Menu Close

Отопление с теплоаккумулятором: Правильная схема отопления с теплоаккумулятором

Правильная схема отопления с теплоаккумулятором

Содержание:

1. Функциональные особенности теплоаккумулятора
2. Использование теплоаккумуляторов для твердотопливных котлов
3. Тепловой аккумулятор для электрокотла
4. Системы многоконтурного отопления с теплоаккумуляторами
5. Правила установки и расчет

Многие хозяева часто сталкиваются с вопросом касательно того, что такое тепловой аккумулятор, используемый в отопительной системе, и как он функционирует. Об устройстве этих механизмов, а также о том, как должно проходить подключение теплоаккумулятора к котлу, далее и пойдет речь.

Функциональные особенности теплоаккумулятора


Аккумуляторный отопительный бак внешне представляет собой высокую емкость цилиндрической или квадратной формы, оснащенную несколькими патрубками, расположенными на разном уровне. Объем такого резервуара может составлять от 20 до 3000 литров, однако наиболее распространенными образцами являются модели от 0,3 до 2 м³.

Функциональность такого оборудования является действительно высокой и отличается следующими признаками:

  • конструкция может быть оснащена большим числом патрубков (от четырех до нескольких десятков). Влияет на это, в первую очередь, то, какой конфигурацией обладает система отопления с теплоаккумулятором, а также то, сколько контуров в ней имеется;
  • это оборудование можно оснастить теплоизоляцией, которой может выступать такие традиционные материалы, как минеральная вата или вспененный полиуретан. При этом правильнее будет изолировать бак даже в том случае, если он располагается в отапливаемом помещении, поскольку это позволит избежать непредвиденных потерь тепла;
  • материалом для изготовления стенок теплового аккумулятора своими руками могут послужить такие элементы, как черная или нержавеющая сталь. Второй материал обеспечит оборудованию более долгий срок службы, однако приобрести его будет дороже;
  • существует возможность разделения конструкции бака на сообщающиеся сегменты, отделенные друг от друга расположенными горизонтально перегородками. Данная мера позволяет теплоносителю иметь примерно одинаковую температуру в той или иной части механизма;
  • бак может быть оснащен особыми фланцами, предназначенными для установки ТЭНов (трубчатых электронагревателей). Их использование может допускать возможность того, что весь аппарат будет функционировать по принципу электрического котла;
  • в том случае, если оборудуется теплоаккумулятор с теплообменником, емкость аккумулятора может выполнять функцию приготовления горячей воды, пригодной дл питья. При этом теплообменник в этом случае может быть как обычным проточным пластинчатым, так и накопительным баком внутри резервуара. Так или иначе, расчет теплоаккумулятора для отопления не предусматривает большие затраты на нагрев воды для этих целей;
  • снизу агрегата может находиться еще один теплообменник, предназначенный для установки коллектора солнечного тепла. Монтируется он внизу системы потому, что эффективную теплоотдачу можно обеспечить даже при условии, если производительность коллектора будет невысокой, к примеру, в вечернее время.  Читайте также: «Солнечная батарея для нагрева воды своими руками».


Использование теплоаккумуляторов для твердотопливных котлов


 Для котлов такого типа схема отопления с теплоаккумулятором предусматривает такой режим работы, при котором топливо сможет по возможности сгорать без какого-либо остатка, а мощность оборудования, равно как и его КПД, будут максимальными. Для того чтобы отрегулировать мощность оборудования, можно ограничить подачу воздуха к камере сгорания.

Схема подключения теплоаккумулятора к твердотопливному котлу предусматривает такую систему, при которой:

  • тепло, производимое работающим при максимальной мощности котлом, направляется непосредственно к резервуару с водой для ее нагрева;
  • по окончании полного сгорания топлива теплоноситель не прекращает циркулировать по системе от бака накопления до радиаторов, постепенно забирая у него тепловую энергию. Читайте также: «Схема подключения твердотопливного котла к системе отопления».

Как результат, растапливать котел придется гораздо реже, что позволит сэкономить значительную часть времени и физических сил.

Тепловой аккумулятор для электрокотла


Самодельный теплоаккумулятор отопления, используемый вместе с котлом, работающим от электричества, также может обеспечить некоторую выгоду, несмотря на то, что большинство современных электрокотлов не требует тщательного ухода и прекрасно функционируют без чьего-либо вмешательства. Читайте также: «Самодельный пиролизный котел».
Особую пользу такая система будет нести при условии ночного тарифа. Так, в темное время суток стоимость на электроэнергию может быть значительно меньшей по сравнению с дневной ценой на киловатт-часы.

Поэтому функционирование аккумулятора отопления проходит по следующей схеме:
  1. В ночное время автоматизированный котел самостоятельно включается в нужное время, при этом нагревая аккумулятор отопления до температуры, равной 90°.
  2. Днем все полученное тепло расходуется на обогрев жилища. При этом регулировать расход воды можно, настроив желаемым образом производительность насоса циркуляции. Читайте также: «Как установить тепловой аккумулятор для отопления разными видами котлов».


Системы многоконтурного отопления с теплоаккумуляторами


Еще одно неоспоримое достоинство бака накопления – это потенциальная возможность эксплуатировать его как гидрострелку (прочитайте: «Гидрострелка для отопления»).

Подобная функция является очень нужной, так как ввиду того, что корпус бака оснащен как минимум четырьмя патрубками, появляется возможность отбирать теплоноситель с нужной температурой на том или ином уровне накопительного бака. Это даст возможность оборудовать качественный контур с высокой температурой, оборудованный радиаторами, а также отопление с низкими температурами, как, например, в теплом полу.

Однако не стоит забывать и о насосах, имеющих схемы контроля нагрева, поскольку температура на разных уровнях накопительного резервуара в разное время суток, как известно, отличается.

При этом функция патрубков не сводится исключительно к отводам для отопительных контуров. Сразу несколько систем котлов, оборудованных по разному типу, можно подключить к одному аккумулятору отопления.


Правила установки и расчет


Принцип подключения теплоаккумулятора является таким же, как и у гидрострелки, а основное отличие заключается только в теплоизоляции и объеме. Эти механизмы нужно монтировать между двумя трубопроводами, идущими от котла – обратным и подающим. Подающий элемент подключается к верхней части резервуара, в то время как обратный – к нижней. Читайте также: «Как подобрать теплоаккумулятор для котлов отопления – принцип работы, преимущества использования».
Для того чтобы рассчитать тепловую емкость устройства, можно воспользоваться следующей формулой: Q = mc (T2-T1). В данном случае Q – это количество накопленного тепла, m – масса, которой обладает вода в емкости, c – показатель удельной теплоемкости, измеряемый в Дж/(кг*К) и равный 4200, а Т2 и Т1 – исходный и конечный параметр температуры воды.  Читайте также: «Как работает буферная емкость для отопления – преимущества, правила выбора и использования».

Пример использования теплоаккумулятора в схеме отопления:



Данная формула позволит правильно рассчитать то, какую тепловую емкость должен иметь теплоаккумулятор для котлов отопления. При возникновении вопросов относительно создания и монтажа теплоаккумуляторов, а также во избежание неполадок во время дальнейшей эксплуатации всегда можно обратиться за помощью к квалифицированным специалистам, в наличии у которых всегда имеются фото вариантов оборудования, а также подробные видео по их правильной установке.

Расчет и установка теплоаккумулятора для котлов отопления

Теплоаккумулятор для котлов отопления

Мы продолжаем наш цикл статей темой, которая будет интересна тем, кто отапливает свое жилье твердотопливными котлами. Мы расскажем про теплоаккумулятор для котлов отопления (ТА) на твердом топливе. Это действительно нужный прибор, позволяющий сбалансировать работу контура, сгладить перепады температуры теплоносителя при этом еще и сэкономить. Сразу отметим, что теплоаккумулятор для электрокотлов отопления применяется только в том случае, если в доме стоит электросчётчик с раздельным подсчетом ночной и дневной энергии. В противном случае установка теплоаккумулятора для газовых котлов отопления не имеет никакого смысла.

Как работает система отопления с теплоаккумулятором

Теплоаккумулятор для котлов отопления – это часть системы отопления, предназначенная для увеличения времени между загрузками твердого топлива в котел. Он представляет собой резервуар, в который нет доступа воздуха. Он утеплен и имеет достаточно большой объём. В тепловом аккумуляторе для отопления всегда есть вода, она же циркулирует по всему контуру. Конечно, в качестве теплоносителя может быть и незамерзающая жидкость, но все же из-за своей дороговизны в контурах с ТА ее не используют.

Помимо этого в заполнении системы отопления с теплоаккумулятором антифризом нет смысла, так как такие резервуары ставятся в жилых помещениях. И суть их применения заключается в том, чтобы температура в контуре всегда была стабильной, а соответственно вода в системе теплой. Применение большого теплового аккумулятора для отопления в загородных домах временного проживания нецелесообразно, а от маленького резервуара толку мало. Это связано с принципом работы аккумулятора тепла для системы отопления.

  • ТА находится между котлом и системой отопления. Когда котел нагревает теплоноситель – он попадает в ТА;
  • затем вода поступает по трубам в радиаторы;
  • обратка возвращается в ТА, а затем сразу в котел.

Хоть аккумулятор тепла для системы отопления – это единый сосуд, из-за его больших размеров направление потоков вверху и в низу отличаются.

Чтобы ТА выполнял свою основную функцию аккумулирования тепла, эти потоки нужно перемешивать. Сложность заключается в том, что высокая температура всегда поднимается, а холод стремится опуститься. Нужно создать такие условия, чтобы часть тепла опускалась ко дну теплового аккумулятора в системе отопления и нагревала теплоноситель обратки. Если температура выровнялась во всём резервуаре, то он считается полностью заряженным.

После того как котел выпалил все что в него загрузили, он перестает работать и в дело вступает ТА. Циркуляция продолжается и он постепенно отдает свое тепло через радиаторы в помещение. Все это происходит до того момента, пока в котел опять не поступит очередная порция топлива.

Если накопитель тепла для отопления маленький, то его запаса хватит совсем ненадолго, при этом время нагрева батарей увеличивается, так как объём теплоносителя в контуре стал больше. Минусы использования для домов временного проживания:

  • увеличивается время прогрева помещения;
  • больший объём контура, что делает заполнение его антифризом дороже;
  • более высокие расходы на монтаж.

Как вы понимаете заполнять систему и спускать воду каждый раз, когда вы приезжаете на свою дачу, по меньшей мере, хлопотно. Учитывая, что один только бак будет литров 300. Ради нескольких дней в неделю идти на такие меры бессмысленно.

В резервуар встраиваются дополнительные контуры – это металлические трубы-спирали. Жидкость в спирали, не имеет прямого контакта с теплоносителем в теплоаккумуляторе для отопления дома. Это могут быть контуры:

  • ГВС;
  • низкотемпературного отопления (теплый пол).

Таким образом, даже самый примитивный одноконтурный котел или даже печка может стать универсальным нагревателем. Он обеспечит весь дом необходимым теплом и горячей водой одновременно. Соответственно производительность нагревателя будет использована в полной мере.

В серийных моделях, изготовленных в производственных условиях, встраиваются дополнительные источники подогрева. Это тоже спирали, только они называются электрическими тэнами. Их зачастую несколько и они могут работать от разных источников:

  • электросеть;
  • солнечные батареи.

Такой подогрев относится к дополнительным опциям и не является обязательным, учитывайте это, если решили сделать теплоаккумулятор для отопления своими руками.

Схемы обвязки теплового аккумулятора

Осмелимся предположить, что если вы заинтересовались этой статьей, то, скорее всего, решили сделать тепловой аккумулятор для отопления и его обвязку своими руками. Схем подключения можно придумать много, главное, чтобы все работало. Если вы правильно понимаете процессы, происходящие в контуре, то вполне можете поэкспериментировать. То, как вы подключите ТА к котлу, повлияет на работу всей системы. Давайте для начала разберем самую простую схему отопления с теплоаккумулятором.

Простая схема обвязки ТА

На рисунке вы видите направление движений теплоносителя. Обратите внимание на то, что движение обратки вверх запрещено. Чтобы этого не происходило, насос между ТА и котлом должен прокачивать большее количество теплоносителя, нежели тот, который стоит до резервуара. Только в таком случае будет образовываться достаточная втягивающая сила, которая будет отбирать часть тепла из подачи. Минус такой схемы подключения – это длительное время разогрева контура. Чтобы его сократить, нужно создать кольцо прогрева котла. Его вы можете увидеть на следующей схеме.

Схема обвязки ТА с контуром прогрева котла

Суть контура разогрева заключается в том, что термостат не подмешивает воду из ТА до тех пор, пока котел не прогреет ее до установленного уровня. Когда котел разогрелся, часть подачи уходит в ТА, а часть перемешивается с теплоносителем из резервуара и поступает в котел. Таким образом, нагреватель всегда работает с уже нагретой жидкостью, что увеличивает его КПД и время разогрева контура. То есть батареи станут теплыми быстрее.

Такой метод установки теплоаккумулятора в систему отопления позволяет использовать контур в автономном режиме, когда насос работать не будет. Обратите внимание, что на схеме показаны только узлы подключения ТА к котлу. Циркуляция теплоносителя к радиаторам происходит по-другому контру, который также проходит через ТА. Наличие двух байпасов позволяет перестраховаться дважды:

  • обратный клапан включается в работу, если насос остановлен и шаровой кран на нижнем байпасе перекрыт;
  • в случае остановки насоса и поломки обратного клапана циркуляция осуществляется через нижний байпас.

В принципе, в такую конструкцию можно внести некоторые упрощения. Учитывая тот факт, что у обратного клапана высокое сопротивление потока, его можно исключить из схемы.

Схема обвязки ТА без обратного клапана для гравитационной системы

При этом, когда пропадет свет, нужно будет вручную открыть шаровой кран. Следует сказать, что при такой разводке ТА должен находиться выше уровня радиаторов. Если вы не планируете, что система будет работать самотеком, то обвязку системы отопления с теплоаккумулятором можно выполнить по схеме, указанной ниже.

Схема обвязки ТА для контура с принудительной циркуляцией

В ТА создается правильное движение воды, что позволяет шар за шаром, начиная с верхнего, прогревать ее. Возможно, возникнет вопрос, что делать, если не станет света? Об этом мы рассказывали в статье об источниках альтернативного питания для системы обогрева. Это будет экономнее и удобнее. Ведь гравитационные контуры выполняются из труб большого сечения, к тому же должны соблюдаться не всегда удобные уклоны. Если посчитать цену труб и фитингов, взвесить все неудобства монтажа и сравнить это все с ценой ИБП, то идея установки альтернативного источника питания станет очень привлекательной.

Расчет объёма накопителя тепла

Объем теплоаккумулятора для отопления

Как мы уже упомянули ТА маленького объёма использовать нецелесообразно, при этом слишком большие резервуары также не всегда уместны. Вот и назрел вопрос о том, как рассчитать нужный объём ТА. Очень хочется дать конкретный ответ, но, к сожалению, его не может быть. Хотя приблизительный расчет теплоаккумулятора для отопления все же есть. Допустим, вы не знаете, какие теплопотери вашего дома и узнать не можете, например, если он еще не построен. Кстати, чтобы сократить теплопотери, нужно утеплить стены частного дома под сайдинг. Подобрать бак можно исходя из двух величин:

  • площадь отапливаемого помещения;
  • мощность котла.

Методы расчета объёма ТА: площадь помещения х 4 или мощность котла х 25.

Именно эти две характеристики являются определяющими. Разные источники предлагают свой способ расчета, но по факту эти два метода тесно взаимосвязаны. Предположим мы решили рассчитать объем теплоаккумулятора для отопления, отталкиваясь от площади помещения. Для этого нужно квадратуру отапливаемого помещения умножить на четыре. К примеру, если у нас есть маленький дом в 100 м кв, то понадобится бак 400 литров. Такой объём позволит сократить загрузку котла до двух раз в сутки.

Несомненно, и так есть пиролизные котлы, в которые закладывается топливо дважды в сутки, только в этом случае принцип работы немного отличается:

  • топливо разгорается;
  • уменьшается подача воздуха;
  • начинается процесс тления.

В этом случае, когда топливо разгорается, температура в контуре начинает интенсивно повышаться, а потом тление поддерживает воду тёплой. Во время этого самого тления много энергии улетучивается в трубу. Помимо этого если твердотопливный котел работает в тандеме с негерметичной системой отопления, то при пиковой температуре расширительный бак иногда закипает. В нем в прямом смысле слова начинает кипеть вода. Если трубы сделаны из полимеров, тогда это просто губительно для них.

