Menu Close

На пароизоляции конденсат: Как работает антиконденсатная поверхность пароизоляции Изоспан

Как работает антиконденсатная поверхность пароизоляции Изоспан

При температуре +22 °С и влажности воздуха 65%, температура точки росы +15,1 °С. Это означает, что конденсат будет образовываться на поверхностях, температура которых +15,1 °С и ниже. Если при той же температуре (+22 °С) влажность воздуха возрастет до 80%, то конденсат будет образовываться на поверхностях, температура которых +18,4°С и ниже. Т. е. чем выше влажность воздуха, тем при меньшей разнице температур будет образовываться конденсат.

Теперь рассмотрим этот процесс на конкретном примере.

Представьте, что вы являетесь счастливым обладателем каркасного дачного домика, в котором в качестве теплоизоляции применен минераловатный утеплитель и устроен герметичный пароизоляционный слой. В домике вы живете только в летний период, но в один прекрасный зимний день решаете провести в нем все выходные. Вы приезжаете на дачу и начинаете прогревать дом, а чтобы это быстрее произошло, включаете обогревательные приборы на максимум и через какое-то время начинаете замечать мокрые пятна на стенах и потолке… Это и есть конденсат.

Так почему же он образовался?

Воздух в доме нагрелся, и появилась разница парциального давления, под действием которой водяные пары, содержащиеся в воздухе, устремились выйти наружу через ограждающие конструкции, но встретили на своем пути барьер — пароизоляцию. А так как воздух в доме прогрелся быстрее, чем поверхность пароизоляции, то этой разницы температур оказалось достаточно, чтобы влага, содержащаяся в воздухе, выпала на поверхности пароизоляции в виде конденсата. Например, если воздух в доме нагрелся до +25 °С и его влажность составляет 60%, то до тех пор, пока температура поверхности пароизоляции не станет выше +16,7 °С, на ней будет образовываться конденсат (см. таблицу).

В случае отсутствия пароизоляционного слоя или его негерметичности водяные пары смогут проникнуть внутрь ограждающих конструкций, где, встретив на своем пути фронт холода, выпадут в виде конденсата, а тот в свою очередь перейдет в твердое состояние — лед. Т. е. процесс образования конденсата будет проходить точно так же, но уже в толще конструкций. Наблюдать этот процесс вы не сможете, но его последствия проявятся во время ближайшей оттепели, когда уличный воздух прогреется, а вместе с ним и ограждающие конструкции. Замерзший конденсат растает и потечет внутрь дома, что будет особенно заметно в скатной кровле.

Возвращаясь к нашим мифам и подводя итог всему вышесказанному, можно сделать вывод, что пароизоляция не сможет предотвратить или остановить процесс образования конденсата и не заставит его испариться, НО устройство герметичного пароизоляционного слоя, препятствующего проникновению водяных паров в толщу ограждающих конструкций и снижающего таким образом риск образования в них конденсата, позволяет защитить утеплитель и внутренние элементы конструкций от последствий его негативного влияния.

Откуда берется конденсат на пароизоляции и как от него избавиться

Возникновение конденсата на пароизоляции достаточно серьезная проблема угрожающая нанести вред теплоизоляции. Появление влаги снижает теплоизоляционные свойства утеплителя, появляется его деформация, в результате чего наблюдаются тепловые потери в здании.

Главные причины скопления конденсата на пароизоляции

Как уже было сказано от большого скопления влаги серьезно начинает страдать утеплитель сама пароизоляция при этом достаточно быстро приходит в негодность буквально за два года, хотя по правилам должна прослужить не  мне пятнадцати лет.

К счастью данную проблему можно быстро решить без больших дополнительных затрат. В обратном случае ремонт кровли в дальнейшем может обойтись в крупную сумму денег.

Конечно лучшим методом решения скопления конденсата на пароизоляции – это ее предотвращение. Поэтому необходимо сразу знать основные причины развития подобной ситуации, чтобы  в дальнейшем не совершать грубых ошибок.

В ситуации если конденсат собирается в минимальных количествах, то он не как не угрожает ни утеплителя, ни тем более кровли. Так почему же может скапливаться конденсат?

Есть достаточно много причин его возникновения:

  1. Некачественное утепление потолочного отдела и крыши.
  2. Неправильная установка пароизоляции.
  3. Неправильная установка или отсутствие какой-либо вентиляции в чердачном посещении.
  4. Применение низкокачественных материалов для обустройства кровли или грубые нарушения технологии монтажа кровли.

Каждая из выше приведённых причин, может быть серьёзной проблемой с которой необходимо бороться немедленно. Для того, что знать, как победить распространение конденсат необходимо точно знать причину его появления, только в таком случае будет какой-либо смысл.

Методы решения

Выбранный метод борьбы с конденсатом на прямую связан с его причиной появления. В ситуации, когда главным виновником стала некачественная теплоизоляции крыши, то необходимо ее сделать лучше. Для этого нужно просто увеличить толщину внутреннего слоя.

Практически всегда тепловые потери наблюдаются точечно, то есть в определённых областях.  Так называемые слабые место возможно обнаружить при помощи тепловизора, так и в ручную. Подобную работу стоит делать в холодное время года, когда на улицах лежит снег.

Что же касается отсутствия или неправильной установки вентиляции, то тут все предельно ясно. Эту проблему, возможно исправить только с помощью ее полной установки или полной замены на более качественную.

Вентиляционные окошки необходимо располагать в коньках крыш, а также под их свесами. Если циркуляция воздуха организована по всем правилам, лед и снег скапливается на крыше и прилипает к ней гораздо меньше.

Пароизоляция. Все на борьбу с конденсатом

Согласно законам физики, уровень влажности в жилом помещении всегда чуть выше, чем снаружи, а образующийся пар стремится выйти наружу. Поэтому при строительстве необходимо обеспечить увеличение паропроницаемости материалов от теплой поверхности к холодной и установить барьер из качественного пароизоляционного материала.

Фото: Фирма УНИКМА

Любые ограждающие конструкции дома, отделяющие теплые зоны от холодных, так или иначе задерживают пар, впоследствии превращающийся в конденсат и оседающий в теплоизоляционных материалах (речь идет о волокнистых утеплителях). Это приводит к снижению теплозащитных свойств последних, а впоследствии к коррозии несущих элементов и всеобщему разрушению. Конечно, процесс этот небыстрый, но до того, как начнет рушиться крыша, недальновидный строитель рискует получить повышенную влажность в доме, потолки с грибком, и отстающую от стен отделку. Непривлекательная картина? Тогда к установке пароизоляции стоит отнестись серьезно.

Правильное взаимодействие


Фото: ISOVER

 


Ошибки в монтаже пароизоляции могут дорого обойтись домовладельцу. Негерметично проклеенные стыки пленки или мембраны приведут к тому, что многослойную конструкцию придется вскрывать и заменять утеплитель.

Принцип многослойности, используемый в современном строительстве, позволяет соединять в единой конструкции несколько абсолютно разных по характеристикам, плотности и составу материалов — несущих, декоративных и теплоизоляционных. Они должны не только выполнять свои основные функции, но и способствовать прочности несущих стен и кровли, то есть, как минимум, не конфликтовать друг с другом. К примеру, высокоэффективные современные волокнистые минераловатные утеплители (базальтовая или минвата, стекловолокнистые утеплители) позволяют возводить здания в рекордно короткие сроки с достаточно легкими несущими стенами, имеющими отличные теплозащитные характеристики. Однако эти материалы обладают одним существенным недостатком — высокой паропроницаемостью, то есть при намокании теряют свои теплоизоляционные свойства и становятся благоприятной средой для образования грибка и плесени. Именно поэтому при строительстве эти материалы защищают специальными пароизоляционными пленками или мембранами, которые выводят конденсат наружу, не давая намокать утеплителю.

Новый путь


Фото: Фирма УНИКМА

Самой простой и доступной по цене пароизоляцией была и остается полиэтиленовая пленка либо пергамин, представляющий сбой обычный картон, пропитанный битумом. Несмотря на некоторые существенные недостатки — горючесть, хрупкость, разрушение под воздействием высоких температур и ультрафиолета, эти материалы довольно часто используют при возведении загородного жилья. Да, пергамин не выдержит «испытания временем» и потребует замены (представьте, чего вам будет стоить замена материала внутри конструкции стены!). Да, полиэтиленовая пленка часто рвется при установке, причем нередко незаметно для строителя. Если в первую же зиму в новом доме вдруг стало холодно — вините негерметичную пароизоляцию: утеплитель намок и перестал выполнять свою основную функцию.

Сегодня выпускают современные пароизоляционные материалы, имеющие более высокие качественные характеристики, превосходящие предыдущие по прочности, удобству и долговечности. Но нашего потребителя не так легко свернуть с проторенного пути. А задуматься об этом стоит!


Пароизоляционные пленки всегда монтируют на внутренней, теплой стороне стены или кровли, до слоя теплоизоляции.

Современная пароизоляция, как правило, состоит из нескольких слоев (чаще всего, трех) — нетканой основы, полимерной сетки или полимерных нитей, переплетенных как на ткани, и полимерного армирующего слоя. Есть пленки с алюминиевым слоем (фольгированные). Такие материалы за счет отражающей поверхности дополнительно способствуют сохранению тепла. Их используют при строительстве бани, летних террас, мансард.

Есть в продаже специальные пленки, обработанные самозатухающим реагентом. Эти материалы повышают пожаробезопасность здания: в случае возгорания их применение предотвратит распространение пламени. Использование такой пароизоляции актуально для различных деревянных строений.


В отличие от универсальных мембран, при монтаже обычной пароизоляционной пленки необходимо создание вентиляционного зазора между ней и слоем утеплителя.

Для обеспечения воздухообмена через ограждающие конструкции (стены, кровлю, перекрытия), пароизоляционные пленки перфорируют. Это немного уменьшает прочность материала — он становится более ломким и хрупким, в работе с ним надо быть осторожным. Лучше отдать предпочтение армированной пленке, которая дополнительно укреплена теми же полипропиленовыми нитями. Оправданность применения перфорированной пароизоляции вызывает сомнения, так как инфильтрация воздуха через ограждающие конструкции ничтожно мала, за исключением, возможно, возведенных из древесины. Но если в доме плохая принудительная вентиляция, учесть этот фактор будет нелишним.

Коротко о главном


Использование
пароизоляционной пленки

Стены с внутренним утеплением:
1. Наружное кровельное покрытие
2. Влагозащитная мембрана
3. Обрешетка
4. Утеплитель
5. Пароизоляция
6. Внутренняя отделка

 

Стены с наружным утеплением:
1. Наружная отделка
2. Обрешетка
3. Влагозащитная мембрана
4. Утеплитель
5. Пароизоляция
6. Внутренняя отделка

Рис. Т. Сорокиной

 


Диффузионные мембраны позволяют сократить подкровельное пространство за счет отсутствия необходимости организации вентзазоров.

При сооружении пароизоляции для стен и перекрытий дома используют двух- или трехслойные пленки (с перфорацией и без нее) с наименованием «универсальная» или «стандарт». По плотности материал выбирают в зависимости от типа поверхности. Для стен и мансардного перекрытия вполне достаточно толщины 150-180 мкм. Такая пленка не порвется при установке и будет удобна в работе, в отличие от материала толщиной 200 мкм. Последняя больше подходит для пароизоляции кровельного пространства, где из-за сложной формы конструкции необходим материал повышенной прочности. При сооружении кровельного «пирога» работы производят по типу внутреннего утепления. Они требуют грамотного просчета всех факторов — от ликвидации мостиков холода (на металлических элементах конструкции) до формировании вентзазоров.

Облегчить процесс сооружения стенового или кровельного пирога можно, используя материал, сочетающий в себе функции защиты от ветра, пара и влаги одновременно. Такие пленки называют мембранами. Эти материалы обладают повышенной прочностью, так как состоят из нескольких склеенных между собой слоев, например, полипропиленовых нетканых полотен и полипропиленовой же пленки.

В случае использования принципа внутреннего утепления, конструкция стены будет состоять из непосредственно наружного покрытия, ветро-, влагозащитной мембраны, контробрешетки, слоя утеплителя, пароизоляционной пленки, обрешетки по стропилам и внутренней отделки. Для установки наружного утепления используют наружный отделочный слой, обрешетку, на который его монтируют, мембрану для защиты от ветра и влаги, утеплитель, пароизоляцию и внутреннюю отделку. Для перекрытий оптимальным будет вариант: черновой пол, обрешетка, утеплитель, пароизоляция, чистовой пол. Однако, независимо от того, какой материал и способ установки вы предпочтете, срок службы и эксплуатация здания в немалой степени будет зависеть от того, насколько правильно выбран и смонтирован пароизоляционный материал.

 

Конденсат на пароизоляции на стене

Возникновение конденсата на пароизоляции достаточно серьезная проблема угрожающая нанести вред теплоизоляции. Появление влаги снижает теплоизоляционные свойства утеплителя, появляется его деформация, в результате чего наблюдаются тепловые потери в здании.

Главные причины скопления конденсата на пароизоляции

Как уже было сказано от большого скопления влаги серьезно начинает страдать утеплитель сама пароизоляция при этом достаточно быстро приходит в негодность буквально за два года, хотя по правилам должна прослужить не мне пятнадцати лет.

К счастью данную проблему можно быстро решить без больших дополнительных затрат. В обратном случае ремонт кровли в дальнейшем может обойтись в крупную сумму денег.

Конечно лучшим методом решения скопления конденсата на пароизоляции – это ее предотвращение. Поэтому необходимо сразу знать основные причины развития подобной ситуации, чтобы в дальнейшем не совершать грубых ошибок.

В ситуации если конденсат собирается в минимальных количествах, то он не как не угрожает ни утеплителя, ни тем более кровли. Так почему же может скапливаться конденсат?

Есть достаточно много причин его возникновения:

  1. Некачественное утепление потолочного отдела и крыши.
  2. Неправильная установка пароизоляции.
  3. Неправильная установка или отсутствие какой-либо вентиляции в чердачном посещении.
  4. Применение низкокачественных материалов для обустройства кровли или грубые нарушения технологии монтажа кровли.

Каждая из выше приведённых причин, может быть серьёзной проблемой с которой необходимо бороться немедленно. Для того, что знать, как победить распространение конденсат необходимо точно знать причину его появления, только в таком случае будет какой-либо смысл.

Методы решения

Выбранный метод борьбы с конденсатом на прямую связан с его причиной появления. В ситуации, когда главным виновником стала некачественная теплоизоляции крыши, то необходимо ее сделать лучше. Для этого нужно просто увеличить толщину внутреннего слоя.

Практически всегда тепловые потери наблюдаются точечно, то есть в определённых областях. Так называемые слабые место возможно обнаружить при помощи тепловизора, так и в ручную. Подобную работу стоит делать в холодное время года, когда на улицах лежит снег.

Что же касается отсутствия или неправильной установки вентиляции, то тут все предельно ясно. Эту проблему, возможно исправить только с помощью ее полной установки или полной замены на более качественную.

