Menu Close

Какой уклон трубы отопления при естественной циркуляции: Уклон труб отопления при естественной циркуляции

Уклон труб в системе отопления

Уклон труб – важный критерий, зачастую влияющий на эффективность работы, ремонтопригодность и безопасность систем отопления водяного или парового типа. В зависимости от вида и схемы комплекса обогрева выбирается соответствующий конкретным условиям уклон трубопроводов – обзору этого вопроса и посвящен материал данной статьи.

Значение уклона труб в отоплении

Уклон трубопроводов в системах водяного и парового отопления имеет различные значения и участвует в решении следующих технических задач:

  1. Обеспечение естественной циркуляции теплоносителя под воздействием силы гравитации;
  2. Вывод из системы воздуха;
  3. Возможность слива теплоносителя из оборудования и трубопроводов;
  4. Обеспечение безаварийного движения конденсата в паровых системах отопления.

Уклон труб в схеме с естественной циркуляцией теплоносителя

 

Движение теплоносителя в комплексах с естественной циркуляцией теплоносителя обеспечивается за счет разницы плотностей холодной и горячей воды.

Соблюдение уклона здесь является сопутствующим фактором, улучшающим режим движения теплоносителя – под воздействием гравитации вода перемещается по трубам несколько быстрее. Горизонтальное расположение или обратный уклон в открытых схемах не допускается – возможна полная остановка циркуляции.

Нормативное значение уклона труб в схеме с гравитационной циркуляцией варьируется от 5 до 10 мм на 1 метр погонной длины трубопровода. При монтаже трубы прокладываются с уклоном в сторону движения теплоносителя – прямой трубопровод наклонен к отопительным приборам, обратная магистраль сооружается с уклоном от отопительных приборов к котлу, расположенному в нижней точке системы. Вторая задача уклона в системе открытого типа – обеспечение слива оборудования через нижнюю точку, расположенную около котла.

Уклон в системе с принудительной циркуляцией

В системах с принудительной циркуляцией, обеспечиваемой силой напора циркуляционного насоса, уклон труб имеет 3 вариации:

  1. Горизонтальное расположение магистралей;
  2. Уклон в сторону движения теплоносителя;
  3. Обратный уклон.

Горизонтальная ориентация трубопроводов разрешена при нормативном значении движения теплоносителя не менее 0, 25 м/с – в этом случае пузырьки воздуха уносятся силой потока и не скапливаются в крупные объемы. Здесь следует отметить, что горизонтальная компоновка труб ухудшает качество и скорость слива теплоносителя при подготовке оборудования к ремонту.

Второй вариант – уклон магистралей в сторону движения теплоносителя. Его величина обычно составляет 2 – 3 мм на 1 метр длины трубопровода – такое значение препятствует образованию скопления воздуха и улучшает возможности по сливу воды.

Обратный уклон в системах с принудительной циркуляцией теплоносителя также допускается – но в этом случае в верхних точках и «мешках» устанавливаются воздухоотводящие устройства, прямые и подающие линии прокладываются с параллельным уклоном. Во всех случаях – при попутном или обратном наклоне общий уклон магистралей ориентируют к общей точке слива теплоносителя.

В паровых системах, где теплоноситель (пар) сам обладает движущей силой, уклон трубопроводов соблюдают в сторону движения рабочей среды. Это необходимо для попутного движения образующегося конденсата вместе с паровой фазой – обычно величина уклона здесь составляет 1 – 2%. В ином случае при работе оборудования могут наблюдаться гидравлические удары, способные разгерметизировать или разрушитель трубопроводы и рабочие узлы.

(Просмотров 567 , 1 сегодня)

Рекомендуем прочитать:

Системы отопления с естественной циркуляцией

Системы водяного отопления частного дома может быть реализовано с естественной или принудительной циркуляцией. От выбранного режима движения теплоносителя по трубам и радиаторам в значительной мере зависят характеристики и особенности эксплуатации системы. Традиционным вариантом, который используется уже в течение многих десятилетий, является система отопления с естественной циркуляцией теплоносителя.

Такие системы применяются еще с тех пор, когда единственным доступным вариантом котельного оборудования для частного дома был простой твердотопливный котел. Достаточно широко самотечные системы распространены и сегодня.

В каталоге ТМ Ogint представлены эффективные радиаторы, комплектующие и дополнительные устройства для создания систем с естественной циркуляцией. Предлагаемая продукция позволит обеспечить максимально эффективную и надежную работу отопления.

Состав системы

Отопительная система с естественной циркуляцией (или система гравитационного типа) состоит из следующих основных компонентов:

  • котел. Возможно применение любых типов котлов за исключением электрических;
  • трубопровод;
  • радиаторы. В качестве отопительных приборов могут использоваться все виды радиаторов Ogint, которые обеспечат максимальную теплоотдачу и эффективную работу системы;
  • расширительный бак открытого типа.

Принцип действия

Принцип работы основан на разнице термодинамических характеристик нагретого и остывшего теплоносителя. Движение теплоносителя обеспечивается за счет его нагрева котлом.

При нагреве теплоноситель расширяется. Таким образом, горячая вода на выходе из котла имеет низкую плотность, а значит и меньший вес. При прохождении через систему радиаторов вода отдает свое тепло и охлаждается. Плотность холодной воды выше, а значит и выше ее вес. В результате создается разница давления в подающей и обратной магистралях, достаточная для циркуляции теплоносителя.

Более тяжелая вода из обратки вытесняет нагретую котлом воду. В свою очередь, горячий теплоноситель, обладающий меньшей плотностью, легко поднимается вверх по центральному стояку. Подающий трубопровод располагается в верхней части помещения. Вода распределяется по радиаторам, остывает и направляется в обратную магистраль. Так обеспечивается цикл движения теплоносителя.

Очень важно соблюсти уклон при монтаже трубопроводов. Это необходимо для нормальной гравитационной циркуляции теплоносителя. Наклон труб должен иметь величину не менее 0,005 м на погонный метр. Наклон подающего трубопровода должен иметь направления от котла, а обратного трубопровода — к котлу.

Чтобы теплоноситель эффективно циркулировал в системе, его расширение должно быть довольно значительным. Поэтому обязательным является использование расширительного бака достаточно большого объема, в который поднимаются излишки разогретого теплоносителя.

Бак размещается, как правило, на неотапливаемом чердаке и не закрывается крышкой. В связи с этим самотечную систему также называют открытой. Размещение бака вверху дает создает дополнительное давление, что улучшает движение теплоносителя.

Для монтажа трубопроводов могут использоваться различные схемы разводки. В том числе может применяться однотрубная система «ленинградка» и традиционная двухтрубная система. Отопление работает лучше при использовании двухтрубной схемы. Что касается выбора батарей, то оптимальным решением будут чугунные радиаторы Ogint за счет небольшого гидравлического сопротивления. Также можно использовать биметаллические радиаторы Ogint.

Преимущества и недостатки систем с естественной циркуляцией

По сравнению с закрытой системой с принудительной циркуляцией, самотечная система является более простой и надежной. Для нее характерны следующие преимущества:

  • простота в эксплуатации, обслуживании и ремонте;
  • бесшумная работа;
  • повышенная надежность. В системе отсутствует циркуляционный насос, который может изнашиваться и выходить из строя;
  • движение теплоносителя за счет разницы температур обеспечивает способность к саморегуляции системы, что дает равномерный прогрев помещений;
  • энергонезависимость. В отличие от закрытых систем, а также от таких альтернативных решений, как теплые полы или электрические конвекторы, самотечная система может работать без электроснабжения.

Однако имеют такие системы и ряд серьезных недостатков. Даже небольшая ошибка в расчете может привести к тому, что теплоноситель не будет нормально циркулировать.

Также необходимость соблюдения уклона обуславливает достаточно сложный монтаж. Для циркуляции теплоносителя необходимо использовать трубы большого диаметра, что приводит к повышению затрат.

Вода в расширительном баке испаряется, поэтому необходимо регулярно контролировать ее уровень. Также за счет открытого бака теплоноситель поглощает атмосферный воздух. Это может привести к завоздушиванию системы. Решить эту проблему позволяют комплектующие ТМ Ogint (краны Маевского для сброса воздуха и другие воздухоотводчики). Кроме того, открытый бак не дает возможности применять в качестве теплоносителя антифриз.

Характерной проблемой самотечных систем является то, что даже кратковременные перерывы в работе котла могут приводить к замерзанию воды в расширительном бачке и трубопроводах, что становится причиной аварии. Для предотвращения таких ситуаций может использоваться термоаккумулятор.

Система с естественной циркуляцией может использоваться только при ограниченной длине трубопроводов. Она подходит для обогрева только небольшого одноэтажного здания. Если необходимо обогреть двухэтажный дом с большим количеством помещений, то самотечная система с этой задачей не справится.

схема для частного дома, закрытая и открытая, однотрубная и двухтрубная система, уклон, расчет

Содержание:

Для владельцев частных домов можно назвать актуальным вопрос, касающийся устройства системы отопления с естественной циркуляцией. Кроме того их интересует, в каких системах можно не использовать циркуляционный насос, а когда это устройство является необходимым. Для начала важно разобраться, что представляют собой системы подобного типа.


Основные характеристики и принцип работы

Хотя и схема отопления одноэтажного дома с принудительной циркуляцией достаточно эффективна, но у нее есть и минусы. В отличие от систем с принудительным движением воды, в которых основную работу выполняет дополнительное оборудование, схема отопления частного дома с естественной циркуляцией более простая и доступная. В ее основе лежит способность воды расширяться при нагревании.

Функционирует такая отопительная система по следующему принципу:

  • В котле нагревается определенное количество воды. Согласно законам физики более теплая вода поднимается вверх и самотеком движется по системе, отдавая тепло батареям и радиаторам.
  • В процессе подъема к верхнему уровню системы теплоноситель остывает и в таком состоянии вновь поступает в котел. Система отопления частного дома с естественной циркуляцией не исключает врезку специального устройства, которое способствует быстрому перемещению воды и более равномерному прогреву всех батарей и радиаторов. При аварийном отключении электричества система может работать в естественном режиме.

Особенности устройства системы отопления в частном доме

Системы подобного типа имеют некоторые особенности, в частности речь идет о следующем:

  • Отсутствуют подвижные элементы, в том числе и устройства для принудительной циркуляции рабочей среды, и контур замкнутого типа, в котором соли, минералы и различные взвеси присутствуют в определенном количестве. Эти факторы способствуют продлению срока службы системы. А использование труб из оцинкованной стали или современных полимерных материалов и биметаллических приборов отопления способствует увеличению эксплуатационного периода до 50 лет.
  • Радиус открытой системы отопления с естественной циркуляцией должен составлять 30 метров. Это объясняется довольно небольшим перепадом давления, характерного для подобных систем. Кроме того со стороны труб и радиаторов отопления теплоноситель также испытывает определенное сопротивление. Однако это не является запретом для использования большего радиуса системы, указанные значения являются условными.
  • Система с естественной циркуляцией теплоносителя характеризуется большой инерционностью. От запуска или растопки котла до достижения комфортной температуры в помещении проходит несколько часов. Это происходит из-за некоторых особенностей системы: вначале прогревается теплообменник, а затем вода, которая начинает довольно медленно циркулировать по системе.
  • Горизонтально расположенные участки трубопровода должны располагаться с определенным уклоном. Только в этом случае обеспечивается минимальное сопротивление свободно перемещающейся остывающей воде. Для отвода воздушных пробок в системе монтируют расширительный бачок, который может быть полностью герметичным, как в схеме закрытой системы отопления с естественной циркуляцией, или открытым.

Отопление с естественной циркуляцией можно назвать саморегулирующей системой, с понижением температуры воздуха теплоноситель циркулирует быстрее.


На циркуляционный напор оказывают влияние следующие факторы:

  • Расстояние по высоте между котлом и нижним радиатором. Здесь работает принцип сообщающихся сосудов: вода быстрее переливается в котел, расположенный ниже по отношению к самому нижнему прибору отопления. Этот параметр остается неизменным на протяжении всего времени работы системы.
  • Разная плотность воды на выходе из котла и в обратной трубе, определяющаяся температурой воды. Благодаря этому фактору происходит саморегулирование: с понижение температуры воздуха в помещении остывают и радиаторы. Это приводит к увеличению плотности теплоносителя и более быстрому вытеснению нагретой воды.

Факторы, определяющие скорость циркуляции

Скорость движения теплоносителя по системе отопления зависит не только от напора, на это оказывают влияние следующие факторы:

  • Диаметральное сечение труб системы отопления. По тонкой трубе теплоноситель движется с большим сопротивлением, поэтому следует собирать систему из труб с завышенным диаметром.
  • Материал, из которого изготовлены трубы системы отопления. Гладкая внутренняя поверхность полипропиленовых труб оказывает меньшее сопротивление движению теплоносителя, чем внутренние стенки стальной трубы, особенно имеющие признаки коррозии или известковые отложения.
  • Количество поворотов и их радиус. Схема отопления с естественной циркуляцией теплоносителя должна характеризоваться меньшим количеством поворотов.
  • Наличие и количество запорной арматуры. Различные краны, шайбы и переходники служат препятствием на пути свободно двигающейся воды.

Производя расчет системы отопления с естественной циркуляцией, важно учитывать большое количество переменных. Это приводит к тому, что получить точные результаты практически невозможно.

Правила расчета мощности котла

Рассчитать требуемую мощность котла для системы водяного отопления с естественной циркуляцией можно следующими способами:

  • По площади отапливаемого помещения. Санитарные Нормы и Правила рекомендуют использовать 1 кВт мощности котла для обогрева площади в 10 м2. В этом случае следует применять коэффициент, который в южных регионах равен 0,7-0,9, в северных районах – 1,5-2, а в средней части – 1,2-1,3. Применение этого способа позволяет не принимать во внимание высоту потолков в помещении, потери тепла через дверные и оконные проемы, а также расположение комнаты относительно внешних стен.
  • По объему воздуха в помещении. Этот способ позволяет получить более точные результаты расчетов. Исходным значением является 40 Вт мощности на 1 м3 объема воздуха в комнате, также применяются приведенные выше коэффициенты. На каждый оконный проем добавляется по 100 Вт, на дверной проем – по 200 Вт. Если комната расположена у внешней стены, то следует применить коэффициент 1,1-1,3. В этом случае следует учитывать материал и толщину стен. Для схемы отопления одноэтажного дома с естественной циркуляцией применяют коэффициент 1,5.

Схемы, используемые для разводки труб

Система отопления с естественной циркуляцией может собираться по разным схемам. Для самостоятельного монтажа лучше использовать самые простые варианты двухтрубной и однотрубной системы отопления с естественной циркуляцией.


Схема двухтрубной разводки с естественной циркуляцией

Схема отопления такого типа предполагает наличие следующих элементов в системе:

  • Отопительный котел, в котором происходит непосредственное нагревание теплоносителя.
  • Расширительный бак, который компенсирует изменения объема теплоносителя и служит своеобразным накопителем для вытесненного воздуха.
  • Приборы отопления, к которым относятся конвектора и радиаторы.

Монтаж двухтрубной системы отопления с естественной циркуляцией предполагает применение перечисленных выше условий:

  • Установка котла на более низком уровне относительно приборов отопления.
  • Соблюдение определенной степени уклона системы отопления с естественной циркуляцией для свободного течения теплоносителя. Чаще всего это значение составляет 5-7 градусов.
  • Основной трубопровод, к которому подключаются несколько радиаторов, монтируется из полимерной или металлопластиковой трубы диаметром не меньше 32 миллиметра. Для изготовления подводов к приборам отопления следует использовать трубы ДУ20. При этом следует знать, что ДУ  примерно равна внутреннему сечению трубы, а не внешнему. К примеру, полипропиленовая труба, внешний диаметр которой равен 32 мм, соответствует ДУ20.

При правильном подборе диаметра труб система отопления с естественной циркуляцией двухтрубного типа не нуждается в балансировке. При этом использование дросселей на отводах к приборам отопления даст положительный эффект.

Однако стоит учесть, что двухтрубная система отопления одноэтажного дома с естественной циркуляцией, установленная по всему периметру дома, требует достаточно больших финансовых вложений. Это объясняется высокой ценой на пропиленовые армированные трубы, а также долгим и трудоемким монтажом. Поэтому в большинстве случаев владельцы частных строений применяют однотрубную разводку.

Особенности монтажа однотрубной системы

В процессе монтажа системы отопления по однотрубной схеме важно учитывать следующие моменты:

  • Использование трубных изделий определенного диаметра.
  • Соблюдение уклона трубы отопления при естественной циркуляции по всему периметру системы.
  • Врезка радиаторов параллельно основному трубопроводу, не разрывая его. В этом случае не стоит беспокоиться об отсутствии циркуляции в приборах отопления, многолетние исследования доказали эффективность работы системы, собранной по однотрубной схеме.
  • Расширительный бачок и каждый отопительный прибор должен оснащаться устройством для спуска воздуха. Особенно это касается систем закрытого типа, которые изолированы от атмосферного воздуха. Однако существует еще одна особенность таких систем: при неполном стравливании воздуха с одного из радиаторов расширительный бак можно исключить из системы.
  • Установка на отопительные приборы дросселей и терморегуляторов помогает равномерно распределить тепло между радиаторами, расположенными в непосредственной близости к котлу и самыми дальними приборами отопления.

Сечение труб является одним из решающих факторов для циркуляции: диаметр труб не должен быть максимально большим, но и не должен мешать течение воды. Как правило, для обогрева частного дома необходимо 100 Вт /м2. Тогда для отопления 25 м2 требуется 2500 Вт, т.е. 2,5 кВт. Определенному диаметру трубы соответствует своя тепловая нагрузка. Три основные категории:

  • диаметр в ½ дюйма – тепловой эквивалент 5,5 кВт;
  • диаметр ¾ дюйма – тепловой эквивалент 14,6 кВт;
  • диаметр 1 дюйм – тепловой эквивалент 29,3 кВт.

В данном случае для обогрева одноэтажного дома в 25 м2  нужно использовать самые небольшие трубы диаметром в ½ дюйма. Материалы, из которых изготавливают трубы, могут быть разными: качественная сталь, популярны также трубы из полипропилена.

Системы отопления с естественной циркуляцией: особенности и принципы построения

Автор Евгений Апрелев На чтение 6 мин Просмотров 1к. Обновлено

Несмотря на «пророчества» большинства специалистов-теплотехников в 70-х годах прошлого столетия, отопительные системы, в которых теплоноситель перемещается самотеком (гравитационные), успешно применяются и в XXI веке. Почему данный факт имеет место, какие силы заставляют теплоноситель перемещаться по контуру, что нужно знать чтобы создать такую систему отопления (СО) и будет темой нашей публикации.

Механизм естественного перемещения теплоносителя

Прежде всего, давайте разберемся, почему гравитационные СО так популярны в нашей стране. На это существует две основных причины:

  1. Система водяного отопления с естественной циркуляцией – энергонезависима, а в нашей стране (и большинстве стран СНГ) существуют районы, в которых перепады с электроснабжением являются нормой.
  2. Отсутствие насоса, сложного электронного оборудования достаточно сильно удешевляет сметную стоимость системы отопления, что является немаловажным фактором для многих застройщиков.

Действительно, принцип работы данной СО не требует механизмов, которые заставляют теплоноситель перемещаться по трубам. Он основан на физическом принципе расширения жидкостей при их нагревании. Работает система просто: в теплообменнике котла происходит нагрев воды. Расширяясь, она поднимается по стояку после чего начинает самотеком перемещаться по подающему трубопроводу, который смонтирован под уклоном. Из магистральной трубы вода попадает в радиатор, проходит его изгибы и возвращается в обратную магистральную трубу, которая также смонтирована под уклоном, но уже к котлу.

Естественная циркуляция воды в системе отопления обеспечивается расширением горячего теплоносителя и правильным монтажом отопительного контура

На рисунке показана простейшая гравитационная схема обогрева, состоящая из:

  • Котельной установки, которая может быть газовой, электрической, жидко – или твердотопливной.
  • Контура. Магистральную трубу рекомендуется использовать большого диаметра (например, 1 дюйм с четвертью), а отводы на отопительные приборы, диаметром не менее ¾ дюйма. Чем больше диаметр – тем меньше сопротивление движению теплоносителя.

Важно! Больший диаметр трубопровода подразумевает больший объем теплоносителя. Чем его больше, тем медленнее происходит прогрев контура! Именно поэтому перед созданием гравитационной СО следует провести расчет диаметра трубы на каждом участке контура.

  • Радиаторов. Их в системе может быть до 10 шт. Важным является правильный подбор количества секций, материала, и схемы их включения в контур.
  • Расширительного бака, который служит для компенсации теплового расширения теплоносителя и отвода воздушных пробок.

Чаще всего в СО с естественной циркуляцией применяются бачки открытого типа (атмосферные). Есть схемы, в которых используются устройства закрытого типа (мембранные), что и определяет название – закрытая система отопления с естественной циркуляцией. Во-первых при чрезмерном давлении, лишняя вода из контура стравливается в дренаж; во-вторых тепловое расширение теплоносителя компенсируется мембраной.        

Кроме перечисленного оборудования, в данной СО используются запорные шаровые краны, которые служат для замены отопительных приборов без вывода системы из рабочего состояния.

Исходя из вышесказанного можно сделать вывод о недостатках данной СО:

  • Масса нюансов при монтаже: уклон, эффективная схема подсоединения батарей и пр.
  • Сложная балансировка.
  • Сравнительно небольшая протяженность контура (до 30 м.)
  • Не самый привлекательный внешний вид. Конструкция предполагает прокладку подающего трубопровода по стене в верхней части помещения, а обратного – по нижней.

Совет: Можно разместить подачу на чердаке, а обратку под полом, но тогда котел нужно опустить ниже последнего радиатора и принять все меры к тщательному утеплению контура.

Популярные гравитационные схемы

Как уже отмечалось выше, простейшие самотечные системы отопления – не эффективны и сложны в настройке. Именно поэтому их в неизменном виде практически не применяют. Еще в середине прошлого века стала широко применяться модернизированная схема естественного отопления – «Ленинградка».

Модернизации коснулись способы присоединения батарей к контуру. Кроме этого, в данной схеме появились перемычки под радиаторами (байпасы). Существуют гравитационные схемы СО с горизонтальным и вертикальным расположением контура, одно — и двухтрубные с различными вариантами подключения радиаторов.

  • Однотрубные схемы предполагают наличие одной закольцованной магистральной трубы, к которой радиаторы подключаются последовательно.  На рисунке представлена однотрубная система отопления Ленинградка с естественной циркуляцией закрытого типа.
  • В двухтрубных, контур состоит из двух труб: подачи и обратки. При такой схеме радиаторы к контуру подключаются параллельно. На рисунке ниже показано подключение радиаторов к двухтрубному контуру.
  • Горизонтальные СО имеют лежаки, по которым осуществляется подача и отвод теплоносителя.
  • В вертикальных схемах применяются стояки, через которые теплоноситель подводится к батареям и обводится в обратную магистраль.

Кроме этого, существуют различные способы прокладки магистрали: а) тупиковая и б)с попутным движением теплоносителя.

На эффективность отопления влияет и способ подключения радиаторов, особенно это касается однотрубной системы отопления с естественной циркуляцией.

Как видно из рисунка, наиболее эффективным способом является диагональное подключение радиаторов.

Тонкости выбора оборудования

Выбор наиболее подходящей гравитационной схемы, расчеты и подбор оборудования стоит доверить профессионалам. Многие застройщики, выбравшие для обогрева дома самотечную СО, предпочитают подбор оборудования делать самостоятельно не переплачивая дорогостоящим специалистам.

  1. Подбор котла. Как уже говорилось выше, котел для гравитационных систем обогрева может быть практически любого типа. Единственное, при естественной циркуляции нельзя создавать многоконтурную схему. Что касаемо топлива – выбирайте установку, которая работает на наиболее доступном для вашего региона топливе. Мощность установки рассчитывается исходя из теплопотерь каждого отапливаемого помещения.
  2. Материал трубопровода. В принципе, вы можете использовать сталь, медь и современный полипропилен. Единственное, что нужно знать: твердотопливные котлы нагревают теплоноситель до температур, при которых ни о каком полипропилене не может быть и речи – только сталь или медь.

Совет: Контур из стальных труб требует сложных сварочных работ; медь достаточно дорогостоящий материал; полипропилен теряет форму при температуре более 80°С. Мы рекомендуем использовать для создания естественного отопления армированный полипропилен, который не дорог, имеет небольшую массу, легко монтируется и не теряет форму.

  1. Подбор диаметра трубопровода – это достаточно сложный процесс, требующий знаний и сложных вычислений. Если вы решили самостоятельно рассчитать необходимый диаметр контура, то воспользуйтесь специальным программным обеспечением или таблицами подбора, которые можно найти в теплотехнической литературе.
  2. Емкость расширительного бака зависит от количества теплоносителя и коэффициента расширения теплоносителя. Скажем сразу, что для водяного отопления нужен бак, с емкостью в 10% от количества воды в системе.

И последнее: для создания эффективной отопительной системы с естественной циркуляцией обратитесь к профессионалам. Грамотно созданный и настроенный обогрев будет вам служить десятилетия, без какого-либо вашего вмешательства с вашей стороны.

Однотрубное отопление без насоса

Чтобы в построенном загородном доме можно было жить в любое время года, он нуждается в качественном отоплении. Среди большого разнообразия отопительных приборов подчас бывает сложно определиться, что именно нужно в той или иной ситуации. Одним из самых простых вариантов, которые возможно обустроить самостоятельно, является система отопления без насоса, то есть с естественным типом циркуляции теплоносителя. Именно о таком типе отопления мы и расскажем далее в материале.

В каких случаях без насоса можно обойтись

Движение теплоносителя внутри отопительного контура происходит под воздействием законов физики. Это значит, что нагреваясь, жидкость поднимается вверх, а по мере остывания – вновь опускается, обеспечивая тем самым обогрев помещения.

Более всего система отопления без циркуляционного насоса востребована именно в загородных домах и на дачах, поскольку в условиях пригорода электроснабжение не всегда бывает стабильным или отсутствует вовсе. В связи с этим оборудование отопления с принудительным типом циркуляции нецелесообразно.

Примечательно, что отопление с естественной циркуляцией теплоносителя вполне возможно обустроить самостоятельно. К тому же, такой системой очень удобно пользоваться.

Строение и разновидности систем с естественным типом циркуляции

Обычно схема отопления без насоса включает перечень обязательных компонентов:

  • нагревательный прибор – котел или печь, которую можно топить доступным в том или ином регионе видом топлива;
  • расширительный бачок, который позволяет сбросить лишнее давление или долить воды в отопительный контур;
  • трубы, образующие контур, по которому будет двигаться вода в системе;
  • батареи, которые позволяют более качественно обогреть помещение за счет увеличения площади теплоотдающей поверхности.

Диаметр труб для отопления с естественной циркуляцией будет несколько большим, чем при условии применения циркуляционного насоса.

Исходя из того, какой именно теплоноситель будет использоваться, системы отопления с естественной циркуляцией могут быть водяными или паровыми.

Приведем отличительные особенности каждого из типов отопления.

Отопление с водой в качестве теплоносителя

Функциональные особенности водяных отопительных систем с естественным типом циркуляции теплоносителя определяются рядом характеристик.

Исходя из того, какой расширительный бак используется для обустройства системы отопления с естественной циркуляцией теплоносителя, различают:

  1. Системы открытого типа. В данном случае расширительный бак устанавливают как можно выше, чтобы создать избыточное давление в расширительном бачке. Кроме того, благодаря этому можно избавиться от воздушных пробок в отопительном контуре. Время от времени через открытый расширительный бак в трубы доливают воду, частично испарившуюся в процессе эксплуатации отопления.
  2. Системы закрытого типа. В таком отоплении с естественной циркуляцией расширительный бак заменен специальным мембранным гидроаккумулирующим баллоном. Он обеспечивает дополнительное давление в контуре в пределах 1,5 атмосфер. В целях безопасности системы такой конструкции обычно оборудуют блоком с манометром, задача которого состоит в корректировке давления внутри трубопровода.

Еще один принципиальный момент, который отличает конструкции отопительных систем с естественным типом циркуляции воды, состоит в схеме подключения нагревательных элементов.

По способу подключения отопительных приборов к газовому котлу без насоса можно выделить такие варианты:

  1. Однотрубная разводка отопления. При таком типе отопления выполняется последовательное подключение всех радиаторов к одной и той же трубе. То есть, вода проходит сквозь каждый последующий отопительный прибор и только после этого движется дальше. Среди достоинств оборудования однотрубной разводки можно назвать простоту ее монтажа, а также низкую материалоемкость.
  2. Двухтрубная разводка в системе отопления с естественным типом циркуляции. В данном случае все радиаторы, которые входят в состав системы отопления, подключаются к трубопроводу параллельно. При этом температура теплоносителя, который попадает в каждый радиатор, одинаковая. После того, как вода пройдет через весь радиатор и остынет, по обратной трубе она возвращается в теплообменник котла.

Считается, что двухтрубная схема разводки является наиболее целесообразной с точки зрения эффективности обогрева жилья. Правда, чтобы оборудовать такую систему, потребуется достаточно много труб и доборных элементов для монтажа отопительного контура.

Стоит отметить, что определяясь, как сделать отопление без насоса, учитывайте свои практические навыки, а также финансовые возможности для приобретения расходников.

Паровой тип отопления

Некоторые потребители путают паровое отопление с водяным. В сущности, эти системы очень похожи, за исключением того, что теплоносителем служит пар, а не вода.

Внутри отопительного котла системы с естественным типом циркуляции вода нагревается до температуры кипения и преобразуется в пар, который затем перемещается в трубопровод и далее подается к каждому радиатору в контуре.

В конструкцию паровой системы отопления с естественной циркуляцией теплоносителя входят такие компоненты:

  • специальный отопительный котел, внутри которого вода нагревается до температуры кипения, и аккумулируется пар;
  • клапан для выпуска пара в систему отопления;
  • трубопровод;
  • отопительные радиаторы.

Обратите внимание, что паровой тип отопительной системы эксплуатируется в условиях очень высоких температур, поэтому применять пластиковые трубы для выполнения трубопровода категорически нельзя.

Классификация отопления парового типа по схемам разводки и другим критериям точно такая же, как и у водяных отопительных систем. В последнее время используют и бойлер для отопления частного дома, что тоже имеет свои преимущества.

Как правильно монтировать отопление

Чтобы готовая система отопления с естественным типом циркуляции функционировала правильно и эффективно, при ее монтаже важно придерживаться некоторых правил.

В целом схема установки выглядит так:

  • Радиаторы отопления необходимо установить под окнами, желательно на одном уровне и с соблюдением необходимых отступов.
  • Далее устанавливают теплогенератор, то есть выбранный котел.
  • Монтируют расширительный бак.
  • Выполняют разводку труб и стыкуют зафиксированные ранее элементы в единую систему.
  • Отопительный контур наполняют водой и выполняют предварительную проверку герметичности соединений.
  • Заключительный этап состоит в запуске отопительного котла. Если все работает правильно, значит, в доме будет тепло.

Обратите внимание на некоторые нюансы:

  1. Котел должен быть расположен в самой нижней точке системы.
  2. Монтаж труб необходимо выполнять с уклоном в сторону обратного потока.
  3. Поворотов в трубопроводе должно быть как можно меньше.
  4. Для повышения эффективности отопления необходимы трубы с большим диаметром.

Надеемся, данная статья будет для вас полезной, и вы сможете самостоятельно смонтировать систему отопления без циркуляционного насоса в вашем загородном доме.

Система с гравитационной циркуляцией чувствительна к ошибкам, допущенным во время монтажа отопления.

Принцип работы системы с естественной циркуляцией

  • Простой монтаж и обслуживание.
  • Отсутствие необходимости в установке дополнительного оборудования.
  • Энергонезависимость – во время работы не требуются дополнительные расходы на электроэнергию. При отключении электричества, система обогрева продолжает работать.

Принцип работы водяного отопления, с использованием самотечной циркуляции, основан на физических законах. При нагревании уменьшается плотность и вес жидкости, а при остывании жидкостной среды, параметры возвращаются в первоначальное состояние.

При этом, давление в системе отопления практически отсутствует. В теплотехнических формулах принимается соотношение 1 атм., на каждые 10 м. напора водяного столба. Расчет системы отопления 2-х этажного дома покажет, что гидростатическое давление не превышает 1 атм., в одноэтажных зданиях 0,5-0,7 атм.

Так как при нагреве жидкость увеличивается в объеме, для естественной циркуляции, обязательно потребуется расширительный бак. Вода, проходящая через водяной контур котла, нагревается, что приводит к увеличению в объеме. Расширительный бачек должен находиться на подаче теплоносителя, в самом верху системы отопления. Задачей буферной емкости является компенсация увеличения объема жидкости.

Система отопления с самоциркуляцией может применяться в частных домах, делая возможным следующие подключения:

  • Подсоединение к теплым полам – требует установить циркуляционный насос, только на водяной контур, уложенный в пол. Остальная система продолжит работать с естественной циркуляцией. После отключения электричества, помещение продолжит отапливаться с помощью установленных радиаторов.
  • Работа с бойлером косвенного нагрева воды – подключение к системе с естественной циркуляцией возможно, без необходимости в подключении насосного оборудования. Для этого бойлер устанавливают в верхней точке системы, чуть ниже воздушного расширительного бака закрытого или открытого типа. Если это невозможно, тогда насос устанавливают непосредственно на накопительную емкость, дополнительно устанавливая обратный клапан, чтобы избежать рециркуляции теплоносителя.

Виды систем отопления с гравитационной циркуляцией

Несмотря на простое устройство системы водяного отопления с самоциркуляцией теплоносителя, существует как минимум четыре, пользующихся популярностью, схемы монтажа. Выбор типа разводки зависит от характеристик самого здания и ожидаемой производительности.

Чтобы определить, какая схема будет работоспособной, в каждом отдельном случае требуется выполнить гидравлический расчет системы, учесть характеристики отопительного агрегата, рассчитать диаметр трубы и т.п. При выполнении вычислений может потребоваться помощь профессионала.

Закрытая система с самотечной циркуляцией

В остальном, системы закрытого типа, работают, как и остальные схемы отопления с естественной циркуляцией. В качестве минусов можно выделить зависимость от объема расширительного бака. Для помещений с большой отапливаемой площадью, потребуется установить вместительную емкость, что не всегда целесообразно.

Открытая система с самотечной циркуляцией

Система отопления открытого типа отличается от предыдущего типа только конструкцией расширительного бака. Данная схема чаще всего использовалась в старых зданиях. Преимуществами открытой системы является возможность самостоятельного изготовления емкости из подручных материалов. Бачок, обычно имеет скромные габариты и устанавливается на кровле или под потолком жилой комнаты.

Главным недостатком открытых конструкций является попадание воздуха в трубы и радиаторы отопления, что приводит к усилению коррозии и быстрому выходу из строя греющих элементов. Завоздушивание системы также частый «гость» в схемах открытого типа. Поэтому, радиаторы устанавливаются под углом, обязательно предусматриваются краны Маевского, для стравливания воздуха.

Однотрубная система с самоциркуляцией

Однотрубная горизонтальная система с естественной циркуляцией имеет низкую теплоэффективность, поэтому используется крайне редко. Суть схемы такова, что подающая труба последовательно подключена к радиаторам.

Нагретый теплоноситель поступает в верхний патрубок батареи и выводится через нижний отвод. После этого тепло поступает к следующему узлу отопления и так до последней точки. От крайней батареи к котлу возвращается обратка.

Преимуществ у данного решения несколько:

  1. Отсутствует парный трубопровод под потолком и над уровнем пола.
  2. Экономятся средства на монтаж системы.

Недостатки такого решения очевидны. Теплоотдача радиаторов отопления и интенсивность их нагрева снижается по мере отдаленности от котла. Как показывает практика, однотрубная система отопления двухэтажного дома с естественной циркуляцией, даже при соблюдении всех уклонов и подбора правильного диаметра труб, зачастую переделывается (посредством монтажа насосного оборудования).

Двухтрубная система с самоциркуляцией

Как правильно сделать водяное отопление с естественной циркуляцией

Какой уклон труб нужен при самотечной циркуляции

Нормы проектирования внутридомовой системы отопления с гравитационной циркуляцией, подробно прописаны в строительных нормах. В требованиях учитывается, что движению жидкости внутри водяного контура будет мешать гидравлическое сопротивление, препятствия в виде углов и поворотов, и т.д.

Уклон отопительных труб регламентируется в СНиП. Согласно указанным в документе нормам, на каждый погонный метр требуется сделать наклон в 10 мм. Соблюдение данного условия гарантирует беспрепятственное движение жидкости в водяном контуре.

Нарушение наклона при прокладке труб, приводит к завоздушиванию системы, недостаточному прогреву отдаленных от котла радиаторов, и, как следствие, снижению теплоэффективности.

Какие трубы применяют для монтажа

Выбор труб для изготовления отопительного контура имеет важное значение. Каждый материал имеет свои теплотехнические характеристики, гидравлическую сопротивляемость и т.д. При самостоятельном выполнении монтажных работ, дополнительно учитывают сложность монтажа.

Чаще всего используют следующие строительные материалы:

  • Стальные трубы – к достоинствам материала следует отнести: доступную стоимость, устойчивость к высокому давлению, теплопроводность и прочность. Недостатком стали является сложный монтаж, невозможный, без применения сварочного оборудования.
  • Металлопластиковые трубы – имеют гладкую внутреннюю поверхность, не дающую контуру засориться, небольшой вес и линейное расширение, отсутствие коррозии. Популярность металлопластиковых труб несколько ограничивает небольшой срок эксплуатации (15 лет) и высокая стоимость материала.
  • Полипропиленовые трубы – получили широкое применение благодаря простоте монтажа, высокой герметичности и прочности, длительному сроку эксплуатации и устойчивости к размерзанию. Трубы из полипропилена монтируются с помощью паяльника. Срок службы не менее 25 лет.
  • Медные трубы – не получили широкого распространения за счет большой стоимости. Медь имеет максимальную теплоотдачу. Выдерживает нагрев до + 500°С, срок эксплуатации свыше 100 лет. Особенной похвалы достоин внешний вид трубы. Под воздействием температуры, поверхность меди покрывается патиной, что только улучшает внешние характеристики материала.

Какого диаметра должны быть трубы при циркуляции без насоса

Правильный расчет диаметров труб на водяное отопление с естественной циркуляцией осуществляется в несколько этапов:

  • Подсчитывается потребность помещения в тепловой энергии. К полученному результату добавляют около 20%.
  • СНиП указывает соотношение тепловой мощности к внутреннему сечению трубы. Высчитываем по приведенным формулам сечение трубопровода. Чтобы не выполнять сложные вычисления, стоит воспользоваться он-лайн калькулятором.
  • Диаметр труб системы с естественной циркуляцией должен быть подобран согласно теплотехническим расчетам. Чрезмерно широкий трубопровод приводит к снижению теплоотдачи и увеличению расходов на отопление. На ширину сечения влияет тип используемого материала. Так, стальные трубы не должны быть уже 50 мм. в диаметре.

Существует еще одно правило, помогающее усилить циркуляцию. После каждого разветвления трубы, диаметр сужают на один размер. На практике это значит следующее. К котлу подключена двухдюймовая труба. После первого разветвления контур сужают до 1 ¾, дальше до 1 ½ и т.д. Обратку наоборот собирают с расширением.

Какой розлив лучше сделать – нижний или верхний

    Система с нижним розливом – имеет привлекательный внешний вид. Трубы располагаются на уровне пола. Однотрубная система с нижней разводкой имеет малую теплоэффективность и требует тщательного планирования и проведения расчетов. Схемы с нижним розливом наиболее востребованы для трубопроводов высокого давления.

Система с верхним розливом – данное решение оптимально подходит для частного дома. Подача горячей воды осуществляется посредством трубы, расположенной под потолком. Поступающий сверху теплоноситель, вытесняет скопившийся воздух (воздух стравливается через краны Маевского). Однотрубная система водяного отопления с верхним розливом, также отличается эффективностью.

Какой теплоноситель лучше для систем с самоциркуляцией

Оптимальный теплоноситель для системы отопления с естественным движением жидкости – это вода. Дело в том, что антифриз имеет большую плотность и меньшую теплоотдачу. Для нагрева гликолевых составов до необходимого состояния, требуется больше времени, сжигаемого топлива, при этом теплоотдача остается на уровне воды.

За использование незамерзающей жидкости, в качестве довода можно привести два довода:

  1. Высокая текучесть материала, улучшающая циркуляцию.
  2. Способность сохранять текучесть при достижении -10°С, -15°С.

Антифриз используют, если планируется в течение долгого времени не отапливать помещение, или делать это с периодичностью, а постоянно сливать жидкость из системы нет возможности.

Какое отопление лучше выбрать – естественное или принудительное?

Конструктивные особенности системы с естественной гравитационной циркуляцией, простота монтажа и возможность самостоятельного выполнения работ, сделали такую схему достаточно популярной у отечественного потребителя.

Но самоциркулирующая конструкция проигрывает по сравнению с контуром, подключенным к насосному оборудованию, в следующих аспектах:

  • Начало работы – система отопления с естественной циркуляцией начинает работать при температуре теплоносителя около 50°С. Это необходимо, чтобы вода расширилась в объеме. При подключении к насосу, жидкость двигается по водяному контуру сразу после включения.
  • Падение мощности отопительных приборов при естественной циркуляции теплоносителя по мере отдаленности от котла. Даже при грамотно собранной схеме, разница температуры составляет порядка 5°С.
  • Влияние воздуха – основной причиной отсутствия циркуляции является завоздушивание части водяного контура. Воздух в системе отопления может образовываться из-за несоблюдения уклонов, использования открытого расширительного бачка и других причин. Чтобы продавить систему, приходится включать котел на максимальную мощность, что приводит к существенным затратам.
  • Отопление двухэтажного дома при естественной циркуляции теплоносителя затруднено по причине существующих препятствий для движения жидкости.
  • Относительно регуляции нагрева, самоциркулирующие системы также уступают контурам, подключенным к насосам. Современное циркуляционное оборудование подключается к комнатным термостатам, что обеспечивает точность теплоотдачи и нагрев температуры в помещении с погрешностью до 1°С. Установка терморегуляторов допускается и в схемах с самоциркуляцией, но погрешность настроек составит 3-5°С.

Выбрать систему с естественной циркуляцией, оправдано, в случае отопления небольших одноэтажных зданий. Если требуется отапливать коттеджи и загородные дома площадью более 150-200 м², нужна установка циркуляционного оборудования.

Главным достоинством схем с самоциркуляцией является их энергонезависимость, но произведя несложные расчеты, можно прийти к выводу, что экономия на электроэнергии не оправдывает потери тепла в процессе самостоятельного движения теплоносителя. Схемы с принудительной циркуляцией имеют большую теплоотдачу и эффективность.

Комплекс отопления «Ленинградка» был разработан во время существования СССР.

Популярность этой системы не падает со временем. Залогом актуальности Ленинградки является простой монтаж.

Тепло проходит по всему зданию благодаря своим компонентам: котел, трубы, и радиатор отопления.
Значимые преимущества Ленинградки:

  • Минимальные затраты на оборудование.
  • Простота монтажа.
  • Прокладка труб в любом месте.
  • Наличие подключения нескольких котлов для отопления.
  • Мобильность отопления дачного и садового домов.
  • Безопасность.
  • Возможность установки системы «теплого пола».

Труба обогрева прокладывается со стороны внешней стены зданий. Суть: взять здание в кольцо.

Подобная схема подключения работает в определенной последовательности. Температура воды в обратной связи будет ниже, чем в подающей трубе. Система однотрубной Ленинградки позволяет создавать эффективные системы обогрева в одноэтажных и двухэтажных домах.

Дополнительные возможности однотрубной системы отопления

Однотрубный комплекс по стандартам может быть оснащен регулятором, клапаном, и вентилем для баланса. Элементы позволяют улучшать уровень обогрева помещений. Схема отопления Ленинградка контролирует температуру и экономит затраты теплоты. Ограничивается теплоотдача в неиспользуемых помещениях.

Регулируются отдельные отопительные приборы, не меняя температурного режима.

Установка циркуляционного насоса и вентиля на каждую батарею обеспечивает контроль системы отопления Ленинградка без насоса.

Однотрубная схема отопления

С обогревающего котла нужно провести главную линию, представляющую разветвление. После этого действия в ней находится необходимое число радиаторов, либо батарей. Линия, проведенная согласно проектировкам здания, подключается к котлу. Метод формирует циркуляцию теплоносителя внутри трубы, обогревая здание полностью. Обращение теплой воды настраивается в индивидуальном порядке.

Планируется замкнутая схема отопления Ленинградка. В этом процессе однотрубный комплекс монтируется по актуальной проектировке частных домов. По желанию собственника в систему отопления добавляются элементы:

  • Радиаторные контроллеры.
  • Терморегуляторы.
  • Балансирующие вентили.
  • Шаровые клапаны.

Ленинградка регулирует нагрев определенных радиаторов.

Это происходит независимо от других устройств. Оптимальным вариантом станет включение схемы байпасных вентилей в систему отопления.

Виды разводки комплекса отопления «Ленинградка»

Обеспечение теплоизоляции труб увеличивает эффективность работы общей системы отопления. Второе качество — отсутствие перегрева конструкции пола.

Монтаж существует в двух вариантах:

  • Горизонтальная система. Предполагается объединение всех батарей в единую схему, подключенную к стояку. Система монтируется внутрь пола, и присутствует в напольном покрытии. Батареи расположены на одинаковом уровне. Происходит обеспечение хорошего нагрева помещения.
  • Вертикальная система. Затрудняет ведение учета потребления тепла в многоэтажных домах. Оптимальный вариант для частного сектора.

Фото системы отопления Ленинградка представлены в этой статье. Конструктивный подход к схеме определяет особенности:

  • Трубопровод устанавливается по всему периметру помещения.
  • Внедрение в систему отопления расширительного бака.

Негативные стороны однотрубной системы отопления

Внимание уделяется не только достоинствам комплекса отопления, но и недостаткам:

  • Теплоноситель распределяется неравномерно при использовании схемы естественной циркуляции. Радиаторы в дальней комнате оснащаются дополнительными секциями.
  • Использование горизонтальной разводки труб не позволит установить «теплый пол».
  • Увеличение давления теплоносителя.

Сущность монтажа однотрубной системы своими руками

Принцип установки системы отопления Ленинградка без насоса:

  • Прокладывание магистрали происходит в границах размеров помещения.
  • Врезание добавочной вертикальной трубы.
  • Происходит размещение бака для увеличения давления воды.

При установке однотрубной системы своими руками учитываются навыки и владение сварочным аппаратом.

В системе обогрева присутствует различная плотность жидкости. Горячая вода попадает в радиатор, и вытесняет холодную воду.

Большинство людей поддерживают схему отопления Ленинградка. Это обусловлено простотой установки. Использование однотрубной системы обогрева позволит сэкономить денежные средства и массу личного времени.

Еще по этой теме на нашем сайте:

    Какие бывают системы отопления многоквартирного дома – схемы
    Системы отопления большинства многоэтажных домов в нашей стране, как правило, подключены к ТЭЦ или центральной котельной, то есть являются централизованными. В зависимости от того, каким.

Двухтрубная система отопления многоэтажного дома — схема, устройство, балансировка, опрессовка

    Система отопления – одна из обязательных составляющих дома. Без отопления никак. Отопительная система используется как в частных домах, так и в высоких многоквартирных.

Схема отопления двухэтажного дома с естественной циркуляцией — система отопления самотеком

    Самотечная система отопления двухэтажного дома является единственным выходом в условиях, когда отсутствуют газ и электричество. Естественно, подобных проблем в современном мире просто не существует. Однако.

Схема отопления частного дома с принудительной циркуляцией

    Для того чтобы в частном доме можно было находиться целый год и чувствовать себя при этом комфортно и уютно, нужно позаботиться о его отоплении. Оптимальная.

Система отопления Ленинградка работает без насоса — схемы и фото : 2 комментария

Ленинградка, пожалуй, самая простая схема отопления — можно делать в любом частном доме.

Да, ленинградку собирать проще всего. А кто говорит, что это неэффективная система отопления, то просто НЕ УМЕЕТ ЕЕ ГОТОВИТЬ 🙂 🙂 🙂

характеристик потока и теплопередачи системы испарительного охлаждения с естественной циркуляцией для электронных компонентов | J. Electron. Packag.

Были проведены эксперименты по изучению характеристик потока и теплопередачи в системе жидкостного охлаждения с естественной циркуляцией для электронных компонентов. Испытательный контур состоял из горизонтальной испытательной секции, горизонтального испарителя, вертикальной трубы, горизонтального конденсатора, резинового мешка, прикрепленного на выходе из конденсатора, сливного стакана, массового расходомера и переохладителя жидкости.Высота петли H была установлена ​​либо на 250, либо на 450 мм. FC-72 был залит в тестовую петлю до некоторого уровня высоты петли, а верхняя часть была заполнена воздухом. Во время работы системы охлаждения резиновый мешок расширялся и сохранял смесь образовавшегося пара и воздуха. Таким образом, внутреннее давление поддерживалось на уровне атмосферного. В тестовой части кремниевый чип размером 10 × 10 × 0,5 мм 3 был прикреплен к нижней поверхности горизонтального канала размером 10 × 14 мм 2 .Были испытаны гладкий чип и четыре чипа с квадратными микрошипами-ребрами с высотой ребра от 150 до 300 мкм. Высота канала s была установлена ​​на уровне 10 мм для большинства экспериментов. Случаи s = 1 и 25 мм были также испытаны для одного из микрошип-ребристых чипов. Для каждого H средний расход FC-72 был хорошо коррелирован как функция разницы статического давления между двумя вертикальными трубками. Кривая кипения всех стружек аналогична кривой кипения в ванне, за исключением того, что критический тепловой поток для контура естественной циркуляции был ниже.Для всех протестированных микросхем максимально допустимый тепловой поток qmax монотонно увеличивался с увеличением переохлаждения жидкости ΔTsub. Сравнение результатов для s = 1, 10 и 25 мм показало, что наибольшее значение qmax было получено при s = 10 мм. Значения qmax для s = 1 и 25 мм составили 36–46% и 87–90% от значений для s = 10 мм соответственно. Максимальное значение qmax = 56 Вт / см2 было получено одним из микрошип-ребристых чипов при s = 10 мм и ΔTsub = 35 К.

Цилиндры и трубы — теплопроводные потери

Неизолированный цилиндр или труба

Кондуктивные потери тепла через стенку цилиндра или трубы можно выразить как

Q = 2 π L (t i — t o ) / [ln (r o / r i ) / k] (1)

, где

Q = теплопередача от цилиндра или трубы (Вт, БТЕ / час)

k = теплопроводность материала трубопровода (Вт / мK или Вт / м o C, Btu / (час o F ft 2 / ft))

L = длина цилиндра или трубы (м, фут)

π = пи = 3.14 …

t o = температура снаружи трубы или цилиндра (K или o C, o F)

t i = температура внутри трубы или цилиндра (K или o C, o F)

ln = натуральный логарифм

r o = внешний радиус цилиндра или трубы (м, футы)

r i = цилиндр или труба внутри радиус (м, футы)

Изолированный цилиндр или труба

Кондуктивные потери тепла через изолированный цилиндр или трубу можно выразить как

Q = 2 π L (t i — t o ) / [(ln (r o / r i ) / k) + (ln (r s / r o ) / k s )] (2)

где

r s = внешний радиус o f изоляция (м, футы)

k s = теплопроводность изоляционного материала (Вт / мK или Вт / м o C, BTU / (час o F ft 2 / фут))

Уравнение 2 с внутренним конвективным тепловым сопротивлением может быть выражено как

Q = 2 π L (t i — t o ) / [1 / (h c ) r i ) + (ln (r o / r i ) / k) + (ln (r s / r o ) / k s )] (3)

где

h c = коэффициент конвективной теплопередачи (Вт / м 2 K)

Глоссарий по сантехнике: термины, которые необходимо знать

Знать все части, которые поддерживают работу вашего дома, может быть непросто.Новому домовладельцу или опытному ветерану важно знать несколько терминов и сопутствующие предметы, чтобы ваш дом работал бесперебойно. Этот глоссарий по сантехнике перечислит 54 основных сантехнических термина, которые вам нужно знать, чтобы ваша сантехника работала бесперебойно, а также заставит вас сформулировать любые будущие проблемы, которые могут возникнуть.

54 Сантехнические условия, которые необходимо знать.

Панель доступа

Смотровая панель — это отверстие в стене или потолке рядом с приспособлением.Панель доступа обеспечивает доступ для работы с водопроводными или электрическими системами.

Угловой упор

Угловой упор — это запорный вентиль между водопроводом и сантехникой. Он используется для перекрытия потока воды, пока вы ремонтируете подключенный предмет.

Анодный стержень

Анодный стержень находится внутри водонагревателя. Анодный стержень защищает резервуар для воды от коррозии из-за магния или алюминия.

Обратный клапан

Обратный клапан предотвращает повторное попадание сточных вод в дом.

Клапан обратный шаровой

Шаровой обратный клапан — это разновидность предохранителя обратного потока. Шаровой обратный клапан размещается на водопроводе, чтобы направлять поток воды в одном направлении.

Балльный кран

Шаровой кран регулирует поток воды в самотечном унитазе. Когда унитаз будет спущен, поплавок опустится и откроет шаровой кран. Это приводит к распределению воды в баке. Когда вода поднимается, поплавок поднимается до уровня, при котором кран закрывается.

Филиал

Ответвление — любая второстепенная часть водосточной системы; также называется боковой линией.

Отводное отверстие

Отводное вентиляционное отверстие соединяет вентиляционные отверстия с вентиляционной трубой.

Клапан обратный

Обратный клапан — это тип предотвращения обратного потока. Обратный клапан устанавливается на трубе, чтобы вода могла течь в одном направлении.

Заглушка для чистки

Заглушка для прочистки находится в сифоне или сливной трубе.Заглушка для прочистки обеспечивает доступ к дренажной линии для устранения засоров в трубах.

Шкаф

Синоним слова «туалет», также называемый «унитаз»

Комбинированный шнек

Шнек для туалета — это гибкий стержень, который используется для доступа к сифону унитаза для удаления засоров.

Колено гардеробное

Колено туалета соединяет фланец туалета со сливом туалета.

Приставной фланец

Фланец шкафа представляет собой кольцо, которое прикрепляет изгиб шкафа к полу. Фланец туалета также включает закрытые болты, фиксирующие унитаз на месте.

Диафрагма

Мембрана представляет собой гибкую мембрану, которая помогает регулировать поток воды и ее накопление внутри клапана.

Погружная трубка

Погружная трубка направляет холодную воду на дно бака водонагревателя.

Капельная нога

Капельница, также известная как «отстойник», представляет собой трубу, устанавливаемую в нижнем сегменте газопровода. Закрытая секция собирает конденсат и мусор.

Ключевина

Накладка — это защитная крышка под ручкой смесителя, закрывающая отверстие для крепления.

Падение / Поток

Падение, также известное как поток или наклон, относится к уклону, необходимому для создания надлежащего дренажа в трубах.

Крепление

Под приспособлением понимается водопроводное устройство, обеспечивающее водоснабжение и / или водоотведение. Обычные приспособления в сантехнике — это унитазы, раковины и душевые.

Откидной клапан

Откидной клапан соединяет резервуар для воды и унитаз. Когда заслонка открывается, вода перетекает из бака в чашу.

Поплавок

Поплавковый шар — это пластиковый шар, прикрепленный к крану.Подъем и падение воды в резервуаре определяется размещением поплавкового шара.

Фланец напольный

Напольный фланец, также известный как фланец для туалета, соединяет унитаз с канализационной линией.

Газовый кран

Газовый кран на магистральной газовой линии позволяет перекрыть подачу газа.

Задвижка

Задвижка регулирует поток жидкости в трубах.

Унитаз с гравитационным управлением

Унитаз, работающий под действием силы тяжести, использует для смыва давление воды в баке унитаза.Унитазы с гравитационным управлением часто имеют в баке шаровые краны.

Серая вода

Серая вода — это любая сточная вода, которая поступает из общей арматуры, но не из туалетов.

Отвод горизонтальный

Горизонтальная ветвь идет от сантехники к сточной трубе.

Горизонтальный ход

Горизонтальный участок — это расстояние, на которое жидкость проходит от точки входа и выхода трубы.

Нагрудник

Нагрудник для шланга — это обычный уличный смеситель.

Основная линия

Магистраль подает воду со счетчика водоканала на уровне улицы в патрубки вокруг вашего дома.

Ниппель

Ниппель — это короткая труба, соединяющая муфты и другие фитинги.

Система механической промывки

Система механической промывки сжимает воду для обеспечения промывки под давлением. Эта система часто используется в коммерческих и коммерческих целях.

PRV или редукционный клапан

PRV, или редукционный клапан, представляет собой специальный клапан, который устанавливается непосредственно на основной водопровод. PRV ограничивает количество воды, поступающей от водопроводных компаний, чтобы нормализовать давление воды для домашнего использования.

ПВХ

Трубы из ПВХ

— это прочные пластиковые трубы, которые используются в дренажных, сточных и вентиляционных системах.

Отверстия в ободе

Отверстия в ободе — это серия небольших отверстий вокруг унитаза.Вода, вытекающая из отверстий на ободке, омывает поверхность унитаза, чтобы снова наполнить унитаз.

Седельный клапан

Седельный клапан представляет собой участок трубы, смонтированный с помощью зажимного устройства. Седельный клапан используется для быстрого соединения малопотребляемых устройств.

Септик

Септик — это небольшая система очистки сточных вод для домов без подключения к местным канализационным трубам. Септик относится к бактериям, которые разлагают отходы внутри резервуара.

Клапан запорный прямой

Прямой запорный клапан — это прямой запорный клапан, который используется для перекрытия подачи воды во время ремонта.

Водоотливной насос

Отстойник используется в подвалах, которые часто затопляются. Отстойник находится в яме, в которой накапливается вода, откуда она выталкивается за пределы дома.

Линия подачи

Водопровод — это металлический или пластиковый трубопровод, по которому вода подается непосредственно из основного трубопровода в водопроводную арматуру.

Клапан T&P или клапан температуры и давления

Клапан сброса температуры и давления используется для безопасного сброса избыточного тепла или давления в резервуаре для воды.

Наконечник

Патрубок — это труба, проходящая между приспособлением и ловушкой.

Ловушка

Сифон — это изогнутый участок дренажной линии, предотвращающий попадание запаха канализации в ваш дом. Все сантехнические устройства имеют сифон типа «P», за исключением унитаза с сифоном «S».

Люк

Сифон соединяет унитаз с сливным отверстием. Размер сифона, также известного как проход, влияет на засорение.

Рычаг переключения

Рычаг переключения — это ручка смыва и приводной рычаг на бачке унитаза. Рычаг отключения прикреплен к заслонке, что приводит к смыву унитаза. Рычаг отключения может также относиться к сливу в ванне.

Вентиляционное отверстие

Вентиляционная труба — это труба, через которую воздух попадает в дренажную систему.

Вентиляционная труба

Вентиляционная труба, также известная как труба для вони, выпускает газ и запахи за пределы дома.

Гидравлический молот

Гидравлический удар — это громкий шум и вибрация, связанные с включением или выключением труб. Гидравлический удар вызван внезапным всплеском или остановкой воды в трубах.

Теперь, когда вы ознакомились с глоссарием по сантехнике, теперь вы можете эффективно выразить любые проблемы, которые могут возникнуть в следующий раз, когда вы обратитесь к профессионалам, чтобы починить шаровой кран, отстойник или заслонку.Когда вы, наконец, обратитесь к профессионалам, обязательно обратитесь к Petro, самому надежному поставщику сантехнических услуг. *

* сантехнические услуги доступны не во всех регионах

Справка по викторине: Поток жидкости | EZ-pdh.com

Используйте поиск, чтобы быстро найти ответы на вопросы — откройте окно поиска (ctrl + f), затем введите ключевое слово из вопроса, чтобы перейти к этим терминам в материале курса

Введение

Поток жидкости — важная часть большинства промышленных процессов; особенно те, которые связаны с передачей тепла.Часто, когда требуется отвести тепло из точки, в которой оно генерируется, в процессе теплопередачи участвует какой-либо тип жидкости. Примерами этого являются охлаждающая вода, циркулирующая через бензиновый или дизельный двигатель, поток воздуха, проходящий через обмотки двигателя, и поток воды через активную зону ядерного реактора. Системы подачи жидкости также обычно используются для смазки.

Течение жидкости в ядерной области может быть сложным и не всегда подлежит строгому математическому анализу.В отличие от твердых тел, частицы жидкости движутся по трубопроводу и компонентам с разной скоростью и часто подвергаются разным ускорениям.

Несмотря на то, что подробный анализ потока жидкости может быть чрезвычайно трудным, основные концепции, связанные с проблемами потока жидкости, довольно просты. Эти базовые концепции могут быть применены при решении проблем потока жидкости путем использования упрощающих допущений и средних значений, где это необходимо. Несмотря на то, что такого типа анализа будет недостаточно при инженерном проектировании систем, он очень полезен для понимания работы систем и прогнозирования приблизительной реакции жидкостных систем на изменения рабочих параметров.

Основные принципы потока жидкости включают три концепции или принципа; первые два из которых студент был представлен в предыдущих руководствах. Первый — это принцип количества движения (приводящий к уравнениям сил жидкости), который был рассмотрен в руководстве по классической физике. Второй — это сохранение энергии (ведущее к первому закону термодинамики), которое изучалось в термодинамике. Третий — это сохранение массы (приводящее к уравнению неразрывности), которое будет объяснено в этом модуле.

Свойства жидкостей

Жидкость — это любое вещество, которое течет, потому что его частицы не прикреплены друг к другу жестко. Сюда входят жидкости, газы и даже некоторые материалы, которые обычно считаются твердыми телами, например стекло. По сути, жидкости — это материалы, которые не имеют повторяющейся кристаллической структуры.

Некоторые свойства жидкостей обсуждались в разделе «Термодинамика» этого текста. К ним относятся температура, давление, масса, удельный объем и плотность. Температура была определена как относительная мера того, насколько горячий или холодный материал. Его можно использовать для прогнозирования направления передачи тепла. Давление было определено как сила на единицу площади. Обычными единицами измерения давления являются фунты силы на квадратный дюйм (psi). Масса была определена как количество вещества, содержащегося в теле, и ее следует отличать от веса, который измеряется силой тяжести на теле. Удельный объем вещества — это объем на единицу массы вещества.Стандартные единицы измерения — фут 3 / фунт. Плотность — это масса вещества на единицу объема. Типичные единицы — фунт / фут 3 . Плотность и удельный объем противоположны друг другу. И плотность, и удельный объем зависят от температуры и в некоторой степени от давления жидкости. По мере увеличения температуры жидкости плотность уменьшается, а удельный объем увеличивается. Поскольку жидкости считаются несжимаемыми, увеличение давления не приведет к изменению плотности или удельного объема жидкости.На самом деле жидкости можно слегка сжимать при высоких давлениях, что приводит к небольшому увеличению плотности и небольшому уменьшению удельного объема жидкости.

Плавучесть

Плавучесть определяется как тенденция тела плавать или подниматься при погружении в жидкость. У всех нас было множество возможностей наблюдать плавучесть жидкости. Когда мы идем плавать, наши тела почти полностью поддерживаются водой. Дерево, лед и пробка плавают на воде.Когда мы поднимаем камень с русла ручья, он внезапно кажется тяжелее, выходя из воды. Лодки полагаются на эту плавучую силу, чтобы оставаться на плаву. Величина этого плавучего эффекта была впервые вычислена и указана греческим философом Архимедом. Когда тело помещается в жидкость, оно поддерживается силой, равной весу вытесняемой им воды.

Если тело весит больше, чем жидкость, которую оно вытесняет, оно тонет, но будет казаться, что теряет вес, равный весу вытесненной жидкости, как наша скала.Если тело весит меньше, чем вес вытесненной жидкости, тело поднимется на поверхность, в конце концов, плавая на такой глубине, которая вытеснит объем жидкости, вес которой будет равен его собственному весу. Плавающее тело вытесняет текучую среду, в которой оно плавает, под собственным весом.

Сжимаемость

Сжимаемость — это мера изменения объема, которому подвергается вещество, когда на вещество оказывается давление. Жидкости обычно считаются несжимаемыми.Например, давление 16 400 фунтов на квадратный дюйм приведет к уменьшению данного объема воды всего на 5% от его объема при атмосферном давлении. С другой стороны, газы очень сжимаются. Объем газа можно легко изменить, оказав на газ внешнее давление.

Взаимосвязь между глубиной и давлением

Любой, кто ныряет под поверхность воды, замечает, что давление на его барабанные перепонки даже на глубине несколько футов заметно выше атмосферного давления.Тщательные измерения показывают, что давление жидкости прямо пропорционально глубине, и для данной глубины жидкость оказывает одинаковое давление во всех направлениях.

Рисунок 1: Давление в зависимости от глубины

Как показано на Рисунке 1, давление на разных уровнях в резервуаре меняется, и это заставляет жидкость покидать резервуар с разными скоростями. Давление определялось как сила на единицу площади. В случае этого резервуара сила возникает из-за веса воды выше точки, в которой определяется давление.

Давление = Сила / Площадь

= Вес / Площадь

P = (мг) / (A g c )

= (ρ V g) / (A g c )

Где:

m = масса в фунтах

g = ускорение свободного падения 32,17 фут / сек 2

g c = 32 фунт-фут / фунт-сила-сек 2

A = площадь в футах 2

V = объем в футах 3

ρ = плотность жидкости в фунтах / фут 3

Объем равен площади поперечного сечения, умноженной на высоту (h) жидкости.Подставляя это в приведенное выше уравнение, получаем:

P = (ρ A hg) / (A g c )

P = (ρ hg) / (g c )

Это уравнение говорит нам, что давление оказываемое водяным столбом прямо пропорционально высоте столба и плотности воды и не зависит от площади поперечного сечения столба. Давление на тридцать футов ниже поверхности стояка диаметром в один дюйм такое же, как давление на тридцать футов ниже поверхности большого озера.

Пример 1:

Если резервуар на Рисунке 1 заполнен водой с плотностью 62,4 фунта / фут3, рассчитайте давление на глубинах 10, 20 и 30 футов.

Решение:

P = (ρhg) / г c

P 10 футов = (62,4 фунт / фут 3 ) (1 фут) (32,17 фут / с 2 / (32,17 фунт-м фут / фунт-сила / дюйм 2 )

= 624 фунт-сила / фут 2 (1 фут 2 /144 дюйм 2 )

= 4,33 фунт-силы / дюйм 2

P 20 = ( 624 фунт / фут 3 ) (20 футов) (32.17 футов / с 2 / (32,17 фунт-фут / фунт-сила-с 2 )

= 1248 фунт-сила / фут 2 (1 фут 2 /144 дюйма 2 )

= 8,67 фунт-силы / дюйм

P 30 футов = (62,4 фунт / фут3) (30 футов) (32,17 фут / сек 2 / 32,17 фунт-фут / фунт-сила-сек 2 )

= 1872 фунт-сила / фут 2 (1 футов 2 /144 дюймов 2 )

= 13,00 фунт-сил / дюйм 2

Пример 2:

Цилиндрический резервуар для воды высотой 40 футов и диаметром 20 футов заполнен водой с плотностью из 61.9 фунт / фут 3 .

(а) Какое давление воды на дне резервуара?

(b) Какая средняя сила действует на дно?

Решение:

(a) P = (phg) / g c

P = (61,9 фунт / фут 3 ) (40 футов) (32,17 фут / сек 2 / 32,17 фунт-фут / фунт-сила-сек 2 )

= 2476 фунт-сила / фут 2 (1 фут 2 /144 дюйма 2 )

= 17,2 фунт-силы / дюйм 2

(b) Давление = сила / площадь

Сила = (Давление) (Площадь)

Площадь = πr 2

F = (17.2 фунта-силы / дюйм 2 ) π (10 футов) 2 (144 дюйма 2 /1 фут 2 )

= 7,78 x 10 5 фунта-силы

Закон Паскаля

Давление жидкостей в каждом из ранее упомянутых случаев было связано с весом жидкости. Давление жидкости также может быть результатом приложения внешних сил к жидкости. Рассмотрим следующие примеры. На рисунке 2 изображен контейнер, полностью заполненный жидкостью. A, B, C, D и E представляют собой поршни одинаковой площади поперечного сечения, вставленные в стенки резервуара.На поршни C, D и E будут действовать силы из-за давления, вызванного разной глубиной жидкости. Предположим, что силы, действующие на поршни из-за давления, вызванного весом жидкости, следующие: A = 0 фунтов-силы, B = 0 фунтов-силы, C = 10 фунтов-силы, D = 30 фунтов-силы и E = 25 фунтов-силы. Теперь позвольте приложить к поршню А внешнюю силу в 50 фунтов-силы. Эта внешняя сила вызовет повышение давления во всех точках контейнера на такую ​​же величину. Поскольку все поршни имеют одинаковую площадь поперечного сечения, увеличение давления приведет к тому, что силы, действующие на поршни, увеличатся на 50 фунтов-силы.Таким образом, если к поршню A приложена внешняя сила в 50 фунтов-силы, сила, оказываемая жидкостью на другие поршни, теперь будет следующей: B = 50 фунтов-силы, C = 60 фунтов-силы, D = 80 фунтов-силы и E = 75 фунтов-силы. . »

Этот эффект внешней силы на замкнутый флюид был впервые заявлен Паскалем в 1653 году.

Давление, приложенное к замкнутому флюиду, передается в неизменном виде через ограничивающий сосуд системы.

Рисунок 2: Закон Паскаля

Контрольный объем

В термодинамике контрольный объем был определен как фиксированная область в пространстве, где изучаются массы и энергии, пересекающие границы области.Эта концепция контрольного объема также очень полезна при анализе проблем с потоком жидкости. Граница контрольного объема для потока жидкости обычно принимается за физическую границу части, через которую протекает поток. Концепция контрольного объема используется в приложениях гидродинамики с использованием принципов непрерывности, импульса и энергии, упомянутых в начале этой главы. После того, как контрольный объем и его граница установлены, различные формы энергии, пересекающие границу с жидкостью, могут быть рассмотрены в форме уравнения для решения проблемы жидкости.Поскольку в задачах потока жидкости обычно рассматривается жидкость, пересекающая границы контрольного объема, подход с контрольным объемом называется «открытым» системным анализом, который аналогичен концепциям, изучаемым в термодинамике. В ядерной области есть особые случаи, когда жидкость не пересекает контрольную границу. Подобные случаи изучаются с использованием «закрытого» системного подхода.

Независимо от природы потока, все ситуации, связанные с потоком, подчиняются установленным основным законам природы, которые инженеры выразили в форме уравнений.Сохранение массы и сохранение энергии всегда выполняются в задачах с жидкостью, наряду с законами движения Ньютона. Кроме того, каждая задача будет иметь физические ограничения, называемые математически граничными условиями, которые должны быть выполнены, прежде чем решение проблемы будет согласовано с физическими результатами.

Объемный расход

Объемный расход расход Расход (V˙) системы — это мера объема жидкости, проходящей через точку в системе за единицу времени.Объемный расход можно рассчитать как произведение площади поперечного сечения (A) потока и средней скорости потока (v).

V˙ = A v (3-1)

Если площадь измеряется в квадратных футах, а скорость — в футах в секунду, уравнение 3-1 приводит к объемному расходу, измеренному в кубических футах в секунду. Другие распространенные единицы объемного расхода включают галлоны в минуту, кубические сантиметры в секунду, литры в минуту и ​​галлоны в час.

Пример:

Труба с внутренним диаметром 4 дюйма содержит воду, которая течет со средней скоростью 14 футов в секунду.Рассчитайте объемный расход воды в трубе.

Решение:

Используйте уравнение 3-1 и замените площадь.

V˙ = (π r 2) v

V˙ = (3,14) (2/12 фута) 2 (14 футов / сек)

V˙ = 1,22 фута 3 / сек

Масса Расход

Массовый расход (м²) системы — это мера массы жидкости, проходящей через точку в системе за единицу времени. Массовый расход связан с объемным расходом, как показано в уравнении 3-2, где ρ — плотность жидкости.

m˙ = ρV˙ (3-2)

Если объемный расход выражен в кубических футах в секунду, а плотность выражена в фунтах массы на кубический фут, уравнение 3-2 приводит к массовому расходу, измеренному в фунтах: масса в секунду. Другие распространенные единицы измерения массового расхода включают килограммы в секунду и фунты массы в час.

Замена V˙ в уравнении 3-2 соответствующими членами из уравнения 3-1 позволяет напрямую рассчитать массовый расход.

m˙ = ρ A v (3-3)

Пример:

Вода в трубе из предыдущего примера имела плотность 62.44 фунт / фут3. Рассчитайте массовый расход.

Решение:

м˙ = ρ V˙

м˙ = (62,44 фунт / фут 3 ) (1,22 фута 3 / сек)

м˙ = 76,2 фунт / сек

Сохранение массы

В термодинамике вы узнали, что энергия не может быть ни создана, ни уничтожена, а только изменена по форме. То же самое и с массой. Сохранение массы — это инженерный принцип, который гласит, что все массовые расходы в контрольном объеме равны всем массовым расходам из контрольного объема плюс скорость изменения массы в контрольном объеме.Математически этот принцип выражается уравнением 3-4.

дюйм = m˙ out + ∆m / ∆t (3-4)

где:

∆m / ∆t = увеличение или уменьшение массы в пределах контрольного объема в течение ( заданный период времени)

Устойчивый поток

Устойчивый поток относится к состоянию, при котором свойства жидкости в любой отдельной точке системы не меняются с течением времени. Эти свойства жидкости включают температуру, давление и скорость.Одним из наиболее важных свойств, которое является постоянным в системе с установившимся потоком, является массовый расход системы. Это означает, что в каком-либо компоненте системы не происходит накопления массы.

Уравнение неразрывности

Уравнение неразрывности — это просто математическое выражение принципа сохранения массы. Для контрольного объема, который имеет один вход и один выход, принцип сохранения массы гласит, что для установившегося потока массовый расход в объеме должен равняться массовому расходу на выходе.Уравнение неразрывности для этой ситуации выражается уравнением 3-5.

м˙

вход = м˙ выход (3-5)

(ρAv) вход = (ρAv) выход

Для контрольного объема с несколькими входами и выходами принцип сохранения масса требует, чтобы сумма массовых расходов в контрольном объеме была равна сумме массовых расходов из контрольного объема. Уравнение неразрывности для этой более общей ситуации выражается уравнением 3-6.

м˙

входов = м˙ выходов (3-6)

Одним из простейших приложений уравнения неразрывности является определение изменения скорости жидкости
из-за расширения или сжатия в диаметре трубка.

Пример: уравнение непрерывности — расширение трубопровода

Установившийся поток существует в трубе, которая постепенно расширяется с диаметра 6 дюймов до диаметра 8 дюймов. Плотность жидкости в трубе постоянна и равна 60 .8 фунт / фут3. Если скорость потока составляет 22,4 фута / сек в секции 6 дюймов, какова скорость потока в секции 8 дюймов?

Решение:

Из уравнения неразрывности мы знаем, что массовый расход в секции 6 дюймов должен равняться массовому расходу в секции 8 дюймов. Пусть нижний индекс 1 представляет 6-дюймовую секцию, а 2 — 8-дюймовую секцию, мы получим следующее.

1 = m˙ 2

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

v 2 = v 1 1/ ρ 2 ) (A 1 / A 2 )

v 2 = v 1 / r 1 2 ) (π / r 2 2 )

v 2 = (22.4 фута / сек) [(3 дюйма) 2 / (4 дюйма) 2 ]

v 2 = 12,6 фута / сек

Таким образом, используя уравнение неразрывности, мы увеличиваем диаметр трубы от От 6 до 8 дюймов скорость потока снизилась с 22,4 до 12,6 футов / сек.

Уравнение неразрывности также может использоваться, чтобы показать, что уменьшение диаметра трубы приведет к увеличению скорости потока.

Пример: уравнение непрерывности — центробежный насос Рисунок 3: Уравнение непрерывности

Входной диаметр насоса охлаждающей жидкости реактора, показанный на рисунке 3, составляет 28 дюймов.в то время как поток на выходе через насос составляет 9200 фунтов / м3. Плотность воды составляет 49 фунтов на кубический метр. Какая скорость на входе в насос?

Решение:

Вход = πr 2 = (3,13) (14 дюймов ((1 фут / 12 дюймов)) 2

= 4,28 фута 2

м˙ на входе = м ˙ на выходе = 9200 фунтов / с

(ρAv) на входе = 9200 фунтов / с

на входе = 9200 фунтов / с / Aρ

= (9200 фунтов / с) / [(4.28 футов 2) (49 фунтов / фут 3 )]

v на входе = 43,9 футов / сек

Приведенный выше пример показывает, что скорость потока в систему такая же, как и вне системы. Та же самая концепция верна, даже если более одного пути потока могут входить или выходить из системы одновременно. Баланс массы просто настраивается так, чтобы указать, что сумма всех потоков, входящих в систему, равна сумме всех потоков, покидающих систему, если существуют установившиеся условия. Пример этого физического случая включен в следующий пример.

Пример: уравнение непрерывности — несколько выходов Рисунок 4: Y-образная конфигурация для примера задачи

Трубопроводная система имеет Y-образную конфигурацию для разделения потока, как показано на рисунке 4. Диаметр входной ветви составляет 12 дюймов, а диаметры выпускных колен составляют 8 и 10 дюймов. Скорость в 10-дюймовых опорах составляет 10 футов / сек. Скорость потока через основную часть составляет 500 фунтов / м3. Плотность воды 62,4 фунта / фут3. Какова скорость на участке трубы диаметром 8 дюймов?

Решение:

A 8 = π [4 дюйма(1 фут / 12 дюймов)] 2

= 0,349 фута 2

A 10 = π [5 дюймов (1 фут / 12 дюймов)] 2

= 0,545 фута 2

Σm˙ входов = Σm˙ выходов

м˙ 12 = m˙ 10 + m˙ 8

м˙ 8 = m˙ 12 — m˙ 10

(ρAv) 8 = 12 — (ρAv) 10

v 8 = (m˙ 12 — (ρAv) 10 ) / (ρA) 8

= [(500 фунт / сек) — (62.4 фунта / фут3) (0,545 фут 2) (10 фут / сек)] / (62,4 фунта / фут3) (0,349 фут 2 )

v 8 = 7,3 фут / сек

Основные положения данной главы кратко изложены на следующей странице.

  • Изменения плотности жидкости обратно пропорциональны изменениям температуры.
  • Плавучесть — это тенденция тела плавать или подниматься при погружении в жидкость.
  • Давление , оказываемое водяным столбом, прямо пропорционально высоте столба и плотности воды.

P = ρ h г / г c

  • Закон Паскаля гласит, что давление, приложенное к замкнутой жидкости, передается в неизменном виде по замкнутому резервуару системы.
  • Объемный расход — это объем жидкости в единицу времени, проходящий через точку в жидкостной системе.
  • Массовый расход — это масса жидкости в единицу времени, проходящая через точку в жидкостной системе.
  • Объемный расход рассчитывается как произведение средней скорости жидкости и площади поперечного сечения потока.

V˙ = A v

  • Массовый расход рассчитывается как произведение объемного расхода и плотности жидкости.

m˙ = ρ A v

  • Принцип сохранения массы гласит, что все массовые расходы в контрольном объеме равны всем массовым расходам из контрольного объема плюс скорость изменения масса в контрольном объеме.
  • Для контрольного объема с одним входом и выходом уравнение неразрывности может быть выражено следующим образом:

м˙ вход = м˙ выход

  • Для контрольного объема с несколькими входами и выходов уравнение непрерывности:

m входов = m выходов

Режимы потока

Весь поток жидкости классифицируется по одной из двух широких категорий или режимов.Эти два режима потока — ламинарный поток и турбулентный поток. Режим потока, будь то ламинарный или турбулентный, важен при проектировании и работе любой жидкостной системы. Величина гидравлического трения, которая определяет количество энергии, необходимой для поддержания желаемого потока, зависит от режима потока. Это также является важным соображением в некоторых приложениях, связанных с передачей тепла жидкости.

Ламинарный поток

Ламинарный поток также называют обтекаемым или вязким потоком.Эти термины описывают поток, потому что в ламинарном потоке (1) слои воды текут друг над другом с разными скоростями практически без перемешивания между слоями, (2) частицы жидкости движутся по определенным и наблюдаемым траекториям или линиям тока и (3) ) течение характерно для вязкой (густой) жидкости или является тем потоком, в котором вязкость жидкости играет значительную роль.

Турбулентный поток

Турбулентный поток характеризуется неравномерным движением частиц жидкости. Нет определенной частоты, как в волновом движении.Частицы движутся по неправильной траектории, без видимого рисунка и определенных слоев.

Профили скорости потока

Не все частицы жидкости движутся по трубе с одинаковой скоростью. Форма кривой скорости (профиль скорости на любом заданном участке трубы) зависит от того, является ли поток ламинарным или турбулентным. Если поток в трубе ламинарный, распределение скорости в поперечном сечении будет параболическим по форме с максимальной скоростью в центре, примерно вдвое превышающей среднюю скорость в трубе.В турбулентном потоке существует довольно равномерное распределение скорости по сечению трубы, в результате чего вся жидкость течет с заданным единственным значением. Рисунок 5 помогает проиллюстрировать приведенные выше идеи. Скорость жидкости, контактирующей со стенкой трубы, по существу равна нулю и увеличивается по мере удаления от стенки.

Рисунок 5: Профили скорости ламинарного и турбулентного потока

Обратите внимание на рисунок 5, что профиль скорости зависит от состояния поверхности стенки трубы. Более гладкая стенка дает более равномерный профиль скорости, чем грубая стенка трубы.

Средняя (объемная) скорость

Во многих задачах потока жидкости вместо определения точных скоростей в разных местах в одном и том же поперечном сечении потока достаточно позволить одной средней скорости представлять скорость всей жидкости в этой точке в трубе. Это довольно просто для турбулентного потока, поскольку профиль скорости плоский по большей части поперечного сечения трубы. Разумно предположить, что средняя скорость равна скорости в центре трубы.

Если режим потока ламинарный (профиль скорости параболический), все еще существует проблема попытки представить «среднюю» скорость в любом заданном поперечном сечении, поскольку среднее значение используется в уравнениях потока жидкости. Технически это делается с помощью интегрального исчисления. На практике ученик должен использовать среднее значение, равное половине значения средней линии.

Вязкость

Вязкость — это свойство жидкости, которое измеряет сопротивление жидкости деформации из-за силы сдвига.Вязкость — это внутреннее трение жидкости, которое заставляет ее сопротивляться протеканию мимо твердой поверхности или других слоев жидкости. Вязкость также можно рассматривать как меру сопротивления жидкости течению. Густое масло имеет высокую вязкость; вода имеет низкую вязкость. Единица измерения абсолютной вязкости:

µ = абсолютная вязкость жидкости (фунт-сила-сек / фут2).

Вязкость жидкости обычно существенно зависит от температуры жидкости и относительно не зависит от давления.Для большинства жидкостей, когда температура жидкости увеличивается, вязкость жидкости уменьшается. Пример этого можно увидеть в смазочном масле двигателей. Когда двигатель и его смазочное масло холодные, масло очень вязкое или густое. После запуска двигателя и повышения температуры смазочного масла вязкость масла значительно снижается, и масло кажется намного более жидким.

Идеальная жидкость

Идеальная жидкость — это жидкость, которая не сжимается и не имеет вязкости.Идеальных жидкостей на самом деле не существует, но иногда полезно рассмотреть, что случилось бы с идеальной жидкостью в конкретной задаче потока жидкости, чтобы упростить задачу.

Число Рейнольдса

Режим потока (ламинарный или турбулентный) определяется путем оценки числа Рейнольдса потока (см. Рисунок 5). Число Рейнольдса, основанное на исследованиях Осборна Рейнольдса, представляет собой безразмерное число, состоящее из физических характеристик потока. Уравнение 3-7 используется для расчета числа Рейнольдса (N R ) для потока жидкости.

N

R = PvD / мкг c (3-7)

где:

N R = число Рейнольдса (без единицы измерения)

v = средняя скорость (фут / сек)

D = диаметр длины трубы (футы)

µ = абсолютная вязкость жидкости (фунт-сила-сек / фут2)

ρ = массовая плотность жидкости (фунт / фут3)

г c = гравитационная постоянная (32,2 фут-фунт-сила / фунт-сила-сек2) )

Для практических целей, если число Рейнольдса меньше 2000, поток является ламинарным.Если оно больше 3500, поток турбулентный. Потоки с числами Рейнольдса от 2000 до 3500 иногда называют переходными. Большинство жидкостных систем на ядерных установках работают с турбулентным потоком. Числа Рейнольдса можно удобно определить с помощью диаграммы Moody Chart; пример которого приведен в Приложении B. Дополнительные сведения об использовании диаграммы Moody Chart представлены в последующем тексте.

Основные положения этой главы кратко изложены ниже.

• Ламинарный поток Слои воды текут друг над другом с разной скоростью, практически без перемешивания между слоями.Профиль скорости потока для ламинарного потока в круглых трубах имеет параболическую форму с максимальным потоком в центре трубы и минимальным потоком на стенках трубы. Средняя скорость потока составляет примерно половину максимальной скорости.

• Турбулентный поток Поток характеризуется неравномерным движением частиц жидкости. Профиль скорости турбулентного потока довольно плоский в центральной части трубы и быстро падает очень близко к стенкам.Средняя скорость потока примерно равна скорости в центре трубы.

• Вязкость — это свойство жидкости, которое измеряет сопротивление жидкости деформации из-за силы сдвига. Для большинства жидкостей температура и вязкость обратно пропорциональны.

• Идеальная жидкость — это несжимаемая жидкость без вязкости.

• Увеличение числа Рейнольдса указывает на усиление турбулентности потока.

Общее уравнение энергии

Принцип сохранения энергии утверждает, что энергия не может быть ни создана, ни уничтожена.Это эквивалентно Первому закону термодинамики, который использовался для разработки общего уравнения энергии в модуле по термодинамике. Уравнение 3-8 представляет собой формулировку общего уравнения энергии для открытой системы.

Q + (U + PE + KE + PV) вход =

W + (U + PE + KE + PV)

выход + (U + PE + KE + PV) сохраненный (3-8 )

где:

Q = тепло (британские тепловые единицы)

U = внутренняя энергия (британские тепловые единицы)

PE = потенциальная энергия (фут-фунт-сила)

KE = кинетическая энергия (фут-фунт-сила)

P = давление ( фунт-сила / фут 2 )

V = объем (фут 3 )

W = работа (фут-фунт-сила)

Упрощенное уравнение Бернулли

Уравнение Бернулли является результатом применения общего уравнения энергии и первого закона термодинамики к системе с установившимся потоком, в которой никакая работа не выполняется с жидкостью или ею, не передается тепло к или от жидкости, и не происходит никаких изменений внутренней энергии (т.е., без изменения температуры) жидкости. В этих условиях общее уравнение энергии упрощается до уравнения 3-9.

(PE + KE + PV)

1 = (PE + KE + PV) 2 (3-9)

Подставив соответствующие выражения для потенциальной энергии и кинетической энергии, уравнение 3-9 можно переписать как Equation 3-10.

мгц

1/ г c + mv 1 2/ 2g c + P 1 V 1 = mgz 2/ г c + mv 2 2/ 2g c + P 2 V 2 (3-10)

где:

m = масса (фунт-м)

z = высота над ссылка (фут)

v = средняя скорость (фут / сек)

g = ускорение свободного падения (32.17 фут / сек 2 )

gc = гравитационная постоянная, (32,17 фут-фунт / фунт-сила-сек 2 )

Примечание: коэффициент g c требуется только при использовании английской системы измерения и Масса измеряется в фунтах массы. По сути, это коэффициент преобразования, необходимый для непосредственного вывода единиц измерения. Нет необходимости в множителе, если масса измеряется в пробках или если используется метрическая система измерения.

Каждый член в уравнении 3-10 представляет форму энергии, которой обладает движущаяся жидкость (потенциальная, кинетическая энергия и энергия, связанная с давлением).По сути, уравнение физически представляет собой баланс энергий KE, PE, PV, так что если одна форма энергии увеличивается, одна или несколько других уменьшаются, чтобы компенсировать, и наоборот.

Умножение всех членов в уравнении 3-10 на коэффициент gc / mg дает форму уравнения Бернулли, показанного уравнением 3-11.

z

1 + v 1 2 / 2g + P 1 ν 1 g c / g = z 2 + v 2 2 / 2g + P 2 ν 2 г c / г (3-11)

Головка

Поскольку единицы для всех различных форм энергии в уравнении 3-11 измеряются в единицах расстояния, эти термины иногда называют «Напоры» (напор, напор и напор).Термин «напор» используется инженерами применительно к давлению. Это ссылка на высоту, обычно в футах, водяного столба, который будет выдерживать данное давление. Каждую из энергий, которыми обладает жидкость, можно выразить через голову. Высота напора представляет потенциальную энергию жидкости из-за ее возвышения над контрольным уровнем. Скоростной напор представляет собой кинетическую энергию жидкости. Это высота в футах, на которую текущая жидкость поднялась бы в столбе, если бы вся ее кинетическая энергия была преобразована в потенциальную.Напор представляет собой энергию потока столба жидкости, вес которой эквивалентен давлению жидкости.

Сумма подъемного напора, скоростного напора и напора жидкости называется общим напором. Таким образом, уравнение Бернулли утверждает, что общий напор жидкости постоянен.

Преобразование энергии в жидкостных системах

Уравнение Бернулли позволяет легко исследовать, как происходит передача энергии между напором подъема, напором скорости и напором.Можно исследовать отдельные компоненты трубопроводных систем и определить, какие свойства жидкости изменяются и как это влияет на энергетический баланс.

Если труба, содержащая идеальную жидкость, подвергается постепенному расширению в диаметре, уравнение неразрывности говорит нам, что по мере увеличения диаметра и площади проходного сечения скорость потока должна уменьшаться, чтобы поддерживать тот же массовый расход. Поскольку скорость на выходе меньше скорости на входе, скоростной напор потока должен уменьшаться от входа к выходу.Если труба лежит горизонтально, напор не меняется; следовательно, уменьшение скоростного напора должно быть компенсировано увеличением напора. Поскольку мы рассматриваем идеальную несжимаемую жидкость, удельный объем жидкости не изменится. Единственный способ увеличения напора несжимаемой жидкости — это увеличение давления. Таким образом, уравнение Бернулли показывает, что уменьшение скорости потока в горизонтальной трубе приведет к увеличению давления.

Если труба постоянного диаметра, содержащая идеальную жидкость, подвергается уменьшению отметки, результат будет таким же, но по другим причинам. В этом случае скорость потока и скоростной напор должны быть постоянными, чтобы удовлетворять уравнению неразрывности массы.

Таким образом, уменьшение напора можно компенсировать только увеличением напора. Опять же, жидкость несжимаема, поэтому увеличение напора должно приводить к увеличению давления.

Несмотря на то, что уравнение Бернулли имеет несколько ограничений, существует множество задач с физической жидкостью, к которым оно применяется.Как и в случае сохранения массы, уравнение Бернулли может применяться к задачам, в которых более одного потока могут одновременно входить в систему или выходить из нее. Особо следует отметить тот факт, что задачи последовательной и параллельной системы трубопроводов решаются с помощью уравнения Бернулли.

Пример: уравнение Бернулли

Предположим, что поток без трения в длинной горизонтальной конической трубе. Диаметр составляет 2,0 фута на одном конце и 4,0 фута на другом. Напор на меньшем конце составляет 16 футов водяного столба.Если вода течет через этот конус со скоростью 125,6 фут3 / сек, найдите скорости на двух концах и напор на большем конце.

Решение:

1 = A 1 v 1

v 1 = 1 / A 1 v 2 = V 2 / A 2

v 1 = 125.6 футов 3 / сек / π (1 фут) 2 v 2 = 125,6 футов 3 / сек / π (2 фута) 2

v 1 = 40 футов / с v 2 = 10 футов / с

z 1 + v 1 2 / 2g + P 1 ν 1 g c / g = z 2 + v 2 2 / 2g + P 2 ν 2 г c / г

P 2 ν 2 г c / g = P 1 ν 1 g c / g + (z 1 — z 2 ) + (v 1 2 — v 2 2 ) / 2g

= 16 футов + 0 футов + [(40 футов / сек) 2 — (10 футов / сек) 2 /2 (32.17 фут-фунт-сила / фунт-сила — сек 2 )]

= 39,3 фута

Ограничения упрощенного уравнения Бернулли

Практическое применение упрощенного уравнения Бернулли к реальным трубопроводным системам невозможно из-за двух ограничений. Одно серьезное ограничение уравнения Бернулли в его нынешней форме состоит в том, что трение жидкости недопустимо при решении проблем трубопроводов. Следовательно, уравнение 3-10 применимо только к идеальным жидкостям. Однако в действительности общий напор жидкости не может быть полностью перенесен из одной точки в другую из-за трения.Учет этих потерь напора даст гораздо более точное описание того, что происходит физически. Это особенно верно, потому что одна из задач насоса в гидравлической системе — преодоление потерь давления из-за трения трубы.

Второе ограничение в уравнении Бернулли состоит в том, что нельзя выполнять какую-либо работу с жидкостью или с ней. Это ограничение предотвращает анализ двух точек в потоке жидкости, если между двумя точками существует насос. Поскольку большинство проточных систем включают насосы, это существенное ограничение.К счастью, упрощенное уравнение Бернулли можно модифицировать таким образом, чтобы удовлетворительно учитывать потери напора и работу насоса.

Расширенное Бернулли

Уравнение Бернулли можно модифицировать, чтобы учесть прибыли и убытки напора. Полученное уравнение, называемое расширенным уравнением Бернулли, очень полезно при решении большинства задач потока жидкости. Фактически, расширенное уравнение Бернулли, вероятно, используется больше, чем любое другое уравнение потока жидкости. Уравнение 3-12 является одной из форм расширенного уравнения Бернулли.

z

1 + v 1 2 / 2g + P 1 ν 1 g c / g + H p = z 2 + v 2 2 / 2g + P 2 ν 2 g c / g + H f (3-12)

где:

z = высота над исходным уровнем (футы)

v = средняя скорость жидкости ( фут / сек)

P = давление жидкости (фунт-сила / фут 2 )

ν = удельный объем жидкости (фут 3 / фунт)

л.с. = напор, добавляемый насосом (фут)

Hf = потеря напора из-за гидравлического трения (футы)

g = ускорение свободного падения (фут / сек 2 )

Потеря напора из-за гидравлического трения (Hf) представляет собой энергию, используемую для преодоления трения, вызванного стенками трубка.Хотя это представляет собой потерю энергии с точки зрения потока текучей среды, обычно это не означает значительную потерю общей энергии текучей среды. Это также не нарушает закон сохранения энергии, поскольку потеря напора из-за трения приводит к эквивалентному увеличению внутренней энергии (u) жидкости. Эти потери являются наибольшими, когда жидкость протекает через входы, выходы, насосы, клапаны, фитинги и любые другие трубопроводы с шероховатой внутренней поверхностью.

Большинство методов оценки потери напора из-за трения являются эмпирическими (основанными почти исключительно на экспериментальных данных) и основаны на константе пропорциональности, называемой коэффициентом трения (f), который будет обсуждаться в следующем разделе.

Пример: Extended Bernoulli

Вода перекачивается из большого резервуара в точку на 65 футов выше резервуара. Сколько футов напора должно быть добавлено насосом, если через 6-дюймовую трубу течет 8000 фунтов / час, а потеря напора на трение составляет 2 фута? Плотность жидкости составляет 62,4 фунта / фут3, а площадь поперечного сечения 6-дюймовой трубы составляет 0.2006 футов 2 .

Решение:

Чтобы использовать модифицированную форму уравнения Бернулли, ориентиры выбираются на поверхности резервуара (точка 1) и на выходе из трубы (точка 2).Давление на поверхности резервуара такое же, как давление на выходе из трубы, то есть атмосферное давление. Скорость в точке 1 будет практически равна нулю.

Использование уравнения массового расхода для определения скорости в точке 2:

м˙ 2 = ρ A 2 v 2

v 2 = m˙ 2 / ρ A 2

v 2 = 8000 фунт / час / (62,4 фунт / фут 3 ) 0.2006 фут 2

v 2 = 639 фут / час (1 час / 3600 сек)

v 2 = 0.178 фут / с

z 1 + v 1 2 / 2g + P 1 ν 1 g c / g + H p = z 2 + v 2 2 / 2g + P 2 ν 2 g c / g + H f

H p = (z 2 — z 1 ) + (v 2 2 v 1 2 ) / 2g + (P 2 — P 1 ) ν (g c / g) + H f

H p = 65 футов + [(0.178 фут / сек) 2 (фут / сек) 2 ] / [2 (32,17 фут-фунт / фунт-сила-сек 2 )] + 0 футов + 2 фута

H p = 67 футов [/ box]

Следует отметить, что решение этой примерной задачи имеет числовое значение, которое «имеет смысл» из данных, приведенных в задаче. Общее увеличение напора на 67 футов в основном связано с увеличением оценки на 65 футов и увеличением напора трения на 2 фута.

Применение уравнения Бернулли к трубке Вентури

Многие компоненты установки, такие как трубка Вентури, могут быть проанализированы с использованием уравнения Бернулли и уравнения неразрывности.Вентури — это устройство для измерения расхода, которое состоит из постепенного сжатия с последующим постепенным расширением. Пример трубки Вентури показан на рисунке 6. Измеряя перепад давления между входом трубки Вентури (точка 1) и горловиной трубки Вентури (точка 2), можно определить скорость потока и массовый расход на основе формулы Бернулли. уравнение.

Рис. 6. Измеритель Вентури

Уравнение Бернулли утверждает, что общий напор потока должен быть постоянным. Так как высота не изменяется значительно, если вообще не изменяется между точками 1 и 2, высота напора в этих двух точках будет по существу одинакова и будет исключена из уравнения.Таким образом, уравнение Бернулли упрощается до уравнения 3-13 для трубки Вентури.

v

1 2 / 2g + P 1 ν 1 g c / g = v 2 2 / 2g + P 2 ν 2 г c / g (3-13)

Применение уравнения неразрывности к точкам 1 и 2 позволяет нам выразить скорость потока в точке 1 как функцию скорости потока в точке 2 и отношения двух областей потока.

ρ 1 A 1 v 1 = ρ 2 A 2 v 2

v 1 = ρ 2 A 2 v 2 / ρ 1 A 1

v 1 = v 2 A 2 / A 1

Использование алгебры для преобразования уравнения 3-13 и замена вышеприведенного результата на v 1 позволяет нам решить для v 2 .

v 2 2 — v 1 2 / 2g = (P 1 –P 2 ) ν g c / g

v 2 2 — (v 2 A 2 / A 1 ) 2 = (P 1 — P 2 ) 2 ν g c

v 2 2 (1 — (A 2 / A 1 ) 2 ) = (P 1 — P 2 ) 2 ν g c

v 2 2 = (P 1 — P 2 ) 2 ν g c / (1 — (A2 / A1) 2 )

v 2 = √ [(P 1 — P 2 ) 2 ν g c / (1 — (A2 / A1) 2 )]

v 2 = √ (P 1 — P 2 ) √ [2 ν g c / (1 — (A2 / A1) 2 )]

Следовательно, скорость потока в горловине трубки Вентури и объемный расход являются прямыми y пропорционально квадратному корню из перепада давления.

Давления на участке выше по потоку и в горловине являются фактическими давлениями, а скорости из уравнения Бернулли без потерь являются теоретическими скоростями. Когда потери учитываются в уравнении энергии, скорости являются фактическими скоростями. Во-первых, с помощью уравнения Бернулли (то есть без члена потери напора) получается теоретическая скорость в горловине. Затем умножив это на коэффициент Вентури (C v ), который учитывает потери на трение и равен 0.98 для большинства Вентури получается фактическая скорость. Фактическая скорость, умноженная на фактическую площадь горловины, определяет фактический объемный расход нагнетания.

Падение давления P 1 — P 2 на трубке Вентури можно использовать для измерения расхода с помощью U-образного манометра, как показано на рисунке 6. Показание R ‘манометра пропорционально падению давления и, следовательно, скорости жидкости.

Основные положения этой главы кратко изложены ниже.

• Краткое изложение уравнения Бернулли

• Уравнение Бернулли представляет собой приложение Первого закона термодинамики.

• Уравнение Бернулли представляет собой приложение общего уравнения энергии к системе с установившимся потоком, в которой никакая работа не выполняется с жидкостью или с жидкостью, тепло не передается к жидкости или от нее, и не происходит никаких изменений внутренней энергии жидкости.

• Напор — это термин, используемый для описания давления, оказываемого на жидкость или со стороны жидкости.

• Поскольку жидкость течет в системе трубопроводов, изменения высоты, скорости и напора должны быть согласованными, чтобы удовлетворялось уравнение Бернулли.

• Уравнение Бернулли можно модифицировать, чтобы учесть потери на трение и работу насоса.

• Вентури можно использовать для определения массового расхода из-за изменений давления и скорости жидкости.

• Объемный расход через трубку Вентури прямо пропорционален квадратному корню из перепада давления между входом трубки Вентури и ее горловиной.

Потеря напора

Потеря напора — это мера уменьшения общего напора (сумма подъемного напора, скоростного напора и напора) жидкости при ее движении через жидкостную систему. В реальных жидкостях потеря напора неизбежна. Это происходит из-за: трения между жидкостью и стенками трубы; трение между соседними частицами жидкости при их движении относительно друг друга; и турбулентность, вызываемая всякий раз, когда поток перенаправляется или каким-либо образом влияет на такие компоненты, как входы и выходы трубопроводов, насосы, клапаны, редукторы потока и фитинги.

Потери на трение — это часть общей потери напора, которая возникает, когда жидкость течет по прямым трубам. Потеря напора для потока жидкости прямо пропорциональна длине трубы, квадрату скорости жидкости и члену, учитывающему трение жидкости, называемому коэффициентом трения. Потеря напора обратно пропорциональна диаметру трубы.

Потеря напора ∝ f Lv 2 / D

Коэффициент трения

Коэффициент трения, как было установлено, зависит от числа Рейнольдса для потока и степени шероховатости внутренней поверхности трубы.

Величина, используемая для измерения шероховатости трубы, называется относительной шероховатостью, которая равна средней высоте неровностей поверхности (ε), деленной на диаметр трубы (D).

Относительная шероховатость = ε / D

Значение коэффициента трения обычно получают из диаграммы Moody Chart (Рисунок A). Диаграмму Moody Chart можно использовать для определения коэффициента трения на основе числа Рейнольдса и относительной шероховатости.

Рисунок A: Moody Chart Пример:

Определите коэффициент трения (f) для потока жидкости в трубе с числом Рейнольдса 40 000 и относительной шероховатостью 0.01.

Решение:

Используя диаграмму Moody Chart, число Рейнольдса 40 000 пересекает кривую, соответствующую относительной шероховатости 0,01 при коэффициенте трения 0,04.

Уравнение Дарси

Потеря напора на трение может быть рассчитана с использованием математической зависимости, известной как уравнение Дарси для потери напора. Уравнение принимает две различные формы. Первая форма уравнения Дарси определяет потери в системе, связанные с длиной трубы.

H

r = f L v 2 / D 2 g (3-14)

где:

f = коэффициент трения (без агрегата)

L = длина трубы (футы)

D = диаметр длины трубы (футы)

v = скорость жидкости (фут / сек)

g = ускорение свободного падения (фут / сек 2 )

Пример:

Уравнение потери напора Дарси Труба длиной 100 футов и диаметром 20 дюймов содержит воду при температуре 200 ° F, текущую с массовым расходом 700 фунтов / м3.Вода имеет плотность 60 фунтов / фут 3 и вязкость 1,978 x 10 -7 фунт-сила-сек / фут 2 . Относительная шероховатость трубы 0,00008. Рассчитайте потерю напора для трубы.

Решение:

Для решения этой проблемы необходимо сначала определить скорость потока. Во-вторых, используя скорость потока и заданные свойства жидкости, вычислите число Рейнольдса. В-третьих, определите коэффициент трения по числу Рейнольдса и относительной шероховатости.Наконец, используйте уравнение Дарси, чтобы определить потерю напора.

m˙ = ρ A v

v = m˙ / ρ A

= (700 фунт / сек) / (60 фунт / фут 3 ) π (10 дюймов) 2 (1 фут 2 / 144 дюйма 2)

v = 5,35 футов / с

N R = ρ v D / мкг c

N R = (60 фунтов / фут 3 ) (5,35 футов / сек) (20 дюймов) (1 фут / 12 дюймов) / (1,978 x 10 -7 фунт-сила-сек / фут 2 ) (32,17 фут-фунт-сила / фунт-сила-фут-сек 2) =

N R = 8.4 x 10 7

Используйте диаграмму Moody для числа Рейнольдса 8,4 x 10 7 и относительной шероховатости 0,00008.

f = 0,012

H f = f (L / D) (v 2 / 2g)

H f = (o.o12) [100 футов / (20 дюймов) (1 фут / 12 дюймов) )] * (5,35 фут / сек) 2 /(2)(32,17 фут / сек 2 )

H f = 0,32 фута

Незначительные потери

Потери, возникающие в трубопроводах из-за изгибов, локти, суставы, клапаны и т. д.иногда называют незначительными потерями. Это неправильное название, потому что во многих случаях эти потери более важны, чем потери из-за трения трубы, рассмотренные в предыдущем разделе. Для всех незначительных потерь в турбулентном потоке потеря напора изменяется пропорционально квадрату скорости. Таким образом, удобный способ выражения незначительных потерь потока — это коэффициент потерь (k). Значения коэффициента потерь (k) для типовых ситуаций и арматуры можно найти в стандартных справочниках. Форма уравнения Дарси, используемого для расчета незначительных потерь отдельных компонентов жидкостной системы, выражается уравнением 3-15.

H

f = kv 2 / 2g (3-15)

Эквивалентная длина трубопровода

Незначительные потери могут быть выражены через эквивалентную длину (Leq) трубы, которая будет иметь такую ​​же потерю напора для такая же скорость нагнетаемого потока. Эту взаимосвязь можно найти, установив две формы уравнения Дарси равными друг другу.

f L v 2 / D 2g = kv 2 / 2g

Это дает два полезных соотношения

L

eq = k D / f (3-16)

k = f L

eq / D (3-17)

Типичные значения L eq / D для общих компонентов трубопроводной системы перечислены в таблице 1.Эквивалентная длина трубопровода, которая вызовет такие же потери напора, как и конкретный компонент, может быть определена путем умножения значения L экв. / D для этого компонента на диаметр трубы. Чем выше значение L eq / D, тем длиннее эквивалентная длина трубы.

Таблица 1: Типичные значения Leq / D Пример:

Полностью открытая задвижка находится в трубе диаметром 10 дюймов. Какая эквивалентная длина трубы вызовет такую ​​же потерю напора, как и задвижка?

Решение:

Из таблицы 1 мы находим, что значение L экв. / D для полностью открытой задвижки равно 10.

L eq = (L / D) D

= 10 (10 дюймов)

= 100 дюймов

Добавляя эквивалентные длины всех компонентов к фактической длине трубы в системе, мы можем получить L экв. значение для всей системы трубопроводов.

Основные положения этой главы кратко изложены ниже.

• Потеря напора — это уменьшение общего напора (сумма потенциального напора, скоростного напора и напора) жидкости, вызванное трением, присутствующим при движении жидкости.

• Потери на трение — это часть общей потери напора, которая возникает, когда жидкость течет по прямым трубам.

• Незначительные потери — это потери напора, возникающие из-за изгибов, колен, соединений, клапанов и других компонентов. Каждый раз, когда поток изменяет направление или изменяется площадь поперечного сечения, он испытывает потерю напора.

• Коэффициент трения для потока жидкости можно определить с помощью диаграммы Moody Chart, если можно определить относительную шероховатость трубы и число Рейнольдса потока.

• Уравнение Дарси можно использовать для расчета потерь на трение.

• Для расчета незначительных потерь можно использовать специальную форму уравнения Дарси.

• Длину трубы, которая может вызвать такую ​​же потерю напора, как у клапана или фитинга, можно определить, умножив значение L / D для компонента, указанного в справочниках или руководствах поставщиков, на диаметр трубы.

Принудительная и естественная циркуляция

В предыдущих главах, посвященных потоку жидкости, было объяснено, что каждый раз, когда жидкость течет, возникает некоторое трение, связанное с движением, которое вызывает потерю напора.Было отмечено, что эта потеря напора обычно компенсируется в системах трубопроводов насосами, которые действительно работают с жидкостью, компенсируя потерю напора из-за трения. Циркуляция жидкости в системах с помощью насосов обозначается как принудительная циркуляция .

Некоторые жидкостные системы можно спроектировать таким образом, чтобы не было необходимости в насосах для обеспечения циркуляции. Напор, необходимый для компенсации потерь напора, создается градиентами плотности и перепадами высоты.Поток, возникающий в этих условиях, называется естественной циркуляцией .

Тепловая приводная головка

Тепловая приводная головка — это сила, которая вызывает естественную циркуляцию. Это вызвано разницей в плотности между двумя телами или областями жидкости.

Рассмотрим два равных объема жидкости одного и того же типа. Если два объема имеют разную температуру, тогда объем с более высокой температурой также будет иметь меньшую плотность и, следовательно, меньшую массу.Поскольку объем при более высокой температуре будет иметь меньшую массу, на него также будет оказываться меньшая сила тяжести. Эта разница в силе тяжести, действующей на жидкость, будет приводить к тому, что более горячая жидкость поднимается, а более холодная жидкость опускается.

Этот эффект наблюдается во многих местах. Один из примеров — воздушный шар. Сила, заставляющая воздушный шар подниматься вверх, является результатом разницы в плотности между горячим воздухом внутри воздушного шара и более холодным воздухом, окружающим его.

Тепло, добавляемое воздуху в воздушном шаре, добавляет энергию молекулам воздуха. Движение молекул воздуха увеличивается, и молекулы воздуха занимают больше места. Молекулы воздуха внутри воздушного шара занимают больше места, чем такое же количество молекул воздуха вне воздушного шара. Это означает, что горячий воздух менее плотный и легкий, чем окружающий воздух. Поскольку воздух в воздушном шаре менее плотный, сила тяжести оказывает на него меньшее влияние. В результате воздушный шар весит меньше окружающего воздуха.Гравитация втягивает более холодный воздух в пространство, занимаемое воздушным шаром. Движение более холодного воздуха вниз выталкивает воздушный шар из ранее занятого пространства, и он поднимается.

Условия, необходимые для естественной циркуляции

Естественная циркуляция будет иметь место только при наличии правильных условий. Даже после того, как естественное кровообращение началось, устранение любого из этих условий приведет к остановке естественного кровообращения. Условия естественной циркуляции следующие.

1. Существует разница температур (имеется источник тепла и радиатор).

2. Источник тепла находится ниже радиатора.

3. Жидкости должны контактировать друг с другом.

Должны быть два тела жидкости с разными температурами. Это также может быть одно тело жидкости с участками с разной температурой. Разница в температуре необходима для разницы в плотности жидкости. Разница в плотности является движущей силой естественного циркуляционного потока.

Для продолжения естественной циркуляции необходимо поддерживать разницу температур. Добавление тепла от источника тепла должно происходить в зоне с высокой температурой. В области низких температур должен существовать непрерывный отвод тепла радиатором. В противном случае температуры в конечном итоге выровнялись бы, и дальнейшая циркуляция прекратилась.

Источник тепла должен располагаться ниже радиатора. Как показано на примере воздушного шара, более теплая жидкость менее плотна и будет иметь тенденцию подниматься, а более холодная жидкость более плотная и будет иметь тенденцию опускаться.Чтобы воспользоваться преимуществом естественного движения теплых и холодных жидкостей, источник тепла и радиатор должны располагаться на соответствующей высоте.

Две области должны соприкасаться, чтобы был возможен поток между ними. Если путь потока заблокирован или заблокирован, естественная циркуляция невозможна.

Пример охлаждения с естественной циркуляцией

Естественная циркуляция часто является основным средством охлаждения реакторов бассейнового типа и облученных тепловыделяющих сборок, хранящихся в бассейнах с водой после извлечения из реактора.Источником тепла является тепловыделяющая сборка. Радиатор — это основная часть воды в бассейне.

Вода в нижней части тепловыделяющей сборки поглощает энергию, генерируемую сборкой. Температура воды увеличивается, а плотность уменьшается. Сила тяжести втягивает более холодную (более плотную) воду в нижнюю часть узла, вытесняя более теплую воду. Более теплая (более легкая) вода вынуждена уступить свое место более холодной (более тяжелой) воде. Более теплая (более легкая) вода поднимается выше в сборке. По мере продвижения воды по длине сборки она поглощает больше энергии.Вода становится все светлее и светлее, непрерывно выталкиваясь вверх более плотной водой, движущейся под ней. В свою очередь, более холодная вода поглощает энергию от узла и также вынуждена подниматься по мере продолжения естественного циркуляционного потока. Вода, выходящая из верхней части топливной сборки, отдает свою энергию, смешиваясь с большей частью воды в бассейне. Основная часть воды в бассейне обычно охлаждается путем циркуляции через теплообменники в отдельном процессе.

Расход и разница температур

Тепловая приводная головка, которая вызывает естественную циркуляцию, возникает из-за изменения плотности, вызванного разницей температур.Как правило, чем больше разница температур между горячей и холодной областями жидкости, тем больше тепловая приводная головка и результирующая скорость потока. Однако рекомендуется держать горячую жидкость переохлажденной, чтобы предотвратить изменение фазы. Можно иметь естественную циркуляцию в двухфазном потоке, но, как правило, поддерживать поток труднее.

Для индикации или проверки естественной циркуляции могут использоваться различные параметры. Это зависит от типа растения.Например, для реактора с водой под давлением (PWR) выбранные параметры системы охлаждения реактора (RCS), которые будут использоваться, следующие.

1. RCS ∆T (T Hot — T Cold ) должен составлять 25-80% от значения полной мощности и должен быть постоянным или медленно уменьшаться. Это указывает на то, что остаточное тепло удаляется из системы с достаточной скоростью для поддержания или снижения внутренней температуры.

2. Температура горячих и холодных ног RCS должна быть постоянной или медленно снижаться. Опять же, это указывает на то, что тепло удаляется, а тепловая нагрузка распада, как и ожидалось, уменьшается.

3. Давление пара парогенератора (давление вторичного контура) должно соответствовать температуре RCS. Это подтверждает, что парогенератор отводит тепло от охлаждающей жидкости RCS.

Если естественная циркуляция для PWR происходит или неизбежна, можно выполнить несколько действий, чтобы обеспечить или улучшить возможности охлаждения активной зоны. Во-первых, уровень в компенсаторе давления может поддерживаться выше 50%. Во-вторых, поддерживайте переохлаждение RCS на уровне 15 F или выше.

Оба эти действия помогут предотвратить образование паровых карманов в RCS, где они будут ограничивать поток RCS.В-третьих, поддерживайте уровень воды в парогенераторе ≥ нормального диапазона. Это обеспечивает соответствующий теплоотвод, чтобы гарантировать, что отвод тепла будет достаточным для предотвращения закипания RCS.

Основные положения этой главы перечислены ниже.

• Естественный циркуляционный поток — это циркуляция жидкости без использования механических устройств.

• Принудительный циркуляционный поток — это циркуляция жидкости в системе с помощью насосов.

• Тепловая приводная головка является движущей силой для естественной циркуляции, вызванной разницей в плотности между двумя областями жидкости.

• Для поддержания естественной циркуляции необходимы три элемента:

  • Должны быть теплоотвод и источник тепла.
  • Источник тепла должен располагаться под радиатором.
  • Между теплой и холодной жидкостью должны существовать пути потока.

• Как правило, чем больше разница температур, тем выше расход естественной циркуляции.

• Естественную циркуляцию в PWR можно проверить с помощью мониторинга:

  • RCS ∆T — 25% -80% значение полной мощности
  • T Hot / T Cold — постоянно или медленно снижение
  • Давление пара S / G — отслеживание температуры RCS

• Естественная циркуляция в PWR может быть увеличена за счет:

  • поддерживать уровень компенсатора давления> 50%
  • поддерживать RCS ≥ 15o F переохлаждение
  • поддерживать адекватный теплоотвод, уровень S / G ≥ нормальный диапазон

Двухфазный поток жидкости

Все отношения потоков жидкости, обсуждавшиеся ранее, относятся к потоку одной фазы жидкости, будь то жидкость или пар .В некоторых важных местах в системах потока жидкости происходит одновременный поток жидкой воды и пара, известный как двухфазный поток. Этих простых соотношений, используемых для анализа однофазного потока, недостаточно для анализа двухфазного потока.

Существует несколько методов, используемых для прогнозирования потери напора из-за трения жидкости для двухфазного потока. Трение двухфазного потока больше, чем трение однофазного потока, при тех же размерах трубопровода и массовом расходе. Разница, по-видимому, зависит от типа потока и является результатом увеличения скорости потока.Потери на двухфазное трение экспериментально определяются путем измерения перепада давления на различных элементах трубопровода.

Двухфазные потери обычно связаны с однофазными потерями через те же элементы. Один принятый метод определения потерь на двухфазное трение на основе однофазных потерь включает множитель двухфазного трения (R), который определяется как отношение двухфазных потерь напора к потерям напора, оцененным с использованием насыщенного жидкие свойства.

R = H

f, двухфазный / H f, насыщенная жидкость (3-18)

где:

R = двухфазный множитель трения (без единиц)

H f, два -фаза = двухфазная потеря напора из-за трения (футы)

H f, насыщенная жидкость = однофазная потеря напора из-за трения (футы)

Множитель трения (R) оказался намного выше при более низких давлениях, чем при более высоких давлениях.Двухфазная потеря напора может быть во много раз больше, чем однофазная потеря напора.

Хотя для моделей двухфазного потока использовался широкий диапазон названий, мы определим только три типа потока. Используемые схемы потока определены следующим образом:

1. Пузырьковый поток: происходит рассеяние пузырьков пара в непрерывном потоке жидкости.

2. Пробковый поток: в пузырьковом потоке пузырьки растут за счет слияния и в конечном итоге становятся того же диаметра, что и труба. При этом образуются типичные пузыри пулевидной формы, характерные для снарядного режима.

3. Кольцевой поток: теперь жидкость распределяется между жидкой пленкой, текущей вверх по стенке, и дисперсией капель, текущих в паровом ядре потока.

Нестабильность потока

Нестабильный поток может возникать в виде колебаний потока или его реверсирования. Колебания потока — это изменения потока из-за образования пустот или механических препятствий при проектировании и производстве. Колебания потока в одном канале теплоносителя реактора иногда вызывают колебания потока в окружающих каналах теплоносителя из-за перераспределения потока.Колебания потока нежелательны по нескольким причинам. Во-первых, устойчивые колебания потока могут вызвать нежелательную вынужденную механическую вибрацию компонентов. Это может привести к выходу этих компонентов из строя из-за усталости. Во-вторых, колебания потока могут вызвать проблемы управления системой, имеющие особое значение в ядерных реакторах с жидкостным охлаждением, поскольку теплоноситель также используется в качестве замедлителя. В-третьих, колебания потока влияют на местные характеристики теплообмена и кипение. В ходе испытаний было обнаружено, что критический тепловой поток (CHF), необходимый для отклонения от пузырькового кипения (DNB), может быть снижен на целых 40%, когда поток колеблется.Это сильно снижает тепловой предел и плотность мощности по длине активной зоны реактора. Опять же, путем тестирования было обнаружено, что колебания потока не являются серьезной проблемой для некоторых реакторов с водой под давлением, если мощность не превышает 150% для нормальных условий потока. Колебания потока могут быть проблемой во время операций с естественной циркуляцией из-за присутствующих низких скоростей потока.

Во время естественной циркуляции пузырьки пара, образующиеся во время колебания потока, могут иметь достаточно влияния, чтобы фактически вызвать полное изменение направления потока в затронутом канале.

И колебания потока, и реверсирование потока приводят к очень нестабильному состоянию, поскольку паровые подушки, образующиеся на нагретых поверхностях, напрямую влияют на способность отводить тепло от этих поверхностей.

Штыревой патрубок

В случае разрыва трубы сила реакции, создаваемая высокоскоростной струей жидкости, может вызвать смещение трубопровода и серьезное повреждение компонентов, контрольно-измерительных приборов и оборудования в зоне разрыва. Эта характеристика аналогична необслуживаемому садовому шлангу или пожарному шлангу, который непредсказуемо «хлестает».Этот тип отказа анализируется, чтобы свести к минимуму повреждение, если бы труба изгибалась в непосредственной близости от оборудования, связанного с безопасностью.

Гидравлический удар

Гидравлический удар — это ударная волна жидкости, возникающая в результате внезапного начала или остановки потока. На него влияют начальное давление в системе, плотность жидкости, скорость звука в жидкости, эластичность жидкости и трубы, изменение скорости жидкости, диаметр и толщина трубы и клапана. рабочее время.

Во время закрытия клапана кинетическая энергия движущейся жидкости преобразуется в потенциальную. Эластичность жидкости и стенки трубы создает волну положительного давления, направленную обратно к источнику жидкости. Когда эта волна достигнет источника, масса жидкости будет в покое, но под огромным давлением. Сжатая жидкость и растянутые стенки трубы теперь начнут выпускать жидкость из трубы обратно к источнику и вернуться к статическому давлению источника. Это высвобождение энергии сформирует еще одну волну давления, возвращающуюся к клапану.Когда эта ударная волна достигает клапана, из-за импульса жидкости стенка трубы начинает сокращаться. Это сжатие передается обратно источнику, что снижает давление в трубопроводе ниже статического давления источника. Эти волны давления будут перемещаться вперед и назад несколько раз, пока трение жидкости не демпфирует переменные волны давления до статического давления источника. Обычно весь процесс молота занимает менее одной секунды.

Первоначальный толчок внезапной остановки потока может вызвать переходные изменения давления, превышающие статическое давление.Если клапан закрывается медленно, потеря кинетической энергии будет постепенной. Если его закрыть быстро, потеря кинетической энергии будет очень быстрой. Из-за быстрой потери кинетической энергии возникает ударная волна. Ударная волна, вызванная гидравлическим ударом, может иметь достаточную силу, чтобы вызвать физическое повреждение трубопроводов, оборудования и персонала. Гидравлический удар в трубах, как известно, срывает опоры труб с их креплений, разрывает трубопроводы и вызывает их растрескивание.

Пик давления

Пик давления — это результирующий резкий рост давления выше статического, вызванный гидроударом.Максимальный всплеск давления будет в момент изменения расхода и регулируется следующим уравнением.

∆P = ρ c ∆v / g c

где:

∆P = скачок давления (фунт-сила / фут 2 )

ρ = плотность жидкости (фунт / фут 3 )

c = Скорость волны давления (фут / сек) (Скорость звука в жидкости)

∆v = Изменение скорости жидкости (фут / сек)

gc = Гравитационная постоянная 32.17 (фунт-фут / фунт-сила-сек 2 )

Пример:

Скачок давления Вода с плотностью 62,4 фунт / фут 3 и давлением 120 фунтов на квадратный дюйм течет по трубе со скоростью 10 футов / сек. Скорость звука в воде 4780 футов / сек. Внезапно закрылся обратный клапан. Какое максимальное давление жидкости в фунтах на квадратный дюйм?

Раствор

P Макс = P статический + ΔP Пик

P Макс = 120 фунт-сила / дюйм 2 + ρ c ΔV / g c

P Макс = 120 фунт-сила / дюйм 2 + (62.4 фунта / фут 3 ) (4780 фут / с) (10 фут / с) / (32,17 фунт-фут / фунт-сила с 2 )

P Макс = 120 фунт-сила / дюйм 2 + 64,3 фунта-силы / в 2

P Макс = 76,3 фунтов на кв. дюйм

Паровой молот

Паровой молот похож на гидравлический молот, за исключением того, что он предназначен для паровой системы. Паровой молот — это газовая ударная волна, возникающая в результате внезапного запуска или остановки потока. Паровой молот не так силен, как гидравлический, по трем причинам:

1.Сжимаемость пара гасит ударную волну

2. Скорость звука в паре составляет примерно одну треть скорости звука в воде.

3. Плотность пара примерно в 1600 раз меньше плотности воды.

Проблемы, связанные с паропроводом, включают термический удар и водяные пробки (то есть конденсацию в паровой системе) в результате неправильного нагрева.

Рекомендации по эксплуатации

Гидравлический и паровой молот — не редкость на промышленных предприятиях.Изменения расхода в трубопроводных системах должны производиться медленно, что является частью надлежащей практики оператора. Чтобы предотвратить гидравлический и паровой удар, операторы должны обеспечить надлежащую вентиляцию жидкостных систем и обеспечить надлежащий слив газовых или паровых систем во время запуска. Если возможно, инициируйте запуск насоса при закрытом нагнетательном клапане и медленно откройте нагнетательный клапан, чтобы запустить поток в системе. Если возможно, запускайте насосы меньшей производительности перед насосами большей производительности. По возможности используйте клапаны разогрева вокруг запорных клапанов основного потока.Если возможно, закройте нагнетательные клапаны насоса перед остановкой насосов. Периодически проверяйте правильность работы влагоуловителей и воздухоотводчиков во время работы.

Основные положения этой главы кратко изложены ниже.

Комбинация жидкости и пара, протекающей по трубе, называется двухфазным потоком.

Типы двухфазного потока включают:

• Пузырьковый поток: происходит диспергирование пузырьков пара в непрерывном потоке жидкости.

• Пробковый поток: пузырьки растут за счет слияния и в конечном итоге становятся того же диаметра, что и труба, образуя пузырьки в форме пули.

• Кольцевой поток: жидкость распределяется между жидкой пленкой, текущей вверх по стенке, и дисперсией капель, текущей в паровой сердцевине потока.

Колебания и нестабильность основного потока могут вызвать:

• нежелательную механическую вибрацию компонентов.

• уменьшение теплового потока, необходимого для возникновения DNB.

• прерывание фактического циркуляционного потока.

Колебания и нестабильность потока могут возникать в следующих условиях:

• сердечник вне проектных условий, мощность> 150%

• механический отказ, вызывающий закупорку потока

• недостаточное охлаждение активной зоны во время естественная циркуляция, при которой происходит кипение

Изгиб трубы — это смещение трубопровода, создаваемое реакционными силами высокоскоростной струи жидкости после разрыва трубы.

Гидравлический удар — это ударная волна жидкости, возникающая в результате внезапного начала или остановки потока.

Преобразование энергии в центробежном насосе

Жидкость, поступающая в центробежный насос, сразу же направляется в зону низкого давления в центре или в проушине рабочего колеса. При вращении крыльчатки и лопастей они передают импульс поступающей жидкости. Передача количества движения движущейся жидкости увеличивает скорость жидкости. По мере увеличения скорости жидкости увеличивается ее кинетическая энергия.Жидкость с высокой кинетической энергией вытесняется из области рабочего колеса и попадает в улитку.

Улитка — это область с постоянно увеличивающейся площадью поперечного сечения, предназначенная для преобразования кинетической энергии жидкости в давление жидкости. Механизм этого преобразования энергии такой же, как и для дозвукового потока через расширяющуюся часть сопла. Математический анализ потока через улитку основан на общем уравнении энергии, уравнении неразрывности и уравнении, связывающем внутренние свойства системы.Ключевыми параметрами, влияющими на преобразование энергии, являются увеличивающаяся площадь поперечного сечения улитки, более высокое противодавление системы на выходе улитки и несжимаемый дозвуковой поток жидкости. В результате взаимозависимости этих параметров поток жидкости в улитке, аналогичный дозвуковому потоку в расширяющемся сопле, испытывает уменьшение скорости и увеличение давления.

Рабочие характеристики центробежного насоса

Рис. 7: Типичные характеристики центробежного насоса Кривая

Обычно центробежный насос создает относительно небольшое повышение давления в жидкости.Это повышение давления может составлять от нескольких десятков до нескольких сотен фунтов на квадратный дюйм в центробежном насосе с одноступенчатым рабочим колесом. Термин PSID (фунт-сила на квадратный дюйм дифференциала) эквивалентен ∆P. В данном контексте это разница давлений на всасывании и нагнетании насоса. PSID также можно использовать для описания перепада давления в компоненте системы (сетчатые фильтры, фильтры, теплообменники, клапаны, деминерализаторы и т. Д.). Когда центробежный насос работает с постоянной скоростью, увеличение противодавления системы на текущий поток приводит к уменьшению величины объемной скорости потока, которую центробежный насос может поддерживать.

Анализ взаимосвязи между объемным расходом (), который центробежный насос V˙ может поддерживать, и перепадом давления в насосе (∆Ppump) основан на различных физических характеристиках насоса и жидкости в системе. Переменные, оцениваемые инженерами-конструкторами для определения этой взаимосвязи, включают эффективность насоса, мощность, подаваемую на насос, скорость вращения, диаметр рабочего колеса и лопастей, плотность жидкости и вязкость жидкости. Результат этого сложного анализа для типичного центробежного насоса, работающего на одной конкретной скорости, проиллюстрирован графиком на рисунке 7.

Напор насоса по вертикальной оси — это разница между противодавлением в системе и давлением на входе насоса (∆Ppump). Объемный расход (V) по горизонтальной оси — это скорость, с которой жидкость протекает через насос. График предполагает одну конкретную скорость (N) для рабочего колеса насоса.

Кавитация

Когда перекачиваемая жидкость попадает в проушину центробежного насоса, давление значительно снижается. Чем больше скорость потока через насос, тем больше перепад давления.Если перепад давления достаточно велик или если температура жидкости достаточно высока, перепад давления может быть достаточным, чтобы заставить жидкость мгновенно превращаться в пар, когда местное давление падает ниже давления насыщения для перекачиваемой жидкости. Эти пузырьки пара перемещаются вдоль рабочего колеса насоса вместе с жидкостью. По мере уменьшения скорости потока давление жидкости увеличивается. Это вызывает внезапное схлопывание пузырьков пара на внешних частях крыльчатки. Образование этих пузырьков пара и их последующее схлопывание — кавитация.

Кавитация может быть очень серьезной проблемой для центробежных насосов. Некоторые насосы могут быть рассчитаны на работу с ограниченным количеством кавитации. Большинство центробежных насосов не могут выдерживать кавитацию в течение значительных периодов времени; они повреждаются из-за эрозии рабочего колеса, вибрации или других проблем, вызванных кавитацией.

Чистый положительный напор на всасывании

Чтобы избежать кавитации во время работы насоса, можно контролировать чистый положительный напор на всасывании насоса.Чистый положительный напор на всасывании (NPSH) для насоса — это разница между давлением всасывания и давлением насыщения перекачиваемой жидкости. NPSH используется для измерения того, насколько жидкость близка к насыщенным условиям. Уравнение 3-19 можно использовать для расчета чистой положительной высоты всасывания, доступной для насоса. Единицы NPSH — футы воды.

NPSH = P

всасывание — P насыщение (3-19)

где:

P всасывание = давление всасывания насоса

P насыщение = давление насыщения для жидкости

При поддержании доступный NPSH на уровне больше, чем NPSH, требуемый производителем насоса, кавитации можно избежать.

Законы о насосах

Центробежные насосы обычно подчиняются так называемым законам о насосах. Эти законы гласят, что скорость потока или производительность прямо пропорциональны скорости насоса; напор прямо пропорционален квадрату скорости насоса; а мощность, требуемая двигателем насоса, прямо пропорциональна кубу скорости насоса. Эти законы суммированы в следующих уравнениях.

V˙ ∝ n (3-20)

H

P ∝ n 2 (3-21)

P ∝ n

3 (3-22)

где:

n = скорость рабочее колесо насоса (об / мин)

V = объемный расход насоса (галлоны в минуту или фут3 / час)

H p = напор, развиваемый насосом (фунты на квадратный дюйм или футы)

p = мощность насоса (кВт)

Использование этих пропорциональности, можно разработать уравнения, связывающие условия на одной скорости с условиями на другой скорости.

1 (n 2 / n 1 ) = V 2 (3-23)

H

p1 (n 2 / n 1 ) 2 = H p2 (3-24)

P

1 (n 2 / n 1 ) 3 = P 2 (3-25) Пример: законы насоса

Насос охлаждающей воды работает со скоростью 1800 об / мин. Его расход составляет 400 галлонов в минуту при напоре 48 футов. Мощность насоса составляет 45 кВт.Определите расход, напор и потребляемую мощность насоса, если скорость насоса увеличится до 3600 об / мин.

Решение:

Расход

2 = V˙ 1 (n 2 / n 1 )

= (400 галлонов в минуту) (3600 об / 1800 об / мин)

= 800 галлонов в минуту

Напор

H p2 = H p1 (n 2 / n 1 ) 2

= 48 футов (3600 об / 1800 об / мин) 2

= 192 футов

Мощность

P 2 = P 1 (n 2 / n 1 ) 3

= 45 кВт (3600 об / мин / 1800 об / мин) 3

= 360 кВт

Рисунок 8 : Изменение скоростей центробежного насоса

Можно построить характеристическую кривую для новой скорости насоса на основе кривой для его исходной скорости.Метод состоит в том, чтобы взять несколько точек на исходной кривой и применить законы насоса для определения нового напора и расхода при новой скорости. Кривая зависимости напора насоса от расхода, которая возникает в результате изменения скорости насоса, графически проиллюстрирована на Рисунке 8.

Характеристическая кривая системы

Рисунок 9: Типичная кривая потери напора в системе

В главе, посвященной потере напора, было определено, что оба фрикционные потери и незначительные потери в трубопроводных системах были пропорциональны квадрату скорости потока.Поскольку скорость потока прямо пропорциональна объемному расходу, потеря напора в системе должна быть прямо пропорциональна квадрату объемного расхода. Исходя из этого соотношения, можно построить кривую потери напора в системе в зависимости от объемного расхода. Кривая потери напора для типичной системы трубопроводов имеет форму параболы, как показано на Рисунке 9.

Рабочая точка системы

Рисунок 10: Рабочая точка центробежного насоса

Точка, в которой насос работает в данной системе трубопроводов, зависит от от расхода и потери напора этой системы.Для данной системы объемный расход сравнивается с потерями напора в системе на характеристической кривой. Построив график характеристической кривой системы и характеристической кривой насоса в одной и той же системе координат, можно определить точку, в которой насос должен работать. Например, на рисунке 10 рабочая точка центробежного насоса в исходной системе обозначена пересечением кривой насоса и кривой системы (h Lo ).

Система имеет расход, равный V˙ 0 , и полную потерю напора в системе, равную ∆P 0 .Для поддержания расхода V˙ 0 напор насоса должен быть равен ∆P o . В системе, описанной системной кривой (h L1 ), в системе был открыт клапан, чтобы уменьшить сопротивление системы потоку. В этой системе насос поддерживает большой расход (V˙ 1 ) при меньшем напоре насоса (∆P 1 ).

Использование в системе нескольких центробежных насосов

Типичный центробежный насос имеет относительно небольшое количество движущихся частей и может быть легко адаптирован к различным первичным двигателям.Эти первичные двигатели включают электродвигатели переменного и постоянного тока, дизельные двигатели, паровые турбины и пневмодвигатели. Центробежные насосы, как правило, имеют небольшие размеры и могут быть изготовлены с относительно низкими затратами. Кроме того, центробежные насосы обеспечивают высокий объемный расход при относительно низком давлении.

Для увеличения объемного расхода в системе или для компенсации больших сопротивлений потоку центробежные насосы часто используются параллельно или последовательно. На рисунке 11 изображены два идентичных центробежных насоса, работающих параллельно с одинаковой скоростью.

Рисунок 11: Кривая характеристик насоса для двух идентичных центробежных насосов, используемых параллельно Центробежные насосы

, подключенные параллельно

Поскольку вход и выход каждого насоса, показанные на рисунке 11, находятся в идентичных точках в системе, каждый насос должен производить один и тот же насос голова. Однако общий расход в системе является суммой индивидуальных расходов для каждого насоса.

Когда характеристическая кривая системы рассматривается с кривой для параллельных насосов, рабочая точка на пересечении двух кривых представляет более высокий объемный расход, чем для одиночного насоса, и большую потерю напора в системе.Как показано на Рисунке 12, большая потеря напора в системе происходит с увеличением скорости жидкости в результате увеличения объемного расхода. Из-за большего напора системы объемный расход фактически в два раза меньше расхода, достигаемого при использовании одного насоса.

Рисунок 12: Рабочая точка для двух параллельных центробежных насосов Центробежные насосы

в серии

Центробежные насосы используются последовательно для преодоления больших потерь напора в системе, чем один насос может компенсировать по отдельности.Как показано на Рисунке 13, два идентичных центробежных насоса, работающих с одинаковой скоростью и одинаковым объемным расходом, создают одинаковый напор. Поскольку вход второго насоса является выходом первого насоса, напор, создаваемый обоими насосами, является суммой отдельных напоров. Объемный расход от входа первого насоса до выхода второго остается прежним.

Рисунок 13: Кривая характеристик насоса для двух идентичных центробежных насосов, используемых в серии

Как показано на Рисунке 14, использование двух насосов последовательно не увеличивает сопротивление потоку в системе вдвое.Два насоса обеспечивают достаточный напор для новой системы, а также поддерживают немного более высокий объемный расход.

Рис. 14: Рабочая точка для двух центробежных насосов серии

Основные моменты этой главы кратко изложены ниже.

• Чистый положительный напор на всасывании — это разница между давлением всасывания насоса и давлением насыщения жидкости.

• Кавитация — это образование и последующее схлопывание пузырьков пара на рабочем колесе насоса, когда местное давление падает ниже, а затем поднимается выше давления насыщения перекачиваемой жидкости.

• Законы насоса можно использовать для определения влияния изменения скорости центробежного насоса на расход, напор и мощность.

1 (n 2 / n 1 ) = V˙ 2

H p1 (n 2 / n 1 ) 2 = H p2

P 1 (n 2 / n 1 ) 3 = P 2

• Кривая комбинированного насоса для двух центробежных насосов, подключенных параллельно, может быть определена путем сложения индивидуальные потоки для любой данной головы.

• Комбинированная характеристика насосов для двух последовательно включенных центробежных насосов может быть определена путем добавления отдельных напоров для любого заданного расхода.

• Рабочая точка (напор и расход) системы может быть определена путем построения кривой насоса и кривой потери напора системы на одних и тех же осях. Система будет работать на пересечении двух кривых.

% PDF-1.5 % 1 0 объект > эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > эндобдж 6 0 obj > / XObject> / ProcSet [/ PDF / Text / ImageB / ImageC] >>>> эндобдж 7 0 объект > эндобдж 8 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 328 339769 541 823 836 175 394 394 500 833 270 330 270 278541 541 541 541 541 541 541 541 541 299 299 833 833 833 383 986 760 657 720 766 584 553 769 806 354 354 715 571 903 796 803 803 701 546 695787 760 1030 713 659 579 394 278 394 1000 500 500 459 513 458519 457 306 451 560 274 ​​269 546 267 815 560 516 519 513 374 382 325 560 484 700 4

3835500 500 833 600 541 600 230 541462 1000 500 500 500 1229 546 308 1037 600 579 600 600 230 230 462 462 5

1000500 822 382 308 810 600 383 659 541 328 541 541 541 659 500 500 500 822 344 473 833 330 822 500 329833 357 357 500 578 500 270 500 357 387 473848 848 849 383760 760 760 760 760 760 934 720 584 584 584 354 354 354 354 766 796 803 803 803 803 803 833 803 787 787 787 787 659 603 539 459 459 459 459 459 459 703 458 457 457 457 457 274 274 274 274 516 560 516 516 516 516 516 516 560 560 560 560 461 519 461] эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 600 600 270 368 339 769 541 778 810 175 382 382 500 833 271 329 271 278 541 541 541 541 541 541 541 541 541 282 282 833 833 833 412 986 713 678 701 752625 579725 793 348 431 743 602917 774 799 623 799 660 532 671 819 694 995738 655 609 382 278 382 1000 500 500 491 405 42

493273248 456 255 765 521468 488 468 359 356 308 528 498 757 442470 391 500 500 500 833 600 541 600 271 541463 1000 500 500 500 1150 532 273 1044 600 609 600 600 271271463463 590 500 1000 500 822 356 273 719 600 391 655 541 368 541 541 541 541 500 500 500 822 400 428833 329 822 500 329 833 357 357 500 578 500 271 500 357 361428 848 848 849 412 713 713 713 713 713 713 986 701625625625625348 348 348 348 762 774 799 799 799 799 799 833 799 819 819 819 819 655 637 484 444 405410 410 410 410 273 273 273 273 468 521 468 468 468 468 468 468 528 528 528 528 470 472 470] эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964776 762 724 830 683 650 811 837 546 555 771 637 948 847 850 733 850 782 710 682812 764 1128 764 737 63 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 687 699 699 497 593 456 712 650 979 669 651597 711 543 711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 402711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683546546546546830 847850 850850850867850 812812812812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 687 687 687 687 687 867 687 712 712 712 712 651 699 651] эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 18 545 1000 683 686 698766 632 575 775 75142145 693 557 843 748 787 603 787 695 684 616 732 683 990 685 615 685 454 454 454818 6236 601 521 623 596 352 622 633 274 344 587 274 973 633 607 623 623 427 521 394 633 591 818 59259 1525 635 454635 818 1000 636 1000 269 636 459 818 636 636 636 1519 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 980 1000 525 615 3523 46 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 683 683 683 683 683 683 989 698632 632 632 632 421421421421766 748 787787 787787818 787 732 732 732 732 615 605 620 601 601 601 601 601 955 521 596 596 596 596 274 274 274 274 274 612 633 607 607 6018 607 607 607 633 633 633 633 591 623 591] эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 342 402 587 867 711 1272 862 332 543 543 711 867 361 480 361 689 711 711 711 711 711 711 711 711 711 711 402 402 867 867 867 617 964776 762 724 830 683 650 811 837 546 555 771 637 948 847 850 733 850 782 710 682812 764 1128 764 737 63 689 543 867 711 711 668 699 588 699 664 422 699 712 342 403 671 342 1058 712 686 699 699 497 593 456 712 649 979 669 651597 711 543711 867 1000 711 1000 332 711 587 1049 711 711 711 1777 710 543 1135 1000 692 1000 1000 332 332 587 587 711 711 1000 711 964 593543 1068 1000 597 737 342 402711 711 711 711 543 711 711 964 598850 867 480 964 711 587 867 598 711 721 711 361 711 598 598 850 1182 1182 1182 617 776 776 776 776 776 1094 724 683 683 683 683 546 546 546 546 830 847 850 850 850 850850 867 850 812 812 812 812 737 735 713 668 668 668 668 668 668 1018 588 664 664 664 342 342 342 342 67979 712 686 686 686 686 686 867 686 712 712 712 712 651 699 651] эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 750 750 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 58458458456 1015 667 667 722 722 667 611 778722 278 500 667 556833 722778 667 778722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 750 556 750 222 556 333 1000 556 556 333 1000 667 333 1000 750 611 750 750 222 222 333 333 350 556 1000 333 1000 500 333944750500 667 278 333 556 556 556 556 260 556 333 737 370 556 584 333 737 552 400 549 333 333 333 576 537 278 333 333 365 556834 834 834 611 667 667 667 667 667 667 1000 722 667 667 667 667 278 278 278 278 722 722 778 778 778 778 778 584 778 722 722 722 722 667 667 611 556 556 556 556 556 556 889 500 556 556 556 556 278 278 278 278 556 556 556 556 556 556 556 549 556 556 556 556 500 556 500] эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 1000 352 394 459 818 636 1076 727 269 454 454 636 818 364 454 364 454 636 636 636 636 636 636 636 636 636 454 454 818 818 818 545 1000 684 686 698 771 632 575775 75142145 693 557 843 748 787 603787 695 684 616 732 684 989 685 615 685 454 454 454 818 636 636 521 623 596 352 623 633 274 344 592 274 973 633 607 623 623 427 521 394 633 5 5925

5 454635 818 1000 636 1000 269 636 459 818 636 636 636 1521 684 454 1070 1000 685 1000 1000 269 269 459 459 545 636 1000 636 977 521 454 981 1000 525 615 352 394 636 636 636 454 636 636 1000 545 645 818 454 1000 636 542 818 542 542 636 6426 364 636 542545 645 1000 1000 1000 545 684 684 684 684 684 684 984 698632 632 632 632 421421421421775 748 787787 787787818 787 732 732 732 732 615 605 620 601 601 601 601 601 955521596596596596 274 274 274 274 274 612 633 607 607 6018 607 607 607 633 633 633 633 592 623 592] эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 778 778 250 333 408 500 500 833 778 180 333 333 500 564 250 333250 278 500 500 500 500 500 500 500 500 500 500 278 278 564564 444 921 722 667 667 722 611 556722 722 333 389 722 611 889 722 722 556 722 667 556611 722 722 944 722 722 611 333 278 333 469 500 333 444 500 444500 444 333 500 500 278 278 500 278 778 500 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 778 500 778 333 500 444 1000 500 500 333 1000 556 333 889 778 611 778 778 333 333 444 444 350500 1000 333980389333722778444722250 333500500500500200500 333760 276 500 564 333760 500 400 549 300 300 333 576 453250 333 300 310 500 750 750 750750 444722 722 722 722 722 722 889 667 611 611 611 611 333 333 333 722 722 722 722 722 722 722 564 722 722 722 722 722 556 500 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 500 500 500 500 500 500 500 549 500 500 500 500 500 500 500 500] эндобдж 31 0 объект > эндобдж 32 0 объект > поток

Что такое естественная циркуляция? — Определение из Corrosionpedia

Что означает естественная циркуляция?

Естественная циркуляция — это способность жидкости в системе непрерывно циркулировать, при этом разница в плотности является единственной движущей силой.

По-другому естественная циркуляция вызвана конвекционными токами, возникающими в результате неравномерного нагрева воды в бойлере. Он может быть свободным или ускоренным и в основном используется в котлах и испарителях.

Испарители с естественной циркуляцией основаны на естественной циркуляции продукта, вызванной разницей плотности, возникающей при нагревании. Испарители с естественной циркуляцией необходимы на очистных сооружениях, а также в химической и фармацевтической промышленности.

Коррозионпедия объясняет естественное кровообращение

В котлах с естественной циркуляцией циркуляция воды зависит от разницы между плотностью восходящей смеси горячей воды и пара и нисходящего тела с относительно холодной водой без пара. Разница в плотности возникает из-за того, что вода расширяется при нагревании и, таким образом, становится менее плотной. В большинстве котлов есть естественная циркуляция воды, в основе которой лежит принцип термосифона.

В котле со свободной естественной циркуляцией генераторные трубы устанавливаются почти горизонтально, с небольшим наклоном к вертикали. Когда генераторные трубы установлены под гораздо большим углом наклона, скорость циркуляции воды значительно увеличивается. Поэтому говорят, что котлы, в которых трубы имеют довольно крутой наклон от парового барабана к водяному барабану, имеют естественную циркуляцию ускоренного типа.

Испарители с естественной циркуляцией очень просты и обычно используются там, где сточные воды имеют высокую вязкость, более высокие уровни отвердителей, нерастворенных твердых веществ, для продуктов, которые подвержены влиянию собственных высоких температур и более продолжительному остаточному времени.Работа может быть непрерывной, периодической или полупериодической и не требует насосов для рециркуляции или перекачки промежуточного продукта.

Общая скорость циркуляции (расход) в системах естественной циркуляции в основном зависит от высоты, рабочего давления и расхода тепла котла.

Геотермальная энергия | Национальное географическое общество

Геотермальная энергия — это тепло, которое генерируется внутри Земли. ( Geo означает «земля», а термический означает «тепло» по-гречески.) Это возобновляемый ресурс, который можно собирать для использования человеком.

Примерно на 2 900 километров (1800 миль) под земной корой или поверхностью находится самая горячая часть нашей планеты: ее ядро. Небольшая часть тепла ядра происходит от трения и гравитационного притяжения, образовавшихся при создании Земли более 4 миллиардов лет назад. Однако подавляющая часть тепла Земли постоянно генерируется за счет распада радиоактивных изотопов, таких как калий-40 и торий-232.

Изотопы — это формы элемента, которые имеют другое количество нейтронов, чем обычные версии атома элемента.

Калий, например, имеет в своем ядре 20 нейтронов. Однако калий-40 имеет 21 нейтрон. Когда калий-40 распадается, его ядро ​​изменяется, выделяя огромное количество энергии (излучение). Калий-40 чаще всего распадается на изотопы кальция (кальций-40) и аргона (аргон-40).

Радиоактивный распад — это непрерывный процесс в активной зоне. Температура здесь повышается до более чем 5000 ° по Цельсию (около 9000 ° по Фаренгейту). Тепло от ядра постоянно излучается наружу и нагревает горные породы, воду, газ и другой геологический материал.

Температура Земли повышается с глубиной от поверхности до ядра. Это постепенное изменение температуры известно как геотермический градиент. В большинстве частей света геотермический градиент составляет около 25 ° C на 1 километр глубины (1 ° F на 77 футов глубины).

Если подземные горные образования нагреться примерно до 700–1300 ° C (1300–2400 ° F), они могут превратиться в магму. Магма — это расплавленная (частично расплавленная) порода, пронизанная газом и пузырьками газа. Магма существует в мантии и нижней коре и иногда всплывает на поверхность в виде лавы.

Магма нагревает близлежащие породы и подземные водоносные горизонты. Горячая вода может выпускаться через гейзеры, горячие источники, паровые каналы, подводные гидротермальные источники и грязевые котлы.


Это все источники геотермальной энергии. Их тепло можно улавливать и использовать непосредственно для получения тепла, или их пар можно использовать для выработки электроэнергии. Геотермальная энергия может использоваться для обогрева таких конструкций, как здания, автостоянки и тротуары.

Большая часть геотермальной энергии Земли не выделяется в виде магмы, воды или пара.Он остается в мантии, медленно исходя наружу и собираясь в очаги сильного тепла. Это сухое геотермальное тепло может быть получено путем бурения и дополнено закачанной водой для создания пара.

Многие страны разработали методы использования геотермальной энергии. В разных частях света доступны разные виды геотермальной энергии. В Исландии обильные источники горячей и легкодоступной подземной воды позволяют большинству людей полагаться на геотермальные источники как на безопасный, надежный и недорогой источник энергии.Другие страны, такие как США, должны бурить геотермальную энергию по более высокой цене.

Получение геотермальной энергии: нагрев и охлаждение

Низкотемпературная геотермальная энергия
Геотермальное тепло можно получить практически в любой точке мира и сразу же использовать в качестве источника тепла. Эта тепловая энергия называется низкотемпературной геотермальной энергией. Низкотемпературная геотермальная энергия получается из очагов тепла около 150 ° C (302 ° F). Большинство очагов низкотемпературной геотермальной энергии находится всего в нескольких метрах под землей.

Низкотемпературная геотермальная энергия может использоваться для обогрева теплиц, домов, рыболовства и промышленных процессов. Низкотемпературная энергия наиболее эффективна при использовании для отопления, хотя иногда ее можно использовать для выработки электроэнергии.

Люди давно использовали этот вид геотермальной энергии для инженерии, комфорта, лечения и приготовления пищи. Археологические данные показывают, что 10 000 лет назад группы коренных американцев собирались вокруг природных горячих источников, чтобы восстановить силы или укрыться от конфликта.В третьем веке до нашей эры ученые и лидеры грелись в горячем источнике, питаемом каменным прудом недалеко от горы Лишань в центральном Китае. Один из самых известных курортов с горячими источниками находится в городе Бат, Англия, с соответствующим названием. Начав строительство примерно в 60 г. н.э., римские завоеватели построили сложную систему парных и бассейнов, используя тепло из мелких очагов низкотемпературной геотермальной энергии.

Горячие источники Chaudes Aigues во Франции являются источником дохода и энергии для города с 1300-х годов.Туристы стекаются в город за его элитными курортами. Низкотемпературная геотермальная энергия также обеспечивает теплом дома и предприятия.

Соединенные Штаты открыли свою первую геотермальную систему централизованного теплоснабжения в 1892 году в Бойсе, штат Айдахо. Эта система по-прежнему обеспечивает теплом около 450 домов.

Совместно производимая геотермальная энергия
Совместно производимая геотермальная энергия основана на других источниках энергии. Этот вид геотермальной энергии использует воду, которая нагревается в качестве побочного продукта в нефтяных и газовых скважинах.

В Соединенных Штатах в качестве побочного продукта ежегодно производится около 25 миллиардов баррелей горячей воды. Раньше эту горячую воду просто выбрасывали. Недавно он был признан потенциальным источником еще большего количества энергии: его пар можно использовать для выработки электричества, которое будет немедленно использовано или продано в сеть.

Один из первых совместных проектов по геотермальной энергии был инициирован в испытательном центре месторождения Роки-Маунтин в американском штате Вайоминг.

Новые технологии позволили переносить совместно производимые объекты геотермальной энергии.Хотя мобильные электростанции все еще находятся на экспериментальной стадии, они обладают огромным потенциалом для изолированных или бедных общин.

Геотермальные тепловые насосы
Геотермальные тепловые насосы (ГТН) используют тепло Земли и могут использоваться практически в любой точке мира. GHP пробурены на глубину от 3 до 90 метров (от 10 до 300 футов), что намного меньше, чем у большинства нефтяных и газовых скважин. GHP не требуют трещин в коренных породах, чтобы достичь своего источника энергии.

Труба, подключенная к GHP, образует непрерывную петлю, называемую «узкой петлей», которая проходит под землей и над землей, обычно по всему зданию.Петля также может быть размещена полностью под землей для обогрева парковки или ландшафтной зоны.

В этой системе вода или другие жидкости (например, глицерин, похожий на автомобильный антифриз) перемещаются по трубе. В холодное время года жидкость поглощает подземное геотермальное тепло. Он переносит тепло вверх по зданию и отдает тепло через систему воздуховодов. Эти обогреваемые трубы также могут проходить через резервуары с горячей водой и компенсировать расходы на отопление.

Летом система GHP работает противоположным образом: жидкость в трубах нагревается от тепла в здании или на парковке и переносит тепло для охлаждения под землей.

Агентство по охране окружающей среды США назвало геотермальное отопление самой энергоэффективной и экологически безопасной системой отопления и охлаждения. Самая крупная система GHP была завершена в 2012 году в Государственном университете Болла в Индиане. Система заменила угольную котельную, и, по оценкам экспертов, университет сэкономит около 2 миллионов долларов в год на расходах на отопление.

Сбор геотермальной энергии: электричество

Чтобы получить достаточно энергии для выработки электроэнергии, геотермальные электростанции полагаются на тепло, которое существует в нескольких километрах от поверхности Земли.В некоторых районах тепло может естественным образом существовать под землей в виде пара или горячей воды. Однако большинство участков необходимо «улучшить» закачиваемой водой для создания пара.

Электростанции с сухим паром
Электростанции с сухим паром используют преимущества естественных подземных источников пара. Пар подается прямо на электростанцию, где он используется для топлива турбин и выработки электроэнергии.

Сухой пар — это старейший тип электростанции, вырабатывающий электричество с использованием геотермальной энергии.Первая электростанция с сухим паром была построена в Лардерелло, Италия, в 1911 году. Сегодня электростанции с сухим паром в Лардерелло продолжают обеспечивать электроэнергией более миллиона жителей этого района.

В Соединенных Штатах есть только два известных источника подземного пара: Йеллоустонский национальный парк в Вайоминге и Гейзеры в Калифорнии. Поскольку Йеллоустон является охраняемой территорией, Гейзеры — единственное место, где используется электростанция с сухим паром. Это один из крупнейших геотермальных энергетических комплексов в мире, который обеспечивает около пятой части всей возобновляемой энергии в Калифорнии.

ВСП

Паровые электростанции мгновенного действия используют природные источники подземной горячей воды и пара. Вода с температурой выше 182 ° C (360 ° F) перекачивается в зону низкого давления. Некоторая часть воды «вспыхивает» или быстро испаряется, превращаясь в пар, и направляется в турбину и вырабатывает электроэнергию. Оставшуюся воду можно слить в отдельный резервуар, чтобы извлечь больше энергии.

Паровые электростанции мгновенного действия — наиболее распространенный тип геотермальных электростанций.Вулканически активное островное государство Исландия обеспечивает почти все свои потребности в электроэнергии с помощью серии геотермальных электростанций, работающих на мгновенном испарении пара. Пар и избыток теплой воды, образующиеся в результате процесса мгновенного пара, нагревают обледеневшие тротуары и парковки холодной арктической зимой.

Острова Филиппин также расположены над тектонически активной зоной, «Огненным кольцом», окаймляющим Тихий океан. Правительство и промышленность Филиппин инвестировали в электростанции мгновенного испарения, и сегодня страна уступает только США по использованию геотермальной энергии.Фактически, самая большая геотермальная электростанция — это установка мгновенного пара в Малитбоге, Филиппины.

Электростанции с двойным циклом
Электростанции с двойным циклом используют уникальный процесс для экономии воды и выработки тепла. Вода под землей нагревается примерно до 107–182 ° C (225–360 ° F). Горячая вода находится в трубе, которая циркулирует над землей. Горячая вода нагревает жидкое органическое соединение, температура кипения которого ниже, чем у воды. Органическая жидкость создает пар, который проходит через турбину и приводит в действие генератор, вырабатывающий электричество.Единственный выброс в этом процессе — пар. Вода в трубе возвращается обратно в землю, чтобы снова нагреться Землей и снова обеспечить теплом органическое соединение.

Геотермальный комплекс Беоваве в американском штате Невада использует бинарный цикл для выработки электроэнергии. Органическое соединение, используемое на объекте, представляет собой промышленный хладагент (тетрафторэтан, парниковый газ). Этот хладагент имеет гораздо более низкую температуру кипения, чем вода, что означает, что он превращается в газ при низких температурах.Газ питает турбины, которые подключены к электрическим генераторам.

Расширенные геотермальные системы
Земля имеет практически бесконечное количество энергии и тепла под своей поверхностью. Однако его невозможно использовать в качестве энергии, если подземные области не являются «гидротермальными». Это означает, что подземные помещения не только горячие, но также содержат жидкость и проницаемы. Во многих областях нет всех трех этих компонентов. Усовершенствованная геотермальная система (EGS) использует бурение, гидроразрыв и закачку для обеспечения жидкости и проницаемости в областях с горячими, но сухими подземными породами.

Для разработки EGS «нагнетательная скважина» пробурена вертикально в земле. В зависимости от типа скалы это может быть от 1 километра (0,6 мили) до 4,5 километров (2,8 мили). Холодная вода под высоким давлением закачивается в пробуренное пространство, что заставляет породу создавать новые трещины, расширять существующие трещины или растворяться. Это создает резервуар подземной жидкости.

Вода закачивается через нагнетательную скважину и поглощает тепло горных пород при прохождении через пласт.Эта горячая вода, называемая рассолом, затем возвращается на поверхность Земли через «производственную скважину». Нагретый рассол находится в трубе. Он нагревает вторичную жидкость с низкой температурой кипения, которая испаряется в пар и приводит в действие турбину. Рассол охлаждается и снова проходит через нагнетательную скважину, чтобы снова поглотить подземное тепло. Кроме водяного пара испарившейся жидкости, газообразных выбросов не происходит.

Закачка воды в землю для EGS может вызвать сейсмическую активность или небольшие землетрясения.В Базеле, Швейцария, процесс закачки вызвал сотни крошечных землетрясений, которые переросли в более значительную сейсмическую активность даже после того, как закачка воды была остановлена. Это привело к отмене геотермального проекта в 2009 году.

Геотермальная энергия и окружающая среда

Геотермальная энергия является возобновляемым ресурсом. Земля излучает тепло примерно 4,5 миллиарда лет и будет продолжать излучать тепло в течение миллиардов лет в будущем из-за продолжающегося радиоактивного распада в ядре Земли.

Однако большинство скважин, которые отводят тепло, со временем остынут, особенно если тепло отводится быстрее, чем дается время для его пополнения. В Лардерелло, Италия, где находится первая в мире электростанция, работающая на геотермальной энергии, с 1950-х годов давление пара упало более чем на 25%.

Повторная закачка воды иногда может помочь охлаждающемуся геотермальному участку прослужить дольше. Однако этот процесс может вызвать «микроземлетрясения». Хотя большинство из них слишком малы, чтобы их могли почувствовать люди или зарегистрировать в масштабах, иногда земля может сотрясаться до более угрожающих уровней и вызывать закрытие геотермального проекта, как это произошло в Базеле, Швейцария.

Геотермальные системы не требуют большого количества пресной воды. В бинарных системах вода используется только как теплоноситель, она не подвергается воздействию и не испаряется. Его можно перерабатывать, использовать для других целей или выпускать в атмосферу в виде нетоксичного пара. Однако, если геотермальный флюид не содержится в трубе и не используется повторно, он может поглотить вредные вещества, такие как мышьяк, бор и фторид. Эти токсичные вещества могут выноситься на поверхность и высвобождаться при испарении воды.Кроме того, если жидкость просачивается в другие подземные водные системы, она может загрязнить чистые источники питьевой воды и водные среды обитания.

Преимущества
Прямое или косвенное использование геотермальной энергии дает множество преимуществ:

  • Геотермальная энергия возобновляемая; это не ископаемое топливо, которое в конечном итоге будет израсходовано. Земля непрерывно излучает тепло из своего ядра, и это будет продолжаться миллиарды лет.
  • Геотермальная энергия в той или иной форме может быть получена в любой точке мира.
  • Использование геотермальной энергии относительно чисто. Большинство систем выделяют только водяной пар, хотя некоторые выделяют очень небольшие количества диоксида серы, оксидов азота и твердых частиц.
  • Геотермальные электростанции могут прослужить десятилетия, а возможно, и столетия. Если резервуар управляется должным образом, количество извлеченной энергии может быть уравновешено скоростью возобновления тепла горными породами.
  • В отличие от других возобновляемых источников энергии, геотермальные системы являются «базовой нагрузкой». Это означает, что они могут работать летом или зимой и не зависят от меняющихся факторов, таких как присутствие ветра или солнца. Геотермальные электростанции производят электроэнергию или тепло 24 часа в сутки, 7 дней в неделю.
  • Площадь, необходимая для строительства геотермальной электростанции, намного компактнее, чем у других электростанций. Для производства ГВтч (гигаватт-час, или один миллион киловатт энергии в час, огромное количество энергии) геотермальная установка использует эквивалент примерно 1046 квадратных километров (404 квадратных миль) земли.Для производства того же ГВт-ч энергии ветра требуется 3 458 квадратных километров (1335 квадратных миль), солнечному фотоэлектрическому центру требуется 8 384 квадратных километра (3237 квадратных миль), а угольные электростанции используют около 9 433 квадратных километров (3642 квадратных миль).
  • Геотермальные энергетические системы можно адаптировать ко многим различным условиям.

Их можно использовать для обогрева, охлаждения или электроснабжения отдельных домов, целых районов или производственных процессов.

Недостатки
Получение геотермальной энергии по-прежнему сопряжено с множеством проблем:

  • Процесс нагнетания потоков воды под высоким давлением в Землю может привести к незначительной сейсмической активности или небольшим землетрясениям.
  • Геотермальные растения связаны с проседанием или медленным опусканием земли. Это происходит, когда подземные трещины обрушиваются сами на себя. Это может привести к повреждению трубопроводов, дорог, зданий и естественных дренажных систем.
  • Геотермальные станции могут выделять небольшие количества парниковых газов, таких как сероводород и диоксид углерода.
  • Вода, протекающая через подземные резервуары, может собирать следовые количества токсичных элементов, таких как мышьяк, ртуть и селен.Эти вредные вещества могут попасть в водные источники, если геотермальная система не будет должным образом изолирована.
  • Хотя процесс почти не требует топлива для работы, первоначальная стоимость установки геотермальной технологии высока. Развивающиеся страны могут не иметь сложной инфраструктуры или начальных затрат для инвестирования в геотермальную электростанцию. Некоторые объекты на Филиппинах, например, стали возможны благодаря инвестициям американской промышленности и правительственных агентств.Сегодня заводы принадлежат Филиппинам.

Геотермальная энергия и люди

Геотермальная энергия существует в различных формах по всей Земле (в виде паровых каналов, лавы, гейзеров или просто сухого тепла), и существуют разные возможности для извлечения и использования этого тепла.

В Новой Зеландии природные гейзеры и паровые вентили обогревают бассейны, дома, теплицы и креветочные фермы. Новозеландцы также используют сухое геотермальное тепло для сушки древесины и сырья.

Другие страны, такие как Исландия, использовали ресурсы расплавленных горных пород и магмы в результате вулканической активности, чтобы обеспечить теплом дома и здания. В Исландии почти 90% населения страны используют геотермальные источники тепла. Исландия также полагается на свои природные гейзеры для таяния снега, подогрева рыбных запасов и обогрева теплиц.

Соединенные Штаты производят больше всего геотермальной энергии по сравнению с любой другой страной.

Добавить комментарий

Ваш адрес email не будет опубликован.