В одной из статей про полимерные трубы мы рассказывали об их характеристиках. ТА забирает часть тепла и бак может закипеть только после того, как резервуар зарядится полностью. То есть возможность закипания, при правильном объёме ТА, стремится к нолю.

Теперь попробуем рассчитать объём ТА, исходя из количества киловатт в нагревателе. Кстати, этот показатель рассчитывается на основании квадратуры помещения. На 10 м берется 1 кВт. Выходит, что в доме 100 м кв должен стоять котел минимум в 10 киловатт. Так как расчет всегда делается с запасом, то можно предположить, что в нашем случае будет стоять 15 киловаттный агрегат.

Если не учитывать количество теплоносителя в радиаторах и трубах, то один киловатт котла может нагревать приблизительно 25 литров воды в ТА. Поэтому и расчет будет соответствующим: нужно мощность котла умножить на 25. В итоге мы получим 375 литров. Если сравним с предыдущим расчетом, то результаты очень близки. Только это с тем учетом, что мощность котла будет рассчитываться с зазором хотя бы в 50%.

Помните, чем больше ТА, тем лучше. Но в этом деле, как и в любом другом, нужно обходиться без фанатизма. Если вы поставите ТА на две тысячи литров, то нагреватель просто не справиться с таким объёмом. Будьте объективны.

Теплоаккумулятор в наличии для котлов отопления российского производства

Описание

Теплоаккумулятор (второе название — буферная емкость) представляет собой теплоизолированный герметичный резервуар, работающий под давлением системы отопления.

Водяной теплоаккумулятор для отопления применяется в системах с твердотопливными и электрическими котлами для повышения удобства использования, эффективности и безопасности работы системы. Наиболее часто теплоаккумуляторы используются в частных загородных домах и на предприятиях, которые стремятся повысить свою энергоэффективность.

Достоинства при использовании в частных домах

Котел достаточно топить один раз в сутки Аккумулятор тепла значительно увеличивает объем системы отопления, что позволяет топить котел один раз в сутки, в сильные морозы – два раза в сутки.

В доме всегда тепло, даже утром Накопленное тепло равномерно в течение суток поступает из теплового аккумулятора в систему отопления. Используя теплоаккумулятор для отопления из нержавейки или конструкционной стали можно избежать таких сомнительных ухищрений, как прикрывание заслонки котла для увеличения времени горения, что категорически вредно для котла и снижает его срок службы из-за закоксовывания теплообменника, дымохода и образования разъедающего котел конденсата.

Котел максимально эффективен и экономичен Благодаря теплоаккумулятору, твердотопливный котел всегда работает в полную мощность, топливо полностью прогорает. Это повышает КПД котла до 80% и снижает количество потребляемого топлива на 40%, также предотвращает образование конденсата и закоксовывание теплообменника котла и дымохода, что положительно сказывается на их долговечности.

Безопасность и защита системы от перегревания На территории ЕС законодательно запрещена установка твердотопливных котлов без теплоаккумуляторов по соображениям экологичности и безопасности. Это связано с тем, что, если в системе отопления не установлен теплоаккумулятор, в случае отключения электричества и остановки циркуляционного насоса, высока вероятность перегревания и закипания котла. В худшем случае возможен даже взрыв котла – со всеми сопутствующими последствиями. Если же в системе установлен теплоаккумулятор, то при отключении электричества и прекращении циркуляции теплоносителя теплоаккумулятор аккумулирует избыток тепловой энергии и предотвращает возникновение негативных последствий перегревания системы.

Преимущества использования на предприятиях

Использование теплоаккумулятора на предприятии, позволяет задействовать невостребованные источники тепловой энергии для нужд отопления помещений. Среди таких источников: техническая горячая вода от технологических процессов, тепловая энергия, вырабатываемая в процессе работы систем кондиционирования и охлаждения и т.д.

Применение теплоаккумулятора в системах с электрическим котлом позволяет использовать двухтарифную систему расчета стоимости электроэнергии.

В этом случае электрический котел работает по льготному тарифу в ночное время, а теплоаккумулятор для отопления накапливает тепловую энергию, возвращая ее в систему уже в рабочее время, когда электроэнергия значительно дороже.

Если вы хотите купить теплоаккумулятор для котлов отопления российского производства Electrotherm, обратитесь к нашим консультантам или напишите на адрес [email protected] ru.

Схема отопления с теплоаккумулятором — Система отопления

На этой странице мы попытаемся выбрать для своего дома нужные компоненты монтажа. Схема обогревания насчитывает, радиаторы терморегуляторы, крепежную систему, расширительный бачок, провода или трубы, автоматические развоздушиватели, фиттинги, механизм управления тепла, циркуляционные насосы котел отопления. Система отопления квартиры имеет определенные части. Любой элемент роль. Поэтому соответствие всех частей конструкции нужно планировать обдуманно.

Схема отопления с теплоаккумулятором

Схема подключения теплоаккумулятора зависит от теплового и гидравлического режима источника и потребителя тепла, а так же от количества источников и потребителей.

Схема с прямым подключением теплоаккумулятора к контуру источника и потребителя, применяется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.
  • Температура теплоносителя в теплоаккумуляторе на всех режимах, соответствует необходимой температуре для потребителя.

Данная схема используется в небольших системах отопления частных домов с количественным регулированием на отопительных приборах. При этом на выходе источника тепла, а соответственно и в теплоаккумуляторе, поддерживается постоянная температура.

Если тепловой режим потребителя предполагает качественное регулирование с различной температурой поступающего теплоносителя в зависимости от времени суток или температуры наружного воздуха, данную схему дополняют узлом смешения.

Схема подключения потребителя к теплоаккумулятору с узлом смешения. используется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Температура теплоносителя на выходе из источника тепла на каком либо из режимов превышает, температуру необходимую для потребителя.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.

Данная схема получила применение системах отопления с качественным регулированием при котором температура теплоносителя поступающего в систему отопления зависит от температуры наружного воздуха, времени суток, дня недели или от температуры в воздуха в контрольном помещении.

Трёхходовой клапан, установленный в контуре системы отопления, к горячему теплоносителю отбираемому из верхней части теплоаккумулятора подмешивает теплоноситель из обратного трубопровода, в пропорции необходимой для получения заданной температуры смеси подаваемой в систему отопления.

Возможность поддерживать максимально высокую температуру воды в теплоаккумуляторе является одним из преимуществ данной схемы, так как позволяет увеличить его аккумулирующую способность.

Если рабочее давление у потребителя тепла превышает рабочее давление для теплоаккумулятора или источника, применяют независимое подключение потребителя (через теплообменный аппарат).

Если рабочее давление в контуре источника тепла превышает допустимое давление для теплоаккумулятора или системы отопления, применяют схему с теплообменным аппаратом в контуре источника.

Схема подключения теплоаккумулятора со встроенным теплообменником. применяется если:

  • Рабочее давление в контуре источника тепла превышает допустимое давление для системы отопления.
  • Различные требования к качеству теплоносителя в контуре источника и потребителя тепла.

Если площадь поверхности теплообменных аппаратов встроенных в теплоаккумуляторы недостаточна для нагрева необходимого объёма воды за заданное время, применяют схемы с внешним теплообменником и загрузочным насосом.

Схема подключения теплоаккумулятора с внешним теплообменником и загрузочным насосом, применяется если.

  • Серийно встраиваемые теплообменные аппараты не обеспечивают нагрева бака за заданное время.
  • Давление теплоносителя в контуре источника тепла превышает допустимое давление для потребителя или теплоаккумулятора.
  • Различные требования к качеству теплоносителя в контуре потребителя и источника тепла.

Теплоаккумуляторы со встроенным баком. применяются для подключения систем горячего водоснабжения с непродолжительным, но высоким пиковым расходом воды.

Такие теплоаккумуляторы отличаются тем, что могут кратковременно, обеспечить высокую пиковую потребность в горячей воде, но после заполнения встроенного бака холодной водой её повторный нагрев займёт длительное время.

В системах с потребностью в высокой длительной мощности нагрева устанавливают теплоаккумуляторы со встроенным или внешним теплообменным аппаратом системы горячего водоснабжения.

Схема подключения теплоаккумулятора со встроенным теплообменником системы горячего водоснабжения. применяется при необходимости в высокой длительной мощности подогрева горячей воды.

Тепловые аккумуляторы со встроенным теплообменником системы ГВС обеспечивают высокую длительную мощность, но не могут покрыть пиковых нагрузок за её пределами.

Если заданная длительная мощность подогрева воды не обеспечивается серийно устанавливаемыми теплообменными аппаратами, применяют теплоаккумулятор с внешним теплообменником и загрузочным насосом.

Бивалентная схема подключения теплоаккумулятора с солнечным коллектором. Солнечный коллектор подключают к теплоаккумулятору через встроенный теплообменный аппарат в нижней части бака. При этом предполагается работа в режиме максимально возможного нагрева бака солнечной энергией а, при необходимости догрева за счёт второго источника.

В данной схеме дополнительным источником может быть газовый, твердотопливный или электрический котёл.

Подключение потребителя через теплоаккумулятор от нескольких источников тепла. К применению в современных системах нескольких источников тепла принуждает, различная стоимость единицы тепловой энергии полученная от каждого из них.

Тепло полученное от солнца имеет минимальную стоимость, но оно есть не всегда и пики его поступления, как правило, не совпадают с пиками потребления.

Тепло полученное от теплового насоса обходится несколько дороже солнечного и его можно получить всегда, но чтобы покрыть за счёт него всю тепловую мощность потребителя необходимы существенные капитальные затраты, поэтому мощность теплового насоса, обычно ниже потребной мощности системы.

Тепло полученное от газового, электрического или твердотопливного котла — самое дорогое, поэтому его используют только для догрева при недостаточной мощности первых двух источников.

Тепловой аккумулятор позволяет накопить тепловую энергию от нескольких источников и использовать её одним или несколькими потребителями. Низкотемпературные источники такие как, тепловой насос и солнечный коллектор присоединяют к нижней части бака, а высокотемпературные, такие как твердотопливный газовый или электрический котёл к верхней.

* Пояснения условных графических обозначений на схемах

Источник: http://www.ktto.com.ua/skhema/bat

Схема отопления с теплоаккумулятором

Преимущества работы твердотопливного котла в системе отопления частного дома с буферной емкостью, в качестве аккумулятора тепла, описаны в предыдущей статье “Котел отопительный твердотопливный с аккумулятором тепла” .

В бак теплоаккумулятора часто встраивают электронагреватель, который является резервным источником тепла. Электроэнергию удобно использовать в межсезонье; для подогрева воды ночью, когда стоимость электроэнергии и нагрузка на сеть минимальны; при длительных перерывах между топками котла.

Система отопления, представленная на рисунке, является закрытой. Из-за отсутствия соединения с атмосферой, теплоноситель в системе находится под давлением, выше атмосферного. Тепловое расширение воды при нагревании компенсируется мембранным баком, поз.7.

Твердотопливный котел для работы в закрытой системе должен быть специального исполнения — рассчитан на работу при повышенном давлении.

Часто первичный контур системы отопления – котел и бак теплоаккумулятора, делают открытым (соединенным с атмосферой) . Работа котла и бака под атмосферным давлением снижает требования к их изготовлению и удешевляет это дорогостоящее оборудование.

Однако, в малоэтажных домах, давление воды в самотечной (гравитационной) системе, как правило, не достаточно для нормального функционирования теплых полов и радиаторов.

Поэтому вторичный контур системы отопления — трехходовой смесительный клапан (поз.13), циркуляционный насос (поз.12), радиатор отопления (поз.13), делают закрытым , присоединяя его к теплообменнику, расположенному внутри бака аккумулятора тепла.

Рассмотрим еще одну схему отопления частного дома твердотопливным котлом . которую предлагает один из российских производителей буферных емкостей — аккумуляторов тепла. С подробным описанием конструкции буферного бака можно познакомиться здесь.

Источник: http://domekonom.su/2013/02/chema-tverdotoplivnyi-kotel-teploakkumuljator.html

Схема отопления с теплоаккумулятором

Тепловые аккумуляторы из черной стали серии ВТА используются в сочетании с различными источниками теплоснабжения (котлы — твердотопливные, газовые, электрические; солнечные коллекторы; тепловые насосы) для аккумулирования тепла и его использования на нужды отопления и ГВС. Конструкция теплоаккумуляторов серии ВТА предусматривает наличие теплообменника из нержавеющей и черной стали, а также фланца и возможность установки ТЭНов .

Теплообменник из нержавеющей стали, который используется в моделях ВТА −1, ВТА −2, конструктивно расположен в верхней части бака и предназначен для приготовление воды для ГВС.

Теплообменник из черной стали используется в моделях ВТА −1, ВТА −3, конструктивно расположен в нижней части бака. Данный теплообменник используется с солнечными коллекторами или низкотемпературными системами нагрева.

Уникальностью ВТА −1 — СОЛАР ПЛЮС является увеличенный теплообменник из нержавеющей стали, часть которого расположена непосредственно в теплообменнике из черной стали. За счет такого расположения повышается производительность теплообменника для ГВС.

Отсутствие теплообменников в модели ВТА −4 и ВТА −4 — ЭКОНОМ делает их идеальными для использования с твердотопливными котлами. Теплоноситель, который нагревается котлом, будет аккумулироваться в теплоаккумуляторе и в дальнейшем использоваться для отопления. Отличительной чертой ВТА −4 — ЭКОНОМ является упрощенная конструкция за счет минимизации количества присоединительных патрубков и отсутствии фланца, что уменьшает стоимость изделия.

Источник: http://www.teplobak.com.ua/ru/about/chernaya_stal

Так же интересуются
29 сентября 2021 года

Система отопления с теплоаккумулятором | Всё об отоплении

Зачем нужен тепловой аккумулятор для отопления?

Твёрдое топливо – зачастую единственный вариант обеспечения тепла в доме для многих регионов в случае отсутствия доступа к природному газу. Использование жидкого топлива (дизельного или мазута) проблематично ввиду сложности устраиваемой системы отопления, в которую должны быть включены пожаробезопасные ёмкости и принудительно подающие к котлу топливо магистрали. У электроотопления тоже есть свои минусы. Поскольку электричество довольно дорогой вид энергии, в системе электроснабжения возможны перебои по различным причинам и вдобавок оно поставляется потребителю с ограничением по мощности, то твердотопливный котёл остаётся оптимальной альтернативой простой печи.

Системы отопления на твёрдом топливе

У этого способа отопления тоже есть один существенный недостаток – строгая периодичность загрузки топлива по мере сгорания. В момент максимального разгорания топлива в котле образуется переизбыток тепла, который переводит к перегреву помещения. При потере же теплоотдачи прогоревшего угля или дров теплоноситель остывает и в системе отопления образуются температурные скачки, что не прибавляет комфортности жилищу, а иногда и приводит к авариям в случае разморозки трубопроводов системы.

Нивелировать данную проблему помогает установленный тепловой аккумулятор в системе отопления. Принцип его работы основан на использовании высокой теплоёмкости воды, служащей в отопительной системе теплоносителем, один литр которой при остывании на 1 С разогревает кубометр воздуха на 4 С. Внешне теплоаккумулятор для системы отопления выглядит как эффективно утеплённый снаружи вместительный резервуар, подключённый к источнику тепла и контурам системы отопления.

Схема отопления с теплоаккумулятором

Чтобы понять принцип работы теплоаккумулятора, необходимо понять схему отопления с ним. Элементарная система отопления с теплоаккумулятором представляет собой вертикально расположенный утеплённый бак, в который врезаны 4 патрубка, размещённых вертикально по два с противоположных сторон.

С каждой стороны один патрубок помещён в верхней части ёмкости (подающая магистраль), один – в нижней (обратная магистраль контура).

С одной стороны пара патрубков подключается к прямой и обратной магистралям твердотопливного котла, с другой – к соответствующим трубопроводам контура отопления. В обратные магистрали обоих контуров монтируются циркуляционные насосы для стабильного обращения теплоносителя в сети.

Принцип работы

После достижения стабильного горения топлива в котле циркуляционный насос начинает подавать в зону нагрева холодную воду из низа теплообменника, параллельно подавая в теплоаккумулятор для отопления дома разогретый теплоноситель через верхний патрубок. Активного перемешивания горячей и холодной воды в теплоаккумуляторе не происходит в виду значительной разницы в плотности жидкости при разных температурах. Таким образом бак после прогорания заложенного топлива будет заполнен разогретой до нужной температуры водой.

При качественном утеплении теплоаккумулятор в системе отопления может сохранять температуру теплоносителя на должном уровне в течение нескольких часов, а при высокой эффективности конструкции – нескольких дней.

После прогорания топлива в котле включается циркуляционный насос контура отопительной системы, обеспечивающий прокачку теплонесущей жидкости по трубопроводам и отопительным приборам сети. За счёт забора теплоносителя сверху и подачи остывшей жидкости снизу перемешивания слоёв разных температур не происходит и теплоаккумулятор равномерно отдаёт тепловую энергию в систему. А какой котел выбрать для частного дома можно узнать здесь .

Типы конструкций теплоаккумуляторов

Выше уже был рассмотрен внешний вид теплоаккумуляторов, он един для всех моделей, а вот внутренняя конструкция может различаться. Рассмотрим основные типы существующих приборов.

По эффективности работы и функциональному предназначению тепловые аккумуляторы делятся на следующие виды:

  • С прямым подключением контуров (пустые). В этой самой элементарной конструкции отсутствуют любого вида теплообменники, и разделение горячей и холодной теплоносящей жидкости обеспечивается разностью её плотности. Техническая простота такого прибора позволяет изготовить самодельный теплоаккумулятор отопления, главное впоследствии не поскупиться на качественную теплоизоляцию.
  • С внутренним теплообменником. По этой схеме возможно использование разных теплоносителей в контурах котла и отопительной системы, так как разделение жидкостей обеспечено стенками теплообменника.
  • Со встроенным бойлером. В теплоаккумуляторах такого типа внутри основного бака помимо теплообменников размещают дополнительную ёмкость для нагрева воды в целях горячего водоснабжения дома.

Выбор теплоаккумулятора для системы отопления дома – ответственное мероприятие, к которому нужно отнестись с максимальной серьёзностью. От качества, функциональных возможностей и технических характеристик прибора зависит комфорт жилища и здоровье проживающих в нём людей.

Рекомендуем к прочтению

Расширительный мембранный бак системы отопления: устройство и функции Коллектор отопления: устройство оборудования и особенности монтажа Как сделать коллектор отопления своими руками? Терморегулятор отопления — принцип работы разных видов

© 2016–2017 — Ведущий портал по отоплению.
Все права защищены и охраняются законом

Копирование материалов сайта запрещено.
Любое нарушение авторских прав влечет за собой юридическую ответственность. Контакты

Правильная схема отопления с теплоаккумулятором

Многие хозяева часто сталкиваются с вопросом касательно того, что такое тепловой аккумулятор, используемый в отопительной системе, и как он функционирует. Об устройстве этих механизмов, а также о том, как должно проходить подключение теплоаккумулятора к котлу, далее и пойдет речь.

Функциональные особенности теплоаккумулятора

Аккумуляторный отопительный бак внешне представляет собой высокую емкость цилиндрической или квадратной формы, оснащенную несколькими патрубками, расположенными на разном уровне. Объем такого резервуара может составлять от 20 до 3000 литров, однако наиболее распространенными образцами являются модели от 0,3 до 2 м³.

Функциональность такого оборудования является действительно высокой и отличается следующими признаками:

  • конструкция может быть оснащена большим числом патрубков (от четырех до нескольких десятков). Влияет на это, в первую очередь, то, какой конфигурацией обладает система отопления с теплоаккумулятором, а также то, сколько контуров в ней имеется;
  • это оборудование можно оснастить теплоизоляцией, которой может выступать такие традиционные материалы, как минеральная вата или вспененный полиуретан. При этом правильнее будет изолировать бак даже в том случае, если он располагается в отапливаемом помещении, поскольку это позволит избежать непредвиденных потерь тепла;
  • материалом для изготовления стенок теплового аккумулятора своими руками могут послужить такие элементы, как черная или нержавеющая сталь. Второй материал обеспечит оборудованию более долгий срок службы, однако приобрести его будет дороже;
  • существует возможность разделения конструкции бака на сообщающиеся сегменты, отделенные друг от друга расположенными горизонтально перегородками. Данная мера позволяет теплоносителю иметь примерно одинаковую температуру в той или иной части механизма;
  • бак может быть оснащен особыми фланцами, предназначенными для установки ТЭНов (трубчатых электронагревателей). Их использование может допускать возможность того, что весь аппарат будет функционировать по принципу электрического котла;
  • в том случае, если оборудуется теплоаккумулятор с теплообменником, емкость аккумулятора может выполнять функцию приготовления горячей воды, пригодной дл питья. При этом теплообменник в этом случае может быть как обычным проточным пластинчатым, так и накопительным баком внутри резервуара. Так или иначе, расчет теплоаккумулятора для отопления не предусматривает большие затраты на нагрев воды для этих целей;
  • снизу агрегата может находиться еще один теплообменник, предназначенный для установки коллектора солнечного тепла. Монтируется он внизу системы потому, что эффективную теплоотдачу можно обеспечить даже при условии, если производительность коллектора будет невысокой, к примеру, в вечернее время. Читайте также: «Солнечная батарея для нагрева воды своими руками «.


Использование теплоаккумуляторов для твердотопливных котлов

Для котлов такого типа схема отопления с теплоаккумулятором предусматривает такой режим работы, при котором топливо сможет по возможности сгорать без какого-либо остатка, а мощность оборудования, равно как и его КПД, будут максимальными. Для того чтобы отрегулировать мощность оборудования, можно ограничить подачу воздуха к камере сгорания.

Схема подключения теплоаккумулятора к твердотопливному котлу предусматривает такую систему, при которой:

  • тепло, производимое работающим при максимальной мощности котлом, направляется непосредственно к резервуару с водой для ее нагрева;
  • по окончании полного сгорания топлива теплоноситель не прекращает циркулировать по системе от бака накопления до радиаторов, постепенно забирая у него тепловую энергию. Читайте также: «Схема подключения твердотопливного котла к системе отопления «.

Как результат, растапливать котел придется гораздо реже, что позволит сэкономить значительную часть времени и физических сил.

Тепловой аккумулятор для электрокотла

Самодельный теплоаккумулятор отопления, используемый вместе с котлом, работающим от электричества, также может обеспечить некоторую выгоду, несмотря на то, что большинство современных электрокотлов не требует тщательного ухода и прекрасно функционируют без чьего-либо вмешательства. Читайте также: «Самодельный пиролизный коте л».

Особую пользу такая система будет нести при условии ночного тарифа. Так, в темное время суток стоимость на электроэнергию может быть значительно меньшей по сравнению с дневной ценой на киловатт-часы.
Поэтому функционирование аккумулятора отопления проходит по следующей схеме:

  1. В ночное время автоматизированный котел самостоятельно включается в нужное время, при этом нагревая аккумулятор отопления до температуры, равной 90°.
  2. Днем все полученное тепло расходуется на обогрев жилища. При этом регулировать расход воды можно, настроив желаемым образом производительность насоса циркуляции.


Системы многоконтурного отопления с теплоаккумуляторами

Еще одно неоспоримое достоинство бака накопления – это потенциальная возможность эксплуатировать его как гидрострелку.

Подобная функция является очень нужной, так как ввиду того, что корпус бака оснащен как минимум четырьмя патрубками, появляется возможность отбирать теплоноситель с нужной температурой на том или ином уровне накопительного бака. Это даст возможность оборудовать качественный контур с высокой температурой, оборудованный радиаторами, а также отопление с низкими температурами, как, например, в теплом полу.

Однако не стоит забывать и о насосах, имеющих схемы контроля нагрева, поскольку температура на разных уровнях накопительного резервуара в разное время суток, как известно, отличается.
При этом функция патрубков не сводится исключительно к отводам для отопительных контуров. Сразу несколько систем котлов, оборудованных по разному типу, можно подключить к одному аккумулятору отопления.

Правила установки и расчет

Принцип подключения теплоаккумулятора является таким же, как и у гидрострелки, а основное отличие заключается только в теплоизоляции и объеме. Эти механизмы нужно монтировать между двумя трубопроводами, идущими от котла – обратным и подающим. Подающий элемент подключается к верхней части резервуара, в то время как обратный – к нижней.

Для того чтобы рассчитать тепловую емкость устройства, можно воспользоваться следующей формулой: Q = mc (T2-T1). В данном случае Q – это количество накопленного тепла, m – масса, которой обладает вода в емкости, c – показатель удельной теплоемкости, измеряемый в Дж/(кг*К) и равный 4200, а Т2 и Т1 – исходный и конечный параметр температуры воды.
Пример использования теплоаккумулятора в схеме отопления:

Данная формула позволит правильно рассчитать то, какую тепловую емкость должен иметь теплоаккумулятор для котлов отопления. При возникновении вопросов относительно создания и монтажа теплоаккумуляторов, а также во избежание неполадок во время дальнейшей эксплуатации всегда можно обратиться за помощью к квалифицированным специалистам, в наличии у которых всегда имеются фото вариантов оборудования, а также подробные видео по их правильной установке.

Оставляйте отзывы:

Теплоаккумулятор для котлов отопления: назначение и принцип работы

Как работает система отопления

В современном понимании энергоэффективности установок отопления, в том числе и отдельного дома или коттеджа, в последнее время акцент существенно сместился с показателя потребления топлива на обогрев помещения на показатель, характеризующий эффективность использования энергии для полного теплоснабжения дома.

Такой обоснованный акцент на энергоэффективность позволяет по-новому посмотреть на проблему теплоснабжения жилища, включающую в себя две основные задачи:

  • отопление дома;
  • горячее водоснабжение.

Новым путем экономии энергоресурсов в системе теплоснабжения здания сегодня выступает установка в системе отопления дополнительного оборудования, в функции которого входит аккумулировать тепловую энергию и постепенно ее расходовать.

Применение теплового аккумулятора в схеме приборов системы отопления, где основным источником энергии выступает твердотопливный котел. позволяет без дополнительных затрат провести снижение потребления топлива до 50% в отопительный сезон. Но это в будущем, а пока достаточно наглядно следует рассмотреть принцип работы этого устройства.

Принцип работы системы с твердотопливным котлом

Наиболее высокий эффект от подключения в систему будет применительно именно к твердотопливным котлам.

Тепло, выделяемое при сжигании топлива, через теплообменник по трубопроводу поступает в регистры или батареи отопления, являющиеся по сути теми же теплообменниками, только не получающими тепло, а наоборот, отдающие его окружающим предметам, воздуху, в общем, нагревающему помещению.

Остывая, теплоноситель — вода в батареях, опускается вниз и снова перетекает в контур теплообменника котла, где опять нагревается. В такой схеме существует минимум два момента, связанных с большой, если не с огромной потерей тепла:

  • прямое направление движения теплоносителя от котла к регистрам и быстрое остывание теплоносителя;
  • небольшой объем теплоносителя внутри системы отопления, что не позволяет поддерживать стабильную температуру;
  • необходимость постоянного поддержания стабильно высокой температуры теплоносителя в контуре котла.

Важно понимать, что такой подход иначе как расточительным назвать нельзя. Ведь при закладке топлива сначала при высокой температуре горения в помещениях воздух прогреется довольно быстро. Но, как только процесс горения прекратится, завершится и нагрев помещения, и как результат – снова понизится температура теплоносителя, и остынет воздух в помещении.

Использование теплоаккумулятора

В отличие от стандартной системы отопления, система, снабженная аккумулятором тепла, работает несколько иначе. В самом примитивном виде, сразу после котла бак устанавливается в качестве буферного устройства.

Между котлом и трубопроводами устанавливается бак со многослойной теплоизоляцией. Ёмкость бака, а она рассчитывается таким образом, чтобы количество теплоносителя внутри бака было больше, чем в системе отопления, содержит теплоноситель, нагреваемый от котла.

Внутрь бака введены несколько теплообменников для системы отопления и для системы горячего водоснабжения. Нагретый от котла внутренний объем аккумулятора долгое время может поддерживать высокую температуру и постепенно отдавать ее для систем отопления и водоснабжения.

Учитывая то, что самый маленький бак имеет объём 350 литров воды, то нетрудно рассчитать, что потратив одно и то же количество топлива при использовании теплового аккумулятора эффект будет намного больше, чем при прямой системе отопления.

Но это самый примитивный вид теплового прибора. Стандартный, рассчитанный на действительно работу в условиях теплоснабжения отдельного дома, аккумулятор теплоты может иметь:

  • внутренний объем от 350 до 3500 литров;
  • верхний теплообменник системы горячего теплоснабжения;
  • теплообменник системы отопления;
  • приборы системы безопасности – клапанную группу, манометр, патрубки выхода воздуха;
  • приборы системы контроля температуры, давления, предохранительные и обратные клапаны;
  • технологические выходы стандартной для обвязки арматуры диаметров;
  • высота бака с термооболочкой включает от 1,8 метра до 5,6 метра;
  • диаметр от 0,7 до 1,8 метра.

Цена таких аккумуляторов зависит от многих факторов:

  • материала изготовления бака;
  • объема внутреннего бака;
  • материала, из которого изготовлен теплообменник;
  • фирмы изготовителя;
  • комплекта дополнительного оборудования;

Замечание специалиста: рассчитать правильную работу всей системы отопления, начиная от ТТ котла и заканчивая диаметром парубков, в принципе можно и самостоятельно, но при этом следует учитывать, что мощность как котла, так и самой установки должна быть рассчитана на работу в условиях максимально низких температур в регионе.

Более детальную информацию по этому вопросу сегодня можно найти на страницах интернет сайтов, как в текстовом виде, так и воспользовавшись услугами специализированных онлайн калькуляторов, ну и конечно в специализированных фирмах, занимающихся разработкой и установкой систем теплоснабжения.

Все управляется электроникой

Возможно, для многих такое понятие, как «умный дом» уже давно вошло в привычный ритм жизни.

Дом, в котором многие функции по содержанию и управлению системами берет на себя электроника, не обходится без участия электронных компонентов и работы системы отопления и водоснабжения с аккумулятором тепла.

Для поддержания стабильно комфортной температуры, необходимо не столько постоянное горение топлива в топке котла, сколько стабильное поддержание температуры в системе отопления. И с такой задачей вполне справляется электронное управление работой теплоаккумулятора.

Возможности платы управления:

  • включит циркуляционный насос подачи теплоносителя системы отопления;
  • для дополнительного нагрева теплоносителя в баке откроет заслонки или включит вентилятор турбонаддува котла;
  • в экстренных случаях перекроет клапаны трубопроводов и прустит теплоноситель от котла напрямую в батареи, а уже потом начнет нагревать бак аккумулятора;
  • перенаправит поток горячей воды с теплообменника котла в систему горячего водоснабжения или воспользуется нагревом в контуре бака.

Кроме этого, электронная составляющая может отлично использоваться в качестве контроллера работы, как твердотопливного котла, так и электронагревательных приборов, и даже в качестве использования системы солнечного коллектора для получения максимальной выгоды и экономии ресурсов.

Экономический эффект даже от включения в схему теплоснабжения аккумулятора тепла позволяет, как уже говорилось, до 50% снизить затраты на топливо в отопительный сезон, а если учитывать то, что цена на энергоносители постоянно растет, то такое вложение средств становится не просто выгодным, а уже обязательным для новостроек.

Смотрите видео, в котором пользователь очень подробно разъясняет схему устройства твердотопливного котла вкупе с теплоаккумулятором:

Источники: http://spetsotoplenie.ru/sistemy-otopleniya/elementy-sistem-otopleniya/zachem-nuzhen-teplovoj-akkumulyator-dlya-otopleniya.html, http://teplospec. com/montazh-remont/pravilnaya-skhema-otopleniya-s-teploakkumulyatorom.html, http://teplo.guru/kotly/teploakkumulyator.html

Теплоаккумулятор своими руками – как сделать буферную емкость

Зачастую домовладельцы не в состоянии купить современное отопительное оборудование, поэтому ищут альтернативные решения. Взять хотя бы буферную емкость (иначе – тепловой аккумулятор), незаменимую вещь для систем отопления с твердотопливным котлом. Накопительный бак объемом 500 л стоит примерно 600—700 у. е., цена тысячелитровой бочки достигает 1000 у. е. Если же сделать теплоаккумулятор своими руками, а потом установить резервуар в котельной самостоятельно, удастся сэкономить половину указанной суммы. Наша задача – рассказать о способах изготовления.

Где применяется аккумулятор тепла и как он устроен

Накопитель тепловой энергии — это не что иное, как утепленный железный бак с патрубками для подключения магистралей водяного отопления. Буферная емкость выполняет 2 функции: накапливает избытки теплоты и обогревает дом в периоды, когда котел бездействует. Теплоаккумулятор замещает отопительный агрегат в 2 случаях:

  1. При обогреве жилища печью с водяным контуром либо котлом, сжигающим твердое топливо. Накопительная емкость работает для отопления ночью, после прогорания дров или угля. Благодаря этому домовладелец спокойно отдыхает, а не бегает в котельную. Это комфортно.
  2. Когда источником тепла служит электрокотел, а учет потребления электричества ведется многотарифным счетчиком. Энергия по ночному тарифу обходится вдвое дешевле, поэтому днем работу системы отопления полностью обеспечивает тепловой аккумулятор. Это экономично.
Слева на фото – буферный резервуар 400 литров фирмы Drazice, справа – электрокотел Kospel в комплекте с накопителем горячей воды

Важный момент. Бак — аккумулятор горячей воды повышает эффективность твердотопливного котла. Ведь максимальный КПД теплогенератора достигается при интенсивном горении, которое невозможно постоянно поддерживать без буферной емкости, поглощающей излишки теплоты. Чем эффективнее сжигаются дрова, тем меньше их расход. Это касается и газового котла, чей КПД снижается в режимах слабого горения.

Аккумуляторный бак, заполненный теплоносителем, действует по простому принципу. Пока обогревом помещений занимается теплогенератор, вода в емкости нагревается до максимальной температуры 80—90 °С (теплоаккумулятор заряжается). После отключения котла к радиаторам начинает подаваться горячий теплоноситель из накопительного бака, обеспечивающего отопление дома в течение определенного времени (тепловая батарея разряжается). Длительность работы зависит от объема резервуара и температуры воздуха на улице.

Как устроен аккумулятор тепла заводского изготовления

Простейшая аккумулирующая емкость для воды заводского изготовления, показанная на схеме, состоит из таких элементов:

  • основной резервуар цилиндрической формы, сделанный из углеродистой либо нержавеющей стали;
  • теплоизоляционный слой толщиной 50—100 мм в зависимости от применяемого утеплителя;
  • внешняя обшивка – тонкий окрашенный металл или полимерный чехол;
  • присоединительные штуцера, врезанные в основную емкость;
  • погружные гильзы для установки термометра и манометра.

Примечание. Более дорогие модели аккумуляторов тепла для систем отопления дополнительно снабжаются змеевиками для ГВС и подогрева от солнечных коллекторов. Другая полезная опция – встроенный в верхнюю зону бака блок электрических ТЭНов.

Изготовление накопителей тепла в заводских условиях

Если вы всерьез озаботились установкой теплоаккумулятора и решили его сделать своими силами, то для начала стоит ознакомиться с заводской технологией сборки.

Резка на плазменном аппарате заготовок для крышки и дна

Повторить технологический процесс в условиях домашней мастерской нереально, но некоторые приемы вам пригодятся. На предприятии бак–аккумулятор горячей воды делается в виде цилиндра с полусферическим дном и крышкой в таком порядке:

  1. Листовой металл толщиной 3 мм подается на аппарат плазменной резки, где из него получают заготовки торцевых крышек, корпуса, люка и подставки.
  2. На токарном станке изготавливаются основные штуцера диаметром 40 или 50 мм (резьба 1. 5 и 2”) и погружные гильзы для приборов контроля. Там же вытачивается большой фланец для ревизионного люка размером около 20 см. К последнему приваривается патрубок для врезки в корпус.
  3. Заготовка корпуса (так называемая обечайка) в виде листа с отверстиями под штуцеры направляется на вальцы, изгибающие ее под определенным радиусом. Чтобы получить цилиндрическую емкость для воды, остается лишь сварить торцы заготовки встык.
  4. Из металлических плоских кругов гидравлический пресс штампует полусферические крышки.
  5. Следующая операция – сварочные работы. Порядок такой: сначала на прихватках варится корпус, потом к нему прихватываются крышки, затем идет сплошная проварка всех швов. В конце присоединяются штуцеры и ревизионный люк.
  6. Готовый накопительный бак сваривается с подставкой, после чего проходит 2 проверки на проницаемость – воздушную и гидравлическую. Последняя производится давлением 8 Бар, испытание длится 24 часа.
  7. Испытанный резервуар окрашивается и утепляется базальтовым волокном толщиной не менее 50 мм. Сверху емкость обшивается тонколистовой сталью с полимерным цветным покрытием либо закрывается плотным чехлом.
Корпус накопителя выгибается из листа железа на вальцах

Справка. Для утепления бака производители используют разные материалы. К примеру, теплоаккумуляторы «Прометей» российского производства изолированы пенополиуретаном.

Вместо облицовки производители зачастую применяют специальный чехол (можно выбрать цвет)

Большинство заводских аккумуляторов тепла рассчитаны на максимальное давление 6 Бар при температуре теплоносителя в системе отопления 90 °С. Это значение вдвое превышает порог срабатывания предохранительного клапана, устанавливаемого на группу безопасности твердотопливных и газовых котлов (предел — 3 Бар). Детально производственный процесс показан на видео:

Изготавливаем тепловую батарею самостоятельно

Вы решили, что без буферной емкости обойтись не сможете и хотите ее сделать своими руками. Тогда готовьтесь пройти 5 этапов:

  1. Расчет объема теплоаккумулятора.
  2. Выбор подходящей конструкции.
  3. Подбор и заготовка материалов.
  4. Сборка и проверка герметичности.
  5. Монтаж резервуара и подключение к системе водяного отопления.

Совет. Перед тем как посчитать объем бочки, подумайте, сколько места в котельной вы сможете под нее выделить (по площади и высоте). Четко определитесь, как долго водяной теплоаккумулятор должен замещать бездействующий котел, а уж потом приступайте к выполнению первого этапа.

Как рассчитать объем бака

Существует 2 способа расчета вместительности накопительного резервуара:

  • упрощенный, предлагаемый производителями;
  • точный, выполняемый по формуле теплоемкости воды.
Продолжительность обогрева дома тепловым аккумулятором зависит его размера

Суть укрупненного расчета проста: под каждый кВт мощности котельной установки в баке выделяется объем, равный 25 л воды. Пример: если производительность теплогенератора составляет 25 кВт, то минимальная вместительность теплоаккумулятора выйдет 25 х 25 = 625 л или 0.625 м³. Теперь вспомните, сколько места выделено в котельной и подгоняйте полученный объем под реальные размеры помещения.

Справка. Желающие сварить самодельный теплоаккумулятор нередко задаются вопросом, как посчитать объем круглой бочки. Здесь стоит напомнить формулу расчета площади круга: S = ¼πD². Подставьте в нее диаметр цилиндрического резервуара (D), а полученный результат умножьте на высоту емкости.

Вы получите более точные размеры теплового аккумулятора, если воспользуетесь вторым способом. Ведь упрощенное вычисление не покажет, на сколько времени хватит рассчитанного количества теплоносителя при самых неблагоприятных погодных условиях. Предлагаемая методика как раз и пляшет от показателей, которые нужны вам и основывается на формуле:

m = Q / 1.163 х Δt

Здесь:

  • Q – количество тепла, которое нужно накопить в аккумуляторе, кВт•ч;
  • m – расчетная масса теплоносителя в баке, тонн;
  • Δt – разность температур воды в начале и в конце нагрева;
  • 1.163 Вт•ч/кг•°С — это справочная теплоемкость воды.

Дальше поясним на примере. Возьмем стандартный дом 100 м² со средним теплопотреблением 10 кВт, где котел должен простаивать 10 часов в сутки. Тогда в бочке необходимо аккумулировать 10 х 10 = 100 кВт•ч энергии. Начальная температура воды в отопительной сети – 20 °С, нагрев происходит до 90 °С. Считаем массу теплоносителя:

m = 100 / 1.163 х (90 — 20) = 1.22 тонны, что приблизительно равно 1.25м³.

Обратите внимание, что тепловая нагрузка 10 кВт взята приблизительно, в утепленном здании площадью 100 м² теплопотери будут меньше. Момент второй: столько тепла необходимо в наиболее холодные дни, каковых бывает 5 на всю зиму. То есть, теплоаккумулятора на 1000 л хватит с большим запасом, а с учетом сезонного перепада температур можно спокойно уложиться в 750 л.

Отсюда вывод: в формулу нужно подставлять среднее теплопотребление за холодный период, равное половине от максимального:

m = 50 / 1.163 х (90 — 20) = 0.61 тонны или 0.65 м³.

Примечание. Если вы посчитаете объем бочки по среднему расходу теплоты, при крепких морозах его не хватит на расчетный промежуток времени (в нашем примере – 10 часов). Зато сэкономите деньги и место в помещении топочной. Больше информации по ведению расчетов представлено в другой нашей публикации.

О конструкции емкости

Чтобы самостоятельно изготовить аккумулятор тепла, вам придется победить одного коварного врага – давление, оказываемое жидкостью на стенки сосуда. Думаете, почему заводские резервуары сделаны цилиндрическими, а дно с крышкой – полусферическими? Да потому что такая емкость способна противостоять давлению горячей воды без дополнительного усиления.

С другой стороны, мало у кого найдется техническая возможность отформовать металл на вальцах, не говоря уже о вытяжке полукруглых деталей. Предлагаем следующие способы решения вопроса:

  1. Заказать круглый внутренний бак на металлообрабатывающем предприятии, а работы по утеплению и окончательному монтажу провести самостоятельно. Это все равно обойдется дешевле, нежели купить теплоаккумулятор заводской сборки.
  2. Взять готовый цилиндрический бак и на его базе делать буферную емкость. Где брать подобные резервуары, мы подскажем в следующем разделе.
  3. Сварить прямоугольный аккумулятор тепла из листового железа и усилить его стенки.
Чертеж теплоаккумулятора прямоугольной формы объемом 500 л в разрезе

Совет. В закрытой системе отопления с твердотопливным котлом, где избыточное давление может подскочить до 3 Бар и выше, настоятельно рекомендуется применять теплоаккумулятор цилиндрической формы.

В открытой системе отопления с нулевым напором воды можно использовать прямоугольный бак. Но не забывайте о гидростатическом давлении теплоносителя на стенки, к нему прибавьте высоту столба воды от емкости до расширительного бачка, установленного в высшей точке. Вот почему следует усиливать плоские стенки самодельного теплоаккумулятора, как показано на чертеже емкости вместительностью 500 л.

Прямоугольная накопительная емкость, усиленная должным образом, может применяться и в закрытой системе отопления. Но при аварийном скачке давления от перегрева ТТ-котла резервуар даст течь с вероятностью 90%, хотя под слоем утеплителя вы можете не заметить мелкую трещину. Как выпирает не укрепленный металл сосуда при заполнении водой, смотрите на видео:

Справка. Бессмысленно наваривать прямо на стенки жесткости из уголков, швеллеров и другого металлопроката. Практика показывает, что уголки малого сечения сила давления изгибает вместе со стенкой, а большие отрывает по краям.

Делать снаружи мощный каркас – нецелесообразно, слишком большой расход материалов. Компромиссный вариант – внутренние распорки, изображенные на чертеже самодельного теплоаккумулятора.

Чертеж аккумулятора тепла на 500 л – вид сверху (поперечный разрез)

Подбор материалов для резервуара

Вы сильно облегчите себе задачу, если найдете готовый цилиндрический бак, изначально рассчитанный на давление 3–6 Бар. Какие емкости можно использовать:

  • баллоны из-под пропана разной вместительности;
  • списанные технологические резервуары, например, ресиверы от промышленных компрессоров;
  • ресиверы от железнодорожных вагонов;
  • старые железные бойлеры;
  • внутренние баки емкостей для хранения жидкого азота, выполненные из нержавейки.
Из готовых стальных сосудов сделать надежный теплоаккумулятор значительно проще

Примечание. В крайнем случае сгодится стальная труба подходящего диаметра. К ней можно приварить плоские крышки, которые придется усилить внутренними растяжками.

Для сваривания квадратного резервуара возьмите листовой металл толщиной 3 мм, больше не надо. Жесткости сделайте из круглых труб Ø15—20 мм либо профилей 20 х 20 мм. Размер штуцеров выбирайте по диаметру выходных патрубков котла, а для облицовки купите тонкую сталь (0.3—0.5 мм) с порошковой покраской.

Отдельный вопрос – чем утеплить теплоаккумулятор, сваренный своими руками. Лучший вариант – базальтовая вата в рулонах плотностью до 60 кг/м³ и толщиной 60—80 мм. Полимеры типа пенопласта или экструдированного пенополистирола применять не стоит. Причина – мыши, которые любят тепло и осенью могут запросто поселиться под обшивкой вашей накопительной емкости. В отличие от полимерных утеплителей, базальтовое волокно они не грызут.

Не стройте иллюзий по поводу экструдированного пенополистирола, грызуны его тоже едят

Теперь укажем другие варианты готовых сосудов, которые применять для аккумуляторов тепла не рекомендуется:

  1. Импровизированный бак из еврокуба. Подобные пластиковые емкости рассчитаны на максимальную температуру содержимого 70 °С, а нам нужно 90 °С.
  2. Теплоаккумулятор из железной бочки. Противопоказания – тонкий металл и плоские крышки резервуара. Чем усиливать такую бочку, проще взять хорошую стальную трубу.

Сборка прямоугольного теплоаккумулятора

Хотим предупредить сразу: если вы посредственно владеете сваркой, то изготовление бака лучше закажите на стороне по вашим чертежам. Качество и герметичность швов имеет огромное значение, при малейшей неплотности аккумулирующая емкость потечет.

Сначала бак собирается на прихватках, а потом проваривается сплошным швом

Для хорошего сварщика здесь проблем не будет, надо лишь усвоить порядок выполнения операций:

  1. Вырежьте из металла заготовки по размерам и сварите корпус без дна и крышки на прихватках. Для фиксации листов используйте струбцины и угольник.
  2. Прорежьте в боковых стенках отверстия под жесткости. Вставьте внутрь заготовленные трубы и обварите их торцы снаружи.
  3. Прихватите к баку дно с крышкой. Вырежьте в них отверстия и повторите операцию с установкой внутренних растяжек.
  4. Когда все противоположные стенки емкости надежно связаны друг с другом, начинайте сплошную проварку всех швов.
  5. Установите снизу резервуара опоры из отрезков трубы.
  6. Врежьте штуцеры, отступив от дна и крышки на менее 10 см, как показано на ниже на фото.
  7. Приварите к стенкам металлические скобки, которые послужат кронштейнами для крепления теплоизоляционного материала и обшивки.
На фото показана растяжка из широкой полосы, но лучше применить трубу

Совет по монтажу внутренних распорок. Чтобы стенки теплоаккумулятора эффективно сопротивлялись изгибанию и не оборвались по сварке, выпустите концы растяжек наружу на 50 мм. Затем дополнительно приварите к ним ребра жесткости из стального листа или полосы. О внешнем виде не волнуйтесь, торцы труб потом скроются под облицовкой.

Стальные скобки (клипсы) привариваются к корпусу для крепления утеплителя и обшивки

Несколько слов о том, как утеплить теплоаккумулятор. Сначала проверьте его на герметичность, наполнив водой либо смазав все швы керосином. Теплоизоляция выполняется достаточно просто:

  • зачистите и обезжирьте все поверхности, нанесите на них грунтовку и краску с целью защиты от коррозии;
  • оберните бак утеплителем, не сдавливая его, а после закрепите с помощью шнура;
  • нарежьте облицовочный металл, сделайте в нем отверстия под патрубки;
  • прикрутите обшивку к кронштейнам саморезами.

Листы облицовки прикручивайте так, чтобы они были связаны между собой крепежом. На этом изготовление самодельного теплоаккумулятора для открытой системы отопления закончено.

Установка и подключение резервуара к отоплению

Если объем вашего теплоаккумулятора превышает 500 л, то ставить его на бетонный пол нежелательно, лучше устроить отдельный фундамент. Для этого демонтируйте стяжку и выкопайте яму до плотного слоя грунта. Потом засыпьте ее битым камнем (бутом), уплотните и заполните жидкой глиной. Сверху залейте железобетонную плиту толщиной 150 мм в деревянной опалубке.

Схема устройства фундамента под аккумуляторный бак

Правильная работа теплового аккумулятора построена на горизонтальном движении горячего и охлажденного потока внутри резервуара, когда батарея «заряжается», и вертикальном течении воды во время «разряда». Чтобы организовать такую работу батареи, нужно выполнить следующие мероприятия:

  • контур твердотопливного или другого котла подключается к накопительному баку для воды через циркуляционный насос;
  • отопительная система снабжается теплоносителем с помощью отдельного насоса и смесительного узла с трехходовым клапаном, позволяющим отбирать из аккумулятора необходимое количество воды;
  • насос, установленный в котловом контуре, по производительности не должен уступать агрегату, подающему теплоноситель к отопительным приборам.
Схема обвязки бака – аккумулятора тепла

Стандартная схема подключения теплоаккумулятора с ТТ-котлом представлена выше на рисунке. Балансировочный вентиль на обратке служит для регулирования потока теплоносителя по температуре воды на входе и выходе емкости. Как правильно производится обвязка и настройка, расскажет наш эксперт Владимир Сухоруков в своем видеоматериале:

Справка. Если вы проживаете в столице РФ или Подмосковье, то по вопросу подключения любых теплоаккумуляторов можете проконсультироваться лично с Владимиром, воспользовавшись контактными данными на его официальном сайте.

Бюджетный аккумулирующий бак из баллонов

Тем домовладельцам, у кого площадь котельной сильно ограничена, мы предлагаем сделать цилиндрический теплоаккумулятор из баллонов от пропана.

Самодельный накопитель тепла в паре с ТТ-котлом

Конструкция на 100 л, разработанная другим нашим мастером — экспертом Виталием Дашко, призвана выполнять 3 функции:

  • разгружать твердотопливный котел при перегреве, воспринимая излишки теплоты;
  • нагревать воду для хозяйственных нужд;
  • обеспечивать обогрев дома в течение 1—2 часов в случае затухания ТТ-котла.

Примечание. Длительность автономной работы теплоаккумулятора невелика из-за малого объема. Зато он поместится в любое помещение топочной и сможет отводить тепло от котла после отключения электричества, поскольку присоединен напрямую, без насоса.

Так выглядит без облицовки резервуар, сделанный из баллонов

Для сборки накопительного бака вам потребуется:

  • 2 стандартных баллона из-под пропана;
  • не менее 10 м медной трубки Ø12 мм либо нержавеющей гофры такого же диаметра;
  • штуцеры и гильзы для термометров;
  • утеплитель – базальтовая вата;
  • крашеный металл для обшивки.

От баллонов нужно открутить вентили и отрезать крышки болгаркой, наполнив их водой во избежание взрыва остатков газа. Медную трубку аккуратно изгибаем в змеевик вокруг другой трубы подходящего диаметра. Дальше действуем так:

  1. Пользуясь представленным чертежом, просверлите отверстия в будущем теплоаккумуляторе под патрубки и гильзы для термометров.
  2. Закрепите сваркой внутри баллонов несколько металлических скоб для монтажа теплообменника ГВС.
  3. Поставьте баллоны один на другой и сварите между собой.
  4. Установите внутрь получившегося бака змеевик, выпустив концы трубки через отверстия. Для уплотнения этих мест используйте сальниковую набивку.
  5. Приделайте дно и крышку.
  6. В крышку врежьте штуцер для сброса воздуха, в дно – патрубок сливного крана.
  7. Приварите кронштейны для крепления обшивки. Сделайте их разной длины, чтобы готовое изделие имело прямоугольную форму. Сгибать облицовку полукругом будет неудобно, да и выйдет не эстетично.
  8. Сделайте утепление резервуара и прикрутите обшивку саморезами.
Стыковка бака с ТТ-котлом без циркуляционного насоса

Особенность конструкции данного теплоаккумулятора заключается в том, что он соединяется с твердотопливным котлом напрямую, без циркуляционного насоса. Поэтому для стыковки применяются стальные трубы Ø50 мм, проложенные с уклоном, теплоноситель циркулирует самотеком. Для подачи воды к радиаторам отопления после буферной емкости устанавливается насос + трехходовой смесительный клапан.

Заключение

На многих интернет-ресурсах встречается утверждение, что изготовить теплоаккумулятор своими руками – плевое дело. Если вы изучите наш материал, то поймете, что подобные высказывания далеки от реальности, на самом деле вопрос довольно сложный и серьезный. Нельзя просто взять бочку и приладить ее к твердотопливному котлу. Отсюда совет: хорошенько продумайте все нюансы, прежде чем приступать к работе. А без квалификации сварщика за буферную емкость не стоит и браться, лучше ее заказать в специализированной мастерской.

Для чего нужен теплоаккумулятор в системе отопления дома

При переходе с газового отопления на систему с твердотопливным котлом стоит задача сделать новую отопительную систему более эффективной, чем предыдущая. Планируя бюджет необходимо учитывать не только начальные вложения, но и расходы, которые будут сопровождать эксплуатацию. Возможно, что вложив больше средств на этапе установки, можно получить по итогу большую экономию, сохранив комфорт при обслуживании системы. Все нужно считать.

Установка теплоаккумулятора в систему отопления – один из примеров выгодного вложения средств на этапе закупки оборудования.

Теплоаккумулятор обеспечивает повышение эффективности работы комплекса отопления за счет сбора и перераспределения во времени тепла, полученного от разных источников. Емкость принимает излишки тепла во время горения твердотопливного котла на полную мощность с максимальным КПД.

Что дает установка теплоаккумулирующего бака в частном доме:

  1. Собирать временные излишки тепла и использовать их тогда, когда они нужны.
  2. Защитить систему отопления от перегрева в пиковый период горения топлива.
  3. Увеличить цикл сжигания топлива – уменьшить общий расход топлива.
  4. Обеспечить дом горячей водой через контур, подключенный к верхнему теплообменнику.

Правильная установка буферной емкости и принцип действия

На этапе нагрева контуров отопления

Подключить теплоаккумулятор в системе отопления необходимо между котлом и потребителями тепла. Образуются два контура: котловой и радиаторный (теплого пола).

В первую очередь нагревается бак. Затем тепло начинает поступать в контур радиаторного отопления. Настроив трехходовой распределительный клапан на большом кольце, обеспечиваем постоянную температуру в подаче (например +40 0С) независимо от температуры в аккумулирующей емкости, которая выше, чем в подаче, и может быть от +40 0С до +90 0С. В этом случае, буферная емкость и термостат защищают пластиковые трубы от перегрева.

На этапе максимального горения

Одинаковый объем топлива даст одно и то же количество тепла при любой интенсивности сжигания. Будет отличаться время горения закладки.

Максимальную мощность и КПД твердотопливный котел выдает при пламенном горении топлива. Чем активнее огонь в топке, тем быстрее перегорит закладка. При этом очень важно сохранить полученное тепло. Вот эту задачу и выполняет теплоаккумулирующий бак. Он сохраняет в себе временные излишки тепла и отдает их тогда, когда котел уже не работает и контур отопления остывает.

Без теплоаккумулятора увеличить время горения котла можно, если перевести работу в тлеющий режим. Однако, время, в течение которого теплоаккумулятор будет отапливать помещение без сжигания топлива, покроет эту разницу с запасом. Выходит, что регулировка мощности не даст преимущества по времени. А вот побочных негативных эффектов не избежать.

Нужно учитывать, что для того, чтобы обеспечить работу твердотопливного котла не на полную мощность, мы ограничиваем подачу кислорода в камеру сжигания топлива. В этом случае топливо сгорает не полностью. Увеличиваются выбросы в окружающую среду оксида углерода СО и сажи С. Угарный газ является ядом для организма. А сажа, кроме загрязнения воздуха, которым дышит человек, засоряет коммуникации самого котла и дымохода. Чистить котел и дымоход придется чаще.

Кроме того, сажа перемешиваясь на стенках топочной камеры и теплообменника с конденсатом образуют агрессивную кислотную среду, которая съедает металлические поверхности котла. Это приводит к преждевременному износу и прогоранию конструкции. Получается, что установка буферного бака продлевает срок эксплуатации котельной установки вдвое.

Дополнительные возможности теплоаккумулирующих емкостей

Помимо аккумулирования тепла от твердотопливного котла, накопительные емкости могут выполнять и множество других важных функций, которые делают систему универсальной. Для этого служат встроенные теплообменники: верхние, нижние, комбинированные.

Теплоаккумуляторы могут работать в связке:

  1. С контуром нагрева (ГВС для бытовых нужд). Для этого служит верхний теплообменник из цветного металла. Нержавеющая сталь обеспечивает чистоту горячей воды, соответствующую санитарным требованиям.
  2. С электрическим котлом. При наличии многотарифного счетчика электроэнергии, бак нагревается в ночное время, когда действует дешевый тариф с понижающим коэффициентом. Днем, электрокотел отключается.
  3. С тепловым насосом гидроаккумулятор отбирает тепла в постоянном режиме.
  4. С гелиоколлектором – подогрева воды в баке происходит в дневное время, когда солнечная активность максимальная.
  5. С теплыми полами через нижний теплообменник из черного металла буферная емкость работает в качестве гидрострелки, обеспечивая отдельный контур с низкой температурой подачи.

Нагрев воды может происходить непосредственно и в самом баке. Для этого служит фланцевый теплообменник или электрический тэн, которые устанавливаются на специальный фланец на корпусе емкости.

Нужен ли теплоаккумулятор в системе отопления вашего дома – решать вам. Мы устанавливаем отопление с 1999 года. По нашему опыту, установка бака имеет лишь один недостаток – дополнительные расходы на его приобретение и установку. Проведя расчеты, можно точно сказать о сроке окупаемости затрат. Но кроме возврата денег, уже с первых дней эксплуатации вы получите приятный бонус в виде комфорта и безопасности, которые обеспечивает теплоаккумулятор. А к хорошему быстро привыкаешь!

Заказать теплоаккумулятор с установкой в Днепре.

До покупки мы поможем определиться с оптимальными для вас параметрами буферного бака и подобрать нужную модель.

Последние достижения в области аккумулирования тепловой энергии

По мере того как возобновляемые источники энергии все больше укрепляются в энергетической системе, важность хранения энергии в натуральном выражении будет возрастать. В связи с продолжающимся постепенным отходом от традиционных источников энергии базовой нагрузки разработка эффективных систем хранения энергии является обязательной.

Нравится вам это или нет, но структура энергетики США меняется. По данным Управления энергетической информации, с 2015 по 2016 год производство ископаемого топлива в США упало на 7%.Уголь, в частности, упал на 18%, достигнув самого низкого уровня с 1978 года. Даже объем природного газа, который в последние годы резко вырос из-за сланцевого бума, упал на 2% с 2015 по 2016 год.

Производство возобновляемой энергии, с другой стороны, увеличилось за этот период на 7%, причем почти четверть этого скачка приходится на ветровую и солнечную энергию.

Проблема с этим сдвигом, конечно же, заключается в потере выработки энергии при базовой нагрузке. Нации нужно электричество 24 часа в сутки, а не только когда светит солнце и дует ветер.К счастью, ответ на эту проблему известен. Возобновляемые источники энергии должны сочетаться с некоторыми формами хранения энергии, такими как батареи, гидроаккумуляторы или накопители тепловой энергии (TES, рис. 1).

1. Времена меняются. По мере того, как в структуре энергетики США происходит отход от традиционных форм генерации с базовой нагрузкой, накопление тепловой энергии дает возможность возобновляемым источникам энергии заполнить образовавшуюся пустоту. Предоставлено: SolarReserve

На первый взгляд, идея TES довольно проста.Энергия сохраняется в виде тепла в той или иной форме для использования в будущем. Однако, если углубиться в варианты и приложения для TES, можно увидеть гораздо более сложную картину.

Накопитель тепловой энергии 101

Существует три основных типа систем TES, только один из которых имеет значительную коммерческую доступность в энергетическом секторе. По сравнению с другими вариантами, накопление явного тепла относительно недорогое и намного менее сложное. Скрытые системы хранения энергии и термохимические системы хранения являются дорогостоящими и пока еще в значительной степени экспериментальными.

Явное аккумулирование тепла. Наиболее широко используемая форма TES в секторе производства энергии — это физическое накопление тепла. В системе TES явного тепла жидкий или твердый накопитель, такой как вода, расплавленные соли, песок или камни, нагревается или охлаждается для накопления энергии.

Явное накопление тепла широко используется в приложениях для концентрированной солнечной энергии (CSP), где использование TES позволяет проекту производить электроэнергию достаточно долго после захода солнца (см. «Проект солнечной энергии Crescent Dunes, Тонопа, Невада» в POWER’s Выпуск декабрь 2016 г.).Обычно предпочтительной средой для установок CSP с TES являются расплавленные соли, которые могут выдерживать чрезвычайно высокие температуры.

Существует множество различных систем CSP, каждая из которых предъявляет уникальные требования к хранению энергии. В то время как прямая система TES с использованием расплавленных солей является жизнеспособной для системы опорной башни, подобной той, что используется в проекте Crescent Dunes (рис. 2), для проекта параболического желоба, вероятно, потребуется немного другая система TES. По данным Международного агентства по возобновляемым источникам энергии (IRENA), почти все новые действующие или строящиеся станции CSP оснащены системой TES.

2. Явное аккумулирование тепла в действии. В проекте Crescent Dunes компании SolarReserve в Неваде используются накопители разумного тепла для хранения до 10 часов энергии. Расплав соли, используемый в процессе хранения, хранится в двух больших резервуарах в центре солнечного поля. Предоставлено: SolarReserve

Скрытое накопление тепла. Скрытое накопление тепла не так широко используется в секторе производства энергии, но недавние разработки показали многообещающие результаты в некоторых приложениях.Скрытая аккумуляция тепла зависит от состояния среды хранения, например, от твердого до жидкого. Скрытые теплоносители часто называют материалами с фазовым переходом (PCM).

Хотя явное тепло является наименее дорогим вариантом TES, PCM предлагают преимущества, к которым стоит стремиться, если можно снизить затраты. Например, для хранения явного тепла требуются очень большие объемы носителя из-за низкой плотности энергии. PCM предлагают плотность энергии примерно в три раза больше.

Термохимический склад. Как следует из названия, термохимическое хранилище (TCS) использует химические реакции для хранения энергии. Системы TCS предлагают даже большую плотность энергии, чем PCM.

Практически все, что связано с TCS, стоит дорого. Например, IRENA указывает в кратком техническом описании, что стоимость оборудования из термохимического реактора намного выше, чем стоимость материала для хранения, что не означает, что стоимость материала незначительна.

Применения в концентрированной солнечной энергии

CSP пришлось нелегко, поскольку его родственная технология, фотоэлектрическая (PV) солнечная энергия, переживала несколько хороших лет роста.По данным Ассоциации производителей солнечной энергии, рынок фотоэлектрических элементов вырос на 97% с 2015 по 2016 год, так как цены на фотоэлектрические панели упали почти на 20%. CSP, с другой стороны, не смог угнаться за снижением стоимости PV.

Чтобы оставаться конкурентоспособными с PV, CSP должен предложить что-то уникальное, и это было сделано в форме TES. «Для развития любой из этих технологий CSP требуется накопление тепла», — сказал в интервью POWER Ануп Матур, технический директор и основатель Terrafore Technologies.

Использование TES в CSP позволяет технологии когда-нибудь удерживать больший процент энергобаланса, поскольку фотоэлектрическая энергия и ветер в настоящее время не подходят для использования в качестве источников генерации базовой нагрузки. С TES завод CSP может работать 24 часа в сутки, что компания SolarReserve доказала своим проектом Crescent Dunes в Неваде.

Проект Crescent Dunes — это электростанция мощностью 110 МВт, расположенная в трех часах езды от Лас-Вегаса. Станция может похвастаться накопителем энергии на 1100 МВтч, который может обеспечить 10 часов электроэнергии при полной нагрузке.В пиковую нагрузку электростанция обеспечивает электроэнергией 75 000 домов.

Энергетическая башня из расплавленной соли проекта расположена в центре массивного поля зеркал или гелиостатов, направляющих свет на вершину башни (рис. 3). Как сообщил POWER генеральный директор SolarReserve Кевин Смит, зеркала нагревают накопитель энергии напрямую, что делает процесс более эффективным, чем другие системы, которые «подключаются» к накопителю энергии. «Я думаю, что в мире солнечной тепловой энергии принято считать, что конфигурация башни с расплавленной солью является наиболее эффективным и рентабельным накопителем тепла для крупных предприятий.«Собранное тепло используется для производства пара, который, в свою очередь, приводит в действие турбогенератор.

3. Зеркало . Солнечный приемник Crescent Dunes находится в центре массивного поля гелиостатов. Расплавленная соль нагнетается в башню, где направленное тепло повышает ее температуру примерно до 1050 ° C. Предоставлено: SolarReserve

Процесс SolarReserve закачивает расплавленную соль в верхнюю часть башни, где он нагревается, в полной мере используя уникальные свойства солей.Расплавленные соли, используемые SolarReserve, остаются твердыми до тех пор, пока они не нагреются до температуры около 450F, но когда они переходят в жидкую форму, они остаются в этом состоянии при температурах до 1050F. «Холодные» соли SolarReserve сохраняются при температуре от 500 ° F до 550 ° F, что означает, что система TES компании имеет рабочий диапазон около 500 градусов.

Напротив, параболический желоб CSP выделяет тепло промежуточной жидкости, которая, в свою очередь, нагревает расплавленную соль. «Сложность этой технологии заключается в том, что [жидкость], которая используется для теплопередачи … имеет максимальную температуру, может быть, 700F или 750F.Таким образом, они работают в диапазоне от 550 ° F до 700 ° F или 750 ° F, что составляет всего лишь около 200 градусов дельты, тогда как мы можем перенести дельту на 500 градусов в наши расплавленные соли. По сути, это означает, что мы вкладываем больше энергии в каждый фунт расплавленной соли », — сказал Смит. «Это в два или три раза больше энергии, чем хранится в солях».

Благодаря 10-часовому хранению, проект Crescent Dune может производить электроэнергию 24 часа в сутки, хотя обычно он работает только 12–14 часов в сутки. Как правило, электростанция вырабатывает электроэнергию для NV Energy примерно от 10 а.м. до 22:00 (Рисунок 4) просто потому, что он не нужен для чего-то большего.

4. Освещение ночи. Используя разумные аккумуляторы тепла, проект Crescent Dunes может производить энергию еще долгое время после захода солнца, помогая питать огни Лас-Вегаса . Предоставлено: SolarReserve

«На некоторых рынках, например, в Чили или на других рынках, они действительно хотят, чтобы такой проект выполнялся 24 часа в сутки.У США довольно разнообразное сочетание сил; Есть еще довольно много проектов по сжиганию угля и много ядерных, и эти объекты должны работать 24 часа в сутки », — отметил Смит.

Однако, поскольку структура энергопотребления страны продолжает меняться, SolarReserve прогнозирует, что Crescent Dunes могут работать в течение более длительного периода. «В долгосрочной перспективе большая часть [угля и ядерной энергии] будет выведена из эксплуатации, и, поскольку рынки США изменятся в долгосрочной перспективе, мы можем увидеть, что мы могли бы работать больше 24 часов в сутки.Но на данный момент это скорее периоды пикового спроса: 8, 10, 12, 14 часов в день генерации и, как правило, ближе к вечеру », — сказал Смит.

Последствия для будущего

Хотя явная теплопередача в настоящее время доминирует в области TES, в области PCM и TCS ведется много исследований и разработок. Один из таких проектов, инкапсулированный PCM, разработанный Terrafore Technologies, получил значительную поддержку со стороны Министерства энергетики и, возможно, находится на грани коммерциализации.

Как уже отмечалось, PCM обладают преимуществом перед физическими накопителями тепла из-за их повышенной плотности энергии. Матур сказал, что лучший способ воспользоваться преимуществами PCM — это их инкапсулировать. Однако сделать это — непростая задача.

«Большая проблема инкапсуляции заключается в том, как инкапсулировать твердое тело, которое расширяется почти на 20%?» он сказал. «Это означает, что у вас должна быть капсула, подумайте о шаре, частично заполненном солью, как вы это сделаете? Вы не можете открыть его, заполнить часть и запечатать, потому что запечатывание становится проблемой.”

Ответ, согласно Матуру, — полимеры. «Я думал об этом, мечтал об этом, поэтому я сказал, почему мы не можем положить какой-то полимер поверх моей капсулы, на соль? Затем положите материал оболочки, затем нагрейте его, и тогда полимер исчезнет, ​​оставив после себя пустоту », — объяснил он. «Так что это дает ему объем расширения. Это химический способ создания пустоты внутри оболочки ».

Система

Terrafore является улучшенной по сравнению с традиционной системой явного тепла, поскольку требует меньше материала для выполнения той же работы.Если для системы расплавленной соли, используемой в Crescent Dunes, требуется два больших резервуара, один для «холодной соли» и один для нагретой соли, то для системы Terrafore требуется только один резервуар и меньше материала.

Внутри резервуара складываются три разные соли. Вверху находятся соли с самой высокой температурой плавления, а внизу — соли с самой низкой точкой плавления, а в середине — слой солей со средней температурой плавления. В системе используется теплоноситель, который течет из солнечного ресивера в верхнюю часть резервуара, где затем протекает через сложенный слой капсул, нагревая их, в свою очередь, по мере того, как жидкость медленно остывает.Достигнув дна резервуара, теплоноситель перекачивается обратно в солнечный приемник.

Этот цикл продолжается до тех пор, пока не потребуется накопленная энергия, после чего жидкий теплоноситель перекачивается из резервуара в силовой блок, где вырабатывается пар для привода турбины.

В поисках подходящего совпадения

Матур не видит, что его процесс PCM будет принят в крупномасштабных проектах CSP, таких как Crescent Dunes, в самом ближайшем будущем, но он надеется, что в какой-то момент он сможет проникнуть в этот сектор.На данный момент он считает, что лучшее место для выхода его технологии на рынок — это распределенный CSP.

Матур полагает, что, работая в шведской компании, он, возможно, нашел себе подходящего партнера. «Они разработали тарельчатую систему Стирлинга, которая может работать при температуре около 800–900 ° C, но работает точно так же, как фотоэлектрическая система — когда солнце светит, она вырабатывает электричество. Таким образом, они не могут быть конкурентоспособными с фотоэлектрическими батареями, потому что стоимость фотоэлектрических систем настолько низка. Теперь, если они смогут использовать хранилище, они станут конкурентоспособными с точки зрения диспетчеризации », — сказал он.

В настоящее время SolarReserve довольна разработанной технологией. В настоящее время компания разрабатывает несколько проектов по всему миру, и все они основаны на той же технологии, что и в Crescent Dunes. «Основная технология, которая представляет собой нашу приемную технологию, на самом деле не требует значительных изменений, когда мы перемещаемся с места на место», — пояснил Смит.

Однако это не означает, что руководство компании непредвзято. «Мы внимательно следим за другими вариантами хранения тепла и другими материалами, которые мы можем использовать, — сказал Смит, — но сейчас мы действительно не видим ничего, что можно было бы сделать в ближайшем будущем на горизонте. коммерческий масштаб.”■

Эбби Л. Харви — репортер POWER.

Каким образом достигается масштабирование аккумуляторов тепловой энергии?

Жизненно важная технология для обеспечения глубокого сокращения выбросов парниковых газов существует и хорошо работает, но до сих пор не получила широкого распространения.

Накопители тепловой энергии преуспели в этой области на протяжении десятилетий. Как показали такие компании, как Calmac и Ice Energy, предварительное охлаждение изолированной емкости с жидкостью может сократить расходы на электроэнергию и снизить пиковую нагрузку.В экспериментальном жилом комплексе в Канаде используются подземные накопители тепловой энергии, работающие от солнечной энергии летом, для удовлетворения потребностей в отоплении в течение холодных зим Альберты.

Такие продукты решают проблему декарбонизации, с которой невозможно справиться одной только чистой электросетью. Здания потребляют 70 процентов электроэнергии, производимой в США, и выбрасывают 40 процентов выбросов углерода в стране. Любая целостная попытка решения проблемы изменения климата должна противодействовать использованию энергии в строительном секторе.

Стэнфордский профессор Марк Джейкобсон, например, использует подземные хранилища тепла в качестве основы своей дорожной карты для декарбонизации всей энергосистемы США, поскольку это снижает общий спрос на электроэнергию и потребление газа для отопления. Когда этим летом группа ученых раскритиковала это исследование, они особо отметили, что полагаются на этот редко применяемый инструмент. Как можно спасти мир, утверждается в этом аргументе, с помощью технологии, реальное использование которой ограничено малоизвестным пилотным проектом в Альберте?

Аккумуляторный накопитель энергии сталкивается с препятствиями, связанными с его технологической новизной.Трудно убедить финансистов поддержать химический состав батарей, который не имеет большого времени работы и продается стартапом с ограниченным балансом. Несмотря на это, сектор находится на подъеме — GTM Research прогнозирует 22-кратное увеличение количества развернутых мегаватт-часов в США с 2016 по 2022 год.

Между тем, в отношении хранения тепловой энергии вопросы технологичности в значительной степени решены, но сегмент не поцарапал поверхность его потенциального воздействия. В самом деле, этот потенциал едва ли можно увидеть за пределами горстки компаний, которые сделали ставку на него и сформулировали свое видение с почти мессианским рвением.

«Я ожидаю, что тепловые будут больше, чем батареи, — сказал генеральный директор Ice Energy Майк Хопкинс, — потому что тепловые нагрузки — это большие нагрузки. Они представляют собой проблемные нагрузки; это нагрузки, которые не поддаются использованию аккумуляторов электроэнергии».

О росте популярности аккумуляторов написано много. Меньше внимания уделяется контингенту аккумуляторов тепла, но у них есть свои стратегии роста. Их успех может не только помочь коммунальным предприятиям в их стремлении сузить утиные кривые и постоянно ползучие пики, но и сыграть центральную роль в сокращении выбросов углерода зданиями по всему миру.

Технология

Основная идея аккумулирования тепла — преобразование излишков электроэнергии в тепло или холод, которые можно использовать позже.

Этот процесс приобретает значение для всей сети в свете роста пикового спроса, который коммунальные предприятия по всей стране связывают с одновременным использованием их клиентами вечернего кондиционирования воздуха.

Аккумуляторные батареи могут удовлетворить этот спрос, но при этом возникают потери из-за неэффективности в обоих направлениях; это выбрасывание энергии. Материалы для хранения энергии термически дешевле, чем литий-ионные, и теоретически служат дольше.Основная технология — вода в пластиковом резервуаре.

Кроме того, если вы заморозите ледяную глыбу ночью, когда и температура окружающей среды, и стоимость электричества падают, это потребует меньше энергии и денег, чем это делается в середине солнечного жаркого дня.

«Идея о том, что вы будете хранить энергию в виде батарей для кондиционеров, — действительно плохая идея», — сказал Хопкинс. «Что вы действительно хотите сделать, так это заставить эти тепловые нагрузки работать более эффективно. Включите охлаждение, когда это хорошее время для охлаждения.»

Ice Energy интегрирует свои технологии в системы кондиционирования воздуха, чтобы использовать нежелательную солнечную энергию в полдень или дешевую ночную электроэнергию для предварительного охлаждения дома перед вечерним пиком. Когда электроснабжение стоит дороже или коммунальное предприятие изо всех сил пытается удовлетворить спрос, Ice Bear использует этот кусок льда, чтобы охладить здание, вместо того, чтобы потреблять электричество.

В то время как Ice Energy обслуживает коммерческий и жилой рынки, в основном в Калифорнии, Calmac применяет аналогичную технологию для огромных небоскребов и университетских городков.С 1980-х годов компания из Нью-Джерси обслужила более 4000 клиентов в 60 странах.

IceBank Calmac в действии: это группа резервуаров, в которых хранится холодная жидкость. (Изображение предоставлено Calmac)

Axiom Exergy применяет эту концепцию к продуктовым магазинам, сокращая счета за коммунальные услуги за поддержание прохлады в еде и создавая резервное охлаждение на несколько часов на случай коротких отключений.

Горячие аккумуляторы тепла работают так же, как и холодные: используйте избыточную мощность, чтобы нагреть жидкость, а затем направьте ее по трубопроводу в изолированный резервуар для хранения, пока она не понадобится для обогрева здания.

Сообщество Drake Landing Solar Community в Альберте, Канада, использует подземное централизованное теплоснабжение для хранения солнечной энергии в летнее время. В зимний сезон 2015-2016 гг. Община обеспечивала все потребности в отоплении за счет накопленной тепловой энергии; Таким образом, она обеспечивала более 90 процентов потребностей в отоплении каждую из последних пяти зим.

В более редких случаях технология позволяет преобразовывать накопленную тепловую энергию обратно в электричество. Это то, что лаборатория Google X пытается сделать с проектом, получившим название Мальта.Он будет использовать электричество как для нагрева расплавленных солей, так и для охлаждения резервуаров с жидкостью; при необходимости процесс меняется на противоположный, используя выпущенный горячий и холодный воздух для вращения турбины и регенерации электричества.

Важно отметить, что хранение тепла позволяет избежать опасений по поводу токсичности и воспламеняемости, которые возникают при использовании литий-ионных аккумуляторов большой мощности.

«Нагревание воды или изготовление льда — это не те вещи, о которых можно беспокоиться», — сказал Бретт Саймон, аналитик по хранению энергии в GTM Research. «В этих системах не используются реактивные, потенциально опасные или легковоспламеняющиеся химические вещества.Это может привести к тому, что люди, которые более осторожно относятся к хранению аккумуляторов, перейдут к домашнему аккумулятору тепла ».

Препятствия для роста

Тепловые накопители существуют дольше, чем современные аккумуляторы, но они никогда не выходили из нишевого сегмента. Лишь немногие компании устанавливают это в США, по сравнению с десятками, которые сейчас преследуют рынок аккумуляторов.

По словам Хопкинса из Ice Energy, здесь играют роль культурные пристрастия. Аккумуляторные батареи стали популярными только в последние несколько лет, во многом благодаря умению Илона Маска завладеть воображением публики.Это новообретенное осознание можно было передать другим людям.

«Поскольку они знают о литии, когда вы говорите о других формах хранения, это не так уж и плохо», — сказал он.

Тем не менее, тепловому накопителю не хватает знаменитого проповедника, и он не может зарядить сексуальный спортивный автомобиль.

«Дело в том, что аккумуляторы тепла не видны жильцам, — сказал генеральный директор Calmac Марк МакКракен. «Люди, которые заходят в эти коммерческие здания, ожидают, что здание будет прохладным. Они совершенно не понимают, как оно охлаждается.»

Компании, стремящиеся вытеснить традиционные системы отопления и охлаждения, должны обращаться к клиентам, когда им нужно это оборудование, потому что это не повседневная покупка.

Новые дома могут быть многообещающим рынком, но для существующих домов время купить новый кондиционер обычно наступает, как только старый ломается. В этот момент у покупателя появляется сильный стимул выбрать самое быстрое и легкое, что, вероятно, не является шаткой технологией охлаждения, о которой он никогда не слышал.

Помимо проблемы осведомленности потребителей, необходимо преодолеть технические ограничения.

Один из них — это процесс проектирования крупных строительных проектов. По словам Маккракена, обычно архитектор проектирует здание и просит инженеров охладить его. Они смотрят на пиковую мощность охлаждения, необходимую для покрытия самого жаркого дня в году, добавляют запас прочности и называют это днем.

По словам Маккракена, хранение тепла требует другого вида анализа и предполагает представление о риске, даже если оно в конечном итоге стоит столько же и обеспечивает тот же коэффициент безопасности. Требуется время, чтобы проникнуть в этот промышленный рабочий процесс в более широком масштабе.

Даже в этом случае распространение аккумуляторов тепла зависит от экономического компромисса между обычным бизнесом и смещением спроса с пикового значения. Это подразумевает дизайн тарифов, который оказался ненадежным партнером в продвижении продукта.

«Проблема номер один — это неопределенность с тарифами из-за разницы между дневными и ночными расходами», — сказала Мэри Энн Пьетт, директор отдела строительных технологий и городских систем Национальной лаборатории Лоуренса Беркли.«Тарифы со временем сильно меняются, и нет достаточной уверенности в экономике».

В масштабах всей страны количество дифференцированных по времени тарифов на электроэнергию и программ реагирования на спрос растет по мере того, как коммунальные предприятия раскрывают возможности распределенных энергоресурсов. Пока они не появятся, преимущества накопления тепла для потребителей останутся в основном теоретическими, даже если они уже ощутимы для сети.

География имеет значение

Климат помогает определить эффективность аккумулирования тепла в большей степени, чем для аккумуляторов.

По словам Пьетта, идеальный рынок имеет большие суточные колебания, с жарким днем ​​и более прохладной ночью. Окрестности пустыни, такие как Аризона и внутренняя Калифорния, прекрасно подходят.

В умеренном климате Беркли или на побережье Тихоокеанского Северо-Запада мало домов имеют или нуждаются в кондиционировании воздуха. От бытового Ice Cub было бы мало пользы, в то время как батарея по-прежнему могла бы заменять электрическую нагрузку и обеспечивать резервное питание в случае сбоя.

Точно так же подземный накопитель тепла отлично работает в холодной Альберте, но в меньшей степени в месте, где зимой остается довольно тепло.Эта технология также требует высокого уровня поддержки со стороны сообщества: системы работают лучше всего, когда они обслуживают весь район или кампус.

Такого рода сотрудничество трудно достичь без строительства нового жилья; труднее продать улицы, чтобы копать под существующими застройками. Централизованное теплоснабжение хорошо себя зарекомендовало в холодных северных общинах с плотным населением и политикой социального сотрудничества — в основном в Скандинавии. Помогает наличие главного коммунального предприятия для газа, электроэнергии и пара.

«Модели владения и эксплуатации [для централизованного теплоснабжения] не так распространены в наших городских районах», — сказал Пьетт. «Это возможно, и я надеюсь, что со временем мы сможем создать новые бизнес-модели».

Плотность и разнообразие нагрузок делают предложение более привлекательным, добавила она, ссылаясь на офис Amazon в Сиэтле, который покупает отработанное тепло, выбрасываемое ближайшим центром обработки данных.

Партнер для продвижения вперед

Стартапы по хранению тепла, с которыми я говорил, четко заявили об одном: им необходимо сотрудничать с более крупными организациями для масштабирования.

Ice Energy нашла союзников в лице энергокомпании Southern California Edison и независимого поставщика электроэнергии NRG. SCE заключила контракт на 26 мегаватт-часов распределенного хранения тепла у заказчика. Это обеспечило гарантированный доход, необходимый для начала наращивания производства. Просто осталась проблема денежного потока.

Стартап из 22 человек не мог оплатить всех этих ледяных медведей и ждать 20 лет, чтобы получить деньги. Вместо этого Ice Energy продала специальный автомобиль для проекта NRG, у которой огромный баланс.Технически NRG владеет будущим доходом флота и выплачивает Ice Energy аванс за установку оборудования.

Если все пойдет по плану, NRG получит легкую окупаемость инвестиций с минимальным риском: выручка поступает через крупную коммунальную компанию с высоким кредитным рейтингом. Задача Ice Energy — найти предприятия, готовые разместить в общей сложности 1800 Ice Bears бесплатно, получая экономию на счетах за электроэнергию от 1000 до 1500 долларов в год на каждую единицу (Ice Energy развернула в общей сложности 1200 единиц с момента ее создания).

По словам Хопкинса, у компании также есть контракты с двумя коммунальными предприятиями в Массачусетсе и еще 400 мегаватт на различных этапах переговоров.

Этим летом начались поставки жилого дома Ice Cub, который заменяет обычный кондиционер и добавляет возможности аккумулирования тепла. Хопкинс надеется расширить этот продукт за счет дистрибьюторской сделки с крупным установщиком солнечной энергии.

«Сейчас для нас 1800 кажется большим числом», — сказал он. «На внутреннем рынке вы можете увидеть десятки тысяч жителей США.С. развертывается «.

По словам Саймона из GTM, этот рынок домашнего охлаждения не следует недооценивать, особенно если аккумуляторы тепла конкурируют по цене, но добавляют больше услуг.

«Если они получат 1 процент от рынка домашних систем переменного тока, это уже будет намного больше, чем годовые продажи домашних аккумуляторов», — отметил он.

Axiom Exergy также ищет более крупные компании для продвижения своего продукта. В данном случае: национальные сети продуктовых магазинов. Компания разрабатывает развертывание нескольких магазинов с Whole Foods и Walmart, чтобы следить за начальными демонстрационными установками.

«Я не вижу никаких препятствий в обозримом будущем, потому что существует так много продуктовых магазинов и холодильных складов», — сказал директор по продажам Джон Лерх. «Всегда будет … необходимость хранить еду в охлажденном состоянии, чтобы распространять ее повсюду».

Calmac, вышедший из фазы запуска несколько десятилетий назад, обсуждает партнерские отношения с коммунальными предприятиями, но пока их не ведет. Компания также обращается к другим партнерам: компаниям по хранению аккумуляторов.

Идея состоит в том, чтобы предложить коммерческим клиентам гибридный продукт с накопителем тепла, рассчитанным на тепловую нагрузку, и батареями, чтобы справиться с остаточным пиковым спросом. Это могло бы обеспечить экономию при более низком расходе на киловатт-час, чем если бы батареи должны были нести нагрузку по обогреву и охлаждению.

Тепловые аккумуляторы дополняют более умную сеть, чем та, которая у нас есть сегодня. Будет трудно продавать, пока покупатель платит столько же за киловатт-час на пике всей сети, как в 3 часа ночи. распределенные энергетические активы, спрос на технологию аккумулирования тепла может, наконец, начать расти.

Уникальная технология аккумулирования тепла собирает пар

Чтобы обойти это ограничение, исследователи из Аргонна разработали способ встраивания материалов с фазовым переходом в пористую пену с высокой теплопроводностью. Затем они герметизируют пену инертным газом внутри модуля, предотвращая попадание влаги или кислорода внутрь и разрушение компонентов. Сохраненное тепло внутри блока затем может быть передано, например, воде, где оно становится паром, который приводит в движение турбину.TESS также может быть настроен для конкретного применения путем выбора различных материалов с фазовым переходом.

«Одним из больших преимуществ нашей технологии является то, что она модульная, поэтому вам не нужна огромная структура хранения», — сказал Сингх. «Вы можете сделать эти модули определенного управляемого размера, например, бочку емкостью 55 галлонов или меньше, и установить их в любом количестве, которое вам потребуется».

Исследователи продемонстрировали, что TESS работает при температурах выше 700 ° по Цельсию (1292 ° по Фаренгейту).Его высокая плотность энергии делает его меньше по размеру и более гибким, чем обычно используемые системы аккумулирования явного тепла, которые основаны на повышении и понижении температуры материала. Эта технология получила награду R&D 100 в 2019 году, и в настоящее время исследователи работают над ее интеграцией в системы ТЭЦ от Capstone Turbine Corporation для повышения рекуперации тепла.

С помощью отраслевых партнеров Сингх и его коллеги продолжают совершенствовать технологию TESS и разработали собственный испытательный центр для проверки производительности при многократной зарядке и разрядке.В дополнение к усовершенствованию систем когенерации и расширению диспетчеризации опреснительных и электростанций, TESS может преобразовывать отработанное тепло в механическую энергию в тяжелых грузовиках или во внутреннее отопление электромобилей. И так же, как TESS может работать как аккумулятор для тепла, он может делать то же самое и для холода, возможно, предлагая вариант охлаждения для коммерческих зданий.

Компании, заинтересованные в лицензировании или партнерстве по этой технологии, могут отправлять электронные письма партнерам @ anl.

Накопитель тепла — обзор

Накопитель тепловой энергии для систем CSP

Накопитель тепловой энергии передает тепло носителям хранения во время периода зарядки и высвобождает его на более позднем этапе на этапе разрядки.Его можно успешно применять на солнечных тепловых электростанциях или в промышленных процессах, таких как металлургические преобразования. CSP уникален среди технологий возобновляемых источников энергии, поскольку, несмотря на то, что он изменчив, как солнечные фотоэлектрические и ветровые, его можно легко сочетать с TES, а также с традиционными видами топлива, что делает его очень управляемым. Системы CSP без TES обычно ограничены коэффициентом мощности около 25% из-за суточного солнечного цикла и погоды (Purohit et al., 2016). Коэффициенты мощности для заводов CSP варьируются от 25% до 75%, в зависимости от конструкции и внедрения TES.Нижний предел диапазона коэффициента мощности относится к системам без аккумулирования тепла, а верхний предел — для систем с аккумулированием тепла до 15 часов (ESTELA, 2012). Использование как скрытого, так и явного тепла также возможно при высокой температуре солнечного тепла. Системы CSP могут хранить первичную энергию в теплонакопительных средах, таких как бетон, расплавленная соль, материалы с фазовым переходом или керамические материалы, в зависимости от технологии приемника, и производить электричество, питая силовой блок накопленным теплом в течение ночи.Это позволяет системам CSP сохранять энергию в хранилище до тех пор, пока она не понадобится электросети, тем самым обеспечивая источник энергии по запросу, который не ограничен мгновенным солнечным или ветровым ресурсом.

В обеих технологиях CSP — параболическом желобе и силовой башне — когда тепловая энергия в расплаве соли или HTF готова к использованию, она направляется в теплообменник. Там его тепло извлекается и используется для кипячения воды, чтобы сделать пар для работы паровой турбины в силовом блоке, как на более ранних электростанциях, которые использовали топливо, такое как природный газ, уголь или атомную электростанцию.Как и старые тепловые электростанции, CSP вырабатывает электроэнергию, вращая гигантское оборудование. После отвода тепла теперь «более холодный» расплав соли хранится во втором резервуаре, готовый к отправке в башню для повторного нагрева солнечным светом, отражающимся на приемнике (рис. 8). Точно так же в PTC HTF после того, как его тепло было извлечено, отправляется обратно в солнечное поле, чтобы получить следующий цикл тепла и вернуть его в силовой блок для повторного использования.

Рис. 8. Принципиальная схема накопителя тепловой энергии с системой CRS.

Источник: адаптировано из http://cleanleap.com/3-thermal-storage/how-thermal-storage-works.

Системы TES на расплавленных солях в настоящее время являются самыми современными в качестве носителей явного теплового накопления тепловой энергии (SHTES). Расплавленные соли (то есть нитраты калия, кальция, натрия, лития и т. Д.) Обладают свойством поглощать и накапливать тепловую энергию, выделяемую в воду, для передачи энергии, когда это необходимо для работы. В конце 2011 г. 62% установленных систем CSP в Испании использовали накопители энергии на расплаве солей (Lovegrove et al., 2012). Расплавленная соль течет, как жидкая вода, с тем преимуществом, что она остается жидкостью при температуре до нескольких сотен градусов по Цельсию. Расплав карбонатной соли можно использовать при температурах до 850 ° C, хотя коммерческий расплав нитратной соли ограничен температурами ниже 600 ° C. Современные заводы CSP, такие как Andasol 1 в Испании, используют расплав нитратной соли с 60% нитрата натрия (NaNO3) и 40% нитрата калия (KNO3). Нитратная смесь имеет отличную теплоемкость и вязкость, но ее температура должна быть выше точки замерзания примерно 220 ° C.Более того, даже при типичной цене соли в 1 доллар США / кг количество, необходимое для большой солнечной электростанции, делает ее дорогостоящим компонентом. Один из способов снизить потребность в расплавленной соли — использовать более дешевые наполнители, такие как камни и песок (Zhang et al., 2016). Эти материалы образуют наполнитель, через который протекает расплав соли, и они недороги и широко доступны по сравнению с расплавом соли.

В коммерческой конструкции TES с расплавленной солью, используемой в Andasol 1, используется система из двух резервуаров, в которой масло HTF нагревает соль, перекачиваемую из холодного резервуара, и хранит горячую соль в горячем резервуаре до тех пор, пока она не понадобится.Это известно как непрямая система, потому что HTF сама по себе не накапливается, а скорее обменивается теплом с отдельным теплоносителем. Одним из усовершенствований по сравнению с этой конструкцией является прямая система с двумя резервуарами, в которой используется расплав соли как в качестве HTF, так и в качестве жидкости для хранения (рис. 9A). Преимущество этой концепции по сравнению с системами TES с двумя резервуарами непрямого действия заключается в отсутствии дорогостоящего теплообменника масло-расплавленная соль, большей эффективности и гибкости в отправке системы TES, а также более высоких рабочих температур, достигаемых с расплавом соли по сравнению с к HTF на масляной основе.Анализ показывает, что желобные установки, работающие таким образом, могут производить электроэнергию с меньшими затратами на 14-40% по сравнению с существующими конструкциями нефти и HTF (Turchi et al., 2010), если они могут избежать коррозии и проблем с риском замерзания, связанных с работой с расплавом соли. HTF. Гемасолар Термосолнечная установка, разработанная Torresol Energy в Севилье, Испания, использует эту конструкцию.

Рис. 9. Упрощенные схемы двухбаковых систем прямого и термоклинного ТЭС (Cocco, Serra, 2015).

Источник: Cocco, D., and Serra, F. (2015).Сравнение производительности двух резервуарных систем прямого и термоклинного накопления тепловой энергии для концентрирующих солнечных электростанций класса 1 МВт. Энергетика 81 , 526–536.

Дальнейшее снижение затрат обеспечивает хранение на термоклине с одним резервуаром (рис. 9B). В системе хранения термоклина используется один резервуар, который лишь ненамного больше одного из резервуаров в системе хранения тепла с двумя резервуарами. Когда горячая и холодная жидкость находится в одном резервуаре, система хранения термоклина опирается на тепловую плавучесть для поддержания теплового расслоения.Недорогой наполнитель, который используется для упаковки единственного резервуара для хранения, действует как первичный теплоноситель. За счет замены расплавленной соли недорогим наполнителем и исключения одного резервуара для хранения и связанных с ним затрат на насос, клапаны и трубопроводы, система термоклина потенциально может быть на 20-40% дешевле, чем система хранения с двумя резервуарами (EPRI, 2010).

Преимущества TES многочисленны, а именно. увеличение коэффициента мощности за счет увеличения количества часов работы, гибкости сети и гибкости конфигурации.Система TES часто состоит из трех компонентов: носителя информации, HTF и системы локализации. Высокая эффективность и стабильность, низкая стоимость и низкое воздействие на окружающую среду являются ключевыми факторами при разработке и применении TES. Кроме того, методы системы TES можно классифицировать как: накопление явного тепла, накопление скрытой теплоты и термохимическое накопление. В настоящее время системы TES от 7,5 часов (т.е. проект Andasol I, II и III CSP на базе PTC мощностью 50 МВт в Испании) до 15 часов (проект Gemasolar CSP на базе CRS 19.9 МВт в Испании). Системы TES могут оказать заметное влияние на экономическую жизнеспособность проектов CSP, если будет принят механизм переходных тарифов (т. Е. Более высоких тарифов на мощность ВИЭ во время пикового спроса, которые могут быть обеспечены за счет проектов CSP с использованием систем TES).

Система хранения тепловой энергии — обзор

9.1 Введение

Накопление тепловой энергии (TES) обычно включает временное хранение высокотемпературной или низкотемпературной тепловой энергии для последующего использования.Примерами TES являются хранение солнечной энергии для ночного обогрева, летнего тепла для использования зимой, зимнего льда для охлаждения помещений летом и тепла или холода, генерируемых электрически в непиковые часы для использования в последующие часы пиковой нагрузки. В этом отношении TES во многих случаях является отличным кандидатом для компенсации этого несоответствия между доступностью и потребностью тепловой энергии.

Из многих типов накопителей энергии [1] TES часто оказывается полезным вариантом. Системы TES для нагрева или охлаждения часто используются в приложениях, где возникновение спроса на энергию и спрос на наиболее экономически выгодное энергоснабжение не совпадают.Тепловые накопители используются в энергосберегающих, промышленных, коммерческих и солнечных энергетических системах. Среда для хранения может располагаться в хранилищах различных типов, включая резервуары, пруды, пещеры и подземные водоносные горизонты.

Накопительный носитель в TES может оставаться в одной фазе (так что сохраняется только ощутимое тепло) и / или претерпевать фазовый переход (так что энергия сохраняется в виде скрытой теплоты). Разумные TES (например, системы жидкой воды) демонстрируют изменения температуры в хранилище по мере добавления или удаления тепла.В скрытых TES (например, в системах жидкая вода / лед и системах с эвтектической солью) температура хранения остается фиксированной в течение части цикла хранения с фазовым переходом.

Системы TES используются в широком спектре приложений и предназначены для работы на циклической основе (обычно ежедневно, иногда сезонно). Системы TES достигают преимуществ, выполняя одну или несколько из следующих целей:

Увеличение генерирующей мощности : Спрос на обогрев, охлаждение или электроэнергию редко остается постоянным во времени, а избыточная генерирующая мощность доступна в периоды низкой периоды спроса могут использоваться для зарядки TES, чтобы увеличить эффективную генерирующую мощность в периоды высокого спроса.Этот процесс позволяет установить меньшую производственную единицу (или увеличить мощность без покупки дополнительных единиц) и приводит к более высокому коэффициенту загрузки единиц.

Обеспечить лучшую работу когенерационных установок : Комбинированные теплоэнергетические установки или когенерация, как правило, используются для удовлетворения потребностей подключенной тепловой нагрузки, что часто приводит к избыточной выработке электроэнергии в периоды низкого уровня электроэнергии. использовать. Благодаря включению TES, установка не должна следовать за нагрузкой.Скорее его можно отправить более выгодными способами (с некоторыми ограничениями).

Сдвиг закупок энергии на периоды низких затрат : Это использование является приложением на стороне спроса первой из перечисленных целей и позволяет потребителям энергии, для которых устанавливается ценообразование в зависимости от времени суток, смещать закупки энергии с высоких -к бюджетным периодам.

Повышение надежности системы : Любая форма накопителя энергии, от источника бесперебойного питания небольшого персонального компьютера до большого накопителя с насосом, обычно повышает надежность системы.

Интеграция с другими функциями : В приложениях, где для защиты от пожара требуется накопление воды на месте, может оказаться целесообразным включить накопитель тепла в общий накопительный бак. Точно так же оборудование, предназначенное для решения проблем с качеством электроэнергии, также может быть адаптировано для целей хранения энергии.

Наиболее значительным преимуществом системы TES часто называют ее способность снижать затраты на электроэнергию за счет использования электроэнергии в непиковые периоды для производства и хранения энергии для дневного охлаждения.Действительно, системы TES успешно работают в офисах, больницах, школах, университетах, аэропортах и ​​т. Д. Во многих странах, переводя потребление энергии с периодов пиковых тарифов на электроэнергию в периоды более низких тарифов. Это преимущество сопровождается дополнительным преимуществом в виде более низкой платы за спрос.

Изучив методы оценки и сравнения TES в течение многих лет и недавно объединив результаты [1], авторы пришли к выводу, что, хотя многие технически и экономически успешные тепловые накопители находятся в эксплуатации, нет общепринятой основы для сравнения достигнутой производительности одного. хранение с другим, работающим в других условиях, нашло широкое распространение.Энергоэффективность, отношение энергии, извлеченной из хранилища, к первоначально затраченной энергии, обычно используется для измерения производительности TES. Энергоэффективность, однако, недостаточна, потому что она не принимает во внимание важные факторы, такие как близость производительности к идеалу, продолжительность хранения и температуры подаваемой и рекуперированной тепловой энергии и окружающей среды).

Анализ Exergy обеспечивает информативную, рациональную и значимую альтернативу для оценки и сравнения систем TES.В частности, эксергетический анализ дает значения эффективности, которые обеспечивают истинную меру того, насколько практически фактические характеристики приближаются к идеальным, и более четко, чем анализ энергии, определяют величины, причины и места термодинамических потерь. Следовательно, эксергетический анализ может помочь в улучшении и оптимизации конструкций TES.

Используя информацию из недавней книги авторов по TES [1], в этой главе описывается применение эксергетического анализа к TES и демонстрируется полезность такого анализа для понимания поведения и производительности TES.Обсуждаются ключевые термодинамические соображения при оценке TES, и подробно описывается использование эксергии при оценке системы TES. Выделена связь температуры с эффективностью, а также рассмотрены термическая стратификация, холодная TES и TES водоносного горизонта.

Следует отметить, что постоянно разрабатываются и анализируются новые тепловые накопители, например, система ТЭС на основе твердого газа и термохимического хлорида стронция-аммиака [2], и не все из них могут быть здесь рассмотрены. Кроме того, постоянно ведутся поиски усовершенствований существующих типов аккумуляторов тепла, таких как интегрированная конструкция системы солнечного отопления в коммунальном хозяйстве с использованием скважинных аккумуляторов тепла [3], усовершенствованные разумные конструкции TES [4] и оптимизированные сезонные аккумуляторы для энергосистем на уровне сообществ. [5].Также обратите внимание, что другие типы накопителей энергии, такие как батареи, часто требуют терморегулирования [6], но такие накопители выходят за рамки данной главы.

Новый способ хранения тепловой энергии | MIT News

В большей части развивающегося мира люди получают много тепла от солнца в течение дня, но большая часть приготовления пищи происходит позже вечером, когда солнце садится, с использованием топлива, такого как дрова, щетка или навоз, которые собирают с помощью значительное время и усилия.

Теперь альтернативой может стать новый химический композит, разработанный исследователями Массачусетского технологического института. Его можно использовать для хранения тепла от солнца или любого другого источника в течение дня в виде тепловой батареи, и он может выделять тепло при необходимости, например, для приготовления пищи или обогрева после наступления темноты.

Распространенный подход к аккумулированию тепла заключается в использовании материала, известного как материал с фазовым переходом (PCM), где подводимое тепло плавит материал, а его фазовый переход — от твердого до жидкого — накапливает энергию.Когда PCM снова охлаждается до температуры ниже точки плавления, он снова превращается в твердое тело, и в этот момент накопленная энергия выделяется в виде тепла. Существует множество примеров этих материалов, включая воски или жирные кислоты, используемые для низкотемпературных применений, и расплавленные соли, используемые при высоких температурах. Но все современные PCM требуют большой изоляции, и они бесконтрольно проходят через эту температуру фазового перехода, относительно быстро теряя накопленное тепло.

Вместо этого в новой системе используются молекулярные переключатели, которые меняют форму в ответ на свет; при интеграции в PCM температуру фазового перехода гибридного материала можно регулировать с помощью света, позволяя поддерживать тепловую энергию фазового перехода даже ниже точки плавления исходного материала.

Эта установка с синей светодиодной лампой используется для запуска теплового разряда от крупномасштабных пленок материалов с фазовым переходом. (Мелани Гоник / Массачусетский технологический институт)

На этой неделе в журнале Nature Communications сообщается о новых открытиях, сделанных постдоками Массачусетского технологического института Грейс Хан и Хуашан Ли и профессором Джеффри Гроссманом.

«Проблема с тепловой энергией в том, что ее трудно удержать», — объясняет Гроссман. Поэтому его команда разработала то, что по сути является дополнением к традиционным материалам с фазовым переходом, или «маленькими молекулами, которые претерпевают структурные изменения, когда на них светит свет.«Хитрость заключалась в том, чтобы найти способ интегрировать эти молекулы с обычными материалами PCM для высвобождения накопленной энергии в виде тепла по запросу. «Существует так много приложений, в которых было бы полезно хранить тепловую энергию таким образом, чтобы можно было запускать ее при необходимости», — говорит он.

Исследователи достигли этого, объединив жирные кислоты с органическим соединением, которое реагирует на импульс света. При таком расположении светочувствительный компонент изменяет тепловые свойства другого компонента, который накапливает и высвобождает свою энергию.Гибридный материал плавится при нагревании и после воздействия ультрафиолета остается расплавленным даже после охлаждения. Затем, когда это вызвано другим импульсом света, материал снова затвердевает и возвращает энергию теплового фазового перехода.

«Интегрируя активируемую светом молекулу в традиционную картину скрытого тепла, мы добавляем новый вид ручки управления такими свойствами, как плавление, затвердевание и переохлаждение», — говорит Гроссман, член семьи Мортон и Клэр Гоулдер и семья. Профессор экологических систем, а также профессор материаловедения и инженерии.

Активированный УФ-излучением материал для аккумулирования тепловой энергии демонстрирует быструю кристаллизацию и выделение тепла при освещении видимым светом (синий светодиод). (Grossman Group в Массачусетском технологическом институте)

«Система может использовать любой источник тепла, а не только солнечную», — говорит Хан. «Отработанное тепло широко распространено, от промышленных процессов до солнечного тепла и даже тепла, исходящего от транспортных средств, и обычно оно просто тратится впустую». Использование некоторых из этих отходов может обеспечить способ утилизации этого тепла для полезных применений.

«То, что мы делаем технически, — объясняет Хан, — это установка нового энергетического барьера, так что накопленное тепло не может быть выпущено немедленно». В своей химически сохраненной форме энергия может сохраняться в течение длительного времени, пока не сработает оптический триггер. В своих первоначальных небольших лабораторных версиях они показали, что накопленное тепло может оставаться стабильным в течение как минимум 10 часов, тогда как устройство аналогичного размера, накапливающее тепло напрямую, рассеивает его в течение нескольких минут. И «нет фундаментальной причины, по которой его нельзя настроить на повышение», — говорит Хан.

В системе первоначальной проверки концепции «изменение температуры или переохлаждение, которое мы достигаем для этого материала, аккумулирующего тепло, может достигать 10 градусов C (18 F), и мы надеемся, что сможем пойти дальше», — говорит Гроссман.

Под микроскопом темного поля микромасштабная среда показывает, что быстрый рост кристаллов можно легко контролировать. (Grossman Group в Массачусетском технологическом институте)

Уже в этой версии «плотность энергии весьма значительна, даже несмотря на то, что мы используем обычный материал с фазовым переходом», — говорит Хан.Материал может хранить около 200 джоулей на грамм, что, по ее словам, «очень хорошо для любого материала с органическим фазовым переходом». И уже «люди проявили интерес к использованию этого для приготовления пищи в сельских районах Индии», — говорит она. Такие системы также можно использовать для сушки сельскохозяйственных культур или для обогрева помещений.

«Наш интерес к этой работе состоял в том, чтобы продемонстрировать доказательство концепции, — говорит Гроссман, — но мы считаем, что есть большой потенциал для использования светоактивированных материалов, чтобы нарушить теплоаккумулирующие свойства материалов с фазовым переходом».

«Это очень творческое исследование, ключевым моментом которого является то, что ученые комбинируют материал с термически управляемым фазовым переходом и молекулу с фотопереключением, чтобы создать энергетический барьер для стабилизации накопления тепловой энергии», — говорит Цзюньцяо Ву, профессор материаловедение и инженерия в Калифорнийском университете в Беркли, который не принимал участия в исследовании. «Я считаю, что эта работа важна, поскольку она предлагает практический способ хранения тепловой энергии, что в прошлом было сложной задачей.”

Работа была поддержана Центром технологий и дизайна Тата в рамках энергетической инициативы Массачусетского технологического института.

Как работают тепловые батареи?

Что такое тепловая батарея?

Любую тепловую массу по определению можно назвать тепловой батареей, поскольку она способна накапливать тепло. В контексте дома это означает плотные материалы, такие как кирпич, кладка и бетон. Даже кувшин с водой, стоящий в солнечном окне, является своего рода тепловой батареей, поскольку он улавливает, а затем выделяет тепло от солнца.

Хорошо изолированный бетонный пол также действует как тепловая батарея; после того, как вы накачаете его полным теплом, он долго остынет (в зависимости от толщины), и в течение этого времени он регулирует внутреннюю температуру.

Одно из практических применений для получения максимальной отдачи от излучающего бетонного пола, поскольку тепловая батарея может быть в областях с колеблющимися затратами на электроэнергию — вы можете настроить пол на таймер, чтобы он включался только в часы с низким тарифом (с 19:00 до 7:00 в Онтарио Например). В течение двенадцати часов, когда он выключен, он действует как аккумулятор, медленно выделяя накопленное тепло, поэтому вам не придется платить по более высоким тарифам в часы пик.

MIT Solar House через Викимедиа

По мере того, как вы переходите в зону активных систем аккумулирования тепла, одним из наиболее распространенных типов тепловых батарей (хотя их не так много) является огромный резервуар для воды, закопанный в землю, который нагревается. солнечными тепловыми панелями.

Даже этот тип системы не нов, первый дом в Соединенных Штатах с активной системой солнечного отопления был построен в 1939 году в кампусе Массачусетского технологического института (Массачусетский технологический институт) на вершине огромного резервуара с водой, который нагревается. тепловыми солнечными панелями.

Тепловая батарея MIT Solar House через Викимедиа

Что такое тепловые батареи с фазовым переходом?

Использование «фазового перехода» немного поднимает планку — оставайтесь со мной, это будет весело, обещаю 🙂

Требуется значительный вклад энергии, чтобы заставить материал превратиться из твердого в жидкое. Эта энергия высвобождается позже, когда материал снова затвердевает. Пока происходят эти преобразования и материал либо поглощает, либо выделяет энергию, температура остается постоянной.Как только фазовый переход завершится, материал снова начнет изменять температуру.

Так что это означает в реальном выражении? Это означает, что для того, чтобы растопить воду, воск, металл, камень или что-то еще, вам нужно дать ему тонну энергии. но при этом температура не меняется. Таким образом, ваша «батарея» имеет больше энергии, и вы можете хранить больше тепла в том же объеме пространства.

Трудно воспользоваться температурой плавления 0 ° Цельсия, но воск плавится при температуре около 37 ° Цельсия (в зависимости от его точного химического состава), что идеально подходит для сбора и хранения тепла от солнечных тепловых коллекторов.

Как построить тепловую батарею:

Если у вас есть солнечная панель, собирающая тепло (непосредственно нагревающая воздух или жидкость, а не генерирующая энергию с помощью фотоэлектрических элементов), вы можете использовать ее для зарядки своей тепловой батареи. Представьте себе это — большой резервуар с воском (или водой), который нагревается нагревательными змеевиками солнечного коллектора. Через этот же резервуар проходит другой змеевик, который отбирает тепло, чтобы перекачивать его через ваш лучистый пол или любую другую систему распределения тепла, которая у вас есть.

Удельная теплоемкость:

Если вы возьмете твердый парафин (теплоемкость Cp = 2,5 кДж / кг · K и теплота плавления 210 кДж / кг), скажем, 1 кг, при комнатной температуре вам потребуется 2,5 кДж (килоджоулей) тепла, чтобы Блок 1 кг выдерживает температуру от 20 ° C до 21 ° C. Чтобы температура повысилась с 21 ° C до 22 ° C, вам также потребуется 2,5 кДж (то есть такое же количество энергии).

Парафин плавится примерно при 37 ° C. Если она упадет до 36 ° C, вам снова потребуется всего 2,5 кДж, чтобы вернуть ее к 37 ° C, но вам потребуется 210 кДж (в 84 раза больше), чтобы перейти с 37 до 38 ° C.

Это связано с тем, что для того, чтобы расплавиться, необходимо разорвать некоторые химические связи в твердой решетке, а этот процесс требует дополнительной энергии. Итак, в целом, если килограмм парафина лежит при температуре 20 ° C, вам потребуется 252,5 кДж, чтобы довести его до 38 ° C.

Бетон является одним из наиболее распространенных строительных материалов с высокой теплотворной способностью. В отличие от парафина, 1 кг бетона (Cp = 0,88 кДж / кг · K) потребует 15,8 кДж, чтобы сделать то же самое. Для воды (Cp = 4,18 кДж / кг · K) необходимое количество энергии составит 75.2 кДж.

Количество вложенной энергии — это количество энергии, хранящейся в материале, поскольку эта энергия позже будет высвобождаться, когда материал снова охладится до 20 ° C или комнатной температуры. Хотя существует множество материалов, которые можно использовать для аккумулирования тепла, это всего лишь краткое сравнение некоторых из наиболее широко доступных.

Итак, парафин может сохранять в 16 раз больше тепла на килограмм, чем бетон, и в 3,4 раза больше, чем вода. Таким образом, хотя вода может быть не лучшим материалом для хранения тепла, она, безусловно, является наиболее доступной по цене и легкодоступной.

Значение Cp, указанное в тексте выше, относится к теплоемкости материалов.

q = м Cp ΔT

где:

q = энергия [Дж]

m = масса материала [кг]

Cp = теплоемкость материала [кДж / (кг · K)]

ΔT = разница температур [K или ° C]

Подробнее о проектировании пассивных солнечных домов здесь

Схема тепловой батареи любезно предоставлена ​​компанией Alternative-Photonics.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *