип опилок будет оптимальным в вашем конкретном случае.
- При покупке материала очень важно попросить у продавца предоставить вам сертификаты соответствия и любые другие материалы, которые докажут высокое качество продукции.
- Приобретать материал следует только в специализированных магазинах или на строительных рынках. В таком случае вы будете уверены в его высоком качестве. Кроме того, в таких торговых точках вы всегда сможете посоветоваться с профессиональными и опытными продавцами.
Полезный совет. Для того чтобы приобрести древесную стружку, можно обращаться напрямую на деревообрабатывающие предприятия. Таким образом, можно наладить прямую поставку качественного материала.
В целом, можно сделать вывод о том, что древесное сырье – это материал, без которого не обойдутся специалисты многих отраслей. Однако стоит быть внимательным при выборе, так как не каждый вид опилок можно использовать для любых целей: есть как универсальные, так и специализированные разновидности.
Опилки в качестве утеплителя — почему бы нет?!
Home » Опилки в качестве утеплителя — почему бы нет?!
Опилки в качестве утеплителя — почему бы нет?!
Несмотря на то что в последние годы в продаже появилось большое разнообразие современных утеплителей, экологически чистые отходы от деревообрабатывающей промышленности не потеряли своей актуальности в качестве термоизоляционных материалов. Речь идет, конечно же, прежде всего об опилках.
Опилки в качестве утеплителя
Особенно часто используют опилки в качестве утеплителя при постройке домов в регионах, богатых лесными просторами, так как здесь обычно располагается большое количество лесопильных предприятий. А это значит, что есть возможность приобрести материал по низкой цене, а порой – даже найти практически задаром.
Опилки в качестве утеплителя – «плюсы» и «минусы»
Опилки и материалы, изготовленные на их основе, используются для утепления практически любых элементов дома — чердачных перекрытий, стен, полов, погребов и т.п. Кроме этого, из древесных отходов изготавливают блоки, которые широко применяются для возведения жилых и подсобных зданий.
Опилки — отходы, которым найдется широчайшее применение
Этот материал не теряет своей популярности, благодаря положительным характеристикам, к которым можно отнести следующее:
- Одним из самых важных достоинств можно смело назвать абсолютную экологическую чистоту опилок. Они не выделяют токсичных для здоровья человека веществ, поэтому их можно использовать в любом количестве.
- Важное преимущество — уже упомянутая доступная для всех низкая цена материала, а иногда и возможность достать их бесплатно.
Опилки отлично подходят для утепления чердачных помещений
- Опилки — прекрасный утеплитель для крыши, естественно, при правильном соблюдении технологии укладки. Если термоизоляционный слой будет соответствовать необходимой толщине, в соответствии с климатическими условиями региона, то подобное утепление ничуть не будет уступать по своей эффективности другим современным материалам.
Материал | Удельный вес кг/м3 | Толщина засыпки в мм при средней зимней температуре воздуха на улице, оС | ||
---|---|---|---|---|
-15 | -20 | -25 | ||
Опилки древесные | 250 | 50 | 50 | 60 |
Стружка древесная | 300 | 60 | 70 | 80 |
- Опилки можно применять для утепления, как в обычном сыпучем состоянии, так и в других формах. Например, это могут быть плиты смеси с другими природными или искусственными материалами.
К недостаткам в использовании этого утеплителя в чистом виде можно отнести высокую горючесть. Однако, если использовать опилки в глиняных или цементных смесях, то их возгораемость значительно снижается.
Если рассуждать с тех позиций, что стропила, чердачные перекрытия и стены каркасных домов выполнены из древесины, предварительно обработанной антипиренами, то опилки прекрасно впишутся в этот комплекс постройки, при условии, что будут также подвергнуты специальной обработке. Кроме того, необходимо будет предусмотреть качественную изоляцию всех электрических кабелей, которые будут пересекать слой утеплителя или располагаться в его толще. Требует особого внимания и термоизоляция дымоходной трубы в местах прохождения через чердачное перекрытие или расположенной около стены.
Надо заметить, что опилки – отнюдь не единственный природный материал, который с давних пор используется для утепления жилья. И если посмотреть на таблицу, предложенную ниже, то они ничуть не проигрывают другим натуральным «термоизоляторам».
Натуральный утеплительный материал | Масса материала кг/м3 | Коэффициент теплопроводности |
---|---|---|
Пакля | 180 | 0,037-0,041 |
Вата | 80 | 0,036 |
Войлоки разные | — | 0,031-0,050 |
Костра разная | 150-350 | 0,04-0,065 |
Мох | 135 | 0.04 |
Торф-сфагнум | 150 | 0,05-0,07 |
Хвоя | 430 | 0.08 |
Нарезанная солома в набивке | 120 | 0.04 |
Соломенные маты | — | 0,05-0,06 |
Тонкая древесная стружка в набивке | 140-300 | 0,05-1,0 |
Сухие листья | — | 0,05-0,06 |
Древесные опилки | 190-250 | 0,05-0,08 |
Конечно, не все опилки одинаковы – многое зависит от породы и качества древесины, при переработке которой они получены.
Так, практически безоговорочным «лидером» в этом вопросе являются дубовые опилки. Они менее гигроскопична, чем опилки, полученные от деревьев других пород. Даже если влага попадет на них, она не принесет им особого вреда, так как дуб имеет в своем составе природные антисептические вещества. Поэтому они не подвержены появлению гнили и не разбухают при попадании на них воды.
Однако, дубовые опилки слишком распространенным материалом не назовешь. Ничего страшного – хорошо подойдут в качестве утеплителя и отходы от хвойных пород: ели, лиственницы или сосны. Хвойная древесина в избытке имеет в своем составе эфирные масла, стойко противостоящие появлению грибка или гнили, то есть самой природой в материал заложены противогрибковые и антисептические качества.
Подготовка опилок
Опилки, в чистом, не подготовленном виде нельзя считать полностью пригодными для изготовления блоков или для засыпки в качестве утеплителя. После окончательного просыхания они становятся весьма пожароопасным материалом. Кроме того, их могут облюбовать для устройства гнезд различные насекомые или грызуны.
Поэтому, с чистым материалом необходимо предварительно поработать:
В первую очередь опилки обрабатываются специальными составами, имеющими свойства антисептика и антипирена.
Антипирен сделает опилки практически негорючими …
Сначала опилки перемешивают с антисептиком глубокого проникновения, а после просыхания — с антипиреном. Все процессы можно проводит на застеленной пленкой проветриваемой площадке под крышей, например, под навесом.
… а антисептик предотвратит биологические процессы гниения, появление грибка, гнезд насекомых и грызунов
- После обработки антипиреном, опилки перемешиваются с гашеной известью, которая не позволит поселиться в утеплителе грызунам и насекомым.
Известь добавляется в опилки в пропорциях 1:5, то есть одна часть извести на пять частей опилок. Измерение можно проводить мешками – например, высыпается пять мешков опилок и один мешок сухой извести, а затем тщательно перемешивается. Если работа будет проводиться вручную, то перемешивание можно проводить, используя обычную мотыгу и совковую лопату.
- Кроме этого, нужно учесть, что опилки, использованные для утепления в сыпучем виде, со временем имеют свойство проседать, уменьшая образованную воздушную прослойку и, естественно, теряя свои утепляющие качества. Поэтому по прошествии определенного периода придется делать их досыпку или укладывать поверх них другой утеплитель.
Учитывая такой негативный фактор проседания, чтобы не допустить необходимости периодического обновления или усиления термоизоляционной прослойки, делается смесь, состоящая из опилок, извести и гипса, в пропорциях 9: 1: 5. Затем смесь смачивают водой, перемешивают, и сразу же укладывают на подготовленную основу.
Так как гипс затвердевает очень быстро, состав нужно готовить небольшими порциями, чтобы успеть выложить их до застывания в предназначенном для них месте, иначе материал будет испорчен.
Если нет желания торопиться, подстраиваясь под время застывания гипса, его можно заменить цементным раствором.
При использовании такого метода утепления, предварительная просушка опилок не потребуется. Их можно будет применять сразу после доставки с лесопилки.
Способы утепления дома опилками
Как говорилось выше, для утепления с применением опилок используются несколько вариантов различных смесей с добавлением гипса и цемента, но самым популярным все-таки остается старый народный способ — состав с глиной.
Опилки с глиной
Глина и опилки — это два натуральных материала, которые абсолютно безопасны для здоровья жильцов дома. В смеси они образуют материал, обладающий отличными теплоизолирующими и гидроизолирующими качествами, поэтому хорошо подойдут для утепления стен и перекрытия бани. После застывания глина не подвержена влиянию горячего пара, что нельзя сказать о большинстве других современных утеплителей или гидроизоляционных материалов. Ну а опилки, находящиеся в смеси, создадут хороший теплоизоляционный эффект.
Кроме этого, глиняно-опилочная смесь достаточно стойко переносит высокие температуры и пожаробезопасна.
К преимуществам этого состава можно отнести и то, что подобный утеплитель прекрасно подойдет для дома, выстроенного в любом регионе – и там, где летняя жара достигает критических отметок термометра, и там, где зимой стоят трескучие морозы.
Смесь из глины и опилок не только сохраняет тепло в холодный период, но и не дает нагреваться помещениям в самую сильную жару, поэтому в доме, термоизолированном этой смесью, тепло зимой и прохладно летом.
В отличие от современных утеплителей, глиняно-опилочный материал может прослужить века, не разлагаясь и не теряя своих первоначальных качеств.
Утеплить строение с помощью древесных отходов и глины — не так уж и просто. Чтобы была достичь нужного эффекта термоизоляции, необходимо проводить работы в соответствии с определенными требованиями:
- Смесь должна быть приготовлена с соблюдением определенных пропорций, иначе у состава будет низкая адгезия, и если стены будут им обмазываться, то после высыхания не исключено осыпание.
Стена, обмазанная глиняно-опилочным составом
- Чтобы достичь максимального эффекта от утепления, смесь на стены должна быть нанесена правильно и иметь определенную толщину.
В современных условиях этот состав редко используют для нанесения на стены — чаще всего опилки с глиной применяют для создания утеплительного слоя в чердачном перекрытии, где материал не будет подвергаться серьезной нагрузке.
Стена, утепленная матами из смеси глины с опилками
Если есть желание произвести утепление стен, то лучше всего изготовить утепляющие плиты из глины и мелких опилок или из рубленого камыша или соломы.
Опытные строители, работающие с таким материалом, рекомендуют использовать камыш, так как его по каким-то причинам абсолютно не переносят грызуны.
Растительные волокна в смеси с глиной станут для раствора своеобразной «арматурой», которая повысит несущую способность утеплительного слоя на стенах.
Приготовление смеси
Существует несколько способов изготовления глиняно-опилочной смеси для утепления дома. Также есть и несколько методик ее укладывания. Так, из готовой смеси могут быть изготовлены маты, которые закрепляются на стенах и укладываются на чердачное перекрытие.
Другим вариантом является выкладывание замешанной влажной массы между балок перекрытия или же нанесение ее на стену, на заранее закрепленную обрешетку.
Для изготовления утеплительной смеси и ее дальнейшего использования необходимо подготовить определенные материалы и инструменты. Потребуются:
- Опилки, глина и вода.
- Пергамин и водостойкий скотч для скрепления.
- Металлический короб с низкими бортиками (или корыто) для замешивания массы.
- Большая емкость для замачивания глины.
- Ведро.
- Совковая лопата и мотыга.
- Ровные доски, из которых будут собираться формы для изготовления блоков-панелей.
Чтобы смесь получилась пластичной и по высыханию не растрескивалась, необходимо соблюдать правильные пропорции исходных материалов.
А. В том случае, если масса в сыром виде будет укладываться на перекрытие или на поверхность стен, берется ⅔ ведра опилок на ведро глины, разведенной до сметанообразного состояния.
Чтобы получить такую консистенцию глины, ее выкладывают в большую емкость, например, в старую ванну или корыто, и заливается водой, в пропорциях 1:1. Глина оставляется набухать на сутки или более — в зависимости от исходной сухости материала.
Глина готовится к предварительному замачиванию
Затем масса хорошо перемешивается до однородного состояния. Если смесь получилась очень густая, в нее можно добавить небольшое количество воды, снова хорошенько перемешать и оставить еще на 5 ÷ 6 часов. Чтобы процесс прошел быстрее, массу периодически нужно помешивать.
Если есть возможность, то лучше всего замочить всю необходимою для работы глину разом – она от этого никак не испортится, сколько бы ни находилась в воде. А смешивание раствора можно будет проводить по мере расходования ранее приготовленной порции.
Если в хозяйстве есть бетономешалка, то работа пойдет значительно быстрее. На у вручную удобнее всего перемешивание проводить с помощью мотыги и лопаты.
Перемешивание опилок с глиной
Для смешивания глиняно-опилочного раствора будет необходима еще одна большая, но неглубокая емкость из тонкого металла, с бортиками высотой в 150 ÷ 200 мм. Туда высыпается необходимое количество опилок для одной порции замеса, и, согласно пропорциям, выкладывается глиняная смесь. Затем состав хорошо перемешивается и выкладывается на подготовленное чердачное перекрытие или наносится на стены.
Б. Если решено утеплить дом матами из глиняно-опилочной смеси, то материалы берутся в пропорциях 1:1. Пока будет набухать глина, за этот период нужно изготовить формы нужного размера, в которые будет укладываться готовая смесь.
Если маты будут укладываться на чердачное перекрытие, то стоит определить расстояние между балками и их высоту — по этим параметрам и изготавливаются формы. Они, по сути, представляют собой ящик без дна.
Изготовление глиняно-опилочных блоков-матов в самодельных формах
Лучше всего изготовить несколько форм, для изготовления сразу несколько матов. Чтобы блоки получились ровными со всех сторон, рекомендовано поступить следующим образом:
- На ровную поверхность укладывается один или несколько фанерных листов, которые накрываются плотной полиэтиленовой пленкой.
- Сверху устанавливаются формы.
- В них выкладывается приготовленная глиняно-опилочная смесь и, насколько это возможно, утрамбовывается.
- Сверху состав выравнивается с помощью правила — маячками в этом случае будут служить бортики формы.
- После схватывания и небольшого усыхания смеси, маты можно извлечь, и дальнейшее высыхание будет проходить без формы, в хорошо проветриваемом месте под крышей. На солнце их выносить нельзя, так как при окончательном просыхании может произойти растрескивание получившихся блоков.
- Освободившиеся формы снова заполняются смесью — и так продолжается до тех пор, пока не будет изготовлено необходимое количество матов.
Процесс утепления глиняно-опилочным составом
Технология утепления глиняно-опилочной смесью достаточно проста, как с помощью матов, так и с путем выкладывания смеси во влажном состоянии.
Утепление глиняно-опилочной сырой массой
1. При утеплении чердачного перекрытия с помощью глиняно-опилочной массы, необходимо вначале подготовить поверхность, на которую она будет выкладываться.
- Доски и балки перекрытия обрабатываются антисептическими составами. Если между досок имеются широкие зазоры, то между балок перекрытия может быть настелен пергамин. В том случае, когда настилаются несколько листов пергамина, их необходимо уложить внахлест и желательно скрепить водостойким скотчем.
Подготовка поверхности перекрытия к укладке утеплителя
- Далее, на настил выкладывается глиняно-опилочная смесь и разравнивается с помощью правила.
Укладка и выравнивание смеси
- Затем выровненную поверхность можно смочить водой и выровнять дополнительно с помощью шпателя.
- После полного застывания глины, она станет плотной и по ней спокойно можно будет ходить.
Работа проводится по участкам
2. Утепление стен может проводиться двумя способами — это набрасывание влажной смеси на стены или же заливка ее в опалубку, пристроенную к готовой капитальной или каркасной стене.
- На капитальную стену глиняный раствор наносится между установленных маячков с помощью мастерка или набрасывается рукой и выравнивается правилом.
Наброска и выравнивание глиняно-опилочной смеси
- Другим вариантом является наброска смеси на стену, на которой закреплена дранка. Но в этом случае толстого слоя уложить не получится. На дранке сможет удержаться наброс из глины не более 30 мм.
Деревянное армирование стены дранкой
- После просыхания глиняно-опилочного слоя, его выравнивают песочно-цементным раствором, а затем — штукатуркой.
3. Третьим вариантом утепления стен влажной массой является закладывание ее в опалубку, установленную вдоль капитальных стен, или же закрепленую с двух сторон на стойки каркаса.
- Щиты для опалубки изготавливаются высотой в 1000 мм из досок. Они закрепляются с двух сторон стоек каркаса или параллельно капитальной стене, на расстоянии от нее в 200÷250 мм.
- В опалубку производится закладка опилочно-глиняной смеси с тщательной трамбовкой. После этого составу дают время на просыхание.
- После высыхания смеси опалубка снимается и поднимается выше, где снова закрепляется таким же образом.
- Процесс заполнения повторяется в таком же порядке, пока не будет достигнут верх стены.
Утепление стен каркасного дома
- Так как сверху между каркасным брусом или стеной и потолком останутся проемы, которые невозможно заполнить по данной технологии, придется сделать маты нужного размера, установить и закрепить их на глиняный раствор поверх готовых нижних участков стен.
Утепление стен и перекрытия глиняно-опилочными матами
Опилочно-глиняные маты укладываются таким же образом, как и маты их других утеплительных материалов.
- Схема утепления потолка выглядит следующим образом:
Схема утепления перекрытия опилочно-глиняным матом
1 – Балки чердачного перекрытия.
2 – Потолок.
3 – Черновой пол чердачного перекрытия.
4 – Снизу и сверху утеплителя укладывается пергамин.
5 – Опилочно-глиняная плита.
6 – Доски чердачного чистового пола.
- Подготовка досок перекрытия проводится таким же образом, как и при заливке глиняной массы.
- Далее, на застеленную поверхность укладываются готовые плиты. Если между балками перекрытия и матами останутся большие зазоры, то их придется заполнить влажной массой из глины и опилок.
- Для утепления капитальных стен, на них закрепляется обрешетка из бруска, имеющего размер толщины мата (если она не больше 100 мм). Расстояние между брусками обрешетки должна быть равно ширине мата. Установленные плиты удобнее всего будет зафиксировать рейками, прибив их на бруски обрешетки.
- В том случае, если утепление проводится в холодном регионе, где средние зимние температуры достигают минус 25 ÷ 30 градусов, утеплительные плиты должны быть толщиной не менее 300 ÷ 400 мм. Такие плиты, а вернее сказать – блоки монтируются на глиняно-песчаный раствор, по принципу кирпичной кладки.
Из таких глиняно-опилочных блоков можно даже возводить стенку
- Если проводится утепление каркасных стен, то нужно предусмотреть установку двух рядов брусков или досок толщиной не менее 70 ÷ 80 мм. Если устанавливаются два бруска, определяющие толщину стены дома, то опилочно-глиняные блоки будут укладываться между ними. Чтобы блоки плотно стыковались друг с другом в местах установки каркасных брусков, в них по углам делают квадратные вырезы, повторяющие формы и размеры бруска.
Примерная схема утепления стены опилочными матами
- Когда утепляются капитальные стены, рекомендовано делать кладку из блоков на расстоянии от стены в 70 ÷ 100 мм.
- После того как утеплительный слой поднят на 800 ÷ 1000 мм, между ним и стеной рекомендовано сделать засыпку из керамзита.
- Затем утепляющая стена поднимается еще на 700 ÷ 1000 мм, снова делается засыпка — и так до самого верха стены.
- По завершении утепления стены должны быть обязательно заштукатурены цементным или глиняным раствором.
Опилки с цементом
Если вместо глины в «напарники» к опилкам выбран цемент, то процесс изготовления, нанесения или укладки смеси мало чем отличается от работы с опилочно-глиняным раствором, но составляющие и пропорции несколько изменены.
Так, в этом случае кроме цемента и опилок потребуется известь. Составляющие берутся в пропорции 1:10:1. Дополнительно в смесь можно добавить в качестве антисептика медный купорос или борную кислоту. Этих компонентов потребуется примерно 50 г на 50 кг смеси. На каждую порцию массы потребуется от 5 до 10 литров воды в зависимости от способа утепления.
Приготовление опилочно-цементного раствора
Если все ингредиенты в наличии, замешивается смесь:
- В подготовленную для смешивания емкость высыпаются все составляющие, перемешиваются с помощью мотыги в сухом виде до однородного состояния.
- Антисептики добавляются в последнюю очередь, а после этого смесь сразу заливается водой и перемешивается. Лучше будет, если антисептические составляющие будут разведены в заливаемой в смесь воде — тогда они быстрее впитаются в опилки.
- Перемешанную смесь нужно проверить на готовность. Это делается так — смесь набирается в ладонь и сжимается. Если из комка не сочится вода, и он не рассыпается, значит, состав готов для изготовления плит, для закладки в опалубку или для распределения по поверхности чердачного перекрытия.
На чердачном перекрытии, так же, как и в случае с глиной, под выкладываемую смесь укладывается пергамин, но в данном случаем он может быть заменен полиэтиленовой пленкой.
После того как укладка влажного утеплителя будет завершена, его оставляют для застывания.
Утепление сыпучим материалом
Утепление сухими опилками проводить совсем просто. Обработанные и просушенные опилки просто засыпаются на чердачное перекрытие. Толщина их слоя варьируется в зависимости от зимних и летних температур региона. Точнее этот параметр можно узнать таблицы, размещенной в начале статьи.
Опилки для утепления применяются сухими или в виде опилочных гранул — окатышей.
Их изготавливают из мелких опилок с добавлением антисептика, антипирена и клея из карбоксиметилцеллюлозы,. Готовые гранулы практически не горючи, и в них не заводятся грызуны. Нужно отметить, что они более удобны и практичны для утепления перекрытий, чем просто опилки, так как не дают усадки и отлично сохраняют тепло.
- Засыпку гранул производят на подготовленную поверхность — щели досок промазывают глиняно-известковым составом, или же застилают черновой пол перекрытия пергамином.
- Гранулы распределяют ровным слоем между балок перекрытия. Если же требуется слой большей толщины, то по периметру чердака устанавливают бортики, высотой равной нужной толщине засыпного слоя — тогда гранулы укладываются до их верха.
- Если планируется на чердаке сделать пол из дощатого покрытия, уложенного сверху утеплителя, то дополнительную обрешетку закрепляют на балки перекрытия, то есть поднимают их в высоту.
Видео: утепление чердака сухими опилками
Сухими опилками или гранулами утепляют и стены, засыпая их вовнутрь. Если используются обычные опилки, то они должны быть хорошо обработаны антисептиками. Кроме этого, чтобы утяжелить их, но сохранить их низкую теплопроводность, опилки иногда смешивают со шлаком. Стены, выстроенные и утепленные таким образом, надежно защищают дом от проникновения холода и летней жары.
- Засыпка утеплителя производится по мере поднятия капитальных стен на 700 ÷ 1000 мм, с обязательной, но не чрезмерно сильной трамбовкой для уплотнения.
Схема утепления полой кирпичной стены опилками
- После засыпки и трамбовки стены снова поднимаются на определенную высоту, и так процесс продолжается до тех пор, пока не будет выведена вся нужная высота.
⃰ ⃰ ⃰ ⃰ ⃰
Вывод:
При должной предварительной обработке и сами опилки, и составы, изготовленные с их применением, являются отличным термоизолятором, который вполне способен заменить любой из современных материалов. Используя их, можно быть уверенным на все 100%, что ни у кого из домочадцев не появится аллергии или других заболеваний, связанных с выделением токсичных веществ, чем иногда «грешат» некоторые синтетические утеплители.
Похожие статьи
проводим теплоизоляцию потолка, пола, стен
Монтаж теплоизоляции — одна из первоочередных задач при обустройстве жилого строения. В вопросах утепления стен и потолка хорошо себя зарекомендовали такие отходы деревообработки, как опилки. В теплоизоляционных слоях они используются в связке с дополнительными компонентами, улучшающими их полезные свойства.
Теплоизоляция пола
Утепление пола опилками целесообразно проводить в помещениях на первых или цокольных этажах. Здесь есть возможность использовать конструкцию из лаг и создать несколько слоев, которые будут обеспечивать надежную теплоизоляцию.
Сначала необходимо подготовить состав для утепления. Чаще всего смесь готовят из следующих компонентов:
- опилки — 10 частей;
- гипс — 1 часть;
- известь — 1 часть;
- антисептик;
- вода.
После смешивания компонентов и опрыскивания стружки антисептическим раствором, необходимо развести смесь водой до получения густого состава, который не рассыпается в ладонях.
Гипс моментально схватывается, поэтому нужно рассчитать темп работ или готовить состав небольшими порциями.
Сам процесс утепления пола опилками выглядит следующим образом:
- Конструкцию из лаг обрабатывают антисептическими грунтовками и влагостойкими мастиками.
- На основание пола укладывают влагонепроницаемый материал — пленку или рубероид.
- Затем укладывается опилочная смесь, при этом необходимо тщательно заполнять все пустоты между лагами, углы и места примыкания, нуждающиеся в защите.
- После тщательной утрамбовки, слой теплоизоляционной смеси оставляют до полного высыхания — процесс займет около 2 недель.
- Когда вся влага испарится, можно приступать к обустройству паронепроницаемого слоя — фольгированной пленки или полиэтилена. Полотна укладывают внахлест, а края слегка подворачивают на боковые поверхности.
- Сверху слои фиксируют настилом из досок или фанеры.
Толщина слоя опилок для жилого здания должна быть не менее 20 см. Если здание не используется в холодный сезон, толщину слоя можно уменьшить.
Утепление стен опилками
Теплоизоляцию стен выполнять гораздо сложнее. Работы начинаются с возведения каркаса, в который будет засыпаться утепляющий состав. Предварительно стены покрывают слоем гидроизоляции, а все розетки, выключатели, разводки трубопроводов защищают негорючим материалом.
В качестве утеплителя используют чистые сухие опилки крупных фракций, либо заготавливают такую же смесь, как и для теплоизоляции пола. Гипс в этой смеси можно заменить цементом — так она дольше не застынет.
Последовательность работ:
- Из деревянных реек возводится каркас, а сверху набивается обрешетка.
- В подготовленный каркас засыпается опилочная смесь послойно по 20-30 см. Каждый слой тщательно утрамбовывается для предупреждения проседания основания.
- Таким способом заполняется все пространство стеновой панели.
- Конструкция оставляется на 14 дней для схватывания и высыхания.
На этапе подсыхания рекомендуется поддерживать температуру в помещении на уровне 20-25 градусов и влажность в районе 60-70%.
Как вы считаете у утепления опилками больше плюсов или минусов?
Утепление потолка
Утепление потолочных перекрытий целесообразно проводить только жильцам последних этажей. Для этого формируется теплоизоляционный слой на полу чердака. Применяется все тот же раствор на основе гипса (цемента), древесной стружки, извести, антисептика и воды.
Еще один надежный состав:
- опилки — 10 частей;
- глина — 5 частей;
- известь — 1 часть;
- вода — по требованию.
Сначала глину необходимо залить двумя частями воды, перемешать и дать ей размокнуть. Опилки смешивают с известью, добавляя в глиняный раствор постепенно, небольшими порциями. По мере необходимости добавляют воду, чтобы раствор получился густым — «правильная» смесь должна удерживать палку, установленную в нее вертикально.
Как правильно провести утепление:
- Балки и доски, из которых собран пол чердака, необходимо обработать защитными составами против плесени, огня и насекомых.
- На поверхность пола расстилают пароизоляцию — пленку из поливинилхлорида или листы рубероида внахлест. Края должны заходить на несколько сантиметров на стены, их можно зафиксировать при помощи степлера.
- Места стыков промазывают битумом или скрепляют скотчем, все обнаруженные щели в деревянном полу замазывают глиной или задувают строительной пеной.
- Приступают к размещению подготовленной смеси из опилок. Располагать их необходимо послойно, каждый раз утрамбовывая, формируя надежное основание.
- Поверх опилок рекомендуется подсыпать слой золы — она обеспечит дополнительное сохранение тепла, защитит от вредителей и плесени.
- Через 2-3 недели, после подсыхания теплоизоляционной смеси, укрывают слой пароизолятора. Он не позволит опилкам пересыхать, а влаге — проникать в утеплитель.
- После размещения пароизоляционного материала следует прикрепить его к балкам перекрытия степлером, формируя своего рода конверт из нижнего и наружного пароизоляционных слоев.
Для теплоизоляции потолка рекомендуется использовать опилки мелких фракций — с их помощью можно создать более плотный и надежный слой утеплителя.
Плюсы использования опилок в качестве утеплителя
Экологичность. Натуральный материал, даже смешанный с дополнительными компонентами, считается безопасным для здоровья. Он не выделяет вредных паров, не вызывает аллергические реакции.
Экономичность. Опилки относятся к одним из самых дешевых материалов. При условии самовывоза есть возможность получить сырье практически даром.
Простота в работе. Обустройство теплоизоляции не требует особых навыков, работы можно провести самостоятельно с самым простым набором инструментов.
Оптимальный срок эксплуатации. Если все работы были проведены правильно, теплоизоляционный слой прослужит долго.
Низкая теплопроводность — главное ценное свойство опилок. Благодаря этому они так надежно защищают помещение от проникновения холода и теплопотерь.
Утеплять жилой дом лучше всего хвойными опилками, а для утепления хозяйственных построек подойдет сырье из лиственных пород деревьев.
Минусы утеплителя
Пожароопасность. Легко воспламеняются от малейшего открытого огня, поэтому требуют определенных мер пожарной безопасности.
Восприимчивость к патогенной микрофлоре. Натуральная древесина может стать благодатной почвой для развития насекомых, плесневого грибка и бактерий. Поэтому смеси на ее основе необходимо обрабатывать антисептиками.
Гигроскопичность. Способность опилок накапливать влагу и разбухать может привести к деформации конструкции и утратой теплоизоляционных свойств.
Слеживаемость. Со временем в материале могут образоваться пустоты, что негативно скажется на утеплении.
Несмотря на невысокую стоимость, эффект от использования опилок аналогичен современным теплоизоляционным материалам. Правильно выполненное утепление пола, потолка и стен этим материалом позволит свести к минимуму теплопотери в помещении и защитить жилье от сырости.
Популярное
Теплопроводность и механические свойства композитов древесных опилок / поликарбоната
[1] Информация на http: / www. полимерная обработка. ком / полимеры / ПК. html.
[2] М.Н. Ичазо, К. Альбано, Х. Гонсалес, Р. Перера и М.В. Candal: Композиты полипропилен / древесная мука: обработка и свойства. (2001).
DOI: 10.1016 / s0263-8223 (01) 00089-7
[3] Z.Dominkovics, L. Danyadi и B. Pukanszky: Модификация поверхности древесной муки и ее влияние на свойства композитов PP / древесины. (2007).
DOI: 10.1016 / j.compositesa.2007.04.001
[4] М.А. Хан, Ф. Мина, Л. Drzal: Влияние силановых связующих с различной функциональностью на характеристики джутового поликарбонатного композита. (2000).
[5] П.Threepopnatkul, N. Kaerkitcha и N. Athipongarporn: Влияние обработки поверхности на характеристики композитов из волокна и поликарбоната из листьев ананаса. (2009).
DOI: 10.1016 / j.compositesb.2009.04.008
[6] Информация на http: / www.инженерно-инструментальный ящик. com / теплопроводность-d_429. html.
[7] W. Yamsaengsung и N. Sombatsompop: Влияние химического вспенивателя на структуру ячеек и механические свойства пенопласта EPDM, а также прочность на отслаивание и теплопроводность ламинатов из дерева / композита NR и вспененного EPDM.(2009).
DOI: 10.1016 / j.compositesb.2009.04.003
[8] Л.Даньяди, Дж. Мочо и Б. Пуканский: Влияние различных модификаций поверхности древесной муки на свойства композитов ПП / дерево. (2009).
[9] Информация на http: / www.инженерно-инструментальный ящик. com / теплопроводность-d_429. html.
[10] В.Г. Немзера и В. Пугач: Теплопроводность жидкостей политилсилоксана при высоких давлениях (1976).
.Коэффициент теплопроводности изоляционного кирпича, полученного из опилок и глины
В этой статье представлен экспериментальный результат по влиянию размера частиц смеси шаровой глины, каолина и опилок на температуропроводность керамических кирпичей. Смесь сухих порошков шаровой глины, каолина с одинаковым размером частиц и опилок с разными размерами частиц смешивалась в разных пропорциях, а затем прессовалась до высокого давления перед обжигом до 950 ° C. Затем определялась температуропроводность косвенным методом, включающим измерение теплопроводности, плотности и удельной теплоемкости.Исследование показывает, что коэффициент температуропроводности увеличивается с уменьшением размера частиц каолина и шаровой глины, но уменьшается с увеличением размера частиц опилок.
1. Введение
В недавнем исследовании Манукаджи [1] температуропроводность очень важна во всех задачах неравновесной теплопроводности в твердых объектах. Скорость изменения температуры во времени зависит от численного значения температуропроводности. Физическое значение температуропроводности связано с диффузией тепла в среду при изменении температуры со временем.Неравновесная теплопередача важна из-за большого количества проблем нагрева и охлаждения, возникающих в промышленности [2]. В металлургических процессах необходимо прогнозировать скорости охлаждения и нагрева для проводников различной геометрии, чтобы прогнозировать время, необходимое для достижения определенных температур. Материалам с высокой тепловой массой потребуется больше времени, чтобы тепло переместилось от горячей поверхности кирпича к холодной стороне, а также потребуется много времени для выделения тепла после удаления источника тепла [3, 4].В статье Арамида [5] указывается, что при обжиге образцов кирпича, изготовленных из опилок, примесь опилок выгорает при температуре 450–550 ° C [6], оставляя поры (воздушные пустоты) в кирпиче, что замедляет тепловой поток. .
Одной из проблем, с которыми сталкивается строительная промышленность Уганды, является высокое потребление электроэнергии из-за плохих систем вентиляции и кондиционирования воздуха. В основном это происходит из-за отсутствия методов теплоизоляции зданий [7, 8]. Тем не менее, в Уганде не производятся классифицированные теплоизоляторы.Страна зависит от импортных изоляционных материалов, которые очень дороги и труднодоступны для местной промышленности, и, тем не менее, в разных частях страны имеются обширные месторождения полезных ископаемых, которые могут предоставить потенциальное сырье для производства различных керамических изделий, таких как теплоизоляционные. кирпичи. Таким образом, в данной статье представлены результаты экспериментального исследования влияния размера частиц на температуропроводность глиняных кирпичей, состав которых показан в таблице 1, которые были изготовлены из комбинации каолина, шаровой глины и древесных опилок с различными частицами. размеры.
|
2.Методики экспериментов
2.1. Обработка материалов
Сырьем, используемым в этом исследовании, были каолин, шариковая глина и опилки твердых пород древесины. Опилки получали из красного дерева. Твердая древесина была предпочтительнее, потому что при включении в глиняные кирпичи она образует однородные поры, имеет высокую теплотворную способность и не вызывает вздутие живота [9]. Каолин собирали в Мутаке на юго-западе Уганды, а глину в виде шариков собирали в Нтаво (Муконо), в 25 км к востоку от столицы Кампалы.Шариковую глину и каолин отдельно вымачивали в воде на семь дней, чтобы дать им полностью раствориться, чтобы отделить коллоиды от тяжелых частиц, таких как камни, песок и корни. Затем глину сушили и измельчали до порошка в шаровой мельнице. Порошки просеивали через тестовые сита, склеенные вместе на механическом встряхивателе для тестовых сит. Диапазон размеров частиц 0–45 мкм м, 45–53 мкм м, 53–63 мкм м, 63–90 мкм м, 90–125 мкм м и 125–154 мкм По каолину и шаровой глине отдельно добыто м.Точно так же порошки опилок с диапазоном размеров частиц 0–125 мкм мкм, 125–154 мкм мкм, 154–180 мкм мкм, 180–355 мкм мкм и 355–425 мкм мкм. также подготовлен.
Исследование проводилось с использованием двух наборов серийных составов. В первой части составы партий A 1 –A 5 имели композиции каолина и шаровой глины с одинаковыми диапазонами размеров частиц, которые были смешаны с равными массами опилок трех разных диапазонов размера частиц в соотношении 9: 7: 4 по весу, как показано в таблице 1.Смесь этих порошков сначала сушили на солнце, а затем прессовали до давления 50 МПа в прямоугольные образцы с размерами 10,51 см × 5,25 см × 1,98 см. Образцы для испытаний обжигали в электропечи до 950 ° С в два этапа. На первом этапе их сушили при скорости нагрева 2,33 ° C мин. -1 до 110 ° C, и эту температуру поддерживали в течение четырех часов, чтобы удалить воду из образца. На втором этапе образцы обжигались со скоростью 6 ° C мин. -1 до 950 ° C.При этой температуре время выдержки составляло один час перед выключением печи, чтобы образцы могли естественным образом остыть до комнатной температуры.
Во второй части исследования составы серий B 1 –B 5 имели каждый из диапазонов размеров частиц 0–125 мкм мкм, 125–154 мкм мкм, 154–180 мкм м, 180–355 мкм м и 355–425 мкм мкм опилок, смешанных с каолином и шаровой глиной с теми же диапазонами размеров частиц в соотношении 4: 9: 7, как показано в (Таблица 1), перед их уплотнением при давлении 50 МПа в прямоугольные образцы размером 10.51 см × 5,25 см × 1,98 см. Процесс обжига был аналогичен процессу обжига первой партии. Каждый из составов образцов имел общую массу 200 г (90 г каолина, 70 г шариковой глины и 40 г опилок).
2.2. Определение коэффициента теплопроводности
Коэффициент температуропроводности был определен из измеренных значений удельной теплоемкости, теплопроводности и плотности с использованием следующего уравнения, полученного из закона теплопроводности через твердое тело Фурье: где — коэффициент температуропроводности, — теплопроводность, — плотность, — удельная теплоемкость [10].
Теплопроводность измерялась быстрым измерителем теплопроводности (QTM-500) с сенсорным зондом (PD-11), в котором для исследования теплопроводности образцов используется переходный метод (нестационарное состояние) [11, 12]. Удельную теплоемкость определяли методом смесей [13], а плотность определяли путем измерения размеров и массы образца. Измерения теплопроводности, плотности и удельной теплоемкости проводились при комнатной температуре.
2.3. Химический состав
Химический состав обожженных образцов был определен с помощью рентгенофлуоресцентного (XRF) спектрометра, модель X ‘Unique ll [14], чтобы установить химический состав основных соединений, которые влияют на термические свойства изоляционный глиняный кирпич Таблица 2.
|
3. Результаты и обсуждения
. Влияние размера частиц на коэффициент температуропроводности
Коэффициент температуропроводности определяли косвенным методом, включающим измерение теплопроводности, удельной теплоемкости и плотности обожженных образцов [2, 10].Влияние размера частиц на теплопроводность, плотность, удельную теплоемкость и температуропроводность обсуждается ниже.
3.1.1. Влияние размера частиц на теплопроводность
Результаты (Рисунок 1) показывают, что теплопроводность увеличивается с уменьшением размера частиц каолина и шариковой глины при фиксированном размере частиц опилок. Это связано с тем, что более крупные частицы создают большие поры из-за плохого заполнения пустот, содержащих воздух после обжига, по сравнению с мелкими частицами [15, 16].Теплопроводность керамического материала зависит от путей теплопроводности, на которые влияют микроструктура, гранулометрический состав и количество воздушного пространства или пустот, создаваемых во время обжига тела [17]. На рисунке 2 показано, что теплопроводность уменьшается, когда размер частиц опилок, включенных в глиняную смесь, увеличивается. Это связано с тем, что размер частиц горючих органических отходов определяет количество воздушных пространств, которые создаются в изоляционном глиняном кирпиче [18–20].Кроме того, теплопроводность еще больше уменьшается, когда размер частиц смеси каолина и шаровой глины увеличивается из-за меньшего контакта между частицами [21]. Сцепление частиц глины зависит от гранулометрического состава и диапазона размеров мелких и крупных частиц, а также от того, состоит ли тело из частиц одного или нескольких размеров.
3.1.2. Влияние размера частиц на плотность
Плотность образцов увеличивается с уменьшением размера частиц смеси каолина и шариковой глины при фиксированном размере частиц опилок (рис. 3).Меньшие размеры частиц имеют больше точек контакта, что обеспечивает большую когезию и смазку каолина шариковой глиной. Множественные размеры частиц в керамическом теле увеличивают упаковку частиц и создают тело с высокой плотностью, потому что более мелкие зерна входят в межчастичные пустоты более крупных частиц и, таким образом, увеличивают плотность упаковки. Это исследование также показывает, что наблюдается дальнейшее снижение плотности с увеличением размера частиц опилок при фиксированном размере частиц каолина и шаровой глины [20].
На рисунке 4 плотность образцов уменьшается с увеличением размера частиц опилок для фиксированного размера частиц каолина и шариковой глины.Маленькие поры, которые создаются мелкими частицами опилок, имеют тенденцию закрываться во время уплотнения в результате образования областей межкристаллитного контакта, в то время как большие поры остаются в матрице глины во время обжига и созревания [18]. Это объясняется достаточной длиной опилок, которая улучшает сцепление на границе раздела опилки-глина, чтобы противодействовать деформации и сжатию глины во время сушки и обжига [9].
3.1.3. Изменение удельной теплоемкости в зависимости от размера частиц
Удельная теплоемкость для образцов от A 1 до A 5 обычно ниже, чем у образцов от B 1 до B 5 (рисунки 5 и 6).Это означает, что более низкий коэффициент температуропроводности может быть достигнут за счет использования опилок большего размера [9]. Удельная теплоемкость увеличивается с увеличением размера частиц используемых глиняных материалов (Рисунок 5) и увеличением размера частиц добавленных опилок (Рисунок 6).
3.1.4. Коэффициент температуропроводности
Коэффициент температуропроводности увеличивается по мере уменьшения размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок (рис. 7).Основное влияние размера частиц на коэффициент температуропроводности твердого материала связано с количеством твердого тела и воздушного пространства, которое тепло должно проходить поперек при прохождении через материал. Это объясняется большим размером частиц, который приводит к высоким уровням пористости из-за плохого заполнения пустот между частицами большого размера по сравнению с мелкими частицами, создавая большие воздушные пространства [21]. Большая доля воздуха дает низкое значение коэффициента температуропроводности из-за его низкой теплопроводности.Уменьшение размера частиц увеличивает содержание частиц в единице объема, что уменьшает среднее расстояние между частицами глинистой матрицы. Это приводит к плотной упаковке частиц, что приводит к уплотнению глиняных кирпичей, что увеличивает температуропроводность [16, 20]. Следовательно, мелкозернистый материал с закрытой текстурой (малый размер частиц) имеет гораздо больший коэффициент температуропроводности, чем материал с более крупной открытой текстурой (крупный размер частиц). Небольшие размеры частиц увеличивают низкое тепловое сопротивление, поскольку точки контакта для теплопроводности очень плотно упакованы.Большой размер зерна каолина и шаровой глины позволяет получить кирпичи, которые более пористые и, следовательно, более устойчивы к резким перепадам температуры в образце [1, 22]. Низкие значения температуропроводности подходят для минимизации теплопроводности. Наблюдается (Рис. 7), что увеличение размера частиц добавленных опилок дополнительно снижает температуропроводность.
Температуропроводность уменьшается с увеличением размера частиц опилок при фиксированном размере частиц комбинации каолина и шариковой глины (рис. 8).Это связано с тем, что частицы опилок выгорают при температуре 450-550 ° C [6], оставляя поры или пустоты в образцах. Во время сушки и обжига происходит уплотнение, и небольшие поры, создаваемые мелкими частицами опилок, имеют тенденцию закрываться глинистыми минералами в результате образования межкристаллитных контактных областей, в то время как крупные поры сохраняются в глинистой матрице [18].
Включение опилок в керамическое тело, которое удаляется на этапе обжига, оставляет поры, размер которых зависит от размеров органических частиц.Более мелкие опилки образуют более мелкие поры, большинство из которых может быть устранено во время уплотнения, в то время как частицы большого размера образуют большие поры. Опилки с крупными частицами улучшают сцепление на границе раздела опилки-глина, что препятствует деформации и усадке глины. Это обеспечивает высокую пористость, низкую плотность, низкую теплопроводность и низкую скорость изменения температуры по всему образцу. Следовательно, коэффициент температуропроводности уменьшается по мере увеличения размера частиц опилок. Как правило, значения температуропроводности от B 1 до B 5 ниже, чем у A 1 до A 5 .Это результат мультипликативной пористости, создаваемой добавлением глины и опилок.
3.2. Химический состав
Процентный состав SiO 2 составляет 68,0%, а процентный состав Al 2 O 3 составляет 22,0%. Согласно отчету Бюро энергоэффективности [23] о шамотных огнеупорах, шамотные огнеупоры с низкой плотностью состоят из силикатов алюминия с различным содержанием кремнезема от 67 до 77% и содержания Al 2 O 3 от 23 до 33%.Химический состав глинозема в разработанных образцах может быть улучшен либо путем обогащения сырья (каолин и шаровая глина), либо путем увеличения процентного состава каолина в образцах. Образцы глины содержат менее 9,0% флюсовых компонентов (K 2 O, Na 2 O и CaO).
3.3. Значение
Физическое значение низких значений температуропроводности связано с низкой скоростью изменения температуры в материале во время процесса нагрева.Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов. Подходящим теплоизолятором является образец, содержащий комбинацию каолина и шаровидной глины с размером частиц 125–154 мкм мкм с опилками с размером частиц 355–425 мкм мкм. Эта комбинация характеризовалась наименьшим значением температуропроводности 1,16 × 10 −7 м 2 с −1 и может быть легко подготовлена для промышленного производства теплоизоляционного кирпича.
4. Выводы
Результаты исследования показывают, что все проанализированные образцы являются хорошими теплоизоляторами, а коэффициент температуропроводности напрямую зависит от размера частиц комбинации минералов каолина и шаровой глины, а также от размера частиц опилок. дополнение. Таким образом, из проведенного общего экспериментального анализа было обнаружено следующее: (1) Коэффициент температуропроводности увеличивается с уменьшением размера частиц смеси каолина и шаровой глины при фиксированном размере частиц добавленных опилок.Добавление опилок с частицами большего размера снижает коэффициент температуропроводности даже при очень малых размерах частиц каолина и шариковой глины. (2) Коэффициент температуропроводности уменьшается с увеличением размера частиц добавленных опилок до фиксированного размера частиц каолина и шариковой глины. Включение каолина и шариковой глины с гораздо более крупными частицами дополнительно снижает коэффициент температуропроводности из-за мультипликативного эффекта более высокой пористости, создаваемой опилками и глинистыми минералами. (3) Образцы содержат подходящие композиции кремнезема и глинозема, которые подходят для легкие жаропрочные теплоизоляционные кирпичи.(4) Таким образом, образцы имеют низкие значения коэффициента температуропроводности и подходят для использования в качестве теплоизоляторов.
Конфликт интересов
Авторы заявляют об отсутствии конфликта интересов в отношении публикации этой статьи.
Благодарности
Авторы хотели бы поблагодарить сотрудников Университета Кямбого за их руководство и поддержку в ходе исследования и исследования. Кроме того, выражаем благодарность руководству и персоналу Института промышленных исследований Уганды, UIRI (Департамент керамики), за предоставленные лаборатории и оборудование для использования в исследованиях, а также Департаменту физики Университета Макерере.Авторы особо хотят выразить признательность за финансовую поддержку, полученную от г-жи Наньямы Кристин, доктора Майеку Роберта и его жены г-жи Кейт Майеку.
.