Вентиляционные окошки необходимо располагать в коньках крыш, а также под их свесами. Если циркуляция воздуха организована по всем правилам, лед и снег скапливается на крыше и прилипает к ней гораздо меньше.

Интересует узел примыкания пароизоляции и наружной стены – если образуется конденсат, куда его направить?

Для начала, разберемся, почему возникает конденсат и где можно ждать его появления?

Как правило, конденсат появляется на холодных поверхностях в тот момент, когда они соприкасаются с теплым влажным воздухом. Например, на оконном стекле от нашего дыхания. Чем воздух теплее, тем больше в нем содержится влаги, которая может остаться на несущих конструкциях в виде воды. Проще говоря, если есть холодная поверхность и приток теплого воздуха к ней, то возникновения конденсата не избежать.

Что сделать для того, чтобы конденсат не скапливался внутри стен?

Как работает осушитель воздуха? Он вбирает в себя влажный воздух из помещения, выделяет из него воду и отдает сухой воздух. Внутри такого устройства есть испаритель, который поддерживает низкую температуру. Пары воды остаются на нем и удаляются в специальный контейнер.

Так происходит и с внешними стенами: есть приток теплого воздуха, есть холодная поверхность, есть выход сухому воздуху. Для того чтобы не превращать стену в устройство осушки воздуха, необходимо предотвратить попадание в конструкцию влажных паров. Как это сделать?

Пароизоляция наружных стен

Необходимо защитить конструкцию стены от влажного, теплого воздуха. Для этого нужно устроить пароизоляцию с внутренней стороны стены. А с внешней стороны, снаружи, поступает холодный воздух, в котором намного меньше влаги, чем в теплом, значит, он даже поможет высушить влажные стены! Пароизоляция между внутренним помещением и наружной стеной защищает поверхность конструкции от пара. А изоляция между улицей и стеной только способствует образованию влаги.

Подробно о пароизоляции стен говорится в видео:

Если внутри конструкции появляется конденсат, значит:

  1. Неправильно проведена вентиляция внешней стены. Внешний слой стены не должен пропускать ветер и дождь, но именно он позволяет влаге, которая в любом случае появится внутри конструкции, испаряться.
  2. Пароизоляция пропускает влажный воздух. Главный принцип пароизоляции – непрерывность. Если его нарушать – теплый пар из помещения проникнет в конструкцию стены.
  3. Утепление стены проведено изнутри. При утеплении наружных стен изнутри, распределение температуры происходит со смещением во внутреннюю сторону, это означает, что точка росы также смещается в сторону помещения, это способствует возникновению конденсата под слоем утеплителя. Для того чтобы избежать появления конденсата изнутри стены, специалисты советуют утеплять стену снаружи. При таком раскладе температура точки росы сдвинется наружу, что предотвратит появление конденсата внутри.

Автор: Дмитрий Белкин

Предположим, у нас строится каркасный дом. Предположим, он уже практически построен, то есть подготовлен под внутреннюю и внешнюю отделку. И вот тут наступает момент истины для вас и момент ужаса для ваших строителей. Вы каким-то образом отдираете кусок стены, суете туда руку и обнаруживаете, что вата мокра, как губка, а по изоляции между стеной и внешней отделкой ручьем течет вода.

Вы в ужасе. Строители в истерике. И вот тут вы наконец-то делаете осмысленный поступок, а именно обращаетесь к супер-специалисту в области избавления от строительных проблем, то есть ко мне, к Дмитрию Белкину (не правда ли я скромен до безобразия)!

Как специалист я первым делом морщу лоб. Потом, после долгой паузы я начинаю говорить весьма поучительным тоном.

Вопрос, на самом деле, весьма сложный. Тут нужно очень внимательно смотреть и разбираться. Давайте попробуем этим и заняться.

От чего возникает конденсат и где он может возникнуть?

Конденсат возникает на холодных поверхностях, когда они соприкасаются с более теплым и влажным воздухом. Что значит влажный воздух? У нас что, баня что-ли? Нет! Просто теплый воздух способен содержать в себе значительно, в разы, если не в десятки раз больше влаги (по массе), чем холодный. Поэтому именно в сравнении с холодным воздухом наш теплый является влажным.

Если дом не достроен, то так или иначе теплый воздух нельзя изолировать от холодных поверхностей и в этом случае тот факт, что на них выпадает конденсат — нормален.

Если дом достроен, ситуация с конденсатом, которую мы описали в самом начале, является совершенно ненормальной. Попробую весело и просто объяснить свою позицию.

Занимательная физика

Представим себе, что мы взяли полиэтиленовый мешок, в котором точно нет дыр, и положили в него лист стекловаты. Да-да! Той самой, что завались в наших каркасных стенах. Мешок запаяли сверху. Таким образом, вата получилась строго в мешке. Причем мы эту вату упаковывали в теплом помещении и воздух при этом не осушали. Что из этого следует? Из этого следует, что внутри нашего мешка есть следующие вещи:

  • вата (большая часть)
  • воздух (тоже порядочно)
  • пар (тот, что содержится в воздухе)

Много пара? Ну если считать на граммы, то совсем мало. Ну. скажем. 10 грамм воды.

Теперь мы берем наш мешок и, как есть, выносим на мороз. Что произойдет? Наши 10 грамм воды из воздуха выпадут. Где они будут находиться? В вате и на других поверхностях внутри мешка. Их можно даже увидеть. Это будут капли воды или даже «капли льда», если так можно сказать.

Что будет, если мы наш мешок занесем обратно в тепло? Воздух в нем согреется и конденсат перейдет обратно в воздух. На вид и на ощупь все будет опять сухо.

Но это еще не все рассуждения! Самое главное будет сейчас.

Мы условились, что на морозе из воздуха в нашем мешке выпадет 10 грамм воды. Постоянная ли это величина? Да! Абсолютно постоянная. Поскольку у нас система закрытая и у нас нет доступа воздуха внутрь мешка, то в нем всегда, во веки веков, пока мы его не раскроем, будет находиться то же самое количество воды. Либо оно будет в виде пара, либо в виде конденсата.

А что будет, если мы сделаем хитроумную систему, которая будет выводить из нашего мешка холодный воздух и вводить туда теплый (мешок, как вы понимаете, на морозе находится)? У нас получится устройство для осушения воздуха. При этом из мешка будет выходить сухой воздух, а в мешке будет образовываться вода. Много воды, даже очень много. Она из него будет ручьем литься. При этом, и заметьте, это важно понимать, вся влага будет образовываться внутри мешка, а снаружи он будет сухим.

Если вы поняли весь ход рассуждений, то теперь постарайтесь сами определить. Что представляют собой наши стены? Некоторый объем, в котором постоянное и не очень большое количество пара, или у нас получилось оборудование для осушения воздуха?

На сцену выходит пароизоляция

Должно получиться первое. Для этого устраивается пароизоляция. Она придумана именно для того, чтобы не превратить каркасные стены в оборудование для осушения воздуха. Причем, заметьте, и это опять крайне важно, мы защищаем наши стены от теплого воздуха, а не от холодного, в котором влаги крайне мало! Это значит, что и особо тщательная изоляция должна быть внутри помещения, чтобы именно этот воздух не пустить в стены.

А изоляция наружных стен? Да она, вроде даже как бы и вредна! Действительно, зачем нам удерживать влагу внутри стен? Да пусть выходит наружу! Жалко ее что ли? Поэтому я обычно советую не делать изоляцию внешних стен. Об этом я написал специальную статью. Однако в нашем случае, да и вообще при каркасном строительстве, мы используем материалы внешней отделки, которые сами по себе являются влагозащитными. Просто в силу своих изначальных свойств. Вот ОСБ, например. Это стружка, пропитанная эпоксидкой. Конечно, она не пропускает влагу!

Зная об этих свойствах каркасных домов, пароизоляции уделяется крайне большое значение и делается она исключительно тщательно. А во внешних стенах следует предусмотреть вентиляционные отверстия, которые позволяли бы внутреннему пространству стен просыхать. А зачем же им просыхать, если мы пароизоляцию сделали и получили полный аналог запаянного мешка с ватой?

И вентиляция наружных стен

Мы должны позаботиться о вентиляции внутристенного пространства просто потому, что теория отличается от практики и сделать на 100 процентов надежную пароизоляцию мы не в силах.

Теперь вернемся к рассматриваемой проблеме.

Если в построенном доме мокнет изнанка внешней отделки, то это означает, что пароизоляция сделана из рук вон плохо, вентиляция не сделана вообще, а еще это означает. что стена не достаточно утеплена. Вот последнее утверждение я хотел бы прокомментировать особо.

Я — влажный воздух

Предположим, я теплый комнатный воздух. Во мне есть пар. Каким-то образом я попал внутрь каркасной стены и начал движение к холоду. Почему я двигаюсь именно из тепла в холод? Это законы физики. Разность плотностей и все такое. Так вот двигаюсь я себе и дохожу до слоя утеплителя. Мне нужно его преодолеть. Преодолевая утеплитель, я замечаю, что температура вокруг уменьшается и я по этой причине теряю свой пар. Он осаждается на волокнах ваты прямо в ее толще. Понятно, что теряя влагу я становлюсь суше. Но все равно двигаюсь дальше. Где-то на середине слоя ваты температура перевалила нулевую отметку. Я при этом потерял уже много пара и оставил его позади прямо в вате, на ее волокнах. А когда я еще не вышел из ваты, но уже где-то очень близко подошел к ее внешнему краю, я ощутил, что пара во мне уже и не осталось почти. И вот я выхожу из ваты и прямо лбом стукаюсь в серьезную преграду в виде какой-нибудь ужасной пленки или листов ОСБ. Тут я ощущаю себя сперматозоидом в презервативе (извините за хулиганский пример), и начинаю биться об эту пленку. НО ПАРА ВО МНЕ ПРАКТИЧЕСКИ УЖЕ НЕ ОСТАЛОСЬ и на этой пленке или плитах ОСБ я оставляю какие-то последние и совершенно микроскопические молекулы инея, которые можно рассмотреть разве что в микроскоп.

А у нас в стенах реки текут! Что же это за утепление такое, если из него теплый воздух выходит?

Итоги и выводы

В недостроенной каркасной стене может быть что угодно — не обращаем внимания.

Если дом построен и в нем устроена пароизоляция, то вата может быть слега влажной на ощупь. НИКАКИХ РЕК И ПОТОКОВ КОНДЕНСАТА БЫТЬ НЕ ДОЛЖНО В ПРИНЦИПЕ!

Если реки есть, то значит и пароизоляция плохая, и утепление тоже плохое.

Для комфортного жилья и долговечности вашего дома во внешней стене должны быть небольшие вентиляционные отверстия. Такие, чтобы воздух мог входить и выходить, но очень медленно и ветра внутри стены чтобы не было. Иначе все тепло вместе с паром уйдет. Про долговечность, вроде бы понятно, но при чем же здесь комфорт? При том, что влажная и промерзшая вата во многом теряет свои свойства и дом становится еще холоднее, а влаги внутри стен еще больше и так далее до абсурда. Вентиляционные отверстия должны быть не в середине стены и не в шахматном порядке по всей стене, а только внизу и вверху и не много!

Так как же избавиться от конденсата?

Для того, чтобы избавиться от конденсата, нужно, во-первых, разобрать стены, во-вторых, добавить утеплителя, в-третьих, собрать все обратно и сделать при этом описанную выше пароизоляцию. И сделать это не так, как у нас сделано, а тщательно! А для того, чтобы сделать тщательно, нужно на время строительства брать отпуск и стоять над рабочими и глаз с них не спускать! А если они сразу в нескольких комнатах работают, значит надо всей семье взять отпуск и стоять во всех комнатах и не спускать глаз с этих рабочих. А если будут обижаться — то уволить их и нанять других (возможно еще хуже). Вот так. И это не шутка! Это, к сожалению, истинная правда, хоть и звучит очень юмористически. И да! Если у вас при рабочих прораб есть, то за последним надо следить в два, а то и в три раза тщательней. Заметьте, я здесь не говорю, что все рабочие плохие! Нет! Я говорю всего лишь, что за ними надо следить. За любыми. И за честными тоже.

Надеюсь, было весело и поучительно!
Ваш автор Дмитрий Белкин

Конденсат на крыше дома – что делать, как исправить

Давайте разберемся, откуда на крыше появляется конденсат, и что в этом случае делать.

Почему образуется конденсат на крыше дома

Сам по себе конденсат на крыше не так страшен, гораздо хуже, когда он в больших количествах начинает капать на утеплитель, снижая его теплоизоляционные свойства, либо образовывать мокрые пятна на потолке и стенах.

Конденсат образуется из-за разности температур кровельного материала и окружающего воздуха. Другими словами – когда кровельный материал холодный, а окружающий его воздух теплый, на нем образуются капельки воды.

В случае с крышей, конденсат может образовываться из-за следующих факторов:

  1. Недостаточно утеплена крыша, либо потолок верхнего этажа.
  2. Некачественная пароизоляция потолка последнего этажа, либо ее отсутствие.
  3. Недостаточная вентиляция чердачного пространства.
  4. Недостаточная вентиляция между пароизоляционной пленкой и материалом самой кровли.
  5. Некачественные материалы или грубые нарушения при постройке крыши.

Теперь разберем как каждый фактор влияет на образование конденсата на крыше и что нужно делать, чтобы это исправить.

Недостаточное утепление крыши дома

Это очень распространенное явление, особенно в старых домах, когда кровлю, либо потолок последнего этажа, утепляют либо слишком тонким слоем утеплителя, либо не очень качественным.

Такая крыша в холодное время года будет пропускать тепло в неотапливаемое чердачное пространство, тем самым нагревая его. Кровельный материал, особенно если это металл, будет оставаться холодным, и на нем образуется конденсат.

Что делать в этом случае?

Сначала необходимо определить, почему тепло уходит в неотапливаемое чердачное пространство.

Если недостаточно толстый слой утеплителя – то кроме того, как дополнительно утеплить крышу дома, здесь ничем помочь нельзя.

Но бывают случаи, когда тепло уходит в определенных местах. Определить эти места, в некоторых случаях, можно зимой, когда лежит снег на крыше. В том месте, где снег будет таять быстрее (не из-за солнечной стороны), там и будет утечка тепла.

Если таким образом найти утечку не представляется возможным, тогда можно прибегнуть к использованию тепловизора. Это удовольствие не из дешевых, но иногда на утеплении лучше не экономить.

Некачественная пароизоляция потолка

Часто случается так, что пароизоляция потолка верхнего этажа либо сделана не качественно, либо ее нет вообще, это очень актуально в старых домах, так как раньше о таких материалах никогда не задумывались.

В этом случае, водяные пары, образующиеся в процессе проживания в доме, поднимаются вверх, образуя конденсат на крыше дома. А их в доме создается достаточно для того, чтобы конденсат на крыше стал огромной проблемой.

Неправильная пароизоляция или ее отсутствие – огромная проблема не только для крыши дома, но и для тех, кто под ней будет проживать. Оставлять так как есть ни в коем случает нельзя, и необходимо обязательно это исправить.

Требуется с большой ответственностью отнестись к пароизоляционному слою, как к материалу, так и к технологии укладки.

Отсутствие вентиляции чердачного пространства

Многие пренебрегают вентиляцией на чердаке, считая, что нежилые помещения не нуждаются в такой роскоши, но это очень большая ошибка.

Качественная вентиляция в любом помещении обеспечивает надежную защиту от возникновения конденсата, защищая тем самым как крышу, так и всех проживающих под ней жильцов.

Таким образом, вентиляция должна присутствовать в любом помещении, тем более если оно неотапливаемое. Это защитит не только Вас, но и материал, из которого сделана крыша, особенно ее деревянную часть.

Для того, чтобы вентиляция была качественной, необходимо организовать в подкровельном пространстве как приток, так и отток воздуха, только тогда на чердаке станет сухо.

Недостаточная вентиляция между гидроизоляционной пленкой и материалом самой кровли

Честно говоря, этот недостаток не должен привести к плачевным последствиям, потому что конденсат будет образовываться между гидроизоляцией и кровельным материалом, металлочерепицей, например. Ну а если гидроизоляционный материал уложен без дыр, то весь конденсат должен стекать в водоотлив.

Некачественные материалы или грубые нарушения при постройке крыши

Я думаю, что здесь все понятно. Если при постройке крыши использовался некачественный материал, то никто не даст гарантии, что у вас не появится конденсат на крыше дома, более того, с некачественным материалом все может быть на много серьезнее.

Что касается нарушений технологии постройки крыши, вследствие которых появляется конденсат на крыше, то мы их практически все рассмотрели в предыдущих пунктах. Недобросовестные, или что еще хуже, неграмотные строители зачастую допускают критические ошибки при строительстве кровли, что в последствии сказывается на проживании в доме.

Так что же делать, если после постройки вы заметили конденсат на крыше, который пагубно воздействует на комфортность проживания в доме?

Ну, во-первых, попробовать найти тех горе строителей и, как говорится, ткнуть их носом – пусть исправляют. Но если же связь с ними потеряна, то тут уже придется рассчитывать только на себя.

Как избавиться от конденсата на крыше с наименьшими затратами

Не редко бывает так, что причин образования конденсата может быть несколько, такое явление часто встречается в старых домах, где возможно придется переделать всю крышу полностью. Это достаточно дорогое удовольствие.

Можно попробовать минимизировать затраты используя теплоотражающую изоляцию, которая будет отражать тепло внутрь дома. Этим способом мы убьем двух зайцев, во-первых, значительно уменьшим образование конденсата на крыше дома, во-вторых, сделаем дом немного теплее.

Если чердак – нежилое помещение, то лучше будет использовать теплоотражающую изоляцию в потолке верхнего жилого этажа. Если же у вас чердак отапливается, то теплоизоляцию необходимо использовать под кровельным материалом.

Еще одним способом избавления от конденсата на крыше является использование пароизоляционной пленки между стропилами, такая пленка не даст влажному воздуху соприкасаться с холодным металлом, что в свою очередь немного снизит образование конденсата.

Необходимо помнить, что все это полумеры, которые могут помочь, но не на все 100%. Для того, чтобы полностью избавиться от появления конденсата на крыше, необходимо коренным образом исправлять недостатки крыши, но это, как правило, требует огромных финансовых затрат.

Конденсат между утеплителем и пароизоляцией что делать

Сообщества › DRIVE2 На Даче › Блог › Крик души, протекает потолок, конденсат на чердаке (КРОВЕЛЬЩИКИ ОТЗОВИТЕСЬ) !

Здарова драйв 2 на даче, этот пост выкладываю по большей части к знатокам кровли и строительства. Кто что может подсказать, направить в нужное русло, приму все варианты, комментарии, советы. В общем суть такова, в наш регион пришла оттепель и с ней у меня в доме начал протекать потолок 2го этажа. На чердаке по верх утеплителя СНЕЖНАЯ КАША, на пленке конденсат все это тает и просачивается через потолок. Не знаю что делать, ПРОШУ РЕПОСТА господа! Всех благодарю за активное участие в устранении моей проблемы.

Смотрите также

Комментарии 133

а нет фото где обрешётка набивалась при строительстве? вот как я гараж крыл, брусок 50 мм c-a.d-cd.net/e0bce06s-960.jpg

Точно также и у меня, только я бил 30 брусок. Между обрешеткой и металочерепицей у меня все в порядке, вся проблема в недостаточном утеплении летом буду добавлять 10 см

Актуально и для меня.
То с оттепелью, то с морозами.
Всякий раз по разному дождь на чердаке…
Строители разводят руками. Скоты!
Гарантия давно закончилась на дом, видно придется летом как то самому…

да я тоже буду ждать лета сейчас никак однозначно дополнительно утеплять

Проблема в том что у вас обрешетка, не правильно смонтирована( отсутствие контр обрешеткой которой часто пренебрегают), теплый воздух все же проникает через не плотное соединение (утеплитель с стропильной частью) и проходит конденсируясь в соединении обрешетки и гидро-ветрозащитной мембраной. Мембраны бывают разные, которые можно укладывать на утеплитель и которые должны предусматривать вент зазор. Возвращаясь к утеплителю могу сказать что в нашей полосе желательно использовать толщину перекрытия утеплителем минимум в 20 см. а у вас всего 15. И еще, укладывать его не только между стропильных балок но и перекрестным методом по горизонтали, для исключения мостиков холода между плитой утеплителя и стропильной ногой. Что можно сделать сейчас- сложно сказать, можно попробовать дать дополнительный слой утеплителя хотя… . Что нужно сделать весной — делать контр обрешетку а вот как решать вам. Схему обрешетку попробую скинуть в личку. Да, та схема которую вы прикрепили — на ней нет контура деревяшки, той самой контр обрешетки.

Полностью поддерживаю.Даже добавить нечего.В идеале только разбирать кровлю и делать контр обрешетку.

Проблема в том что у вас обрешетка, не правильно смонтирована( отсутствие контр обрешеткой которой часто пренебрегают), теплый воздух все же проникает через не плотное соединение (утеплитель с стропильной частью) и проходит конденсируясь в соединении обрешетки и гидро-ветрозащитной мембраной. Мембраны бывают разные, которые можно укладывать на утеплитель и которые должны предусматривать вент зазор. Возвращаясь к утеплителю могу сказать что в нашей полосе желательно использовать толщину перекрытия утеплителем минимум в 20 см. а у вас всего 15. И еще, укладывать его не только между стропильных балок но и перекрестным методом по горизонтали, для исключения мостиков холода между плитой утеплителя и стропильной ногой. Что можно сделать сейчас- сложно сказать, можно попробовать дать дополнительный слой утеплителя хотя… . Что нужно сделать весной — делать контр обрешетку а вот как решать вам. Схему обрешетку попробую скинуть в личку. Да, та схема которую вы прикрепили — на ней нет контура деревяшки, той самой контр обрешетки.

вот ссылка мембрана укладывается без зазора(заявлено производителем) жду коментов что не так сделано www.drive2.ru/c/1988136/

Проблема в том что у вас обрешетка, не правильно смонтирована( отсутствие контр обрешеткой которой часто пренебрегают), теплый воздух все же проникает через не плотное соединение (утеплитель с стропильной частью) и проходит конденсируясь в соединении обрешетки и гидро-ветрозащитной мембраной. Мембраны бывают разные, которые можно укладывать на утеплитель и которые должны предусматривать вент зазор. Возвращаясь к утеплителю могу сказать что в нашей полосе желательно использовать толщину перекрытия утеплителем минимум в 20 см. а у вас всего 15. И еще, укладывать его не только между стропильных балок но и перекрестным методом по горизонтали, для исключения мостиков холода между плитой утеплителя и стропильной ногой. Что можно сделать сейчас- сложно сказать, можно попробовать дать дополнительный слой утеплителя хотя… . Что нужно сделать весной — делать контр обрешетку а вот как решать вам. Схему обрешетку попробую скинуть в личку. Да, та схема которую вы прикрепили — на ней нет контура деревяшки, той самой контр обрешетки.

сделай проветривание подкрышного пространства… пленку под конкем- разрешь. у тебя теплый воздух проходит сквозь утеплител(немного) и все это хозяйство выпадает в осадок. все просто. крыша это очень серьезная конструкция… сам занималься плотной этой темой. досконально проштудировал… не многие понимают и строители что и для чего надо…

Во время строительства дома была такая же проблема 1 в 1… Что выяснили — нет или маленький зазор между утеплителем и пароизоляцией в итоге недостаточная вентилируемость и выпадение конденсата — как решали — снимали утеплитель, у меня он двойной — ближе к крыше вата, потом типа пенопласта, только современный материал, название не помню. Так вот вскрыли вату опустили на 5 см ниже и плиты тоже переделали — эта зима показала, что проблема исчезла.

Странная тема… Если ты сделал все по картинке, то конденсат должен выдуваться через вентзазоры. Если же вентзазора нет, то это как раз вариант для конденсата. Первое — какое расстояние между кровельным покрытием и гидроизоляцией? Утеплитель положен вплотную к пленке?
Пока разбирай подшивку и утеплитель. Прогревай все пушкой, чтобы подсохло.

металочерепица контробрешетка 25мм обрешетка 30мм мемрана потом утеплитель затем пароизоляция

Ну минус только толщина контробрешетки. А так то все верно. Конек вентилируемый?

верхняя мембрана натянута сплошняком где конек не прорезана

А надо бы. В инструкции как написано?

Такая же проблема ((( позавчера целый день был “дождь” на втором этаже. Завтра приедут строители, будем разбираться.

На первом чертеже если воспринимать его дословно есть ошибка! И если это повторить дословно результат будет не хорошим!

Это картинка которая с нета?

как мне просушить чердак? И чтобы дополнительно перекрыть лаги утеплителем нужно высушить намокший утеплитель правильно ведь!

Это уже более сложный вопрос! Если конечно воспользоваться оттепелью и попробовать прогреть пушками в сочетании с проветриванием! может получится! Если при морозе то это уже сложнее!

Александр огромное вам человеческое СПАСИБО, буду придерживаться вашего опыта и еще спасибо за активное участие

Сергей, совсем не за что! Дистанционно всегда тяжело помочь. Вот если бы была возможность визуального осмотра то выводы были бы более однозначны! Но далековато Вы от меня! ;))

как мне просушить чердак? И чтобы дополнительно перекрыть лаги утеплителем нужно высушить намокший утеплитель правильно ведь!

Еще раз добавлю, что при укладке дополнительного слоя проветить предыдущие на предмет шахматной укладки и плотности примыкания к лагам чердака. Так ж я видел что выходит какой то кабель из утеплителя. На такие места тоже надо обратить пристальное внимание!
И еще я забыл спросить проходят ли сквозь чердак трубы дымоходов?

Как избавиться от конденсата под крышей

Вопрос, как бороться с конденсатом на крыше, является весьма актуальным, ведь излишняя влага может серьезно вредить постройке. От нее начнут гнить доски, может появиться грибок, который со временем попадет и в помещение, к тому же влага создает ненужную сырость. Избавиться от нее вполне возможно, если правильно защитить крышу.

Какой вред наносит конденсат?

Конденсат на крыше серьезно вредит разнообразным утеплителям, например, минеральной вате. От влаги она не только превращается в комки, но и теряет свои свойства. Мокрая вата не прослужит дольше двух лет, хотя в сухих условиях ее не придется менять и спустя 20 лет.

Ремонт крыши стоит достаточно дорого. Из-за влаги могут пострадать несущие конструкции, например, лаги и крыша просядут, начнут протекать или разрушится. Именно поэтому бороться с конденсатом нужно сразу же после его обнаружения, не откладывая решение проблемы на потом.

Если влаги немного, она может вызвать грибок, который въедается в доски, в результате чего они могут сгнить за несколько лет. Если конденсат никуда не уходит, он может образовывать большие лужи, которые могут протекать через потолок. Влага способна проникнуть в утеплитель и испортить его. Дом станет сырым, может стать значительно холоднее, особенно такая проблема присуща помещениям, крыша которых металлическая.

Причины проблем

Прежде чем начать нелегкую борьбу с явлением, нужно понять, почему образуется конденсат под крышей. Основными причинами могут выступать следующие факторы:

  • Перекрытия потолка плохо утеплены, крыша негерметична, имеет большие щели.
  • Не была обустроена изоляция либо она была сделана неправильно.
  • Пространство под крышей или чердак не имеет достаточной вентиляции, и влаге некуда испаряться.
  • Теплоизоляционные материалы был смонтированы неправильно или вовсе отсутствуют.
  • Были использованы некачественные материалы или серьезно нарушена технология при монтаже кровли.

Хватит одной из перечисленных причин для того, чтобы появился конденсат под крышей. Поэтому важно вычислить причину и устранить ее, иначе решить проблему не получится.

Устройство вентиляции крыши

Крыша утеплена недостаточно хорошо

Довольно часто образование конденсата в кровле связано с ее плохим утеплением. Обычно проблема вызвана тем, что изоляционный материал слишком тонок, и влага проникает в районе перекрытий. Однако слой может иметь достаточную толщину, но при этом его качество оставляет желать лучшего. В этом случае при минусовой температуре на улице из помещения будет уходить теплый воздух. В месте столкновения теплого и холодного потока будут оседать капли воды, которая сначала попадет на чердак, затем может проникнуть и в дом, испортив потолки или стены.

Чтобы решить проблему, нужно понять, каким образом тепло покидает помещение. Если слой изоляции качественный, но слишком тонкий, его нужно усилить. Необязательно утеплять заново все строение, достаточно дождаться зимы и пронаблюдать, в каких метах материал или металлическое основание кровли становятся мокрыми.

Если в вашей местности выпадет снег, внимательно осмотрите его. В месте, где уходит тепло, он будет мягким, начнет таять. Более сложным способом, который не зависит от времени года, является использование тепловизора. Это специальный прибор, который поможет установить точное место, однако услуги специалиста или покупка самой техники стоят довольно дорого.

Некачественная пароизоляция

Если конденсат на чердаке, что делать в первую очередь? Стоит проверить, насколько хорошо были пароизолированы перекрытия. Вполне возможно, что где-то образовалась щель. Некоторые строительные фирмы не делают такую изоляцию вовсе. Если дом старый, пароизоляции ,скорее всего, нет, так как в то время о ней и не знали.

Пароизоляционная мебранна

Понять, что изоляции нет, достаточно просто: конденсат начнет появляться в жилом помещении. На крышу он будет попадать, не испытывая преград, через потолок. Теплый воздух будет сталкиваться с холодным кровельным материалом, в результате чего на чердаке появится влага. Стоит заметить, что в доме пар не редкость и образуется в больших количествах. Поэтому при отсутствии пароизоляции чердак довольно быстро станет очень сырым и мокрым.

Решить проблему несложно: нужно качественно изолировать чердачное помещение. Чаще всего для этого используют специальный рулонный материал, он доступен по цене и довольно просто монтируется своими силами.

Если не вентилируется чердак

Почему на крыше собирается конденсат, иногда понятно не сразу. Помещение может быть довольно хорошо изолировано, все использованные материалы качественные и достаточной толщины. Причина может таиться в отсутствии движения воздуха в подкровельном пространстве.

Если на чердаке будет качественно сделана вентиляция, то проблем с конденсатом не возникнет. Это важно не только для отапливаемых помещений, но и для тех, которые в зимнее время не используются и не отапливаются. Лишняя влага может появляться не только при притоке, но и при оттоке воздуха, поэтому важно, чтобы в чердаке имелись специальные отверстия для проветривания. Сквозняк в этом помещении никак не будет влиять на комнаты, но зато обеспечит сухость под крышей.

Отсутствие вентиляции кровельных материалов

Конденсат на кровле может появляться и при неграмотном монтаже кровли. Кровельный материал могут класть на гидроизоляцию, что является распространенной ошибкой неопытных строителей. В этом случае конденсат будет образовываться достаточно быстро и в больших количествах из-за того, что влаге некуда деться: она остается на крыше. Еще одной ошибкой может являться примыкание гидроизоляционного материала к теплоизоляции. В этом случае быстро испортится утеплитель. Особенно это касается минеральной ваты, для которой даже 5% влаги серьезно снижают эксплуатационные свойства.

Выявить причину появления влаги в этом случае будет намного сложнее. Придется разбирать кровлю для того, чтобы посмотреть, какие ошибки были допущены. Делать это придется, в противном случае влага продолжит накапливаться и выведет из строя теплоизоляцию, замена которой обойдется намного дороже, чем исправление проблемы сразу. Особенно конденсат опасен для деревянных конструкций.

Нарушение технологии, некачественные материалы

Применение дешевых материалов для гидроизоляции или нарушение технологии могут серьезно сказываться на состоянии конструкции. В результате нарушений принципа монтажа или использования материалов, качество которых не соответствует заявленному, может появляться конденсат.

Способ борьбы с такой проблемой достаточно очевиден: придется заменить низкокачественную продукцию на другие материалы. Если кровля была собрана неправильно, ее придется перестилать.

Слои гидроизоляции и пароизоляции Устройство слоёв кровли на практике

Как бороться с конденсатом?

Малоприятно, когда капает с крыши конденсат, поэтому любой владелец строения старается как можно быстрее избавиться от подобной проблемы. Избавиться от конденсата изначально позволяет использование качественных строительных материалов, грамотный монтаж кровли и утеплителя согласно инструкции. В противном случае могут возникать разнообразные описанные выше проблемы, борьба с которыми может потребовать много времени, сил и денег.

Пар — такая интересная субстанция, что просачивается практически везде. Поэтому пароизоляция должна быть качественно проклеена специальной лентой в местах стыков отдельных листов и в местах примыкания к строительным конструкциям.

Если проблема образования влаги не стоит остро, вам не потребуется перекрывать крышу. Достаточно найти одну или несколько причин, по которым конденсат может появляться, избавиться от них, и вы навсегда забудете об этой неприятной проблеме. Что может потребоваться?

  • Использование качественного материала для паро- и теплоизоляции, грамотный монтаж материалов. Не стоит экономить на утеплителе: качественное изделие всегда достаточно дорого стоит, однако оно гарантирует тепло в доме и отсутствие влаг и под крышей. Конденсат не будет образовываться, так как теплый и холодный воздух не будут сталкиваться. Хороший слой теплоизоляции должен быть не менее 20 см.
  • Проверьте, цела ли мембрана гидроизоляции. Многие строители монтируют гидроизоляцию в натяжку, в результате чего она трескается. Материал должен лежать свободно. Пленка сужается при понижении температуры, поэтому может порваться, если будет натянута чрезмерно. Если изоляция порвана, менять ее целиком не потребуется. Понадобится небольшая латка из такого же материала, при помощи которой отверстие нужно закрыть внахлест. Прикрепить материал можно при помощи строительного скотча.
  • Важно уделить внимание тому, каким образом были собраны все элементы крыши. Именно поэтому нужно следить за процессом монтажа, даже если этим занимаются профессиональные рабочие. Ели вы делаете кровлю самостоятельно, придерживайтесь технологии строго.

Вывод: если образовался конденсат на крыше, что делать можно решить, исходя из того, какая причина его вызвала. Устранить ее можно и нужно в любом случае. Не стоит затягивать, так как капитальный ремонт кровли при постоянном нахождении конденсата на чердаке может потребоваться весьма скоро, а обойдется он намного дороже, чем простой ремонт, в результате которого конденсат вас покинет.

Как избавиться от конденсата при возведении каркасно-щитового дома

Автор: Дмитрий Белкин

Предположим, у нас строится каркасный дом. Предположим, он уже практически построен, то есть подготовлен под внутреннюю и внешнюю отделку. И вот тут наступает момент истины для вас и момент ужаса для ваших строителей. Вы каким-то образом отдираете кусок стены, суете туда руку и обнаруживаете, что вата мокра, как губка, а по изоляции между стеной и внешней отделкой ручьем течет вода.

Вы в ужасе. Строители в истерике. И вот тут вы наконец-то делаете осмысленный поступок, а именно обращаетесь к супер-специалисту в области избавления от строительных проблем, то есть ко мне, к Дмитрию Белкину (не правда ли я скромен до безобразия)!

Как специалист я первым делом морщу лоб. Потом, после долгой паузы я начинаю говорить весьма поучительным тоном.

Вопрос, на самом деле, весьма сложный. Тут нужно очень внимательно смотреть и разбираться. Давайте попробуем этим и заняться.

От чего возникает конденсат и где он может возникнуть?

Конденсат возникает на холодных поверхностях, когда они соприкасаются с более теплым и влажным воздухом. Что значит влажный воздух? У нас что, баня что-ли? Нет! Просто теплый воздух способен содержать в себе значительно, в разы, если не в десятки раз больше влаги (по массе), чем холодный. Поэтому именно в сравнении с холодным воздухом наш теплый является влажным.

Если дом не достроен, то так или иначе теплый воздух нельзя изолировать от холодных поверхностей и в этом случае тот факт, что на них выпадает конденсат – нормален.

Если дом достроен, ситуация с конденсатом, которую мы описали в самом начале, является совершенно ненормальной. Попробую весело и просто объяснить свою позицию.

Занимательная физика

Представим себе, что мы взяли полиэтиленовый мешок, в котором точно нет дыр, и положили в него лист стекловаты. Да-да! Той самой, что завались в наших каркасных стенах. Мешок запаяли сверху. Таким образом, вата получилась строго в мешке. Причем мы эту вату упаковывали в теплом помещении и воздух при этом не осушали. Что из этого следует? Из этого следует, что внутри нашего мешка есть следующие вещи:

  • вата (большая часть)
  • воздух (тоже порядочно)
  • пар (тот, что содержится в воздухе)

Много пара? Ну если считать на граммы, то совсем мало. Ну. скажем. 10 грамм воды.

Теперь мы берем наш мешок и, как есть, выносим на мороз. Что произойдет? Наши 10 грамм воды из воздуха выпадут. Где они будут находиться? В вате и на других поверхностях внутри мешка. Их можно даже увидеть. Это будут капли воды или даже “капли льда”, если так можно сказать.

Что будет, если мы наш мешок занесем обратно в тепло? Воздух в нем согреется и конденсат перейдет обратно в воздух. На вид и на ощупь все будет опять сухо.

Но это еще не все рассуждения! Самое главное будет сейчас.

Мы условились, что на морозе из воздуха в нашем мешке выпадет 10 грамм воды. Постоянная ли это величина? Да! Абсолютно постоянная. Поскольку у нас система закрытая и у нас нет доступа воздуха внутрь мешка, то в нем всегда, во веки веков, пока мы его не раскроем, будет находиться то же самое количество воды. Либо оно будет в виде пара, либо в виде конденсата.

А что будет, если мы сделаем хитроумную систему, которая будет выводить из нашего мешка холодный воздух и вводить туда теплый (мешок, как вы понимаете, на морозе находится)? У нас получится устройство для осушения воздуха. При этом из мешка будет выходить сухой воздух, а в мешке будет образовываться вода. Много воды, даже очень много. Она из него будет ручьем литься. При этом, и заметьте, это важно понимать, вся влага будет образовываться внутри мешка, а снаружи он будет сухим.

Если вы поняли весь ход рассуждений, то теперь постарайтесь сами определить. Что представляют собой наши стены? Некоторый объем, в котором постоянное и не очень большое количество пара, или у нас получилось оборудование для осушения воздуха?

На сцену выходит пароизоляция

Должно получиться первое. Для этого устраивается пароизоляция. Она придумана именно для того, чтобы не превратить каркасные стены в оборудование для осушения воздуха. Причем, заметьте, и это опять крайне важно, мы защищаем наши стены от теплого воздуха, а не от холодного, в котором влаги крайне мало! Это значит, что и особо тщательная изоляция должна быть внутри помещения, чтобы именно этот воздух не пустить в стены.

А изоляция наружных стен? Да она, вроде даже как бы и вредна! Действительно, зачем нам удерживать влагу внутри стен? Да пусть выходит наружу! Жалко ее что ли? Поэтому я обычно советую не делать изоляцию внешних стен. Об этом я написал специальную статью. Однако в нашем случае, да и вообще при каркасном строительстве, мы используем материалы внешней отделки, которые сами по себе являются влагозащитными. Просто в силу своих изначальных свойств. Вот ОСБ, например. Это стружка, пропитанная эпоксидкой. Конечно, она не пропускает влагу!

Зная об этих свойствах каркасных домов, пароизоляции уделяется крайне большое значение и делается она исключительно тщательно. А во внешних стенах следует предусмотреть вентиляционные отверстия, которые позволяли бы внутреннему пространству стен просыхать. А зачем же им просыхать, если мы пароизоляцию сделали и получили полный аналог запаянного мешка с ватой?

И вентиляция наружных стен

Мы должны позаботиться о вентиляции внутристенного пространства просто потому, что теория отличается от практики и сделать на 100 процентов надежную пароизоляцию мы не в силах.

Теперь вернемся к рассматриваемой проблеме.

Если в построенном доме мокнет изнанка внешней отделки, то это означает, что пароизоляция сделана из рук вон плохо, вентиляция не сделана вообще, а еще это означает. что стена не достаточно утеплена. Вот последнее утверждение я хотел бы прокомментировать особо.

Я – влажный воздух

Предположим, я теплый комнатный воздух. Во мне есть пар. Каким-то образом я попал внутрь каркасной стены и начал движение к холоду. Почему я двигаюсь именно из тепла в холод? Это законы физики. Разность плотностей и все такое. Так вот двигаюсь я себе и дохожу до слоя утеплителя. Мне нужно его преодолеть. Преодолевая утеплитель, я замечаю, что температура вокруг уменьшается и я по этой причине теряю свой пар. Он осаждается на волокнах ваты прямо в ее толще. Понятно, что теряя влагу я становлюсь суше. Но все равно двигаюсь дальше. Где-то на середине слоя ваты температура перевалила нулевую отметку. Я при этом потерял уже много пара и оставил его позади прямо в вате, на ее волокнах. А когда я еще не вышел из ваты, но уже где-то очень близко подошел к ее внешнему краю, я ощутил, что пара во мне уже и не осталось почти. И вот я выхожу из ваты и прямо лбом стукаюсь в серьезную преграду в виде какой-нибудь ужасной пленки или листов ОСБ. Тут я ощущаю себя сперматозоидом в презервативе (извините за хулиганский пример), и начинаю биться об эту пленку. НО ПАРА ВО МНЕ ПРАКТИЧЕСКИ УЖЕ НЕ ОСТАЛОСЬ и на этой пленке или плитах ОСБ я оставляю какие-то последние и совершенно микроскопические молекулы инея, которые можно рассмотреть разве что в микроскоп.

А у нас в стенах реки текут! Что же это за утепление такое, если из него теплый воздух выходит?

Итоги и выводы

В недостроенной каркасной стене может быть что угодно – не обращаем внимания.

Если дом построен и в нем устроена пароизоляция, то вата может быть слега влажной на ощупь. НИКАКИХ РЕК И ПОТОКОВ КОНДЕНСАТА БЫТЬ НЕ ДОЛЖНО В ПРИНЦИПЕ!

Если реки есть, то значит и пароизоляция плохая, и утепление тоже плохое.

Для комфортного жилья и долговечности вашего дома во внешней стене должны быть небольшие вентиляционные отверстия. Такие, чтобы воздух мог входить и выходить, но очень медленно и ветра внутри стены чтобы не было. Иначе все тепло вместе с паром уйдет. Про долговечность, вроде бы понятно, но при чем же здесь комфорт? При том, что влажная и промерзшая вата во многом теряет свои свойства и дом становится еще холоднее, а влаги внутри стен еще больше и так далее до абсурда. Вентиляционные отверстия должны быть не в середине стены и не в шахматном порядке по всей стене, а только внизу и вверху и не много!

Так как же избавиться от конденсата?

Для того, чтобы избавиться от конденсата, нужно, во-первых, разобрать стены, во-вторых, добавить утеплителя, в-третьих, собрать все обратно и сделать при этом описанную выше пароизоляцию. И сделать это не так, как у нас сделано, а тщательно! А для того, чтобы сделать тщательно, нужно на время строительства брать отпуск и стоять над рабочими и глаз с них не спускать! А если они сразу в нескольких комнатах работают, значит надо всей семье взять отпуск и стоять во всех комнатах и не спускать глаз с этих рабочих. А если будут обижаться – то уволить их и нанять других (возможно еще хуже). Вот так. И это не шутка! Это, к сожалению, истинная правда, хоть и звучит очень юмористически. И да! Если у вас при рабочих прораб есть, то за последним надо следить в два, а то и в три раза тщательней. Заметьте, я здесь не говорю, что все рабочие плохие! Нет! Я говорю всего лишь, что за ними надо следить. За любыми. И за честными тоже.

Надеюсь, было весело и поучительно!
Ваш автор Дмитрий Белкин

Конденсат на крыше дома – что делать, как исправить

На первый взгляд, маленькие капельки воды, скапливающиеся на крыше, не могут принести большого вреда, но это только на первый взгляд.

Если конденсат собирается с наружной стороны крыши – это нормальное явление, особенно утром. Ну а если изнутри, тогда уже необходимо задуматься откуда он берется и как это исправить.

Давайте разберемся, откуда на крыше появляется конденсат, и что в этом случае делать.

Почему образуется конденсат на крыше дома

Сам по себе конденсат на крыше не так страшен, гораздо хуже, когда он в больших количествах начинает капать на утеплитель, снижая его теплоизоляционные свойства, либо образовывать мокрые пятна на потолке и стенах.

Конденсат образуется из-за разности температур кровельного материала и окружающего воздуха. Другими словами – когда кровельный материал холодный, а окружающий его воздух теплый, на нем образуются капельки воды.

В случае с крышей, конденсат может образовываться из-за следующих факторов:

  1. Недостаточно утеплена крыша, либо потолок верхнего этажа.
  2. Некачественная пароизоляция потолка последнего этажа, либо ее отсутствие.
  3. Недостаточная вентиляция чердачного пространства.
  4. Недостаточная вентиляция между пароизоляционной пленкой и материалом самой кровли.
  5. Некачественные материалы или грубые нарушения при постройке крыши.

Теперь разберем как каждый фактор влияет на образование конденсата на крыше и что нужно делать, чтобы это исправить.

Недостаточное утепление крыши дома

Это очень распространенное явление, особенно в старых домах, когда кровлю, либо потолок последнего этажа, утепляют либо слишком тонким слоем утеплителя, либо не очень качественным.

Такая крыша в холодное время года будет пропускать тепло в неотапливаемое чердачное пространство, тем самым нагревая его. Кровельный материал, особенно если это металл, будет оставаться холодным, и на нем образуется конденсат.

Что делать в этом случае?

Сначала необходимо определить, почему тепло уходит в неотапливаемое чердачное пространство.

Если недостаточно толстый слой утеплителя – то кроме того, как дополнительно утеплить крышу дома, здесь ничем помочь нельзя.

Но бывают случаи, когда тепло уходит в определенных местах. Определить эти места, в некоторых случаях, можно зимой, когда лежит снег на крыше. В том месте, где снег будет таять быстрее (не из-за солнечной стороны), там и будет утечка тепла.

Если таким образом найти утечку не представляется возможным, тогда можно прибегнуть к использованию тепловизора. Это удовольствие не из дешевых, но иногда на утеплении лучше не экономить.

Некачественная пароизоляция потолка

Часто случается так, что пароизоляция потолка верхнего этажа либо сделана не качественно, либо ее нет вообще, это очень актуально в старых домах, так как раньше о таких материалах никогда не задумывались.

В этом случае, водяные пары, образующиеся в процессе проживания в доме, поднимаются вверх, образуя конденсат на крыше дома. А их в доме создается достаточно для того, чтобы конденсат на крыше стал огромной проблемой.

Неправильная пароизоляция или ее отсутствие – огромная проблема не только для крыши дома, но и для тех, кто под ней будет проживать. Оставлять так как есть ни в коем случает нельзя, и необходимо обязательно это исправить.

Требуется с большой ответственностью отнестись к пароизоляционному слою, как к материалу, так и к технологии укладки.

Отсутствие вентиляции чердачного пространства

Многие пренебрегают вентиляцией на чердаке, считая, что нежилые помещения не нуждаются в такой роскоши, но это очень большая ошибка.

Качественная вентиляция в любом помещении обеспечивает надежную защиту от возникновения конденсата, защищая тем самым как крышу, так и всех проживающих под ней жильцов.

Таким образом, вентиляция должна присутствовать в любом помещении, тем более если оно неотапливаемое. Это защитит не только Вас, но и материал, из которого сделана крыша, особенно ее деревянную часть.

Для того, чтобы вентиляция была качественной, необходимо организовать в подкровельном пространстве как приток, так и отток воздуха, только тогда на чердаке станет сухо.

Недостаточная вентиляция между гидроизоляционной пленкой и материалом самой кровли

Честно говоря, этот недостаток не должен привести к плачевным последствиям, потому что конденсат будет образовываться между гидроизоляцией и кровельным материалом, металлочерепицей, например. Ну а если гидроизоляционный материал уложен без дыр, то весь конденсат должен стекать в водоотлив.

Но иногда бывает так, что утеплитель уложен вплотную к гидроизоляционному слою без зазора, там, где зазор должен быть, тогда от конденсата, скорее всего пострадает только сам утеплитель, который при намокании на 5% потеряет почти половину своих теплоизоляционных свойств.

Некачественные материалы или грубые нарушения при постройке крыши

Я думаю, что здесь все понятно. Если при постройке крыши использовался некачественный материал, то никто не даст гарантии, что у вас не появится конденсат на крыше дома, более того, с некачественным материалом все может быть на много серьезнее.

Что касается нарушений технологии постройки крыши, вследствие которых появляется конденсат на крыше, то мы их практически все рассмотрели в предыдущих пунктах. Недобросовестные, или что еще хуже, неграмотные строители зачастую допускают критические ошибки при строительстве кровли, что в последствии сказывается на проживании в доме.

Так что же делать, если после постройки вы заметили конденсат на крыше, который пагубно воздействует на комфортность проживания в доме?

Ну, во-первых, попробовать найти тех горе строителей и, как говорится, ткнуть их носом – пусть исправляют. Но если же связь с ними потеряна, то тут уже придется рассчитывать только на себя.

Как избавиться от конденсата на крыше с наименьшими затратами

Не редко бывает так, что причин образования конденсата может быть несколько, такое явление часто встречается в старых домах, где возможно придется переделать всю крышу полностью. Это достаточно дорогое удовольствие.

Можно попробовать минимизировать затраты используя теплоотражающую изоляцию, которая будет отражать тепло внутрь дома. Этим способом мы убьем двух зайцев, во-первых, значительно уменьшим образование конденсата на крыше дома, во-вторых, сделаем дом немного теплее.

Если чердак – нежилое помещение, то лучше будет использовать теплоотражающую изоляцию в потолке верхнего жилого этажа. Если же у вас чердак отапливается, то теплоизоляцию необходимо использовать под кровельным материалом.

Еще одним способом избавления от конденсата на крыше является использование пароизоляционной пленки между стропилами, такая пленка не даст влажному воздуху соприкасаться с холодным металлом, что в свою очередь немного снизит образование конденсата.

Необходимо помнить, что все это полумеры, которые могут помочь, но не на все 100%. Для того, чтобы полностью избавиться от появления конденсата на крыше, необходимо коренным образом исправлять недостатки крыши, но это, как правило, требует огромных финансовых затрат.

Конденсат между утеплителем и пароизоляцией что делать

Непоседа сказал(а): ↑
Inchin

а как бы более конкретно ответить на

вопрос автора темы

.

Нажмите, чтобы раскрыть…

boris9ka сказал(а): ↑

Сегодня снял лист гипсокартона и увидел что на пароизоляции собрался конденсат и капает на гипсокартон, подскажите пожалуйста как исправить проблему.
В некоторых местах гипсокартона были дыры пока неуспели замазать думаю может и за дыр и появился конденсат?

Нажмите, чтобы раскрыть…

Конденсат появился скорее всего не только из-за дыр в ГКЛ.
boris9ka,
Ваша предполагаемая конструкция и анализ перекрытия ниже на скринах.

При такой конструкции конденсации влаги не будет до влажности в помещении примерно до 50% и при температуре не выше +24. Также при влажности на чердаке до 90% и при температуре на чердаке не ниже — 18 градусов. При более высокой влажности и температуре под перекрытием может начаться накопление конденсата на пароизоляции и в толще пенополистирола (также в деревянных балках). От излишней влажности в помещении нужно избавляться проветриванием и увеличением объема приточно-вытяжной вентиляции.

Исправить ситуацию можно увеличив паропроницаемость утеплителя (выветривание водяных паров) наружу, заменив пенополистирол другим утеплителем с бОльшей паропроницаемостью, например, опилки, минвату, базальтвату.

Если не менять утеплитель, то в качестве альтернативы можно уменьшить возможное влагонакопление, насыпав поверх пенопласта и балок опилок слоем от 50 мм (лучше от 100 мм).

Влага может образовываться в помещениях при проведении покрасочных, штукатурных и других отделочных работах, связанных с влаговыделением.

П.С. Естественно, расчет не учитывал, возможные прорехи между чердаком и пароизоляцией (щели между утеплителем и балками).

Как избавиться от влаги между пароизоляцией и утеплителем в подвале?

Хью Смит 27 августа 2021 г. 17:08

Привет, Майк. Потрясающие статьи. Для меня логика исключения VB имеет большой смысл; тем не менее, я все еще не уверен в следующих шагах по повторной изоляции. Подробности ниже:

Расположение: Центральная АБ — холодная зима, довольно влажное лето.

Лето 2017: Полная реконструкция и надстройка 450 кв. М., Полный подвал. Новая изоляция из стекловолокна и поли VB в оригинальном и новом подвале.Распылите пену на балки обода. Никакого гипсокартона. По всему периметру были выкопаны мокрые плитки и нанесен черный смолистый герметик снаружи снизу до уровня земли.

Весна 2018: 2 лужи на полу, одна в старом подвале, одна в новом. Проблема заключалась в обледенении цемента за изоляцией. Вернули изоляторы, чтобы убедиться, что изоляция обода балки полностью покрывает верхнюю плиту каркаса подвала. На сегодняшний день (август 2021 г.) на полу нет воды.

Лето 2020: Осушитель отключен: конденсат на изоляционной стороне VB в двух областях, примерно десять футов каждая, одна на исходной стене подвала, одна на новой секции.Конденсат был на уровне земли вверх. Купил новый большой осушитель, и конденсат сошел.

Лето 2021 года: конденсация снова появилась в тех же местах в жаркую погоду, а затем рассеялась через несколько недель. Еще одно жаркое заклинание, и конденсат снова появился на новой стене, но не на исходной. Не рассеивался, поэтому я разрезал VB в нескольких местах. Вода испарилась, но изоляция воняет — плесневеет.

ЧТО СЕЙЧАС?

Планирую выбросить все VB и заменить стекловолокно минеральной ватой или, может быть, аэрозольной пеной.Я хотел бы положить слой пенопласта позади шипов, а затем камень будет перед ним, но мне придется удалить все шипы, поэтому, вероятно, не буду.

Осушитель воздуха работает несколько часов в день летом и даже часто зимой. Майк предположил, что влага, вероятно, просачивается сквозь цемент снизу стен. Так можно ли покрасить внутренние стены лакокрасочным герметиком или, может быть, резиновым герметиком? Но если я это сделаю, не рискую ли я замерзнуть и растрескать стену зимой, если влага не может выйти, кроме как наружу над уровнем земли? Для меня это большой вопрос.Ищу ли я проблемы, если сделаю это с -20 до -30 зимой в Альберте?

ИЛИ: Я прочитал статью о аэрозольной пене и об отрицательных возможностях выделения газов, но, возможно, вместо нанесения герметика на внутренние стены и использования минеральной ваты, это будет лучший способ остановить или замедлить приток влаги в подвал. ? В настоящее время, если наш осушитель выходит из строя, относительная влажность очень скоро вырастет до более чем 70%. Имеет смысл, что влага должна собираться снизу стен подвала. Тем не менее, когда мы устанавливали плакирующую плитку, в траншее не было влаги из грунтовых вод.Похоже, мне придется потратить немного денег, и я бы хотел все исправить.

Если у вас есть время, я мог бы использовать вашу точку зрения.

Спасибо. Хью

Видео о пароизоляции и конденсации в подвале

Я постоянно это вижу, когда осматриваю новые дома. Строители завершат верхние этажи дома и подвал, оставив новому владельцу достроить, если позволят время и средства. Как правило, любая часть подвала, превышающая уровень класса, имеет стены с деревянным каркасом.Затем полость стены изолируется и устанавливается пароизоляция из поли.

Назначение пароизоляции подвала состоит в том, чтобы предотвратить образование конденсата в полости стены, когда теплый, влажный внутренний воздух вступает в контакт с холодной поверхностью стены снаружи дома. Чтобы пароизоляция выполняла свою работу, во-первых, она должна присутствовать, а во-вторых, она должна быть герметичной. На видео выше домовладелец по какой-то причине совершил ошибку, просто сняв пароизоляцию (как домашний инспектор я давно перестал пытаться выяснить намерения домовладельцев).В результате образовался конденсат и наледь как на обшивке стен, так и на изоляции. Если оставить это без внимания, долгосрочным эффектом такого надзора станет повреждение компонентов из-за влаги и вероятный рост плесени в полости стены.

Не менее важно, что при наличии пароизоляции он должен быть герметичным, чтобы быть эффективным. Он должен быть заделан на верхней и нижней пластинах каркаса, а также вокруг всех оконных и дверных проемов в стене. Перекрывающиеся швы в полиэтилене должны быть заклеены лентой, а любые разрывы или перфорации в полиэтилене также должны быть заклеены.Подумайте, как и где воздух может проходить через пароизоляцию. Если воздух может проникнуть внутрь, влага, которую он несет, также попадет в стену. Герметично закройте его, и эта влага останется внутри дома как часть окружающего воздуха внутри дома.

Последнее слово по поддержанию пароизоляции: я сомневаюсь, что большинство строителей ожидают, что недостроенные подвальные помещения останутся незавершенными в течение пятнадцати или более лет после строительства. Этот герметичный полиуретан, который был установлен, когда дом строился, просто не рассчитан на то, чтобы продержаться так долго без защиты.Жизнь просто происходит в наших домах. Иногда примерно. Чтобы защитить пароизоляцию и сохранить ее герметичность, я рекомендую установить гипсокартон как можно скорее. Даже если в течение некоторого времени нет планов по полной отделке подвала, временная установка гипсокартона защитит пароизоляцию и обеспечит ее герметичность, предотвращая как повреждение стеновых компонентов, связанное с влагой, так и рост плесени в стене.

Q&A: Улавливают ли пароизоляции влагу

A. Клейтон ДеКорн отвечает: Поли не проблема.Влага в полостях стен является проблемой только в том случае, если она конденсируется в жидкую воду. Чтобы конденсироваться на поли, влажность должна быть очень высокой (более 50% относительной влажности), а поли очень холодным (из-за плохой изоляции или большого количества холодного наружного воздуха, просачивающегося в стену). В этом случае у вас будут проблемы с конденсацией, с полиуретаном или без него.

Чтобы понять это, давайте рассмотрим несколько принципов. Замедлители образования пара, такие как поли, устанавливаются на теплой стороне стен, чтобы предотвратить диффузию влаги в полость стены, где она может конденсироваться и вызывать повреждение от влаги.Диффузия — это движение влаги через крошечные поры в материале, и это проблема только в домах с высоким уровнем влажности в помещении. Например, если домовладелец сушит белье или хранит дрова в подвале, кипятит много воды для макарон, у него много домашних животных и комнатных растений или большая семья часто принимает душ, влажность в помещении будет высокой, особенно в небольшом доме. Лучший способ предотвратить проблемы с влажностью в этих условиях — удалить источник — установить сушилку для одежды с вентиляцией, построить деревянный сарай и установить хорошие вентиляторы для ванны и вытяжку.Замедлитель пара, такой как поли, является второй линией защиты, препятствующей проникновению влаги в полость стены и конденсации.

Однако в подавляющем большинстве случаев проблемы с влажностью в домах вызваны утечкой воздуха , а не диффузией. Теплый влажный воздух в помещении, проникающий в полость стены или потолка, может конденсироваться в холодную погоду, когда достигает холодной поверхности — обычно задней стороны внешней обшивки. Или холодный воздух, просачивающийся в дом, может охладить внутренние поверхности, вызывая конденсацию влажного внутреннего воздуха на внутренних поверхностях, что часто приводит к росту плесени.Влажные зоны, такие как ванные комнаты, углы в неотапливаемых шкафах, а также области стен или потолка возле балок, потолков, окон и дверей являются одними из наиболее уязвимых мест. Чтобы предотвратить эти проблемы, сконцентрируйте свои усилия на установке надлежащей теплоизоляции стен, хорошей вентиляции во влажных помещениях и герметизации зазоров вокруг окон, дверей, выходов и балок. Один из способов сделать это, конечно же, — это установить полиэтилен под гипсокартон, тщательно заделав края отверстий или заклеив их лентой. В этом случае поли служит одновременно и , и воздушным барьером, и пароизоляцией.

Клейтон ДеКорн — старший редактор журнала Journal of Light Construction.

Контроль конденсации из-за утечки воздуха Распространение паров

Несмотря на все усилия по уменьшению внутренней утечки воздуха, проектирование герметичного здания и фактическое строительство одного — две разные вещи. Для возведения здания в соответствии со строгими стандартами пассивного дома требуется, чтобы оболочка здания составляла 0,6 а при 50 Па. Большинство зданий имеют толщину от 5 до 9 атм, а лучшие — от 2 до 3 атм.Поэтому в большинстве зданий будет некоторая утечка воздуха.

Ключом к предотвращению образования конденсата внутри стены является поддержание конденсационных поверхностей в сборке — обычно оболочки, поскольку это обычно самый внешний слой — выше температуры точки росы. При размещении достаточного количества изоляции с внешней стороны оболочка остается теплой и предотвращается образование конденсата.

Несмотря на то, что изоляция внутренней полости увеличивает тепловое сопротивление конструкции стены, она также препятствует потоку тепла к обшивке, снижая ее температуру.Чтобы оболочка оставалась выше точки росы, необходимо правильное соотношение внешней и внутренней изоляции для контроля конденсации утечки воздуха для различных внешних и внутренних условий, как показано на Рисунке 3.

Заключение
Понимание основ тепла, воздуха передача влаги, наряду со свойствами материалов, имеет решающее значение для предотвращения проблем, связанных с влажностью. Возведение стен с двойной пароизоляцией или пароизоляцией на изнаночной стороне здания должно быть в прошлом.

При рассмотрении фактов, которые могут повлиять на равновесие влажности в здании (например, проникновение воды, утечка воздуха и диффузионная конденсация пара), важно выбирать материалы, которые могут контролировать и ограничивать количество влаги, попадающей в систему, но на в то же время при необходимости дайте возможность адекватно высохнуть.

Цель состоит в том, чтобы проектировать здания, устойчивые к реалиям старения, протечек и несовершенной конструкции, путем поощрения механизмов сушки или обеспечения того, чтобы потенциал сушки превышал потенциал смачивания в ограждении.По мере того как потери тепла постепенно исчезают с повышением требований к непрерывной внешней изоляции, исчезнут и требования к пароизоляции в «более мягком» холодном климате Канады. Время покажет.

Винсент Чиу присоединился к команде ROCKWOOL по строительным наукам в качестве специалиста по строительным наукам в мае 2016 года. Он получил степень магистра прикладных наук в области строительной инженерии от Concordia, где он сосредоточился на диагностике и восстановлении зданий, моделировании зданий, ветроэнергетике и строительной аэродинамике.Сейчас Чиу активно сотрудничает с архитекторами, инженерами, консультантами по дизайну и подрядчиками, предлагая решения по ограждению зданий архитектурному сообществу и продвигая проекты энергоэффективных корпусов и здравую науку о строительстве. С ним можно связаться по адресу [email protected]

Чтобы просмотреть всю статью Construction Canada, щелкните здесь.

Пароизоляция | Engineering Extension

Будет ли у стены с фольгированной обшивкой толщиной пять восьмых дюйма снаружи и пластиковой пароизоляцией толщиной 6 милов внутри возникать проблемы с влажностью?

Существует потенциальная проблема с влажностью, но вероятность этого зависит от качества установки.

Если теплый влажный воздух из дома попадет в стену, а внутренняя поверхность пленки достаточно холодная, может образоваться конденсат. Если внутренняя пароизоляция тщательно установлена ​​и загерметизирована для предотвращения утечки воздуха, этот потенциал значительно снижается.

Другим фактором, влияющим на возможность возникновения проблем с влажностью, является температура внутренней поверхности фольги. Поскольку оболочка имеет высокое значение R, меньше шансов, что поверхность фольги будет достаточно холодной, чтобы вызвать конденсацию.

Что такое пароизоляция?

Пароизоляция — это непроницаемый материал, обычно пластик или асфальтобумага, прикрепленный к изоляции.

Назначение пароизоляции — предотвратить проникновение влаги через изоляцию и конденсацию на холодных внешних поверхностях. Пароизоляция выполняет две основные функции: удерживает влагу внутри дома и предотвращает ее конденсацию в изоляции.

В новом строительстве перед установкой гипсокартона на стойки наклеивается лист полиэтиленовой пленки.Всегда наносите пароизоляцию на теплую сторону стены, потолка или пола.

Если изоляция должна быть выдувана на чердак, сначала положите лист полиэтиленовой пленки или прикрепите его до того, как будет добавлен гипсокартон.

Повседневные домашние дела, такие как стирка, приготовление пищи и купание, высвобождают влагу в доме. Пароизоляция замедляет движение этой влаги из внутренних помещений дома наружу, повышая уровень влажности в помещении и предотвращая образование конденсата в стене или чердаке.

Будет ли потеть стены после установки пароизоляции?

Нет, но установку пароизоляции легко спутать с проблемами влажности, потому что пароизоляция действительно влияет на относительную влажность в помещении.

Целью непрерывной пароизоляции является предотвращение попадания влаги в полости стен и чердаков, где она может конденсироваться на холодных поверхностях и вызывать структурные повреждения.

Пароизоляция также снижает утечку воздуха.Влага, образующаяся в результате домашней деятельности, накапливается быстрее из-за ограниченного воздушного потока, что приводит к более высокой относительной влажности. Если влажность становится достаточно высокой, окна и другие холодные поверхности начинают потеть или конденсировать влагу.

Проблемы с конденсацией могут быть более серьезными в первую зиму в новом доме. Это происходит из-за излишка влаги, которая сохраняется в гипсокартоне от стыковочного состава и краски. Использование вытяжных вентиляторов в периоды пиковой влажности, например, во время принятия душа, ванны, приготовления пищи и влажной уборки, может предотвратить или контролировать проблемы с влажностью.Связанные со строительством проблемы с влажностью уменьшатся со временем по мере отверждения финишного покрытия. Однако в первую зиму нового дома может потребоваться дополнительная вентиляция.

ИЗОЛЯЦИЯ

ДЕЛАЕТ НЕОБХОДИМЫЙ БАРЬЕР ДЛЯ ПРЕДОТВРАЩЕНИЯ ПОВРЕЖДЕНИЯ ВОДЫ

Много лет назад, когда в немногих домах была теплоизоляция наружных стен, никто не беспокоился о пароизоляции — в них не было необходимости. Но теперь дома лучше изолированы, поэтому необходимо устанавливать пароизоляцию везде, где есть изоляция.

Почему? Поскольку конденсация часто образуется внутри изолированной стены, которая не имеет хорошей пароизоляции (пароизоляция должна быть обращена к нагретой стороне), и эта конденсация может вызвать серьезные проблемы, если будет продолжаться в течение длительного времени. Вот что происходит.

В холодную погоду воздух снаружи более сухой, чем внутри. А поскольку теплый влажный воздух движется туда, где воздух более сухой, влага изнутри постоянно ищет выход наружу. Промежутки обеспечивают самый простой путь, но даже самые твердые материалы не могут блокировать влагу, которая может легко проходить через большинство строительных материалов, включая штукатурку, дерево, кирпич и бетон.

После того, как эта влага в виде пара проходит через поверхность внутренней стены и через изоляцию за ней, она оседает на деревянной обшивке снаружи. Поскольку утеплитель помог удерживать большую часть тепла внутри, обшивка холодная. Затем пар конденсируется, образуя капли воды на дереве (подобно тому, как холодная бутылка «потеет» летом).

Вода может делать три вещи: впитываться в дерево и вызывать отслаивание краски снаружи; капать в изоляцию и заставлять ее терять большую часть своей эффективности; или вызвать отслоение краски и разрушение штукатурки или сухой стены на внутренней стене.Во времена, когда еще не было теплоизоляции, это не было большой проблемой. Изнутри выходило столько тепла, что оболочка тоже была теплой, и конденсат образовывался редко, если вообще образовывался.

Чтобы влага не проходила сквозь стены и потолок, необходимо установить пароизоляцию. Пароизоляция, часто устанавливаемая вместе с изоляцией, обычно представляет собой слой алюминиевой фольги или специально пропитанной крафт-бумаги, размещенной с одной стороны изоляции из стекловолокна. Когда рыхлая или объемная изоляция устанавливается без пароизоляции, после того, как изоляция установлена, к стойкам прикрепляется отдельный барьер из листового пластика.

При установке важно, чтобы листы перекрывали друг друга, чтобы не было зазоров. Барьер должен покрывать деревянные стойки или балки, а также изоляцию, чтобы влага не проходила через древесину. Если вы устанавливаете одеяла или войлоки, у которых есть собственная пароизоляция с одной стороны, фланцы изоляции (они являются частью пароизоляции) должны перекрывать стойки или балки, чтобы покрыть всю древесину.

Пароизоляция всегда должна находиться с внутренней стороны утеплителя, то есть со стороны, обращенной к обогреваемым участкам конструкции.При установке утеплителя на чердачном этаже пароизоляция должна находиться под утеплителем. Если изоляция устанавливается под полом с неотапливаемым подвальным помещением или подвалом, пароизоляция должна быть установлена ​​над изоляцией.

Пароизоляция препятствует проникновению влаги сквозь стену. Влага возвращается изнутри, когда она сталкивается с барьером. Если бы не было пароизоляции, влага проникала бы к более холодным поверхностям у внешней стороны стены, и почти наверняка внутри стеновых пространств образовалась бы конденсация.

Конечно, идеальной пароизоляции не бывает. Скорее всего, будут места, где барьер не достроен или где его невозможно было установить. Если после постройки дома в стены вдували утеплитель, то пароизоляции не будет. Это часто является серьезной проблемой из-за отслаивания снаружи, особенно в старых домах, которые много раз окрашивались масляной краской (латексные краски не так подвержены отслаиванию).

Одним из способов решения этой проблемы является установка небольших вентиляционных отверстий в сайдинге.В сайдинге просверливаются отверстия и вставляются небольшие вентиляционные отверстия, обеспечивающие выход влаги. Вместо того, чтобы отталкивать краску снаружи, пар выходит через отверстия. Для эффективности необходимо два вентиляционных отверстия в каждом замкнутом пространстве между каждой парой шпилек, где отслаивание является проблемой. Одно вентиляционное отверстие должно быть установлено внизу, а другое — вверху для циркуляции воздуха.

Установить какой-либо пароизоляционный слой не так сложно, когда дом или пристройка находятся в стадии строительства или когда обширная реконструкция включает в себя отрыв внутренних поверхностей стен.Затем перед сухой стеной или панелью можно установить пластиковые листы, которые будут служить пароизоляцией. Листы должны образовывать сплошную пленку без разрывов или разрывов, и следует использовать ленту для создания плотного уплотнения там, где пластик был разрезан, чтобы поместиться вокруг труб, проводов или других отверстий.

Этот тип пароизоляции не может быть установлен в домах, где утеплитель выдут в стены. Изоляция значительно сокращает потери тепла, но не может служить пароизоляцией.Это может даже создать проблему там, где ее раньше не было, или может усугубить существующую проблему.

К счастью, есть меры, которые можно предпринять, чтобы не допустить проникновения влаги в стены, где нет постоянного барьера. Один из самых простых — покрасить внутренние стены и потолки пароизоляционной краской, такой как Insul-Aid, которую производит Glidden Coatings. Эта специальная краска латексного типа при правильном нанесении служит отличной пароизоляцией. Он выпускается только в плоском белом цвете и используется в качестве грунтовки под другие покрытия.После высыхания утеплителя можно нанести на него латексную или алкидную краску.

Еще одна краска, которая служит относительно хорошей пароизоляцией, — это грунтовка на основе шеллака, такая как B-I-N или Enamelac. Они разбавляются спиртом, высыхают до ровного белого цвета и могут быть закрашены обычной краской.

Управление влажностью | WBDG — Руководство по проектированию всего здания

Введение

Спустя всего несколько месяцев после того, как они заняли свое новое муниципальное здание стоимостью в несколько миллионов долларов, сотрудники одного из округов Флориды начали жаловаться на хронические проблемы с носовыми пазухами, приступы аллергии, головные боли и астму — классические признаки синдрома больного здания и заболеваний, связанных со зданиями.Архитекторы, инженеры и микробиологи, которым было поручено найти причину этих симптомов, определили проблему, которая становится широко распространенной по всей стране — серьезное грибковое заражение здания.

Плесень возникла в результате чрезмерной влажности в здании, вызванной сочетанием утечек дождевой воды и системой отопления, вентиляции и кондиционирования воздуха (HVAC), которая втягивала влажный наружный воздух в здание в часы, когда система охлаждения отключилась.Как только система HVAC была заражена плесенью, споры разошлись по всему зданию. Итак, всего через несколько лет после открытия дверей в здании был произведен капитальный ремонт.

Рис. 1. Это новое муниципальное здание было эвакуировано вскоре после открытия, поскольку жильцы жаловались на здоровье. Виной тому были плесень и влага, и, в конце концов, для устранения проблемы потребуется более 20 миллионов долларов.

Внешний вид здания был удален, чтобы помочь решить проблемы, которые позволили дождевой воде проникнуть в ограждающую конструкцию здания (рис. 1).Крыша и система отопления, вентиляции и кондиционирования также претерпели значительные изменения. В конечном итоге ремонт и другие сопутствующие расходы превысили 20 миллионов долларов.

К сожалению, проблема, стоящая перед этим округом Флориды, не является изолированной. Утечки дождевой воды случаются в любом климате, и в данном конкретном случае только утечки, вероятно, привели бы к значительному микробному заражению и эвакуации из здания. Но и архитекторы, и инженеры должны понимать взаимодействие между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха, чтобы управлять проникновением влаги в здания.

Описание

Чтобы избежать проблем, характерных для муниципального здания Флориды, инженеры и архитекторы должны работать вместе, чтобы управлять влажностью. Во-первых, проектировщик здания должен понимать основные причины проникновения влаги в здания:

  • Вторжение дождевой воды. Влага, присутствующая в строительных материалах и на строительной площадке во время строительства, может быть источником проблем. Значительное количество влаги может также возникнуть в результате утечки воды в системах здания или через ограждающую конструкцию здания.Как в жарком, влажном, так и в умеренном климате утечки дождевой воды являются основным источником влаги в зданиях и проблемами роста грибков.

  • Проникновение наружного влажного воздуха. Проникнутый влажный воздух, попавший под действием ветра или через систему отопления, вентиляции и кондиционирования воздуха, может вызвать конденсацию на внутренних поверхностях, включая внутренние полости здания. Конденсация и высокий уровень относительной влажности являются важными факторами в создании среды, способствующей росту плесени, и являются основными проблемами в жарком влажном климате.Проблема инфильтрации, вызванная отрицательным давлением в здании, создаваемым системами HVAC, подробно описана в документе «Проектирование и строительство HVAC во влажном климате».

  • Влага, генерируемая внутри. После строительства в результате действий жильцов и обычных процедур по уборке может возникнуть дополнительная влажность, что усугубит проблему плесени. Обычно, если нет других значительных источников, хорошо спроектированные и правильно работающие системы HVAC могут адекватно удалить эту влагу.

  • Распространение пара через ограждающую конструкцию здания. Дифференциальное давление пара, которое может вызвать диффузию водяного пара через ограждающую конструкцию здания, является менее существенной причиной проблем с влажностью в зданиях с неблагоприятным влажным климатом. Однако он может быть значительным механизмом движения влаги, особенно в холодном климате, и особенно в отношении конструкции пароизолятора стеновых систем.

В жарком влажном климате взаимосвязь между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха особенно важна.Многие проблемы, связанные с влажностью и плесенью, во влажном климате часто ошибочно диагностируются как исключительно связанные с конвертом или ОВК, потому что сложная взаимосвязь, существующая между обеими системами, не всегда четко понимается.

Проблем, связанных с влажностью, можно избежать, если оболочка здания выполняет следующие действия:

  • Адекватно препятствует проникновению влаги или воздуха в здание
  • Позволяет любой накопленной влаге стекать наружу или испаряться

В жарком влажном климате воздушный барьер и замедлитель парообразования в ограждающей конструкции здания должны быть достаточными для контроля потока воздуха и влаги через стеновую систему.Это означает, что любой воздушный барьер или замедлитель парообразования, размещенный в стеновой системе, должен обладать надлежащим сопротивлением воздуху или влагопроницаемостью и должен быть установлен в правильном месте внутри стен. Наличие нескольких замедлителей парообразования в стеновой системе является распространенной проблемой, потому что многие дизайнеры не признают многие строительные материалы эффективными барьерами. Например, фанера — это материал с относительно низкой проницаемостью, который может действовать как замедлитель парообразования.

Место, где прохладные поверхности встречаются с теплым влажным воздухом, — это место, где может образоваться конденсат и избыточная влажность.Если влажный наружный воздух задерживается до того, как он встретится с первой прохладной поверхностью внутри ограждающей конструкции (часто называемой «первой плоскостью конденсации»), то возникнет несколько проблем. Если этой влаге позволить проникнуть в стенную систему, она будет конденсироваться. Тогда проблемы с влажностью и ростом плесени могут стать реальной угрозой. Если прохладные поверхности и влажный воздух встречаются внутри помещения, то проблемы с влажностью могут возникнуть по всему зданию, что приведет к распространению запаха плесени и жалобам от жителей.Таким образом, ограждающая конструкция здания играет жизненно важную роль в минимизации неконтролируемого движения влаги и воздуха в здание и в предотвращении захвата влаги внутри стеновой системы.

В сообществе разработчиков все еще существует путаница по поводу нескольких критических вопросов, связанных с производительностью конвертов. Эти вопросы включают требования к целостности воздушных барьеров, погодных барьеров и замедлителей образования пара; способ объединения всех трех барьеров / замедлителей в одну мембрану; расположение этих элементов внутри оболочки здания; эффекты использования нескольких замедлителей образования пара; и даже потребность в воздушных барьерах и замедлителях парообразования на каждом предприятии.

Эта путаница в проектировании, строительстве и эксплуатации влажного и не влажного климата является причиной многих проблем, связанных с влажностью и ростом плесени. ASHRAE Fundamentals (2009) предупреждает, что разные климатические условия создают разные проблемы, и здания должны проектироваться и эксплуатироваться соответствующим образом.

Приложение

На этапе проектирования, особенно на ранних этапах проектирования, можно принять множество недорогих или бесплатных решений в отношении систем отопления, вентиляции и кондиционирования воздуха и ограждающих конструкций, которые окажут значительное влияние на управление влажностью.На рисунке 2 обобщены соображения по контролю влажности, обычно связанные с этапом схематического проектирования. Хотя ответственность за решение этих вопросов можно разделить в соответствии с архитектурными и механическими функциями, персонал обеих дисциплин должен работать вместе, чтобы предотвратить проблемы в будущем. Эффективное взаимодействие между членами команды дизайнеров имеет решающее значение для создания беспроблемного дизайна.

На рисунке 2 показаны некоторые типичные проблемы проектирования, которые должны быть рассмотрены командой разработчиков на этапе схематического проектирования, и показана взаимосвязь между архитектурными и механическими аспектами проектирования.

Рис. 2. Эти вопросы необходимо учитывать на этапе схематического проектирования.

Хотя известно, что некоторые проектные решения неизбежно создают больший риск проникновения влаги, степень проблемы с влажностью или плесенью определяется другими менее обширными решениями, принимаемыми после основных конструктивных решений.

Архитектурные особенности

Хотя на этапе схематического проектирования не завершаются подробные проекты, принимаются решения, которые формируют основу проектов, разрабатываемых на следующем этапе (Разработка проекта, Раздел 3).Доступные справочники по проектированию для влажного, дождливого или холодного климата могут не предоставить всю информацию, необходимую для выполнения комплексных строительных проектов. Поэтому группа архитектурных проектировщиков должна руководствоваться здравым смыслом при выборе системы ограждающих конструкций здания во время схематического проектирования, включая погодные и воздушные барьеры и замедлитель образования пара (рис. 3).

Рис. 3. В жарком и влажном климате конструкция, расположение и установка воздушных и погодных барьеров более важны, чем для замедлителя образования пара.Примечание. Указанное выше расположение замедлителя парообразования предназначено специально для жаркого и влажного климата. В холодном климате замедлитель схватывания следует размещать с внутренней стороны теплоизоляции.

Поскольку все возможные проблемы, связанные с влажностью в новом строительстве, не всегда сразу очевидны для архитектора, вопросы проектирования, связанные с архитектурными аспектами строительства, должны решаться всей командой проектировщиков. Например, внутреннюю отделку часто выбирают просто из-за эстетической привлекательности, начальной стоимости или простоты обслуживания.Однако проницаемость внутренней отделки (обозначенная рейтингом проницаемости) может сильно повлиять на влажность и потенциал плесени в конструкции, в зависимости от типа рассматриваемой системы отопления, вентиляции и кондиционирования воздуха. Следовательно, инженер-механик и члены группы архитектурных проектировщиков должны иметь свой вклад при выборе стенной системы.

Диффузия пара

Потенциал диффузии пара является функцией перепада давления пара в ограждающей конструкции здания (рис. 4). Горячий влажный воздух имеет более высокое давление, чем холодный сухой воздух.Большое давление пара возникает из-за высокого содержания влаги. Давление пара при любом содержании влаги равно сумме всех давлений отдельных молекул пара. Большое количество водяного пара создает значительную силу; Фактически, в некоторых случаях перепад давления может быть достаточно большим, чтобы краска на внешней обшивке покрылась пузырями и отслаивалась, когда влага из дерева или кирпичной кладки выводится. Пар диффундирует через стенки со скоростью, пропорциональной разнице давления пара. Если одна сторона стены намного суше, чем другая, пар будет диффундировать быстрее ( The Dehumidification Handbook , 1990).

Рис. 4. Пар диффундирует через стену со скоростью, пропорциональной разнице давления пара на стене.

Проблемы с диффузией пара, как правило, наиболее остры в холодном климате, где даже небольшое количество внутренней влаги будет конденсироваться внутри полостей холодных стен в зимние месяцы. В таком климате требуется установка пароизоляции внутри (теплая сторона стены). В жарком влажном климате механизм диффузии пара обычно не вызывает значительного увлажнения здания, особенно в коммерческих зданиях с традиционным кондиционированием воздуха и умеренными температурными условиями.Однако в зданиях с более низкими температурами, чем обычно, например, в больничных операционных, диффузия и конденсация пара все еще могут происходить.

Утечка воздуха

Рис. 5. На утечку воздуха в здание могут влиять типичные проникновения в ограждающую конструкцию здания.

Ни одно здание не герметично закрыто. То есть все здания имеют некоторые отверстия для утечки воздуха, присущие конструкции оболочки, и эта утечка переносит определенное количество влаги с собой в здание или из него (Рисунок 5).Хотя эту утечку обычно можно преодолеть с помощью хорошего положительного давления, плотно закрытая оболочка здания минимизирует утечку воздуха и , уменьшая количество воздуха, требуемого системой HVAC для достижения хорошего давления. Влага, создаваемая утечкой воздуха, является значительным источником и должна стать серьезной проблемой при проектировании системы стен. Фактически, конструкция ограждающей конструкции здания для минимизации утечки воздуха более важна, чем конструкция пароизоляции.

Чтобы проиллюстрировать этот момент, представьте, что количество влаги, вносимой в здание воздухом, который проходит через трещину толщиной 1/16 дюйма и длиной 1 фут, при легком ветре составляет чуть более 5 пинт в день.Напротив, количество влаги, вносимой диффузией пара через окрашенную блочную стену размером 10 на 50 футов за тот же период, составляет чуть менее 1/3 пинты (около 5 унций). Наиболее опасными зонами утечки воздуха через оболочку являются зазоры вокруг окон и дверей; совместные проемы на линиях крыши, потолка или пола; и, возможно, наибольший вклад внесла преднамеренная установка потолочных или стеновых вентиляционных систем. Эти области представляют собой наиболее вероятные отверстия в оболочке здания и являются удобными путями для утечки воздуха и проникновения влаги в здание.

Утечка дождевой воды

В дополнение к влаге, попадающей в здание через диффузию пара или утечку воздуха, влага, такая как дождевая вода, может втягиваться в здание под действием силы тяжести, капиллярного действия, поверхностного натяжения, перепада давления воздуха или ветровых нагрузок. Оболочка здания (внешние стены и кровля) действует как , интерфейс между интерьером и экстерьером зданий. Чтобы избежать проблем с влажностью в экстремальных погодных условиях, конструкция ограждающей конструкции здания должна контролировать воду за счет всех этих факторов.

Влажность, связанная с погодой, включает проникновение воды из дождевых и грунтовых вод. Проникновение дождевой воды и грунтовых вод наиболее сильно влияет на ограждающую конструкцию здания. Дождевая вода редко влияет на системы отопления, вентиляции и кондиционирования воздуха или внутренние помещения зданий в такой степени, которая вызывает широко распространенные проблемы с влажностью в зданиях. Вода концентрируется вокруг оконных и дверных проемов, линии крыши и строительных швов, а также у основания наружных стен.

К ограждающей конструкции здания чаще всего прикладываются следующие силы:

  • Гравитация. Сила воды, проникающей под действием силы тяжести, является наибольшей на горизонтальных поверхностях с неправильным уклоном и вертикальных поверхностях с проникновениями. Эти области должны удалять воду с поверхностей ограждающих конструкций за счет соответствующего наклона, правильного дренажа и надлежащего гидроизоляции.

  • Капиллярное действие. Это естественная сила, направленная вверх, которая может втягивать воду из одного источника вверх в полость оболочки. Это происходит в основном у основания наружных стен. Компоненты здания, которые не выдерживают большого количества воды, например фанера или гипсокартон, могут создавать среду, способствующую росту микробов и / или выходу компонентов из строя.

  • Поверхностное натяжение. Это позволяет воде прилипать и перемещаться по нижней стороне строительных компонентов, таких как стыки и оконные головки. Эта вода может втягиваться в здание под действием силы тяжести или неравномерного давления воздуха.

  • Перепад давления воздуха. В жарком и влажном климате, если давление воздуха внутри конструкции ниже, чем снаружи конструкции, вода может «вытесняться» снаружи внутрь здания через микроскопические отверстия в строительных материалах.

  • Ветровая нагрузка. Ветровая нагрузка во время сильных ливней может вызвать попадание воды внутрь здания, если оболочка не выдерживает этих сил. Например, оконные герметики и прокладки, которые не предназначены для изгиба с окном, могут создавать воздушные зазоры, через которые вода может проникать в здание.

Компоненты настенной системы

Большинство стеновых систем, используемых в новом строительстве, представляют собой каркасные стеновые системы, заливной бетон или каменные стены (бетонные блоки или кирпич).

Системы каркасных стен состоят из системы отделки внутренней стены и системы отделки внешней стены, разделенных воздушным пространством (или полостью). Полость, которая обычно включает изоляционный материал для дополнительного термического сопротивления, обеспечивает потенциальный путь для движения влаги по участкам стен. Системы фасадных стен и системы внешней изоляции и отделки (EIFS) представляют собой каркасную конструкцию.

Стеновая система из бетона или кирпича изготавливается из конструкционного стенового материала.Если внутренняя и внешняя отделка наносится непосредственно на поверхность несущей стены, движение воздуха внутри стены ограничивается. Однако, если внутренняя отделка применяется к гипсокартону с мехом, прикрепленному к несущей стене, создается потенциальный путь для движения воздуха.

Компоненты системы основных стен, требующие особого внимания для контроля влажности (Рисунок 6), перечислены ниже:

  • Отделка наружных стен
  • Замедлители парообразования
  • Воздухопроницаемые и дождевые барьеры и уплотнения
  • Изоляция
  • Отделка внутренних стен

Рисунок 6.«Простая» (хорошо спроектированная) стеновая система для жаркого и влажного климата имеет высокое сопротивление движению наружного воздуха и пара. Компонент, наиболее ответственный за ограничение движения воздуха и водяного пара, должен располагаться снаружи стеновой системы. Для более холодного климата паронепроницаемая отделка должна находиться на внутренней стороне изоляции, чтобы избежать конденсации.

Отделка наружных стен

Материалы, обычно используемые в качестве внешней отделки в строительстве, включают лепнину, деревянный сайдинг, бетон или кладку, кирпичную облицовку и запатентованные системы внешней отделки, сочетающие изоляцию и финишные покрытия (например, EIFS).При выборе материала внешней отделки команде дизайнеров необходимо учитывать влияние проникновения влаги, миграции пара и воздуха, а также эстетику, чтобы обеспечить соответствие замыслу проекта. При рассмотрении пористых материалов, таких как бетон или каменная кладка, следует учитывать способность этих материалов ограничивать миграцию влаги и пара в стеновую систему и из нее, а также их способность действовать как воздушные барьеры. Часто эстетическая внешняя отделка бетонной или каменной стеновой системы представляет собой нанесение краски или штукатурки.Эта внешняя отделка, а также структурный бетон или каменная кладка могут быть эффективными барьерами от атмосферных воздействий, но являются неэффективными замедлителями парообразования и лишь частично эффективными воздушными барьерами.

Материалы, используемые при строительстве наружных стен, классифицируются по их сопротивлению движению влаги через материал, когда существует разница в давлении пара между внутренней и внешней сторонами материала. Обычно выделяют три категории способности замедлителя образования пара:

  • Паронепроницаемость: меньше или равно 0.1 пермь
  • Полупроницаемый для пара: менее или равный 1/1 и более 0,1 / 1
  • Полупроницаемый для пара: более 1 доп.

Стены из бетонных блоков могут иметь проницаемость от 2 до 3 проницаемостей, тогда как у окрашенных штукатурных покрытий проницаемость может достигать 25 проницаемостей. Системы наружной окраски с толщиной сухой пленки от 1 до 3 мил, такие как коммерческие латексные краски, могут иметь от 5 до 10 пермь (рис. 7). Системы окраски являются хорошим примером того, как различаются требования для умеренного, холодного и жаркого / влажного климата.В большинстве частей страны системы окраски фасадов имеют высокие рейтинги проницаемости, а системы окраски внутренних помещений — более низкие показатели проницаемости. В жарком влажном климате требования к отделке стен прямо противоположны: внешние системы должны иметь более низкие рейтинги проницаемости, чем внутренние системы окраски.

Рис. 7. Многие наружные краски и покрытия могут действовать как адекватные замедлители образования пара.

Замедлители парообразования

Замедлитель парообразования требуется не во всех ситуациях. Оболочка здания (без специального антипара) может выступать в качестве адекватного барьера для диффузии пара.Во многих условиях использование воздушного барьера более важно, чем использование замедлителя образования пара. Хотя использование замедлителя парообразования не всегда необходимо, если используется один , такие факторы, как проницаемость, расположение и использование нескольких замедлителей схватывания, становятся чрезвычайно важными.

Тип и расположение замедлителя парообразования могут значительно повлиять на накопление влаги и образование плесени. Например, пароизоляция стеновой системы, расположенная между теплоизоляцией и внутренним пространством здания, может достигать температуры ниже точки росы (точка конденсации в жарком и влажном климате, а внешний пароизоляция может быть ниже точки росы в северном климате). наружный воздух, позволяющий конденсату образовываться на внутренних поверхностях или во внутренних полостях.Чтобы избежать таких проблем, решения относительно пароизоляторов лучше всего принимать на этапе схематического проектирования.

Существует несколько типов замедлителей образования пара (рис. 8). К жестким замедлителям схватывания относятся армированные пластмассы, алюминий и аналогичные материалы, которые относительно непроницаемы для потока влаги. Они механически закрепляются на месте и могут иметь герметичные стыки. К гибким замедлителям парообразования относятся фольга, ламинированная фольга, обработанная бумага, войлок и бумага с покрытием, а также пластиковые пленки. Стыки в этих материалах необходимо заделывать другим материалом.(Герметичное уплотнение стыков не является обязательным, если только замедлитель парообразования также действует как воздушный барьер и / или барьер для дождевой воды.) Некоторые материалы покрытия (например, эпоксидные смолы) также могут быть классифицированы как замедлители образования пара.

Рис. 8. Скорость прохождения пара у обычных строительных материалов сильно различается.

Проницаемость материала определяется его пористостью. Различные материалы, замедляющие образование пара, имеют разные показатели проницаемости в зависимости от того, сколько пара будет диффундировать через них в течение определенного периода и для данной области.Например, листовая алюминиевая фольга толщиной 0,002 дюйма имеет проницаемость 0,025, что означает, что она пропускает 0,025 зерна (1/7000 фунта) в час на квадратный фут площади на каждый дюйм перепада давления паров ртутного столба. . Напротив, 8-дюймовый бетонный блок (известняковый заполнитель) пропускает 2,4 зерна в час, что в 90 раз больше, чем у алюминиевой фольги, даже несмотря на то, что стенка блока в 48000 раз толще ( The Dehumidification Handbook , 1990).

Каждый из этих замедлителей образования пара может использоваться с системами стен, описанными ранее.Обычно стенки полостей каркасного типа включают в себя гибкие замедлители парообразования. Спроектировать расположение пароизолятора для бетонных или каменных стеновых систем может быть сложнее, чем для каркасных стеновых систем. Нанесенные покрытия особенно подходят для бетонных или кирпичных стен; Нанесение системы внешней отделки непосредственно на залитую на место стеновую основу проще, чем создание промежуточного пространства (или наращивания) на внешней стороне стеновой основы для установки пароизолятора. Более того, последний процесс может поставить под угрозу целостность стены.При выборе пароизоляции для системы отделки наружных стен можно рассмотреть пароизоляционную краску.

Выбранный замедлитель образования паров должен иметь рейтинг проницаемости менее 1,0 перм. (Однако в регионах с умеренным климатом замедлитель образования пара с очень низким рейтингом проницаемости может создать проблемы, поскольку механизм диффузии пара меняет направление между зимними и летними месяцами.) Хотя критерии проектирования могут определять конкретный замедлитель образования пара или его толщину, Метод установки часто требует замены.Например, замедлитель образования паров из полиэтиленового листа может соответствовать критериям проектирования, но может не обеспечивать адекватного сопротивления разрыву во время установки в полевых условиях. Эффективность пароизоляции снижается при проникновении, хотя избегать всех проникновений не обязательно.

Также следует избегать использования двух видов отделки с низкой проницаемостью в стеновой системе, таких как полиэтиленовый замедлитель парообразования на внешней стороне и виниловое покрытие для стен внутри. Такое расположение может позволить влаге задерживаться в стеновой системе без возможности высыхания в любом направлении, что способствует накоплению влаги и образованию плесени.Использование нескольких замедлителей образования пара в стеновой системе может быть успешным только в том случае, если практически исключено проникновение дождевой воды и проникновение наружного воздуха. Таким образом, достижение и постоянное поддержание положительного давления в здании имеет решающее значение в этой ситуации.

Барьеры и уплотнения для проникновения воздуха

Решение о включении специального воздушного барьера в конструкцию обычно принимается на этапе схематического проектирования. Воздушный барьер может играть важную роль в предотвращении проникновения от ветровой нагрузки или погодных условий, а также может способствовать повышению давления в здании.(Воздушные барьеры, называемые строительными покрытиями обычно используются в северном климате для экономии энергии.) Правильное расположение воздушного барьера может быть таким же, как и у атмосферного барьера и пароизолятора. Следовательно, иногда может быть экономически выгодно достигнута хорошо продуманная комбинация барьера воздух / погода / пар.

Воздушный барьер в стеновой системе, однако, никогда не следует рассматривать как адекватное уплотнение оболочки, компенсирующее внутреннее пространство здания без давления и предотвращающее внутреннюю инфильтрацию.Оболочка здания должна работать с системой HVAC для создания герметичного здания. Поскольку полости, которые могут существовать в стеновой системе, обеспечивают потенциальные пути для наружного воздуха, поддержание надлежащего давления имеет решающее значение для предотвращения проникновения наружного воздуха в эти пространства.

Часто компоненты ограждающей конструкции здания, действующие вместе, могут действовать как эффективный воздушный барьер. ASHRAE признает, что цельный кусок фанеры или гипсокартона с правильной опорой может быть адекватным воздушным барьером.Однако соединенные части оболочки часто не будут столь же эффективными, если стыки не будут достаточно хорошо загерметизированы. В то время как эффективность пароизоляции линейно уменьшается с увеличением количества проникновений, эффективность воздушного барьера уменьшается экспоненциально по мере увеличения количества стыков, трещин и щелей. Таким образом, эффективность воздушного барьера зависит от того, насколько возможно непроницаемое для проникновения.

Изделия из дерева, включая листовые изделия и готовые плиты, менее эффективны в качестве воздушных преград при использовании обычных методов установки.Поскольку эти системы внешней отделки имеют тенденцию допускать проникновение воздуха из-за ветра и теплового воздействия, требуются дополнительные средства ограничения воздуха (и миграции влаги) через стеновую систему. Комбинированный воздушный / атмосферный барьер должен быть установлен на внешнюю основу обшивки, особенно в каркасной стеновой системе, в которой используются изделия из дерева.

Эффективность комбинации изоляционной плиты и внешней отделки (например, EIFS) в качестве воздушных барьеров зависит от общей целостности композитной внешней системы.Если стыки достаточно ровные и плотные, система защитит ограждающую конструкцию здания от проникновения ветра и наружного воздуха. Изоляционные плиты с закрытыми порами и негигроскопичные (неабсорбирующие) изоляционные плиты более устойчивы к диффузии паров влаги, чем изоляционные плиты с открытыми порами.

Изоляция

Рис. 9. Некоторые типы изоляции могут также служить в качестве эффективных замедлителей парообразования. Особое внимание необходимо уделить толщине изоляции для достижения желаемой проницаемости.

Использование негигроскопической изоляции с закрытыми порами может помочь свести к минимуму высокий уровень влажности, который может образовываться в стеновых системах.По возможности изоляция должна быть установлена ​​рядом с замедлителем парообразования и должна располагаться внутри так, чтобы замедлитель пара не достигал точки росы во время работы системы кондиционирования здания (это условие применяется только в жарком и влажном климате, а в холодном — наоборот. климат). Некоторые типы изоляции могут также использоваться в качестве эффективных замедлителей парообразования (Рисунок 9).

Чтобы избежать проблем с влажностью, команда разработчиков должна учитывать, как прямой контакт с влажным воздухом влияет на конструкции стен.Тепловые мостики, которые позволяют конструкциям остывать ниже точки росы окружающего воздуха, могут вызвать локальную конденсацию на конструкционных материалах. Например, каркасная система с металлическими стойками в системе каркасных стен может действовать как тепловое короткое замыкание или перемычка, позволяя образоваться конденсату на внутренней или внешней части металлической стойки, даже если стена может быть хорошо изолирована.

Отделка внутренних стен

Выбор внутренней отделки является критическим фактором, особенно при дизайне с влажным климатом.Хорошо задокументировано влияние внутренней отделки на серьезные проблемы с влажностью и плесенью в существующих и новых зданиях. Использование непроницаемой внутренней отделки без полного учета инфильтрации, температуры точки росы на открытом воздухе и возможности конденсации в месте расположения первичного пароизолятора часто приводит к улавливанию влаги и проблемам с плесенью.

Виниловое настенное покрытие — это обычно используемая внутренняя отделка и обычно имеет низкую проницаемость (или очень высокую устойчивость) к миграции водяного пара через стеновую систему.Однако проблема может возникнуть в жарком влажном климате, когда наружный воздух проникает в полость стены, контактирует с более холодной поверхностью, конденсируется и не может высохнуть. (Высокие характеристики пароизоляции винилового настенного покрытия предотвращают высыхание конденсата.) Конденсация разрушает отделочную основу, обычно гипсовую плиту, обеспечивая отличную среду для роста плесени. Следовательно, виниловое покрытие стен должно быть ограничено зонами, в которые маловероятно проникновение влажного воздуха (то есть внутренними стенами), или в зданиях, где может быть обеспечено положительное давление в здании.В холодном климате использование винилового покрытия для стен не является проблемой и фактически замедлит нежелательную диффузию теплого влажного воздуха в полость стены, где на внешней стороне теплоизоляции может образоваться конденсат.

В целом, в жарком и влажном климате проницаемость материала внутренней отделки должна быть значительно выше, чем проницаемость других компонентов системы стен. Эта разница позволит парам влаги, попадающим в систему стен, мигрировать в кондиционируемое пространство, где пар в конечном итоге будет удален системой кондиционирования.Для обеспечения успеха все части стеновой системы, расположенные внутри от теплоизоляции, должны быть более проницаемыми, чем компоненты, внешние по отношению к теплоизоляции. Опять же, обратное этому условию рекомендуется в холодном климате, где влага не должна задерживаться внутри полости на внешней стороне теплоизоляции.

Анализ точки росы на стенках

Каждая основная система наружных стен, используемая в строительстве, должна быть проанализирована для определения всего следующего:

  • Где будет точка росы
  • Какой будет температурный профиль
  • Где будет располагаться первичный пароизоляционный агент
  • Насколько далеко влага может проникнуть
    (профиль давления пара)

Эти концепции обсуждаются в Руководстве ASHRAE: Основы (Глава 27; ASHRAE, 2009).Завершение версии рисунка 12 (стр. 27.9) Справочника ASHRAE для каждого основного типа стены упростит анализ точки росы стен.

Процедура расчета диффузии водяного пара включает анализ каждого компонента системы стенок, включая толщину, проницаемость для паропроницаемости и тепловое сопротивление (значение R). Первый шаг — определить, какие температуры в помещении / на улице следует использовать для определения точки росы на поверхности стены. Минимально возможная температура поверхности стены в помещении часто может быть намного ниже проектных условий в помещении.Например, температура поверхности стены, на которую поступает разряд из регистра питания комнатного блока переменного тока, может составлять всего 60 ° F дБ. Аналогичным образом, температура внешней поверхности может превышать расчетные внешние условия, особенно на неотражающих темных внешних поверхностях.

Затем можно разработать температурный профиль для каждой системы стен (рис. 10а). В правильно спроектированной системе температура точки росы внешнего воздуха будет определяться изоляцией до тех пор, пока нет тепловых мостов (например, металлических шпилек).Важно сравнить расположение точки росы с предполагаемым расположением замедлителя пара, чтобы определить, останется ли барьер выше точки росы в условиях внешнего воздуха.

Следующая цель анализа точки росы — проверить, какой компонент стенки функционирует как первичный замедлитель образования пара, а затем сравнить его местоположение с местом поверхностной конденсации (поверхность точки росы). Для определения местоположения первичного замедлителя образования пара в стеновой системе необходимо определить давление насыщенного пара на границе каждой поверхности компонента стенки и сравнить его с сопротивлением давлению пара компонента.

Место внутри стеновой системы, где будет конденсироваться диффузный пар влаги, будет точкой, где давление пара равно давлению насыщения. Чтобы создать профиль давления пара через стеновую систему, необходимо определить перепад давления пара на каждом компоненте стенки (рис. 10b). Процедура разработки профиля давления пара аналогична процедуре разработки профиля температуры через стеновую систему; программное обеспечение доступно для помощи в проведении этого анализа.

Рисунок 10a (слева) . Определение температурного профиля системы наружных стен позволяет определить поверхности, на которых будет происходить конденсация. Рисунок 10b (справа) . Определение профилей насыщения и давления пара системы наружных стен также необходимо для максимального контроля влажности, поскольку это помогает идентифицировать компоненты стен, которые могут задерживать влагу.

Новые проблемы

Текущие и будущие исследования и разработки

Building Science Corporation обсуждает многие из текущих вопросов, связанных с конструкцией ограждающих конструкций зданий для контроля влажности.

Американская ассоциация воздушных барьеров предоставляет информацию, касающуюся науки и строительства воздушных барьеров.

В настоящее время следующие штаты включили требования к воздушным барьерам в свои коммерческие нормы энергосбережения.

Дополнительные ресурсы

Организации

Публикации

  • Предотвращение проблем с влажностью и плесенью: Руководство по проектированию и строительству, Ch3M HILL, 2003 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *