Menu Close

Расчет мощности котла отопления: Расчет котла отопления частного дома — онлайн калькулятор мощности котла

Расчет мощности котла отопления, давление, кпд, мощность для дома

Отопительный котел – это основа системы отопления, это основной прибор, производительность которого будет определять возможность коммуникационной сети обеспечивать дом количеством тепла, которое необходимо. И если произвести расчет мощности котла отопления грамотно и правильно, то это исключит возникновение лишних расходов, которые связаны с покупкой приборов и их работой. Подобранный по предварительным вычислениям котел будет работать с такой теплоотдачей, которая заложена в него производителем – это будет способствовать сохранению его технических параметров.

Напольный котел отопления

На чем основывается расчет?

Расчет мощности котла отопления – это важный момент. Мощность, как правило, можно сравнить со всей теплоотдачей отопительной системы, которая будет обеспечивать дом с определенными размерами, с заданным количеством этажей, теплотехническими свойствами.

Чтобы обустроить одноэтажный загородный или частный дом, не понадобится совсем уж мощный котел отопления.

Так, в расчетах производительности котла для автономного дома площадь – это основной параметр, если рассматривать теплотехнику здания в соответствии с климатом региона. Так, площадь дома – это важнейший параметр, чтобы произвести расчет котла для отопления.

Характеристики, которые будут влиять на расчет

Те, кто хотят произвести расчет котла для отопления дома с максимальной точностью, могут использовать методику, которую предоставляет СНиП II-3-79. В данном случае профессиональные расчеты будут учитывать следующие факторы:

  • Среднестатистическая температура региона в самое холодное время.
  • Изоляционные свойства материалов, которые использовались для постройки ограждающих конструкций.
  • Вид разводки отопительного контура.
  • Соотношение площади несущих конструкций и проемов.
  • Отдельные сведения о каждой комнате.

План дома — один из основных документов для проведения расчета мощности котла

Как рассчитать мощность котла отопления? Чтобы выполнить точнейшие расчеты, применяется даже такая информация, как данные о единицах бытовой и цифровой техники, — ведь все это тоже каким-то образом выделяет тепло в помещения.

Однако заметим, что не каждый владелец отопительной системы требует профессиональных расчетов – обычно принято приобретать автономные контуры отопления с приборами с запасом мощности.

Так, кпд котлов отопления может быть выше расчетных значений, тем более – они, как правило, округляются.

Что учитывается в обязательном порядке?

Как посчитать мощность котла отопления, какие данные должны присутствовать в обязательном порядке? Следует запомнить одно правило: каждые 10 кв.м коттеджа с изоляционными характеристиками,  стандартным пределом высоты потолка (до 3 м) будут требовать примерно 1 кВт для отопления. К мощности котла, который предназначен для совместной работы в обогреве и горячем водоснабжении, нужно будет добавить не меньше 20%.

Мощность котла в зависимости от площади дома

Автономные контур отопления, который имеет нестабильное давление в котле отопления, нужно будет снабдить прибором, чтобы его запас мощности был выше, чем расчетное значение не менее, чем на 15 процентов. К мощности котла, который обеспечивает отопление и горячее водоснабжение, требуется добавить 15%.

Учитываем теплопотери

Отметим, что независимо от того, рассчитывается ли мощность электрического котла, котла на газу, на дизеле или на дровах, — в любом случае, работу отопительной системы будут сопровождать потери тепла:

Рекомендуем к прочтению:

  • Необходимо проветривание помещений, однако если окна будут открыты постоянно, то дом потеряет около 15% энергии.
  • Если стены слабо утеплены, то уйдет 35% тепла.
  • Через оконные проемы будет уходить 10% тепла, а если рамы старого образца – то еще больше.
  • Если пол не утеплен, то в подвал или землю будет отдано 15% тепла.
  • Через крышу уйдет 25% тепла.

Перед тем, как расчитать котел отопления, следует учесть, что если имеет место хоть один из этих факторов, то следует отобразить это в расчетах.

Теплопотери дома

Простейшая формула

Теплотехнические расчеты в любом случае должны будут быть округлены, а также увеличены для того чтобы обеспечить запас мощности.

Именно поэтому для того, как определить мощность котла отопления, можно будет использовать очень простую формулу:

W = S*Wуд.

Здесь S – это общая площадь отапливаемого здания, которая учитывает жилые и бытовые комнаты в кВ.м.

W – это мощность отопительного котла, кВт.

Wуд. – это среднестатистическая удельная мощность, данный параметр применяется для расчетов с учетом определенной климатической зоны, кВт/кв.м. И стоит заметить, что данная характеристика основана на многолетнем опыте работы разных систем отопления в регионах. И когда мы умножаем площадь на этот показатель, то получим усредненное значение мощности. Его нужно будет корректировать на основе особенностей, которые перечислены выше.

Пример расчета

Рассмотрим пример, используя калькулятор мощности котла отопления. Природный газ выступает самым доступным топливом, которое используется в России. По этой причине оно настолько распространено и востребовано. Поэтому сделаем расчет мощности газового котла. А в качестве примера возьмем частный дом с площадью 140 кв.м. Территория – Краснодарский край. Также в примере учитываем, что наш котел будет обеспечивать не только отопление дома, но и сантехнические приборы водой. Расчеты будем делать для системы с естественной циркуляцией, давление здесь не будет поддерживаться насосом циркуляции.

Удельная мощность – 0.85 кВт/кв.м.

Рекомендуем к прочтению:

Так, 140 кв.м/10 кв.м = 14 – это промежуточный коэффициент расчетов. Он будет предусматривать условие, что на каждые 10 кв.м отапливаемых помещений потребуется 1 кВт тепла, которое будет давать котел.

14 * 0.85 = 11.9 кВт.

Мы получаем тепловую энергию, которая будет нужна дому, которые имеет стандартные теплотехнические свойства. Чтобы обеспечить горячее водоснабжение для душа, раковины – будем добавлять еще 20%.

11.9 + 11.9 * 0.2 = 14.28 кВт.

Мы не используем циркуляционный насос, поэтому нам следует помнить, что давление здесь может быть нестабильным.

Поэтому мы должны добавить еще 15% для обеспечения запаса теплоэнергии.

14.28 + 11.9 * 0.15 = 16.07 кВт.

Также следует помнить, что будут некоторые утечки тепла. Именно поэтому мы должны округлить наш результат к большему значению. Таким образом, нам потребуется отопительный котел с мощностью минимум 17 кВт.

Как правило, расчет мощности котла отопления осуществляется еще на этапе проектирования здания. Ведь для того чтобы система отопления работала эффективно, требуются специфические условия – обустройство топочного помещения, снабжение помещений дымоходом и вентиляцией.

Расчет мощности котла отопления: по площади и объему

Чтобы обеспечить комфортную температуру на протяжении всей зимы котел отопления должен выдавать такое количество тепловой энергии, которое необходимо для восполнения всех  потерь тепла здания/помещения. Плюс к этому необходимо иметь еще и небольшой запас мощности на случай аномальных холодов или расширения площадей. О том, как рассчитать требуемую мощность и поговорим в этой статье. 

Для определения производительности отопительного оборудования нужно в первую очередь определить потери тепла здания/помещения. Такой расчет называется теплотехническим. Это один из самых сложных расчетов в отрасли, так как требуется учесть много составляющих.

Для определения мощности котла необходимо учесть все потери тепла

Безусловно, на величину теплопотерь, влияют материалы, которые использовались при возведении дома. Потому учитываются стройматериалы, из которых изготовлен фундамент, стены, пол, потолок, перекрытия, чердак, кровля, оконные и дверные проемы. Принимается во внимание тип разводки системы и наличие теплых полов. В некоторых случаях считают даже наличие бытовой техники, которая во время работы выделяет тепло. Но совсем не всегда требуется такая точность. Есть методики, которые позволяют быстро прикинуть требуемую производительность отопительного котла, не погружаясь в дебри теплотехники.

Расчет мощности котла отопления по площади

Для приблизительной оценки требуемой производительности теплового агрегата достаточно площади помещений. В самом простом варианте для средней полосы России считают, что 1кВт мощности может обогреть 10м2 площади. Если у вас дом площадью 160м2, мощность котла для его обогрева — 16кВт.

Эти расчеты приблизительны, ведь не учитывается ни высота потолков, ни климат. Для этого существуют выведенные опытным путем коэффициенты, при помощи которых вносятся соответствующие корректировки.

Указанная норма — 1кВт на 10м2 подходит для потолков 2,5-2,7м. Если у вас потолки в помещении выше, нужно вычислять коэффициенты и пересчитывать. Для этого высоту ваших помещений делим на стандартную 2,7м и получаем поправочный коэффициент.

Расчет мощности котла отопления по площади — самый простой способ

Например, высота потолков 3,2м. Считаем коэффициент: 3,2м/2,7м=1,18 округляем, получаем 1,2. Выходит, что для обогрева помещения 160м2 с высотой потолков 3,2м требуется отопительный котел мощностью 16кВт*1,2=19,2кВт. Округляют обычно в большую сторону, так что 20кВт.

Чтобы учесть климатические особенности есть уже готовые коэффициенты. Для России они такие:

  • 1,5-2,0 для северных регионов;
  • 1,2-1,5 для подмосковных регионов;
  • 1,0-1,2 для средней полосы;
  • 0,7-0,9 для южных регионов.

Если дом находится в средней полосе, чуть южнее Москвы, применяют коэффициент 1,2 (20кВт*1,2=24кВт), если на юге России в Краснодарском крае, например, коэффициент 0,8, то есть мощность требуется меньше (20кВт*0,8=16кВт).

Расчет отопления и подбор котла — важный этап. Неправильно найдете мощность и можете получить такой результат…

Это основные факторы, которые учитывать необходимо. Но найденные значения справедливы, если котел будет работать только на отопление. Если требуется еще и греть воду, нужно добавить 20-25% от рассчитанной цифры. Потом требуется добавить «запас» на пиковые зимние температуры. Это еще 10%. Итого получаем:

  • Для отопления дома и ГВС в средней полосе 24кВт+20%=28,8кВт. Потом запас на холода — 28,8кВт+10%=31,68кВт. Округляем и получаем 32кВт. Если сравнивать с первоначальной цифрой в 16кВт, разница получается в два раза.
  • Дом в Краснодарском крае. Добавляем мощность для нагрева горячей воды: 16кВт+20%=19,2кВт. Теперь «запас» на холода 19,2+10%=21,12кВт. Округляем: 22кВт. Разница не столь разительная, но тоже достаточно приличная.

Из примеров видно, что учитывать хотя-бы эти значения нужно обязательно. Но очевидно, что в расчете мощности котла для дома и квартиры, разница быть должна. Можно пойти тем же путем и использовать коэффициенты для каждого фактора. Но есть более простой способ, который позволяет внести коррекции за один раз.

При расчете котла отопления для дома применяется коэффициент 1,5. Он учитывает наличие теплопотерь через кровлю, пол, фундамент. Справедлив при средней (нормальной) степени утепления стен — кладка в два кирпича или аналогичные по характеристикам стройматериалы.

Для квартир применяются другие коэффициенты. Если сверху находится отапливаемое помещение (другая квартира) коэффициент 0,7, если отапливаемый чердак — 0,9, если неотапливаемый чердак — 1,0. Нужно найденную по описанной выше методике мощность котла умножить на один из этих коэффициентов и получите достаточно достоверное значение.

Чтобы продемонстрировать ход вычислений, произведем расчет мощности газового котла отопления для квартиры 65м2 с потолками 3м, которая расположена в средней полосе России.

  1. Определяем требуемую мощность по площади: 65м2/10м2=6,5кВт.
  2. Вносим поправку на регион: 6,5кВт*1,2=7,8кВт.
  3. Котел будет греть воду, потому добавляем 25% (любим погорячее) 7,8кВт*1,25=9,75кВт.
  4. Добавляем 10% на холода: 7,95кВт*1,1=10,725кВт.

Теперь результат округляем и получаем: 11Квт.

Указанный алгоритм справедлив для подбора отопительных котлов на любом виде топлива. Расчет мощности электрического котла отопления  ничем не будет отличаться от расчета котла твердотопливного, газового или на жидком топливе.  Основное — производительность и эффективность котла, а теплопотери от типа котла не изменяются. Весь вопрос в том, как потратить меньше энергоносителей. А это уже область утепления.

Мощность котла для квартир

При расчете отопительного оборудования для квартир можно пользоваться нормами СНиПа. Использование этих норм еще называют расчетом мощности котла по объему. СНиП задает требуемое количество тепла на обогрев одного кубического метра воздуха в типовых постройках:

  • на обогрев 1м3 в панельном доме требуется 41Вт;
  • в кирпичном доме на м3 идет 34Вт.

Зная площадь квартиры и высоту потолков, найдете объем,  затем, умножив на норму в узнаете мощность котла.

Расчет мощности котла не зависит от типа используемого топлива

Для примера посчитаем требуемую мощность котла для помещений в кирпичном доме площадью 74м2  с потолками 2,7м.

  1. Вычисляем объем: 74м2*2,7м=199,8м3
  2. Считаем по норме сколько нужно будет тепла: 199,8*34Вт=6793Вт. Округляем и переводим в киловатты, получаем 7кВт. Это и будет необходимая мощность, которую должен выдавать тепловой агрегат.

Несложно посчитать мощность для такого же помещения, но уже в панельном доме: 199,8*41Вт=8191Вт. В принципе, в теплотехнике округляют всегда в большую сторону, но можно принять во внимание остекление ваших окон.  Если на окнах энергосберегающие стеклопакеты, можно округлять в меньшую сторону. Считаем, что стеклопакеты хорошие и получаем 8кВт.

Выбор мощности котла зависит от типа здания — для обогрева кирпичных требуется меньше тепла, чем панельных

Далее нужно, так же как и в расчете для дома, учесть регион и необходимость подготовки горячей воды. Актуальна и поправка на аномальные холода. Но в квартирах большую роль играет расположение комнат и этажность.  Принимать во внимание нужно стены, выходящие на улицу:

  • Одна наружная стена — 1,1
  • Две — 1,2
  • Три — 1,3

После того, как учтете все коэффициенты, получите достаточно точное значение, на которое можно опираться при выборе техники для отопления. Если хотите получить точный теплотехнический расчет, его нужно заказывать в профильной организации.

Есть еще один метод: определить реальные потери при помощи тепловизора — современного прибора, который покажет к тому же места, через которые утечки тепла идут более интенсивно. Заодно сможете устранить и эти проблемы и улучшить теплоизоляцию. И третий вариант — воспользоваться программой-калькулятором, который посчитает все вместо вас. Нужно только выбрать и/или проставить требуемые данные. На выходе получите расчетную мощность котла. Правда, тут есть определенная доля риска: непонятно насколько верные алгоритмы заложены в основу такой программы. Так что все-таки придется еще хотя-бы приблизительно просчитать для сравнения результатов.

Так выглядит снимок тепловизора

Надеемся, у вас теперь есть представление о том, как рассчитать мощность котла. И вас не путает, что это газовый котел, а не твердотопливный,  или наоборот.

По результатам обследования можно устранить утечки тепла

Возможно, вас заинтересуют статьи  о том, как рассчитать мощность радиаторов и выбор диаметров труб для системы отопления.    Для того чтобы иметь общее представление об ошибках, которые часто встречаются при планировании системы отопления смотрите видео.

Делаем правильный расчет мощности газового котла отопления


Один из первых параметров, на который обращают внимание, при подборе отопительного оборудования, это производительность. Расчет мощности газового котла отопления, выполняют несколькими способами. От точных подсчетов, зависит комфорт во время эксплуатации.

Как подобрать мощность котла на газе

Расчет мощности газового котла отопления от площади, осуществляется тремя разными способами:

  • Точные теплотехнические расчеты выполняются только после аудита здания на предмет возможных теплопотерь. Для исследования, используют тепловизор. Учитывается месторасположение отапливаемого здания. Вычисления выполняют по сложным теплотехническим формулам.
    1. Минус решения – затраты на оплату услуг специалиста.
    2. Преимущество – максимально точные результаты вычислений.
  • Онлайн – калькулятор – подсчеты выполняются посредством специальной программы. Для получения результатов потребуется ввести данные о теплоизоляции, общем количестве оконных и дверных проемов, толщине стен и т.п.
    Использование онлайн калькулятора, оптимальное решение при расчетах котельного оборудования для бытовых нужд. С его помощью, подбирают теплогенератор с наименьшей погрешностью по производительности, без материальных затрат.
  • Самостоятельные подсчеты на квадратные метры отапливаемого помещения. Чтобы высчитать рабочие параметры, не обязательно пользоваться сложными вычислениями и онлайн калькуляторами.
    Произвести расчет соотношения необходимой мощности газового котла, относительно площади помещения, можно самому, не прибегая к услугам специалистов, без программного обеспечения. Вычисления выполняют по формуле 1 кВт = 10 м². Выбор газового котла с помощью данных расчетов, подходит для помещений со средней степенью теплоизоляции, высотой потолков 2,7 м.


Европейские производители, нередко рассчитывают производительность котельного оборудования от объема помещения. Поэтому, в технической документации, указывается возможность обогрева в м³. Этот фактор учитывают при выборе агрегата, изготовленного в странах ЕС.

Большинство консультантов, продающих отопительное оборудование, самостоятельно подсчитывают необходимую производительность при помощи формулы 1 кВт=10 м². Дополнительные подсчеты, осуществляют по количеству теплоносителя в отопительной системе.

Расчет одноконтурного котла отопления

Как уже замечалось выше, самостоятельные подсчеты рабочих параметров отопительного оборудования, выполняют по формуле 1 кВт =10 м². К полученному результату, добавляют 15-20% запаса, благодаря чему, теплогенератор, даже в сильные морозы, не работает на полную нагрузку, что продлевает срок его эксплуатации.

Для примера, можно подсчитать, какая производительность необходима для газовой котельной в частном доме:

  • Для 60 м² – удовлетворить потребность в тепле сможет агрегат на 6 кВт + 20% = 7,5 киловатт. Если нет модели с подходящим типоразмером производительности, предпочтение отдают отопительному оборудованию с большим значением мощности.
  • Подобным образом выполняют подсчеты для 100 м² – необходимая мощность котельного оборудования, 12 кВт.
  • Для отопления 150 м² нужен газовый котел, мощностью 15 кВт + 20% (3 киловатта) = 18 кВт. Соответственно, для 200 м², требуется котел на 22 кВт.


Данные вычисления подходят исключительно для одноконтурных моделей, не подключенных к бойлеру косвенного нагрева.

Как рассчитать мощность двухконтурного котла

Формула расчета требуемой мощности двухконтурного газового котла по площади отопления и точек водоразбора ГВС, следующая, 10 м² = 1 кВт +20% (запаса мощности) + 20% (на нагрев воды). Получается, что к высчитанной производительности, добавляют сразу 40%.

Мощность двухконтурного газового котла для отопления и нагрева горячей воды для 250 м², составит 25 кВт + 40% (10 киловатт) = 35 кВт. Вычисления подходят для двухконтурного оборудования. Для подсчета производительности одноконтурного агрегата, подключенного к бойлеру косвенного нагрева, используют другую формулу.

Расчет мощности бойлера косвенного нагрева и одноконтурного котла

Чтобы рассчитать необходимую мощность одноконтурного газового котла с бойлером косвенного нагрева, необходимо выполнить следующие действия:

  • Определить какой объем бойлера будет достаточным, чтобы обеспечить потребности жильцов дома.
  • В технической документации к накопительной емкости, указана необходимая производительность котельного оборудования, чтобы поддерживать нагрев горячей воды, без учета необходимого тепла на отопление. Бойлер на 200 литров, в среднем потребует около 30 кВт.
  • Высчитывается производительность котельного оборудования, требуемая для отопления дома.

Полученные цифры складываются. От результата отнимается сумма, равная 20%. Это необходимо сделать по той причине, что, нагрев не будет одновременно работать на отопление и ГВС. Расчет тепловой мощности одноконтурного отопительного котла, с учетом внешнего нагревателя воды для горячего водоснабжения, делается с учетом этой особенности.

Какой запас мощности должен быть у газового котла

Запас производительности рассчитывается в зависимости от конфигурации отопительного оборудования:

  • Для одноконтурных моделей, запас составляет около 20%.
  • Для двухконтурных агрегатов, 20%+20%.
  • Котлы с подключением к бойлеру косвенного нагрева – в конфигурации накопительной емкости, указан необходимый дополнительный запас производительности.


Указанный запас мощности, действителен для помещений до 300 м². Дома с большей площадью требуют проведения грамотных теплотехнических расчетов.

Расчет потребности газа, исходя из мощности котла

Формула расчёта расхода газа, в зависимости от мощности используемого котла, принимает во внимание КПД отопительного оборудования. У стандартных моделей классического отопительных теплогенераторов, коэффициент полезного действия составит 92%, у конденсационных до 108%.

На практике, это означает, что 1 м³ газа, равен 10 кВт тепловой энергии, при условии 100% теплоотдачи. Соответственно, при КПД 92%, затраты топлива составят 1,12 м³, а при 108% не более 0,92 м³.

Методика расчета объема потребленного газа учитывает производительность агрегата. Так, 10 кВт прибор отопления, в течение часа, спалит 1,12 м³ топлива, 40 кВт агрегат, 4,48 м³. Данную зависимость потребления газа от мощности котельного оборудования, учитывают при сложных теплотехнических расчетах.

Соотношение также заложено в онлайн калькуляторы рассчитывающие затраты на отопление. Производители нередко указывают средний расход газа для каждой выпускаемой модели.

Чтобы полностью подсчитать приблизительные материальные затраты на отопление, потребуется рассчитать потребление электроэнергии в энергозависимых котлах отопления. На данный момент, котельное оборудование, работающее на магистральном газе, являются наиболее экономичным способом обогрева.

Для отапливаемых зданий большой площади, вычисления осуществляют исключительно после проведения аудита на предмет теплопотерь здания. В остальных случаях, при вычислениях пользуются специальными формулами или онлайн сервисами.

Расчет мощности котла отопления.

Правильное определение мощности газовых или электрических водогрейных котлов – важная часть проектирования независимой системы отопления частного дома или квартиры. Существует несколько методик определения производительности нагревательных приборов, но все они должны учитывать поправки на теплопотери, состояние жилья, регион проживания, архитектурные особенности зданий.


Способы определения тепловых потерь.


Чтобы в помещении было тепло, нужно, чтобы обогревательные приборы в полной мере восполняли утечку тепла. Важным элементом расчета мощности котла для целей обогрева поэтому является определение теплопотерь.


Факт, что обогреваемое жилое помещение постоянно теряет тепло, известен всем. Нагретый воздух поднимается наверх, выходит через изъяны в изоляции крыши, стен. В меньшей степени теплопотери происходят через окна, двери, пол.


Существует известная формула, в соответствии с которой:

• до 25-30% тепла уходит через крышу;

• порядка 25% – через вентиляцию, дымоход;

• около 10% – через окна;

• до 35% – через стены;

• 15% – через пол.


Однако такая общая информация не позволят проанализировать теплопотери в конкретном доме и правильно рассчитать необходимую мощность котла отопления.



Эксперты советуют использовать 2 способа расчета тепловых потерь:


• проведение точного расчета оттока тепла через окна, крышу, двери, стены, пол с учетом данных об используемых строительных материалах, утеплителях, толщине поверхностей. Самостоятельно справиться со всеми этими расчетами, учитывая плотность, коэффициент теплопроводности, термическое сопротивление, довольно сложно. Поэтому обычно для этой работы привлекают специалистов;


• использование тепловизора. Это более простой способ. Небольшой по размеру прибор, напоминающий по форме фотоаппарат, покажет основные точки, в которых происходит потеря тепла. Точность измерения температуры составляет 0,1°С.

 

 


Каждый из этих способов требует затрат, которых рачительный хозяин стремится избежать. Многие считают, что оптимальным решением будет приобретение для дома максимально мощного котла. Однако такая логика ведет к негативным последствиям. Среди них:

• высокие эксплуатационные расходы, связанные с потреблением энергоресурсов, будь то электричество, газ или дрова;

• быстрый износ нагревательного устройства и автоматики из-за работы оборудования не в полную силу.


Следует помнить, что запас мощности котла должен быть не более 15%.


Сэкономить деньги и приобрести изделие с меньшими ресурсами также будет не очень хорошей идей. Котел отопления будет испытывать постоянную перегрузку, что приведет к его быстрому износу. При этом топливо будет тратиться с бешеной скоростью, а дома все равно будет холодно.


Для выбора оптимального для заданного помещения отопительного котла требуется точно рассчитать его мощность. Для этого разработано несколько подходов.



Эффективность работы автономной отопительной системы в первую очередь зависит от мощности выбранного котла. Недостаточная мощность не позволит достичь комфортной температуры в холодное время года, избыточная приведет к неэкономному расходу топлива. Определяющими параметрами, на которые следует опираться при расчете системы отопления, являются:


1. Площадь отапливаемого помещения (S).
2. Удельная мощность котла на 10 м2 помещения, которая устанавливается с учетом поправок на климатические условия региона (Wуд).


Существуют общепринятые значения удельной мощности по климатическим зонам:

1. Для Подмосковья — Wуд = 1,2 -1,5 кВт;
2. Для северных районов — Wуд = 1,5 — 2,0 кВт;
3. Для южных районов — Wуд = 0,7 — 0,9 кВт.

 

Расчет мощности котла отопления (WKOТ) осуществляется по формуле:

WKOТ = (S  • Wуд) : 10


Часто для удобства расчетов применяют усредненное значение Wуд, равное единице. Исходя из этого, принято выбирать мощность котла из расчета 10 кВт на 100 м2 отапливаемого помещения. При расчете параметров системы отопления важно также определить количество жидкости, которой заполняется система, или так называемый объем (Vсист), который рассчитывается исходя из соотношения: 15 л жидкости на 1 кВт мощности котла.


Таким образом, объем жидкости в системе определяется по формуле:

Vсист = WKOT • 15

 

Пример:

Площадь отапливаемого помещения S = 100 м2;
Удельная мощность для Подмосковья Wуд = 1,2 кВт;
WKOТ = 100  • 1,2  : 10 = 12 кВт;
VeHeT = 12  • 15 = 180 л.

 

Объем помещения, обогреваемый 1 кВт мощности оборудования в зависимости от теплоизоляции дома:

— Толщина стен 1,5-2 кирпича с теплоизоляцией или то же из бруса или сруб, площадь окон и двери не более 15% (хорошо утепленный дом для зимнего проживания) — 20-25 м3.

— С улицей граничат две или три стены толщиной не менее, чем в один кирпич с теплоизоляцией или из бруса, общая площадь окон и дверей до 25% (среднеутепленный дом) — 15-20 м3.

— Панельные стены с внутренней облицовкой, изолированная крыша, без сквозняков (утепленный летний домик) — 10-15 м3.

— Тонкие стены из лесоматериалов, панелей из гофрированного металла и т. п. (вагончик, кабина, караулка) — 5-7 м3.

 

Покупая котел, внимательно ознакомьтесь с паспортом и техническими характеристиками котла, т. к. иногда вместо тепловой мощности котла, т. е. той мощности, которую он отдает в систему отопления, указывается мощность горелки, до которой потребителю в общем-то нет никакого дела.

Расчет котла на основании нормативов СниП.

Один из простых способов определения технических показателей расчета производительности котла – по существующим строительным нормам. В соответствии с этими данными, известно, что на один кубический метр типового панельного дома нужно 41 Вт тепловой энергии. На такой же объем в обычном кирпичном строении нужно 34 Вт энергии.


Метод актуален для типовых построек. При попытке узнать требуемую мощность водогрейного котла для нестандартных архитектурных построек, использование усредненных норм ведет к неверным показателям.

Расчет мощности котла по квадратуре.

Определить характеристики котла можно, зная квадратуру дома. В основе расчета мощности лежит усредненный показатель – на 10 кв м помещения нужно 1 кВт тепловой энергии. Значение это является верным дома со средней термоизоляцией, а также потолками, высота которых варьируется от 2,5 до 2,7 м.



Этот способ не подходит для нестандартных сооружений. Если потолки по высоте не превышают 2,8 м, поправки к вычислениям не вносятся. Однако если это значение равняется 2,9 м или даже больше, расчет мощности отопительного котла нужно менять.


Введение поправочных коэффициентов.


Для получения точных расчетов рекомендуется ввести в них несколько поправочных коэффициентов:

• высота от пола до потолка;

• степень утепления;

• региональный фактор.


Чтобы определить, какую поправку нужно включить в процесс вычисления мощности котла отопления, достаточно реальную высоту комнат разделить на 2,6.


Например, высота потолков в коттедже составляет 3 м, тогда предварительный результат нужно умножить на 1,15. Учитывать коэффициент необходимо, т.к. в противном случае можно стать владельцем котел мощностью, существенно ниже нужной.


Следующий поправочный коэффициент связан с тем, хорошо ли утеплен дом, и какие материалы использовались при его строительстве:

• для новой постройки, сооруженной из современных материалов, расчетный показатель умножают на 0,6;

• если строительство жилого дома было завершено более 15 лет назад, для него использовались пеноблоки, кирпич или дерево, качественные утеплители, в формулу не вносятся никакие корректировки;

• поправка на старые деревянные окна – 1,2;

• при неутепленных стенах применяется 1,5;

• если не утеплены стены, крыши, вводится корректировка 1,8.



Более точные данные расчета мощности отопительных котлов с учетом характеристик теплоизоляции можно получить с учетом следующих сведений:

• для сооружений, в строительстве которых применялось дерево или гофрированное железо без теплоизоляции применяется коэффициент от 3 до 4. Обычно это временные сооружения;

• при низком уровне теплоизоляции предварительный результат умножают на 2-2,9. Используют такой подход для домов с тонкими стенами, деревянными оконными рамами, неутепленной крышей;

• при средней теплоизоляции используется коэффициент от 1 до 1,9. Применяют эти корректировки для расчета мощности котла для отопления дома, сделанного из кирпича, крыша которого хорошо утеплена, в оконные проемы установлены стеклопакеты;

• для хорошо утепленных помещений результат умножают на 0,6-0,9. Такая корректировка применяется для новых зданий, построенных с использованием современных технологий, нашедших применение в обустройстве дверей, окон, системы вентиляции, стен, крыши и пола.


Еще один поправочный коэффициент, который необходимо внести в калькуляцию, – регион, где будут использоваться нагреватели. Известно, что расчет мощности котла для частного дома в Сибири будет отличаться от потребностей жителей Краснодарского края. Поэтому были определены региональные коэффициенты.


В расчет вносятся следующие изменения:

• для определения мощности котла в северных районах (Якутия, Магадан, Красноярский край и т.д.) берут коэффициент от 1,5 до 2;

• в Московской области и близлежащих регионах – от 1,2 до 1,5;

• в районах средней полосы страны, Поволжье – от 1 до 1,1;

• Краснодарский край, Белгородская, Ростовская области и другие южные районы – от 0,7 до 0,9.

Как рассчитать мощность котла для квартиры?

Аналогичный подход для расчета мощности котельного оборудования по площади и объему жилого помещения используется для квартир в многоэтажных зданиях. Допустимо использование аналогичных коэффициентов. Но специфика конструкции определяет необходимость еще одной поправки, связанной с особенностями внутренних, наружных стен, отапливаемых квартир, хозяйственных помещений на верхних и нижних этажах.



Для этого в формулы вычисления расчетной мощности котла вводится следующая информация:

• если в здании есть неотапливаемые квартиры снизу и сверху, применяют коэффициент 1;

• если эти квартиры отапливаются, корректировка производится на 0,7;

• для помещений на нижнем и верхнем этаже берут 0,9;

• при наличии одной наружной стены, применяется коэффициент 1,1, двух внешних вертикальных поверхностях – 1,2, трех – 1,3.


Вычисления для двухконтурного котла.


Все указанные корректировки и формулы мощности действительны для вычислений производительности нагревателя, используемого только для обогрева. Если котел служит для также горячего водоснабжения, в расчет закладывается до 25% тепловой мощности.


Алгоритм выбора котла.


Для определения того, нагреватель какой мощности нужно выбрать для независимой системы отопления зданий и получения горячей воды, необходимо следовать такой схеме:

 

определить площадь или объем помещения;

 

применить региональные поправочные коэффициенты;

 

скорректировать уровень теплоизоляции;

 

использовать поправку на срок эксплуатации здания, наличие старых окон, отапливаемых верхних и нижних этажей, наружных стен;

 

учесть высоту потолков;

 

оценить необходимость подключения горячего водоснабжения.


Приведенные способы определения мощности котла верны для настенных, напольных моделей. Подходят они для изделий, работающих на твердом топливе, электричестве, газе. Если на основе проведенных вычислений, требования к мощности отопительного оборудования получаются слишком высокими, рекомендуется задуматься о принятии дополнительных мер по утеплению дома.

Онлайн-калькулятор расчёта мощности котла отопления

Мощность котла является одной из важнейших характеристик отопительного оборудования. Избыток мощности скажется переплатой за котел, недостаток – невозможностью оборудования отопить жилую площадь или нагреть воду в системе ГВС. Поэтому перед выбором котла предлагаем прикинуть его параметры не без помощи нашего онлайн-калькулятора для расчета мощности котла отопления. Попробуем разобраться со значениями, которые вам придется ввести для получения достоверного результата.

Внутренняя температура помещения, С (обычно 20 или 21 С)

Температура воздуха наиболее холодной пятидневки, С (по СП 131.13330.2012 Строительная климатология) значение вводить со знаком «-»

Количество этажей

12345

Высота потолков, м

Перекрытие ниже

ФундаментДеревянные полы над подваломПредыдущий этаж

Перекрытие выше

Чердачные перекрытияСледующий этаж

Наружные стены

Кирпичная стена в 1 кирпич (25 см)Кирпичная стена в 1,5 кирпича (38 см)Кирпичная стена в 2 кирпича (51 см)Кирпичная стена в 2,5 кирпича (64 см)Кирпичная стена в 3 кирпича (76 см)Сруб из бруса толщиной 10 смСруб из бруса толщиной 15 смСруб из бруса толщиной 20 смСруб из бревен d=20 смСруб из бревен d=25 смКаркасная (доска+минвата+доска)-20 смПенобетон толщиной 20 смПенобетон толщиной 30 смГазобетон D400 толщиной 15 смГазобетон D400 толщиной 20 смГазобетон D400 толщиной 25 смГазобетон D400 толщиной 30 смГазобетон D400 толщиной 30 см + 0,5 кирпичаГазобетон D400 толщиной 37.5 смГазобетон D400 толщиной 40 смГазобетон D500 толщиной 37.5 смГазобетон D600 толщиной 32 смКерамзитобетонные блоки (40 cм) + 1 кирпич (12 см)Термоблоки толщиной 25 смКерамические блоки Супертермо, 57 смURSA PUREONE 34 RN, 10 см

Размеры в плане:
Длина, м

Длина 1 стены, м

Длина 2 стены, м

Длина 3 стены, м

Длина 4 стены, м

Тип окон

Обычное окно с двойными рамамиСтеклопакет (толщина стекла 4 мм) — 4-16-4Стеклопакет (толщина стекла 4 мм) — 4-Ar16-4Стеклопакет (толщина стекла 4 мм) — 4-16-4КСтеклопакет (толщина стекла 4 мм) — 4-Ar16-4КДвухкамерный стеклопакет — 4-6-4-6-4Двухкамерный стеклопакет — 4-Ar6-4-Ar6-4Двухкамерный стеклопакет — 4-6-4-6-4КДвухкамерный стеклопакет — 4-Ar6-4-Ar6-4КДвухкамерный стеклопакет — 4-8-4-8-4Двухкамерный стеклопакет — 4-Ar8-4-Ar8-4Двухкамерный стеклопакет — 4-8-4-8-4КДвухкамерный стеклопакет — 4-Ar8-4-Ar8-4КДвухкамерный стеклопакет — 4-10-4-10-4Двухкамерный стеклопакет — 4-Ar10-4-Ar10-4Двухкамерный стеклопакет — 4-10-4-10-4КДвухкамерный стеклопакет — 4-Ar10-4-Ar10-4КДвухкамерный стеклопакет — 4-12-4-12-4Двухкамерный стеклопакет — 4-Ar12-4-Ar12-4Двухкамерный стеклопакет — 4-12-4-12-4КДвухкамерный стеклопакет — 4-Ar12-4-Ar12-4КДвухкамерный стеклопакет — 4-16-4-16-4Двухкамерный стеклопакет — 4-Ar16-4-Ar16-4Двухкамерный стеклопакет — 4-16-4-16-4КДвухкамерный стеклопакет — 4-Ar16-4-Ar16-4К

Количество окон данного типа

Ширина окна, м

Высота окна, м

Тип окон

Обычное окно с двойными рамамиСтеклопакет (толщина стекла 4 мм) — 4-16-4Стеклопакет (толщина стекла 4 мм) — 4-Ar16-4Стеклопакет (толщина стекла 4 мм) — 4-16-4КСтеклопакет (толщина стекла 4 мм) — 4-Ar16-4КДвухкамерный стеклопакет — 4-6-4-6-4Двухкамерный стеклопакет — 4-Ar6-4-Ar6-4Двухкамерный стеклопакет — 4-6-4-6-4КДвухкамерный стеклопакет — 4-Ar6-4-Ar6-4КДвухкамерный стеклопакет — 4-8-4-8-4Двухкамерный стеклопакет — 4-Ar8-4-Ar8-4Двухкамерный стеклопакет — 4-8-4-8-4КДвухкамерный стеклопакет — 4-Ar8-4-Ar8-4КДвухкамерный стеклопакет — 4-10-4-10-4Двухкамерный стеклопакет — 4-Ar10-4-Ar10-4Двухкамерный стеклопакет — 4-10-4-10-4КДвухкамерный стеклопакет — 4-Ar10-4-Ar10-4КДвухкамерный стеклопакет — 4-12-4-12-4Двухкамерный стеклопакет — 4-Ar12-4-Ar12-4Двухкамерный стеклопакет — 4-12-4-12-4КДвухкамерный стеклопакет — 4-Ar12-4-Ar12-4КДвухкамерный стеклопакет — 4-16-4-16-4Двухкамерный стеклопакет — 4-Ar16-4-Ar16-4Двухкамерный стеклопакет — 4-16-4-16-4КДвухкамерный стеклопакет — 4-Ar16-4-Ar16-4К

Количество окон данного типа

Ширина окна, м

Высота окна, м

Тип окон

Обычное окно с двойными рамамиСтеклопакет (толщина стекла 4 мм) — 4-16-4Стеклопакет (толщина стекла 4 мм) — 4-Ar16-4Стеклопакет (толщина стекла 4 мм) — 4-16-4КСтеклопакет (толщина стекла 4 мм) — 4-Ar16-4КДвухкамерный стеклопакет — 4-6-4-6-4Двухкамерный стеклопакет — 4-Ar6-4-Ar6-4Двухкамерный стеклопакет — 4-6-4-6-4КДвухкамерный стеклопакет — 4-Ar6-4-Ar6-4КДвухкамерный стеклопакет — 4-8-4-8-4Двухкамерный стеклопакет — 4-Ar8-4-Ar8-4Двухкамерный стеклопакет — 4-8-4-8-4КДвухкамерный стеклопакет — 4-Ar8-4-Ar8-4КДвухкамерный стеклопакет — 4-10-4-10-4Двухкамерный стеклопакет — 4-Ar10-4-Ar10-4Двухкамерный стеклопакет — 4-10-4-10-4КДвухкамерный стеклопакет — 4-Ar10-4-Ar10-4КДвухкамерный стеклопакет — 4-12-4-12-4Двухкамерный стеклопакет — 4-Ar12-4-Ar12-4Двухкамерный стеклопакет — 4-12-4-12-4КДвухкамерный стеклопакет — 4-Ar12-4-Ar12-4КДвухкамерный стеклопакет — 4-16-4-16-4Двухкамерный стеклопакет — 4-Ar16-4-Ar16-4Двухкамерный стеклопакет — 4-16-4-16-4КДвухкамерный стеклопакет — 4-Ar16-4-Ar16-4К

Количество окон данного типа

Ширина окна, м

Высота окна, м

Температура

Комфорт пребывания в жилом помещении зимой определяется температурой воздуха и его влажностью. Сначала введите значение температуры, которую вы планируете поддерживать дома. Температуру наиболее холодной пятидневки можете посмотреть в СП 131.13330.2012 Строительная климатология, т.к. она привязана к климатической зоне.

Отапливаемые площадь и объем помещений

В качестве теплоносителя, передающего тепло от радиаторов отопления человеку, служит воздух. Логично, что мощность отопительного оборудования во многом зависит от того, какой объем этого воздуха необходимо нагреть и далее поддерживать постоянной его температуру.

Конструктивные элементы здания

В различных постройках и условиях эксплуатации котлы одинаковой мощности дают совершенно разные результаты. Все потому, что потери тепла через стены, перекрытия и окна влияют на общую картину. Чем выше тепловые потери, тем более высокой должна быть поправка мощности отопительного оборудования.

Могут быть непонятны маркировки стеклопакетов. Тут все довольно просто, например, 4-16-4 означает, что зазор между двумя стеклами толщиной 4 мм составляет 16 мм. Буква «К» означает энергосберегающее стекло, «Ar» — камеры заполнены аргоном.

Возникли вопросы? Задавайте их в комментариях ниже – мы обязательно ответим!

Загрузка…

Расчет мощности твердотопливных котлов отопления

Для того чтобы выбрать котёл, работающий на твёрдом топливе, необходимо обратить внимание на мощность. Данный параметр показывает, какое количество тепла может создать конкретное устройство при подключении к системе отопления. От этого напрямую зависит, можно ли с помощью такого оборудования обеспечить дом теплом в нужном количестве или нет.

Например, в помещении, где установлен пеллетный котёл с небольшой мощностью, будет в лучшем случае прохладно. Также не лучшим вариантом является установка котла с избыточной мощностью, потому что он постоянно будет работать в экономном режиме, а это заметно снизит показатель КПД.

Итак, чтобы выполнить расчет мощности котла для отопления частного дома, вам нужно следовать определенным правилам.

Содержание:

  1. Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения
  2. Как рассчитать, сколько тепла необходимо для нагрева воды
  3. Подбор котла по площади частного дома. Как произвести расчёт?
  4. Расчёт реальной мощности котла длительного горения на примере «Купер ПРАКТИК-8»
  5. Сколько энергии дают разные типы горючего

Как рассчитать мощность отопительного котла, зная объём отапливаемого помещения?

Тепловая мощность котла определяется по формуле:

Q = V × ΔT × K / 850


  • Q – количество тепла в кВт/ч
  • V – объём отапливаемого помещения в кубометрах
  • ΔT – разница между температурой снаружи и внутри дома
  • К – коэффициент потери тепла
  • 850 – число, благодаря которому произведение трёх вышеуказанных параметров можно перевести в кВт/ч

Показатель К может иметь следующие значения:

  • 3-4 – если конструкция здания упрощённая и деревянная или если оно сделано из профлиста
  • 2-2,9 – у помещения небольшая теплоизоляция. Такое помещение имеет простую конструкцию, длина 1 кирпича равна толщине стены, окна и крыша имеют упрощённую постройку
  • 1-1,9 – конструкция здания считается стандартной. У таких домой двойная кирпичная вкладка и мало простых окон. Кровля крыши обычная
  • 0,6-0,9 – конструкция здания считается улучшенной. Такое здание имеет окна с двойными стеклопакетами, основа пола толстая, стены кирпичные и имеют двойную теплоизоляцию, крыша имеет теплоизоляцию, сделанную из хорошего материала

Ниже приведена ситуация, в которой подбирается котел отопления по объему отапливаемого помещения.

Дом имеет площадь 200 м², высота его стен 3 м, теплоизоляция является первоклассной. Показатель температуры окружающего воздуха рядом с домом не падает ниже -25 °С. Получается, что ΔT = 20 — (-25) = 45 °С. Получается, чтобы узнать количество тепла, которое требуется для отопления дома, необходимо произвести следующий расчёт:

Q = 200 × 3 × 45 × 0,9/850 = 28,58 кВт/ч

Полученный результат пока что не следует округлять, ведь к котлу может быть еще подключена система горячего водоснабжения.

Если вода для мытья нагревается другим способом, то результат, который получен самостоятельно не нуждается в корректировке и эта стадия расчёта является завершающей.

Как рассчитать, сколько тепла необходимо для нагрева воды?

Чтобы произвести расчет расхода тепла в этом случае необходимо самостоятельно прибавить к предыдущему показателю расход тепла для горячего водоснабжения. Для его расчета можно воспользоваться следующей формулой:

Qв = с × m × Δt


  • с – удельная теплоёмкость воды, которая всегда равна 4200 Дж/кг·К,
  • m – масса воды в кг
  • Δt – разница температуры нагретой воды и поступающей воды из водопровода.

К примеру, среднестатистическая семья в среднем потребляет 150 л тёплой воды. Теплоноситель, который нагревает котёл имеет температуру равную 80 °С, а температура воды, поступающей из водопровода равна 10 °С, тогда Δt = 80 — 10 = 70 °С.

Следовательно:

Qв = 4200 × 150 × 70 = 44 100 000 Дж или 12,25 кВт/ч

После необходимо поступить следующим образом:

  1. Допустим, нужно нагреть 150 л воды за один раз, значит ёмкость косвенного теплообменника равна 150 л, следовательно, к 28,58 кВт/ч необходимо прибавить 12,25 кВт/ч. Делается потому что показатель Qзаг меньше 40,83, следовательно, в помещении будет прохладнее ожидаемых 20 °С.
  2. В случае, если нагрев воды происходит порционно, то есть ёмкость косвенного теплообменника составляет 50 л, показатель 12,25 нужно разделить на 3 и далее прибавить самостоятельно к 28,58. После этих расчётов Qзаг равен 32,67 кВт/ч. Полученный показатель это и есть мощность, котла, которая необходима для отопления помещения.

Подбор котла по площади частного дома. Как произвести расчёт?

Такой расчёт является более точным, потому что учитывает огромное количество нюансов. Производится он по следующей формуле:

Q = 0,1 × S × k1 × k2 × k3 × k4 × k5 × k6 × k7


  1. 0,1 кВт – норма необходимого тепла на 1 м².
  2. S – площадь помещения, которое нужно отопить.
  3. k1 показывает тепло, которое потерялось из-за строения окон, и имеет следующие показатели:

  • 1,27 – у окна одинарное стекло
  • 1,00 – окно со стеклопакетом
  • 0,85 – у окна тройное стекло

  1. k2 показывает, тепло которое потерялось из-за площади окна (Sw). Sw относится к площади пола Sf. Его показатели следующие:

  • 0,8 — при Sw/Sf = 0,1;
  • 0,9 — при Sw/Sf = 0,2;
  • 1,0 — при Sw/Sf = 0,3;
  • 1,1 — при Sw/Sf = 0,4;
  • 1,2 — при Sw/Sf = 0,5.

  1. k3 показывает утечку тепла сквозь стены. Может быть следующим:

  • 1,27 – некачественная теплоизоляция
  • 1 – стена дома имеет толщину 2-ух кирпичей или утеплитель толщиной 15 см
  • 0,854 – хорошая теплоизоляция

  1. k4 показывает количество потерянного тепла из-за температуры снаружи здания. Имеет следующие показатели:

  • 0,7, когда tз = -10 °С;
  • 0,9 для tз = -15 °С;
  • 1,1 для tз = -20 °С;
  • 1,3 для tз = -25 °С;
  • 1,5 для tз = -30 °С.

  1. k5 показывает сколько тепла потерялось из-за наружных стен. Имеет следующие значения:

  • 1,1 в здании 1 внешняя стена
  • 1,2 в здании 2 внешних стены
  • 1,3 в здании 3 внешних стены
  • 1,4 в здании 4 внешних стены

  1. k6 показывает количество тепла, которое необходимо дополнительно и зависит от высоты потолка (Н):

  • 1 — для высоты потолка 2,5 м;
  • 1,05 — для для высоты потолка 3,0 м;
  • 1,1 — для высоты потолка 3,5 м;
  • 1,15 — для высоты потолка 4,0 м;
  • 1,2 — для для высоты потолка 4,5 м.

  1. k7 показывает сколько тепла была потеряно. Зависит от типа постройки, которая расположена над отапливаемым помещением. Имеет следующие показатели:

  • 0,8 отапливаемое помещение;
  • 0,9 тёплый чердак;
  • 1 холодный чердак.

В качестве примера возьмем те же исходные условия, кроме параметра окон, которые имеют тройной стеклопакет и составляют 30% от площади пола. Постройка имеет 4 наружных стены, а сверху над ней расположен холодный чердак.

Тогда расчет будет выглядеть так:

Q = 0,1 × 200 × 0,85 × 1 × 0,854 × 1,3 × 1,4 × 1,05 × 1 = 27,74 кВт/ч

Данный показатель необходимо увеличить, для этого нужно самостоятельно добавить количество тепла, которое требуется для ГВС, если она подключена к котлу.

Если нет необходимости выполнять точные расчеты, то можно воспользоваться универсальной таблицей. С помощью нее можно определить мощность котла по площади дома. Например, для отопления помещения 150 кв м подойдет котел с мощностью 19 кВт, а для отопления 200 кв.м. потребуется уже 22 кВт.

Вышеприведённые методы очень полезны, рассчитать мощность котла для отопления дома.

Расчёт реальной мощности котла длительного горения на примере «Куппер ПРАКТИК-8»


Конструкция большинства котлов рассчитана под конкретный вид топлива, на котором будет работать это устройство. В случае использования для котла другой категории топлива, которая не переназначена для него, КПД значительно сократиться. Также необходимо помнить о возможных последствиях использования того топлива, которое не предусмотрено производителем котельного оборудования.

Теперь продемонстрируем процесс расчёта на примере котла «Теплодар», модель «Куппер ПРАКТИК-8». Это оборудование предназначено для системы отопления жилых домов и других помещений, которые имеют площадь меньше, чем 80 м². Также этот котёл является универсальным и может работать не только в закрытых системах отопления, но и в открытых с принудительной циркуляцией теплоносителя. Данный котел обладает следующими техническими характеристиками:

  1. возможность использовать в качестве топлива дрова;
  2. в среднем за час, он сжигает 10 дров;
  3. мощность данного котла составляет 80кВт;
  4. загрузочная камера имеет объём 300л;
  5. КПД равен 85%.

Допустим, что для отопления помещения хозяин использует в качестве топлива дрова осинового дерева. 1 кг данного вида дров даёт 2,82 кВт/ч. За один час, котёл потребляет 15кг дров, следовательно, он выдаёт тепла 2,82 × 15 × 0,87 = 36,801 кВт/ч тепла (0,87 является КПД).

Этого оборудования недостаточно для отопления помещения, которое имеет теплообменник объёмом 150 л, но если ГВС имеет теплообменник объёмом 50 л, то мощности данного котла будет вполне достаточно. Для того чтобы получить нужный результат 32,67 кВт/ч необходимо потратить 13,31 кг осиновых дров. Производим расчёт по формуле (32,67 / (2,82 × 0,87) = 13,31). В данном случае необходимое тепло было определённо методом расчёта по объёму.

Также можно произвести самостоятельный расчёт и узнать время, которое потребуется котлу для того, чтобы сжечь все дрова. 1 л дров осиного дерева имеет вес 0,143 кг. Следовательно, в отделении для загрузки поместится 294 × 0,143 = 42 кг дров. Столько дров будет достаточно для поддержания тепла более чем 3 часа. Это слишком непродолжительное время, поэтому в данном случае необходимо найти котёл, у которого размер топки в 2 раза больше.

Также можно поискать топливный котёл, который рассчитан на несколько видов топлива. Например, котёл от того же производителя «Теплодар», только модели «Куппер ПРО-22», который может работать не только на дровах, но и на углях. В данном случае при использовании разных видов топлива будет разная мощность. Расчёт проводится самостоятельно, учитывая эффективность каждого вида топлива отдельно, а позже выбирается наилучший вариант.

Сколько энергии дают разные типы горючего?

В данном случае показатели будут следующие:

  1. При сгорании 1 кг высушенных опилок или небольшой стружки хвойного дерева выдача 3,2 кВт/ч. При условии, что 1 л высушенных опилок весит 1,100 кг.
  2. Ольха имеет более высокую теплоотдачу и даёт 3 кВт в час, при весе 300 грамм.
  3. Деревья, которые относятся к видам твердолиственных, дают 1 кВт, имея вес 300 грамм.
  4. Уголь из камня даёт почти 5 кВт, при весе 400 грамм.
  5. Торф из Белоруссии даёт 2 кВт, при весе в 340 грамм.

Некоторые производители топлива в информации пишут срок сгорания одной загрузки, но не предоставляют информацию о том, сколько топлива выгорает за 1 час.

В такой ситуации необходимо произвести дополнительные расчёты:

  • Определить максимальную массу горючего, которая способна уместиться в отделении для загрузки горючего.
  • Узнать, сколько тепла может отдать котёл, работающий на данном виде сырья;
  • Какая уровень теплоотдачи будет за 1 час. Данное число необходимо самостоятельно разделить на тот период, за который выгорит всё количество дров.

Подводя итог, можно сказать, что данные, которые будут получены в результате всех расчётов, и будут показывать настоящую мощность твердотопливного котельного оборудования, которую он сможет выдать в течение 1 часа.

Расчет мощности котла для дома и квартиры: два метода

Основа любого отопления — котел. От того, насколько верно подобраны его параметры зависит будет ли тепло в доме. А чтобы параметры были верными необходимо расчет мощности котла. Это не самые сложные вычисления — на уровне третьего класса, нужен будет только калькулятор и некоторые данные по вашем владениям. Со всем справитесь сами, своими руками.

Рассчитать мощность котла отопления можно несколькими способами

Содержание статьи

Общие моменты

Чтобы в доме было тепло, система отопления должна восполнять все имеющиеся потери тепла в полном объеме. Тепло уходит через стены, окна, пол, крышу. То есть, при расчете мощности котла, необходимо учитывать степень утепления всех этих частей квартиры или дома. При серьезном подходе у специалистов заказывают расчет теплопотерь здания, а по результатам уже подбирают котел и все остальные параметры системы отопления. Задача эта не сказать что очень сложная, но требуется учесть из чего сделаны стены, пол, потолок, их толщину и степень утепления. Также учитывают какие стоят окна и двери,  есть ли система приточной вентиляции и какова ее производительность. В общем, длительный процесс.

Есть второй способ определить теплопотери. Можно по факту определить количество тепла, которое теряет дом/помещение при помощи тепловизора. Это небольшой прибор, который на экране отображает фактическую картину теплопотерь. Заодно можно увидеть где отток тепла больше и принять меры по устранению утечек.

Определение фактических теплопотерь — более легкий способ

Теперь о том, стоит ли брать котел с запасом по мощности. Вообще, постоянная работа оборудования на грани возможностей негативно сказывается на сроке его службы. Потому желательно иметь запас по производительности. Небольшой, порядка 15-20% от расчетной величины. Его вполне достаточно для того, чтобы оборудование работало не на пределе своих возможностей.

Слишком большой запас невыгоден экономически: чем мощнее оборудование, тем дороже оно стоит. Причем разница в цене солидная. Так что, если вы не рассматриваете возможность увеличения отапливаемой площади, котел с большим запасом мощности брать не стоит.

Расчет мощности котла по площади

Это самый простой способ подобрать котел отопления по мощности. При анализе многих готовых расчетов была выведена средняя цифра: на отопление 10 квадратных метров площади требуется 1 кВт тепла. Эта закономерность справедлива для помещений с высотой потолка в 2,5-2,7 м и средним утеплением. Если ваш дом или квартира подходят под эти параметры, зная площадь вашего дома, вы легко определяете приблизительную производительность котла.

Тепло из дома утекает в разных направлениях

Чтобы было понятнее, приведем пример расчета мощности котла отопления по площади. Имеется одноэтажный дом 12*14 м. Находим его площадь. Для этого умножаем его длину и ширину: 12 м * 14 м = 168 кв.м. По методике, делим площадь на 10 и получаем требуемое количество киловатт: 168 / 10 = 16,8 кВт. Для удобства использования цифру можно округлить: требуемая мощность котла отопления 17 кВт.

Учет высоты потолков

Но в частных домах потолки могут быть выше. Если разница составляет всего 10-15 см, ее можно не учитывать, но если высота потолков более чем 2,9 м, придется делать перерасчет. Для этого находит поправочный коэффициент (поделив фактическую высоту на стандартную 2,6 м) и на него умножают найденную цифру.

Пример поправки на высоту потолков. В здании высота потолков — 3,2 метра. Требуется пересчитать мощность котла отопления для данных условий (параметры дома те же, что в первом примере):

Как видите, разница вполне приличная. Если ее не учесть, нет гарантии, что в доме будет тепло даже при средних зимних температурах, а уж о сильных морозах и говорить не приходится.

Учет региона проживания

Что еще стоит учесть, так это местоположение. Ведь понятно, что на юге требуется намного меньше тепла, чем в Средней Полосе, а для тех, кто живет на севере «подмосковной» мощности явно будет недостаточною. Для учета региона проживания тоже есть коэффициенты. Даны они с некоторым диапазоном, так как в рамках одной зоны климат все-таки сильно меняется. Если дом находится ближе к южной границе, применяют меньший коэффициент, ближе к северной — больший. Стоит учитывать также и наличие/отсутствие сильных ветров и выбирать коэффициент с их учетом.

Пример корректировки по зонам. Пусть дом, для которого делаем расчет мощности котла, находится на севере Подмосковья. Тогда найденная цифра 21 кВт умножается на 1,5. Итого получаем: 21 кВт * 1,5 = 31,5 кВт.

Как видите, если сравнивать с первоначальной цифрой, полученной при расчете по площади (17 кВт), полученная в результате использования всего двух коэффициентов, значительно отличается. Почти в два раза. Так что эти параметры необходимо учитывать.

Мощность двухконтурного котла

Выше шла речь о расчете мощности котла, который работает только на отопление. Если вы планируете еще и воду греть, необходимо производительность еще увеличить. В расчет мощности котла с возможностью подогрева воды для бытовых нужд закладывают 20-25% запаса (умножить надо на 1,2-1,25).

Чтобы не пришлось покупать очень мощный котел, надо дом максимально утеплить

Пример: корректируем под возможность ГВС. Найденную цифру 31,5 кВт умножаем на 1,2 и получаем 37,8 кВт. Разница солидная. Обратите внимание, что запас на подогрев воды берется уже после учета в расчетах местоположения — температура воды от местоположения тоже зависит.

Особенности расчета производительности котла для квартир

Расчет мощности котла для отопления квартир высчитывается по той же норме: на 10 квадратных метров 1 кВт тепла. Но коррекция идет по другим параметрам. Первое, что требует учета — наличие или отсутствие неотапливаемого помещения сверху и снизу.

  • если внизу/вверху находится другая отапливаемая квартира, применяется коэффициент 0,7;
  • если внизу/верху неотапливаемое помещение, никаких изменений не вносим;
  • отапливаемый подвал/чердак — коэффициент 0,9.

Стоит также при расчетах учесть количество стен, выходящих на улицу. В угловых квартирах требуется большее количество тепла:

  • при наличии одной внешней стены — 1,1;
  • две стены выходят на улицу — 1,2;
  • три наружные — 1,3.
Учитывать надо количество наружных стен

Это основные зоны, через которые уходит тепло. Их учитывать обязательно. Можно еще принять во вминание качество окон. Если это стеклопакеты, корректировки можно не вносить. Если стоят старые деревянные окна, найденную цифру надо умножить на 1,2.

Также можно учесть такой фактор, как месторасположение квартиры. Точно также требуется увеличивать мощность, если хотите покупать двухконтурный котел (для подогрева горячей воды).

Расчет по объему

В случае с определением мощности котла отопления для квартиры можно использовать другую методику, которая основывается на нормах СНиПа. В них прописаны  нормы на отопление зданий:

  • на обогрев одного кубометра в панельном доме требуется 41 Вт тепла;
  • на возмещение теплопотерь в кирпичном — 34 Вт.

Чтобы использовать этот способ, надо знать общий объем помещений. В принципе, этот подход более правильный, так как он сразу учитывает высоту потолков. Тут может возникнуть небольшая сложность: обычно мы знаем площадь свой квартиры. Объем придется высчитывать. Для этого общую отапливаемую площадь умножаем на высоту потолков. Получаем искомый объем.

Расчет котла отопления для квартир можно сделать по нормативам

Пример расчета мощности котла для отопления квартиры. Пусть квартира находится на третьем этаже пятиэтажного кирпичного дома. Ее общая площадь 87 кв. м, высота потолков 2,8 м.

  1. Находим объем. 87 * 2,7 = 234,9 куб. м.
  2. Округляем — 235 куб. м.
  3. Считаем требуемую мощность: 235 куб. м * 34 Вт = 7990 Вт или 7,99 кВт.
  4. Округляем, получаем 8 кВт.
  5. Так как вверху и внизу находятся отапливаемые квартиры, применяем коэффициент 0,7. 8 кВт * 0,7 = 5,6 кВт.
  6. Округляем: 6 кВт.
  7. Котел будет греть и воду для бытовых нужд. На это дадим запас в 25%. 6 кВт * 1,25  = 7,5 кВт.
  8. Окна в квартире не меняли, стоят старые, деревянные. Потому применяем повышающий коэффициент 1,2: 7,5 кВт * 1,2 = 9 кВт.
  9. Две стены в квартире наружные, потому еще раз умножаем найденную цифру на 1,2: 9 кВт * 1,2 = 10,8 кВт.
  10. Округляем: 11 кВт.

В общем, вот вам эта методика. В принципе, ее можно использовать и для расчета мощности котла для кирпичного дома. Для других типов стройматериалов нормы не прописаны, а панельный частный дом — большая редкость.

Онлайн калькулятор отопления дома, расчет мощности газового котла

Статья подготовлена ​​при информационной поддержке компании Теплодар.

Автономное отопление для частных домов доступно, комфортно и разнообразно. Возможна установка газового котла и вне зависимости от капризов природы или сбоев в системе централизованного теплоснабжения. Главное, правильно выбрать оборудование и рассчитать тепловую мощность котла. Если мощность превысит потребность помещения в тепле, деньги на установку блока будут выброшены на ветер.Чтобы система теплоснабжения была комфортной и экономически выгодной, на этапе проектирования нужно сделать расчет мощности газового отопительного котла.

Расчет базовой суммы тепловой мощности

Самый простой способ получить данные о тепловой мощности участка котельной: берется 1 кВт мощности на 10 кв. м . Однако в этой формуле есть серьезная ошибка, она не учитывает современные технологии строительства, вид на сельскую местность, перепады климатических температур, уровень теплоизоляции, использование окон со стеклопакетами и т. Д.

Боле Для проведения точного расчета теплопроизводительности котла необходимо учитывать ряд важных факторов, влияющих на конечный результат:

  • размер помещения;
  • степень утепления дома;
  • наличие стеклопакетов;
  • утеплитель стен;
  • строительный тип;
  • Температура на улице в самое холодное время года;
  • вид на разводку контура отопления;
  • соотношение площади конструкции и проема;
  • Теплопотери здания.

В домах с принудительным воздушным отоплением мощность котла при расчете котла следует учитывать количество энергии, необходимое для воздушного отопления. Специалисты советуют делать зазор в 20%, используя полученную тепловую мощность котла на случай непредвиденных обстоятельств, сильного охлаждения или понижения давления газа в системе.

При необоснованном увеличении теплоемкости может снизиться КПД нагревателя, увеличить затраты на приобретение элементов системы, привести к быстрому износу компонентов. Вот почему так важно произвести расчет теплопроизводительности котла и применить его к указанному жилью.Получить данные можно по простой формуле W = S * W ударов , где S — площадь дома, W- заводская мощность котла, W ударов — удельная мощность для расчетов в конкретной климатической зоне, может быть настраивается под особенности региона пользователя. Результат следует округлить до большого значения с точки зрения утечки тепла в здании.

Для тех, кто не хочет тратить время на математику, можно воспользоваться калькулятором мощности газового котла онлайн. Просто сохраните индивидуальные данные по характеристикам комнаты и будьте готовы ответить.

Формула получения мощности системы отопления

Онлайн-калькулятор мощности отопительного котла позволяет в считанные секунды получить желаемый результат со всеми указанными выше характеристиками, которые влияют на конечный результат полученных данных. Чтобы правильно воспользоваться этой программой, необходимо ввести данные в подготовленную таблицу: тип оконного остекления, уровень теплоизоляции стен, соотношение площади пола и оконного проема, температура снаружи дома выше средней, количество боковых стен, тип и площадь помещения.А затем нажмите кнопку «Рассчитать» и получите результат теплопотерь и теплопроизводительности котла.

Благодаря этой формуле каждый потребитель сможет в короткие сроки получить желаемые параметры и применить их при проектировании системы отопления.

формула КПД котла

Видео по теме энергетический котел

Видео:

Видео:

Видео:

Руководство по подбору промышленных котлов № 1

Калькулятор мощности котла в лошадиных силах

Мощность котла в лошадиных силах используется для определения размеров паровых котлов.Этот расчет переводит паровую нагрузку (в фунтах в час) в мощность котла. Каждому котлу дается номинальная мощность котла в лошадиных силах (л.

Для этого расчета вы введете паровую нагрузку в фунтах в час, которую разделите на константу 34,5. Это число представляет собой расход тепловой энергии, необходимый для превращения 34,5 фунтов воды при температуре 212 ° F в пар за один час.

Калькулятор БТЕ / час в лошадиные силы котла

Калькулятор БТЕ / час в лошадиные силы котла используется для определения размеров паровых и водогрейных котлов.Этот расчет переводит требования к подводимой теплопередаче в BHP. Для этого мы разделим BTU / час на константу 33 475. Эта константа представляет воду, превращающуюся в пар, что составляет 34,5 фунта воды, умноженные на 970,3 БТЕ / фунт, или скрытую энергию.

Для этого расчета вы введете БТЕ / час вашей работы вместе с эффективностью вашего котла. Тогда это покажет вам мощность котла в лошадиных силах.

БТЕ / ч до л. С.

л. требуемая мощность котла

Примечание: Чтобы оценить ожидаемую мощность котла в лошадиных силах на основе общего количества подводимого тепла от топлива, требуется общий КПД котла (эффективность преобразования топлива в пар).Поскольку мощность котла в лошадиных силах является единицей измерения энергии, необходимой для преобразования воды в пар, нам необходимо учитывать разницу между подводимой теплотой топлива и эффективностью котла для передачи этой энергии воде для производства пара. Как правило, в промышленных котлах эффективность преобразования топлива в пар составляет 80-85%.

Если известна потребность в БТЕ / час для желаемой мощности, КПД котла не требуется для расчета. Это связано с тем, что ни требования к мощности, ни мощность котла не учитывают КПД котла — они оба являются измерением только выходной мощности котла.

Расчет БТЕ котла с учетом расхода и △ T

Водогрейные котлы не претерпевают никаких фазовых изменений в процессе нагрева, поэтому расчет отличается от расчета для паровых котлов. Поскольку фазовые переходы отсутствуют, скрытая энергия в водогрейных котлах не используется. Напротив, поток воды и требуемое изменение температуры, которое напрямую соответствует разнице в явном тепле, являются основными факторами, влияющими на нагрузку системы в БТЕ / час. Между тем, удельная теплоемкость (SH), удельный вес (SG) и плотность циркулирующей среды являются важными характеристиками, которые необходимо учитывать для обеспечения надлежащего размера.

Для этого расчета введите дельту Т и галлонов в минуту (GPM). Со значениями удельной теплоемкости, удельного веса и плотности, представляющими свойства воды, результат этого расчета покажет вам BTU.

БТЕ при заданном расходе и ΔT

BHP =

15006600 BTU

449 лошадиных сил

15471 # / час

подходит для оценки при расчете размеров водогрейного котла, в котором вода используется только в качестве теплоносителя.Значения SG, SH и плотности изменились бы, если бы использовалась другая среда (смесь гликоля, масло и т. Д.)

Расчет тепловой мощности и КПД электростанции

Тепловая мощность (HR) = Тепловая нагрузка / Выработка электроэнергии =

ккал / кВт · ч.

Общая тепловая нагрузка:

В химическая энергия, доступная в топливе (уголь, биомасса, нефть, газ и т. д.) превращается в тепловую энергию в котлах, этот процесс называется окислением. В тепло, имеющееся в топливе, измеряется в единицах ккал / кг, кДж / кг или БТЕ.Часть этого топлива используется в качестве полезного тепла, а остальная часть теряется в виде сухих дымовых газов. потери, потери влаги, несгоревшие потери, радиационные / конвекционные потери и т. д., исходя из КПД котла, эта тепловая энергия из топлива утилизируется, обычно использование тепла топлива составляет от 60 до 90%.

Этот тепло, выделяемое в котлах за счет окисления топлива, используется для выработки высоких давление и температура пара. Образовавшийся таким образом пар подается в пар. Турбина, где эта тепловая энергия, также называемая тепловой энергией, преобразуется в Затем кинетическая энергия превращается в механическую энергию в паровой турбине и, наконец, в механическую энергию. энергия в электрическую энергию в генераторе.

Так общая тепловая энергия электростанции = химическая энергия + тепловая энергия + кинетическая энергия энергия + механическая энергия

Выход = Электрическая мощность

кВтч

Тепло коэффициент = погонная энергия / выработка электроэнергии

КПД:

Эффективность это не что иное, как отношение проделанной полезной работы к выделенному теплу. Этот означает, что трение и другие потери вычитаются из работы, выполняемой термодинамические циклы.

В КПД котла = тепло от котла / подвод тепла к котлу

Высокая температура мощность — Тепловая энергия в паре, а потребляемое тепло — теплотворная способность, присутствующая в топливо

В случае турбины, КПД = 860 X 100 / Тепловая мощность турбины

Кейс-1: Тепловая мощность Брутто ТЭЦ

В тепловые электростанции вся тепловая энергия вырабатывается из пара генераторы / котлы используются только для выработки электроэнергии.

Пример: A ТЭЦ мощностью 100 МВт работает на 100% ПНФ, который потребляет около 55 млн тонн. угля, имеющего ГТС 4500 ккал / кг в час, затем рассчитайте валовое тепловое скорость завода

Мы иметь,

Валовой тепловая мощность станции = Подвод тепла к установке / Выработка электроэнергии = Израсходованное топливо (MT) X GCV (ккал / кг) топлива / Выработка электроэнергии / МВтч = (55 Х 4500) / 100

= 2475 ккал /

кВт · ч Выше проблему можно решить, переведя расход топлива в кг / час и мощность поколение в

КВтч, тогда тепловая мощность может быть рассчитана как,

= 55 X 1000 X 4500 / (100 X 1000) = 2475 ккал / кВт · ч

станция тепловая мощность ТЭЦ

В тепловая энергия когенерационной установки используется для технологических нужд и электроэнергии поколение.В когенерационной установке есть различные источники ввода тепла и выход на станцию ​​и со станции, где как на ТЭЦ Источники ввода и вывода тепла всего один.

Высокая температура ввод в станцию ​​в виде тепловой энергии, присутствующей в топливе, сделать воды и возвратного конденсата из технологического процесса.

Высокая температура выход со станции в виде тепловой энергии в технологическом паре и производство электроэнергии

Когенерация тепловая мощность = (Израсходованное топливо (т) X ВТС топлива (ккал / кг + количество возвратный конденсат из процесса (MT) X его энтальпия (ккал / кг) + количество подпиточная вода (MT) x ее энтальпия ккал / кг) — (Количество технологического пара (MT) X ее энтальпия в ккал / кг) / Выработка электроэнергии в МВт

Пример: Когенерационная установка, основанная на процессах, имеет следующие данные по тематическому исследованию на целый день.Рассчитать тепловую мощность станции

Всего потребление угля Q1
Валовой теплотворная способность угля G
Пар подается на завод-технологический процесс-1 при 2 кг / см2г и 135 0C Q2
Пар отдано цеху-2 при 7 кг / см2г и 175 0C Q3
Возвращение конденсат технологической установки-1 при температуре 120 0С Q4
Возвращение конденсат технологической установки-2 при температуре 85 0С Q5
DM подпитка к котлу при температуре 25 0С Q6

Из вышеперечисленные данные имеем,

Энтальпия пара, отданного в технологическую установку-1 h3 = 666.71 ккал / кг …… .. См. Паровую таблицу

Энтальпия пара, подаваемого в технологическую установку-2 h4 = 651,68 ккал / кг

Энтальпия обратного конденсата технологического 1 h5 = 120,3 ккал / кг

Энтальпия обратного конденсата технологического-2 h5 = 85 ккал / кг

Энтальпия подпиточной воды h6 = 25 ккал / кг

У нас есть тепловая мощность станции = ((Расход топлива X GCV + Теплосодержание в обратном конденсате + Теплосодержание подпиточной воды-Сумма теплосодержания технологического пара)) / Энергетика.

знак равно Q1X G + Q4 X h5 + Q5X h5 + Q6X h6) — (Q2 X h3 + Q3 X h4)) / Выработка электроэнергии

= ((875 5100 х + 3350 х 120.3 + 135 x 85 +490 x 25) — (3720 x 666,71 + 192 x 651,68)) / 977


Тепловая мощность и КПД турбины:

Ящик-I: Тепловая мощность турбины ТЭЦ при гарантии работоспособности (PG) тест

Турбина Тепловая скорость (THR) = Расход пара X (Энтальпия пара-Энтальпия питательной воды) / Мощность поколение

Корпус-II: Тепловая мощность турбины ТЭЦ при нормальных условиях эксплуатации и техобслуживания

Турбина Тепловой расход (THR) = (Расход пара X Энтальпия расхода пара-питательной воды X Энтальпия питательная вода) / Производство электроэнергии

Турбина эффективность дается

Турбина КПД = 860 X 100 / Тепловая мощность турбины

Пример: Турбина мощностью 22 МВт имеет поток пара на входе 100 т / ч при давлении и температуре 110 кг / см2 и 535 ° C соответственно, затем рассчитайте тепловую мощность турбины в как тестовый пример PG, так и состояние O&M, а также рассчитать КПД турбины в в обоих случаях.Учтите, что температура питательной воды на входе в экономайзер составляет 195 град. c & расход 102 т / ч.

Решение:

Турбина Энтальпия пара на входе при рабочем давлении и температуре h2 = 824 ккал / кг

Подача энтальпия воды = h3 = 198,15 ккал / кг

Пар расход = 100 т / ч

Мощность генерация = 22 МВт

Турбина тепловая мощность тепловой электростанции при проведении гарантийных испытаний (PG)

Турбина Тепловая нагрузка (THR) = (100 X (824-198.15) / 22) = 2844,77 ккал /

кВт · ч

Турбина КПД = (860 X 100) / 2844,77 = 30,23%

Турбина тепловая мощность тепловой электростанции при нормальных условиях эксплуатации и техобслуживания

Турбина Тепловая нагрузка (THR) = (100 X 824-102 X 198,15) / 22 = 2826,25 ккал / кг

Турбина КПД = (860 X 100) / 2826,25 = 30,42%

Кейс-III: Когенерация Тепловая мощность турбины

В случае Когенератора, Тепловая мощность турбины рассчитывается с учетом вытяжек и получен возвратный конденсат.

Формула-1

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия) — (Расход технологического пара X энтальпия Расход отработанного пара X Энтальпия)) Выработка электроэнергии

Формула-2

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия + Расход возвратного технологического конденсата X его энтальпия + поток подпиточной воды X его энтальпия) — (поток технологического пара X Энтальпия + Расход питательной воды X Энтальпия)) Выработка электроэнергии

Пример: 21 Конденсаторно-отборная турбина МВт имеет расход пара на входе 120 т / ч при 88 кг / см2г. давление и температура 520 ° C, он имеет два отжима, сначала при 16 кг / см2г. давление и температура 280 ° C при расходе 25 т / ч и второй при 2.5 кг / см2г давление и температура 150 0C при расходе 75 т / ч. Остающийся пар идет в конденсатора при давлении выхлопа 0,09 кг / см2а. Рассчитайте тепловую мощность турбины и тепловой КПД с использованием обеих формул. Считайте, что пар, подаваемый на процесс, равен На 10 т / час меньше, чем каждый отбор, возвратный конденсат из процесса составляет 70 Т / ч при температуре 90 ° C, расход питательной воды 122 т / ч при температуре 195 ° C и поток подпиточной воды 13 т / ч при температуре 28 град.

Данный что,

Мощность генерирующая мощность турбины = 21 МВтч

Q1 = 120 т / ч

Энтальпия h2 при 88 кг / см2g и 5200C = 820.66 ккал / кг

Q2 = 25 TPH

h3 в 16 кг / см2г и 2800C = 715,88 ккал / кг

Q3 = 75 TPH

h4 на 2,5 кг / см2г и 1500C = 658,40 ккал / кг

Конденсатор расход пара Q4 = Q1-Q2-Q3 = 120-25-75 = 20 т / ч

h5 на давление выхлопа = 44,06 ккал / кг

Формула-1

Коген-Турбина тепловой поток (THR) = (Тепло, подаваемое в турбину — Сумма отвода и отвода тепло) / Производство электроэнергии = ((Q1 X h2) — (Q2 X h3 + Q3 X h4). + Q4 X h5)) / Производство электроэнергии = ((120 Х 820.66) — (25 Х 715,88 +75 Х 658,40 + 20 Х 44,06)) / 21 = 1443,85 ккал / кВт · ч Турбина тепловой КПД = (860 X 100) / Тепловая мощность турбины = (860 х100) / 1443,85 = 59,56%

Co-gen-THR = ((Расход пара на входе в турбину X его энтальпия + Расход возвратного технологического конденсата X его энтальпия + поток подпиточной воды X его энтальпия) — (поток технологического пара X Энтальпия + Расход питательной воды X Энтальпия)) Выработка электроэнергии

THR = ((120 Х 820.66 +90 X 90 +13 x 28) — (15 X 715,88 + 65 X 658,40 + 120 X 198,15)) / 21

THR = 1495,73 ккал /

кВт · ч Турбина тепловой КПД = (860 X 100) / Тепловая мощность турбины = (860 x100) / 1495,73 = 57,49%

Как рассчитать потребляемую мощность электрокотла?

Как рассчитать потребляемую мощность электрокотла?
Электрический котел использует электрическую энергию в качестве источника энергии, использует электрическое сопротивление или электромагнитную индукцию для передачи тепла, и когда теплоноситель котла нагревает воду теплоносителя до определенного параметра (температура, давление), внешний выход имеет номинальную рабочую среду (пар или горячая вода).Термомеханическое устройство, отвечающее потребностям промышленного производства, производства и жизни.


Потребляемая мощность — важный показатель для оценки общего качества газовых котлов. Это также один из стандартов, которые измеряют пользователи при покупке котлов. Эти данные повлияют на вводимые затраты на эксплуатацию котла; только стоимость контролируется ниже определенного лимита. Чтобы получить больше преимуществ.

Как рассчитать потребляемую мощность электрокотлов?
Мы можем вспомнить следующее предложение: Потребляемая мощность электрокотла мощностью 1 кВт, работающего при полной нагрузке в течение 1 часа, составляет 1 градус.Электрокотел на 1 тонну составляет около 0,7 МВт, что составляет 700 кВт. Энергопотребление электрокотла на 1 тонну, работающего на полной нагрузке в течение 1 часа, составляет 700 градусов.
Однако следует также отметить, что это ситуация с потребляемой мощностью электрического котла при полной нагрузке; По сравнению с другими типами котлов, электрический бойлер более интеллектуален и может регулировать пар или горячую воду в соответствии с различными потребностями пользователей. Температура бойлера изменится. В целом, средняя потребляемая мощность электрокотла составляет примерно 1 / 3-1 / 2 от полной нагрузки.

Как снизить энергопотребление электрокотлов?
Метод снижения энергопотребления электрокотлов в основном исходит из перечисленных выше четырех факторов, которые влияют на потребляемую мощность котла.
1. Обеспечение хорошего теплоизоляционного эффекта в котельной.
Теплоизоляционные работы в котельной выполняются надлежащим образом. Потери тепла во время работы электрокотла уменьшатся, а коэффициент использования тепловой энергии увеличится, так что больше мощности не потребуется для удовлетворения потребностей пользователей.
2. Изменения в отопительной среде
Для домов, требующих отопления, необходимо правильно обрабатывать высоту дома и конфигурацию обогревающих устройств, чтобы обеспечить оптимальную отопительную среду. Тепло, вырабатываемое при работе котла, напрямую доставляется в дом, что снижает потери тепла и снижает энергопотребление котла.
3. Положение самого электрического котла
Сам электрический котел должен иметь определенную степень интеллектуального регулирования и контроля.В соответствии с потребностями пользователя или изменениями в окружающей среде рабочая нагрузка в котле может регулироваться сама по себе, рабочая нагрузка может быть увеличена при высокой температуре потребления, а рабочая нагрузка может быть уменьшена при низкой температуре потребления. . Может снизить энергопотребление котла.

Процесс нагрева паром — расчет нагрузки

Обычно паровой нагрев используется для

  • изменения температуры продукта или жидкости
  • поддержания температуры продукта или жидкости

Преимущество пара заключается в большом количестве передаваемая тепловая энергия.Энергия, выделяемая при конденсации пара в воду, находится в диапазоне 2000-2250 кДж / кг (в зависимости от давления) — по сравнению с водой с 80-120 кДж / кг (с разницей температур 20-30 o С ).

Изменение температуры продукта — нагрев продукта паром

Количество тепла, необходимое для повышения температуры вещества, может быть выражено как:

Q = mc p dT (1)

где

Q = количество энергии или тепла (кДж)

м = масса вещества (кг)

c p = удельная теплоемкость вещества (кДж / кг o C) — Свойства материалов и теплоемкость обычные материалы

dT = повышение температуры вещества ( o C)

Имперские единицы? — Проверьте конвертер единиц!

Это уравнение можно использовать для определения общего количества тепловой энергии для всего процесса, но оно не учитывает скорость передачи тепла , которая составляет:

  • количество тепловой энергии, переданной за единицу времени.

В приложениях без проточного типа нагревается фиксированная масса или единичная партия продукта.В приложениях проточного типа продукт или жидкость нагревается, когда она постоянно течет по поверхности теплопередачи.

Непоточный или периодический нагрев

В приложениях без проточного типа технологическая жидкость хранится в виде единой партии в резервуаре или емкости. Паровой змеевик или паровая рубашка нагревают жидкость от низкой до высокой температуры.

Средняя скорость теплопередачи для таких приложений может быть выражена как:

P = mc p dT / t (2)

, где

P = средняя скорость теплопередачи или мощность (кВт (кДж / с))

м = масса продукта (кг)

c p = удельная теплоемкость продукта (кДж / кг. o C) — Свойства материалов и теплоемкость обычных материалов

dT = Изменение температуры жидкости ( o C)

t = общее время, в течение которого процесс нагрева происходит (секунды)

Пример — Время, необходимое для нагрева воды с прямым впрыском пара

Время, необходимое для нагрева 75 кг воды (c p = 4,2 кДж / кг o C) от температуры 20 o C до 75 o C с паром, произведенным из котла мощностью 200 кВт (кДж / с) можно рассчитать путем преобразования уравнения.От 2 до

t = mc p dT / P

= (75 кг) (4,2 кДж / кг o C) ((75 o C) — (20 o C) ) / (200 кДж / с)

= 86 с

Примечание! — когда пар впрыскивается непосредственно в воду, весь пар конденсируется в воду, и вся энергия пара передается мгновенно.

При нагреве через теплообменник имеет значение коэффициент теплопередачи и разница температур между паром и нагретой жидкостью.Повышение давления пара увеличивает температуру и увеличивает теплопередачу. Время нагрева уменьшено.

Общее потребление пара может увеличиваться — из-за более высоких тепловых потерь или уменьшаться — из-за более короткого времени нагрева, в зависимости от конфигурации реальной системы.

Процессы проточного или непрерывного нагрева

В теплообменниках поток продукта или жидкости непрерывно нагревается.

Преимущество пара — это однородная температура поверхности нагрева, поскольку температура поверхностей нагрева зависит от давления пара.

Средняя теплопередача может быть выражена как

P = c p dT m / t (3)

где

P = средняя скорость теплопередачи (кВт (кДж / с) ))

м / т = массовый расход продукта (кг / с)

c p = удельная теплоемкость продукта (кДж / кг. o C)

dT = изменение температуры жидкости ( o C)

Расчет количества пара

Если мы знаем скорость теплопередачи — количество пара можно рассчитать:

м с = P / h e (4)

где

м с = масса пара (кг / с)

P = расчетная теплопередача (кВт)

ч e = энергия испарения пара (кДж / кг)

Энергию испарения при различных давлениях пара можно найти в Таблице пара с единицами СИ или в таблице Steam с британскими единицами измерения.

Пример — периодический нагрев паром

Количество воды нагревается паром 5 бар (6 бар абс.) от температуры 35 o C до 100 o C за период 20 минут (1200 секунд) . Масса воды 50 кг , а удельная теплоемкость воды 4,19 кДж / кг. o С .

Скорость теплопередачи:

P = (50 кг) (4,19 кДж / кг o C) ((100 o C) — (35 o C)) / (1200 с)

= 11.35 кВт

Количество пара:

м с = (11,35 кВт) / (2085 кДж / кг)

= 0,0055 кг / с

= 19,6 кг / ч

Пример — Непрерывный нагрев паром

Вода течет с постоянной скоростью 3 л / с нагревается от 10 o C до 60 o C паром при 8 бар (9 бар абс) .

Расход тепла можно выразить как:

P = (4.19 кДж / кг. o C) ((60 o C) — (10 o C)) (3 л / с) (1 кг / л)

= 628,5 кВт

Расход пара может можно выразить как:

м с = (628,5 кВт) / (2030 кДж / кг)

= 0,31 кг / с

= 1115 кг / ч

Общие сведения о угольной электростанции Тепловая мощность и КПД

Предлагаемые стандарты США по сокращению выбросов углерода от существующих угольных электростанций в значительной степени зависят от повышения эффективности на стороне генерации.Топливо, операции и конструкция завода — все это влияет на общую эффективность завода, а также на выбросы углерода. Этот обзор основ эффективности угольных электростанций, частых проблем, снижающих эффективность, и некоторых решений для улучшения работы и снижения затрат на генерацию должен быть ценным для электростанций, где бы они ни находились.

Место действия: Двадцать лет назад молодой инженер стоит перед группой мемориальных досок и наград в вестибюле большой угольной электростанции.Она с интересом отмечает, что некоторые из них относятся к наградам «за лучшую тепловую нагрузку», а также отмечает, что последней награде более трех лет. Поседевший инженер станции, похожий на запыленного углем Сэма Эллиота, присоединяется к ней перед дисплеем.

«Почему эта установка перестала получать награду за теплоотдачу?» она спрашивает.

«Ну, мэм, раз уж мы добавили скрубберы, особого смысла нет. А другие станции перешли на уголь бассейна Паудер-Ривер (PRB), поэтому они тоже пострадали от теплового удара.Итак, кто-то просто посчитал, что, поскольку нам пришлось отказаться от тепловыделения, чтобы соответствовать ограничениям на выбросы, в получении награды больше не было особого смысла ».

Перенесемся в 2014 год, и здесь ситуация кардинально изменилась. Усовершенствованный контроль выбросов угольных электростанций является нормой, и уголь PRB в некоторой степени используется на большинстве электростанций в США, а Агентство по охране окружающей среды (EPA) предложило стандарты для сокращения выбросов углерода от существующих электростанций в соответствии с разделом 111 (d ) Закона о чистом воздухе.Включая множество возможных методов сокращения выбросов углерода, одним из строительных блоков плана EPA является повышение чистой тепловой мощности завода (NPHR) на 6% или больше. Хотя для непрофессионала это может показаться небольшим числом, инженеры электростанций знают, что улучшение теплового коэффициента на 6% потребует серьезных обязательств на многих различных уровнях в рамках их энергокомпании.

В этой статье излагаются основы эффективности установки и тепловой мощности, чтобы можно было быстро понять, где наилучшие возможности для улучшения конкретного генерирующего актива.Затем он исследует способы, которыми может быть достигнута цель 6% NPHR.

Основные принципы тепловыделения

Термин «тепловая мощность» просто относится к эффективности преобразования энергии в терминах «сколько энергии необходимо израсходовать, чтобы получить единицу полезной работы». В электростанции внутреннего сгорания топливо является источником энергии, а полезная работа — это электроэнергия, подаваемая в сеть, тепло пара, поставляемое промышленному потребителю или используемое для отопления, либо и то, и другое. Поскольку «полезная работа» обычно определяется как электричество и пар, которые поставляются конечным потребителям, инженеры, как правило, работают с чистой тепловой мощностью установки (NPHR).

В США тепловая мощность обычно выражается с использованием смешанных английских единиц и единиц СИ — британских тепловых единиц / кВт · ч. Хотя сначала это сбивает с толку, это просто указывает, сколько британских тепловых единиц в час энергии требуется для производства 1 кВт полезной работы. В других странах обычно используются кДж / кВтч, кКал / кВтч или другие меры. В этой статье используется формат США.

Поскольку приблизительно 3 412 БТЕ / час равняется 1 кВт, мы можем легко определить термодинамический КПД электростанции, разделив 3 412 БТЕ на тепловую мощность. Например, угольная электростанция с тепловой мощностью 10 000 БТЕ / кВтч имеет тепловой КПД 3 412/10 000, или 0.3412 (34,12%).

Метод ввода / вывода

Один из простейших способов рассчитать NPHR — разделить потребляемую тепловую энергию в британских тепловых единицах в час на вашу чистую выработку (электричество и пар для потребителей) в киловаттах. Однако определение подводимого тепла может быть довольно трудным.

По моему опыту, меньшинство электростанций внутреннего сгорания хорошо измеряют фактическую скорость сжигания топлива на каждом блоке. Промышленное эмпирическое правило состоит в том, что объемные питатели имеют точность в лучшем случае +/– 5%, а гравиметрические питатели — в лучшем случае +/– 2%.На практике я считаю, что фактическая погрешность измерения скорости сжигания топлива может составлять от 5% до 10%.

На одной электростанции, на которой я работал, единственной возможностью для оценки скорости сжигания угля было опираться на фотографии угольного склада, сделанные энергичной дамой с ее самолета Cessna, и сравнивая предполагаемый размер запасов с железнодорожными квитанциями за месяц. чтобы определить, сколько угля было сожжено в целом. Потенциальная ошибка для этого метода может легко превышать 25%.

Еще одним важным фактором при измерении погонной энергии является анализ качества топлива, особенно его теплотворной способности.(Для получения более подробной информации см. «Введение в анализ качества топлива» в выпуске за январь 2015 г.) Вообще говоря, ошибка в расчете скорости сжигания топлива не может быть меньше, чем ошибка в анализе топлива, поэтому тщательный выбор методов и частоты отбора проб будет обеспечивают большую уверенность при расчете скорости сжигания топлива.

Короче говоря, метод ввода / вывода не является идеальным методом для отслеживания разницы в эффективности на вашей угольной электростанции, если у вас нет точных угольных питателей (рис. 1) плюс точное и регулярное определение теплотворной способности вашего топлива.

1. Угольные питатели важны. Часто игнорируемые до тех пор, пока что-то не сломается, неточные устройства подачи угля могут затруднить определение тепловой мощности вашей установки. Предоставлено: Una Nowling

Метод потери тепла и три блока эффективности

Существенная проблема с использованием метода ввода / вывода для определения вашего теплового расхода заключается в том, что если ваша тепловая мощность меняется от одной ситуации к другой, вы не имеете ни малейшего представления о том, что привело к изменению.Был ли котел менее эффективен при сжигании топлива? Снижается ли КПД турбины из-за высокого противодавления конденсатора? Увеличилась ли служебная мощность станции? Поскольку метод ввода / вывода рассматривает электростанцию ​​как черный ящик, инженер должен полагаться на более точный метод определения тепловой мощности.

Метод потери тепла для определения вашего теплового расхода по существу разбивает электростанцию ​​на три подсистемы, в которых происходит процесс преобразования энергии:

■ Котел, в котором тепло топлива преобразуется в энергию пара.

■ Турбина, в которой тепло пара преобразуется в механическую энергию вращения.

■ Генератор, в котором энергия вращения преобразуется в общую и полезную электрическую энергию.

Метод тепловых потерь для расчета тепловыделения по существу рисует рамку вокруг каждой из этих подсистем и определяет эффективность каждого процесса преобразования энергии. Произведение всех этих значений эффективности преобразования дает общую чистую тепловую мощность электростанции:

NPHR, BTU / кВт x ч = NTHR, BTU / кВт x ч / ((КПД котла,% / 100) x (Полезная мощность, кВт / Полная мощность, кВт))

[Ред.: Уравнение исправлено 21.12.15.]

Как видно из этого уравнения, чтобы уменьшить NPHR, нам необходимо увеличить КПД котла, снизить полезную тепловую мощность турбины или увеличить чистую выработку по сравнению с валовой выработкой.

КПД котла

Определение эффективности вашего котла — это эффективное определение всех видов неэффективности, возникающих в результате процесса сжигания топлива для создания энергии пара. Стандарты и испытательные организации, такие как Американское общество инженеров-механиков (ASME) и Deutsches Institut für Normung (DIN), имеют похожие, но разные показатели для расчета потерь эффективности, но с общей точки зрения их можно сгруппировать в следующие категории.

Явная потеря тепла. Явные потери тепла можно рассматривать как тепло, которое можно определить непосредственно с помощью термометра. Например, воздух для горения поступает в вашу электростанцию ​​в условиях окружающей среды, а дымовой газ выходит из холодного конца воздухонагревателя котла при некоторой повышенной температуре. Чем ближе выхлопной газ к температуре окружающей среды, тем меньше ощутимого тепла теряется в окружающую среду.

Другие ощутимые тепловые потери включают тепло, содержащееся в дне, летучую золу, удаляемую из котла, а также колчедан и горную породу, которые выбрасываются из угольных мельниц.Количество избыточного воздуха, используемого для сжигания, оказывает значительное влияние на эти потери, поскольку каждый фунт избыточного воздуха, проходящего через котел, несет с собой потенциально полезную энергию.

Скрытая потеря тепла. Скрытые тепловые потери нелегко обнаружить термометром и представляют собой потери энергии, связанные с фазовым переходом воды. Когда топливо сжигается в котле, не только вся влага, содержащаяся в топливе, испаряется в пар, но и весь водород, содержащийся в топливе, сгорает с образованием воды, которая также испаряется в пар.Если температура выхлопных газов, выходящих из воздухонагревателя котла, ниже точки кипения воды, содержащейся в газе, вся скрытая теплота парообразования будет выходить из котла и теряться в окружающей среде.

Поскольку скрытые тепловые потери в основном связаны с топливом, их нельзя легко изменить без переключения или осушения топлива. (См. «Повышение эффективности установки и сокращение выбросов CO 2 при сжигании углей с высокой влажностью» в выпуске за ноябрь 2014 г.)

Несгоревшие горючие потери. Несгоревшие горючие потери — это потери эффективности из-за неполного сгорания топлива в котле. Это в первую очередь измеряется в форме углеродного остатка в золе, но также включает образование монооксида углерода (CO). На эти потери обычно влияют как свойства топлива (летучесть топлива), так и методы эксплуатации (избыточный уровень воздуха, тонкость топлива и т. Д.). Важно отметить, что несгоревшие горючие потери — это не то же самое, что и потери при возгорании (LOI), поскольку несгоревшие горючие потери представляют собой потери энергии, тогда как LOI рассчитывается на основе массы золы.

Радиационные и конвекционные потери. Коммунальные котлы — это огромные системы оборудования с многочисленными отверстиями для труб и инструментов и очень большой площадью поверхности, подверженной воздействию окружающей среды. В результате, независимо от того, насколько хорошо спроектирована изоляция и насколько старательный персонал предприятия устраняет утечки воздуха, энергия все равно будет теряться из-за излучения и конвекции.

Маржа и неизвестные убытки. Из-за большого размера и сложности котла часто нецелесообразно измерять все возможные источники потерь энергии от электростанции.В результате для оценки этих потерь обычно используется значение «маржи» или «неизвестного убытка». Типичные значения варьируются от 0,5% до 2,0%.

Если принять во внимание все эти потери КПД, типичный котел для коммунальных служб может использовать топливную энергию с КПД от 83% до 91%.

Повышение КПД котла. Явные тепловые потери могут быть уменьшены путем установки улучшенных средств контроля горения, позволяющих точно регулировать уровень избыточного воздуха в операторах печи для снижения уровня избыточного кислорода в печи.Предварительный нагрев воздуха для горения отходящим теплом завода также повысит эффективность, и некоторые предприятия рассматривают схемы использования солнечных тепловых коллекторов в качестве подогревателей воздуха в светлое время суток.

Поскольку скрытые тепловые потери сильно зависят от качества топлива, а текущие конструкции котлов не позволяют использовать конденсационные воздухонагреватели, за исключением перехода на сушильное топливо, мало что можно сделать на практике для снижения скрытых тепловых потерь.

Несгоревшие горючие потери могут быть уменьшены за счет улучшенной настройки котла и горелки, при этом некоторые установки могут получить более 1% чистой эффективности в результате незначительной настройки или капитальных вложений.

КПД турбины

Эффективность вашей турбины — это, по сути, эффективность турбины по преобразованию пара из котла в полезную энергию вращения. Упрощенный способ просмотра чистой тепловой мощности турбины (NTHR) состоит в том, чтобы суммировать прирост энтальпии питательной воды и холодного вторичного пара через границу котла и разделить это на общую выработку электроэнергии.

Определение КПД турбины. Как и в случае с установкой в ​​целом, тепловая мощность турбинного цикла может быть выражена «брутто» или «нетто».Здесь терминология становится немного сложной, поскольку при расчетах валовой и чистой эффективности используется валовая мощность генератора. Однако, если на электростанции есть питающий насос электрического котла, то из чистого расхода тепла турбины также должна вычитаться мощность, потребляемая питательным насосом; в противном случае такое энергопотребление может исказить значение NTHR и оказаться чрезмерно эффективным. В результате наше упрощенное уравнение NTHR для одного цикла повторного нагрева выглядит следующим образом:

Где:

NTHR = полезный тепловой поток турбины, БТЕ / кВт · ч

H MSOUT = энтальпия основного пара, выходящего из оболочки котла, БТЕ / час

H FWIN = энтальпия питательной воды, поступающей в кожух котла, БТЕ / час

H HRH = энтальпия горячего пара повторного нагрева, выходящего из оболочки котла, БТЕ / час

H CRH = энтальпия холодного вторичного пара, поступающего в кожух котла, БТЕ / час

Мощность BFP = потребляемая мощность питательного насоса котла, кВт

Повышение эффективности цикла турбины. В идеальных условиях система сверхсверхкритического турбинного цикла может преобразовывать пар в энергию вращения с КПД 54% или выше, сверхкритические турбинные циклы могут достигать КПД 50%, а подкритические циклы турбины могут достигать КПД 46%. Однако система турбинного цикла вашей электростанции по крайней мере такая же сложная, как и ваша система котла, и есть много мест, где можно потерять эффективность.

Утечка из наконечника ковша и набивки может составлять 40% от общей потери КПД турбины.Шероховатость сопла, эрозия и ремонт могут составлять 35% потери эффективности, отложения в турбине — 15%, а эрозия и шероховатость ковша — 10%. Проблемы в этих областях могут привести к значительным потерям эффективности: известно, что отложения в турбине вызывают почти 5% -ную потерю эффективности, а утечки из корпуса турбины — вплоть до 3% -ной потери эффективности.

Очень важно знать, что турбина является частью гораздо более крупной пароводяной системы, которая включает конденсаторы, градирни, нагреватели питательной воды, деаэраторы, насосы и трубопроводы, каждая из которых имеет свои собственные потери эффективности.Например, увеличение противодавления в конденсаторе из-за грязных труб на 0,4 дюйма ртутного столба может снизить КПД цикла турбины на 0,5%. Единая разделительная перегородка в нагревателе питательной воды может снизить КПД турбинного цикла на 0,4%. Утечки в линиях отбора и заедание сливных клапанов могут снизить эффективность нагревателя питательной воды, что приведет к чистым потерям цикла более чем на 0,5%.

Усовершенствования лопаток турбины доступны для большинства паровых турбин, с возможностью улучшения до 2% при полной замене турбины низкого давления.Даже возобновляемые источники энергии могут помочь в улучшении тепловыделения, поскольку некоторые производители исследовали перспективу нагрева питательной воды солнечными батареями для повышения эффективности цикла своей турбины, а в некоторых конструкциях удалось достичь повышения пикового КПД более чем на 5%. Конечно, со всеми обновлениями вы должны изучить экономику (см. Врезку).

Имеет ли это экономический смысл?

Очень хорошо предлагать многочисленные капитальные и производственные модернизации на вашей электростанции.Но какие улучшения имеют наибольший экономический смысл для владельца электростанции? Некоторые улучшения завода могут быть метафорическими простыми задачами, в то время как другие улучшения могут потребовать фактора внешнего рынка, такого как налог на выбросы углерода, чтобы стать рентабельными. В таблице 1 представлен очень общий рейтинг улучшений, которые могут быть внесены в электростанции, работающие на пылеугольном топливе, диапазон потенциальных улучшений теплового режима и их относительные периоды экономической окупаемости. Обратите внимание, что этот список не включает многие конкретные элементы обслуживания, которые могут быть найдены на некоторых электростанциях и которые могут обеспечить значительное повышение эффективности при ремонте или модернизации.

Таблица 1. Множество вариантов на выбор. Каждая электростанция имеет уникальные возможности и проблемы для улучшения тепловыделения. Значения, приведенные в этой таблице, являются лишь общими, основанными на исследованиях по энергоэффективности. Источник: Уна Ноулинг

Электрический КПД

Что касается генераторной системы, нас не так беспокоит эффективность преобразования энергии вращения в электрическую, поскольку современные генераторы имеют тенденцию преобразовывать два типа энергии с эффективностью 98% или выше.Однако значительная часть неэффективности, наблюдаемой в этом блоке, связана с обслуживанием станции или потреблением вспомогательной энергии самой электростанции.

Поскольку на электростанции требуются наиболее крупные энергопотребляющие системы, исключение или отключение основных систем оборудования мало что дает. Даже отказ от дополнительного потребления электроэнергии может иметь непредвиденные последствия. В один знойный июнь я работал на электростанции в ее инженерном офисе, когда одному молодому человеку из корпоративного офиса пришла в голову умная идея выключить свет в офисе, включить кондиционер до 85F и отключить кофеварки, воду. фонтаны и автоматы с газировкой.Причина заключалась в том, что цены на электроэнергию превышали 1000 долларов за МВтч, поэтому он хотел иметь возможность продавать все возможные ватты. Чего джентльмен не учел, так это потенциальных последствий помещения группы заводских инженеров в темный, жаркий офис без холодных напитков или кофе. Зрелище было не из приятных.

Поскольку более 80% потребления электроэнергии на электростанции осуществляется за счет электродвигателей, они должны быть в центре внимания при повышении вашего электрического КПД. Только главные вентиляторы электростанции (первичный воздух, наддув и надувная тяга) могут потреблять от 2% до 3% валовой выработки электростанции.Одним из вариантов снижения энергопотребления вентилятора является использование частотно-регулируемых приводов переменного тока, особенно если установка имеет тенденцию работать при более низких нагрузках в течение продолжительных периодов времени. Переключение всех основных вентиляторов предприятия с обычных на частотно-регулируемые приводы может улучшить NPHR более чем на 0,5%.

Утечка воздуха и газа может составлять до 25% потребляемой мощности вентиляторами, поэтому уменьшение утечки в воздухонагревателях и воздуховодах может привести к значительной экономии энергии вентиляторами. Уменьшение избытка воздуха в котле также снизит нагрузку на вентилятор.Программы оптимизации электрофильтров могут как повысить электрическую эффективность, так и улучшить улавливание твердых частиц.

Улучшение творческого тепловыделения

Другие возможности, которые могут не повлиять на тепловую мощность, на самом деле могут привести к значительному повышению эффективности.

Например, на одной электростанции мне рассказали об улучшенной конструкции бункера-регенератора на угольном складе, которая сократила время заполнения угольных бункеров на 2 часа в день. Приблизительный анализ затрат и выгод показал, что новая конструкция бункера для предотвращения налипания влажного угля позволяет сэкономить 1700 долларов США в год в течение пятилетнего периода за счет сокращения времени работы системы транспортировки угля.Хотя это звучит как маленькая картошка, образно говоря, это также значительно снизило усилия оператора угольной свалки во время процесса утилизации, что привело к улучшению человеческого фактора.

Персонал другой электростанции с помощью анализа влияния на качество топлива определил, что единственное препятствие, мешающее им перейти на уголь с более высоким содержанием тепла и более низким содержанием влаги, — это модернизация установки для обдувки сажи. Чистая модернизация стоимостью 1,3 миллиона долларов привела к чистому увеличению тепловыделения более чем на 2% за счет использования более эффективных, но более шлакованных углей, а также одновременной выгоды от предотвращения катастрофического выпадения шлака из-за недостаточного количества шлаков. покрытие сажей.Срок окупаемости данной инвестиции был определен от 18 до 24 месяцев (Рисунок 2).

2. Мы делали это раньше — мы можем сделать это снова. Генераторы, которым необходимо соответствовать стандартам выбросов углерода, должны подходить к проблеме со всех сторон уравнения теплового потока и работать со своим опытным персоналом, чтобы найти новые и инновационные способы максимально эффективно использовать сжигаемый уголь. Источник: Библиотека Конгресса США (1919 г.)

Последние мысли

Я никогда не был на электростанции, на которой нельзя было бы добиться значительного повышения энергоэффективности.Судя по моему многолетнему опыту, инженеры и операторы электростанций — это умные, целеустремленные люди, которые гордятся своей работой и своим предприятием и понимают, что необходимо сделать для повышения эффективности электростанции. К сожалению, столетие относительно дешевого угля и сосредоточение внимания на контроле за выбросами на заводах отвлекло внимание от поддержания и повышения теплоотдачи электростанций.

Хотя некоторые представители отрасли рассматривают предлагаемые стандарты EPA по выбросам углерода как невыполнимую задачу, многие инженеры и операторы предприятий, с которыми я разговаривал, были оптимистичны в отношении того, что им могут быть предоставлены средства и инструменты, чтобы снова начать выигрывать эти награды за теплоотдачу. .■

Уна Ноулинг, PE ([email protected]) — адъюнкт-профессор машиностроения в Университете Миссури в Канзас-Сити, ведущий специалист по технологиям топлива в Black & Veatch и редактор POWER.

Методы расчета коэффициентов работы парового котла в различных условиях эксплуатации с использованием вычислительного термодинамического моделирования

Основные моменты

Приведена методика расчета производительности пылеугольного котла.

Проведено моделирование работы котла с использованием разработанной термодинамической модели.

Проанализирована работа парового котла в различных условиях эксплуатации.

Был рассчитан энергетический и эксергетический КПД котла.

Расчет КПД котла производился при разной нагрузке котла и для разных видов угля.

Реферат

В статье представлены результаты анализа пылевидных угольных паровых котлов при различных условиях эксплуатации.Для исследования эффективности анализируемого парового котла был проведен энергетический и эксергетический анализ, а также определены основные режимы работы дымовых газов — воздуха и водяного пара. Для расчета энергоэффективности котла применялся косвенный метод и расчет индивидуальных потерь котла. Термодинамическая модель была разработана для моделирования работы котла при частичной загрузке котла. Точность результатов модели была проверена при трех различных частичных нагрузках. Термодинамическая модель была создана с использованием программного обеспечения Ebsilon Professional и 0-мерного термодинамического моделирования.Результаты по форме и распределению температуры пара на выходе всех поверхностей нагрева подтверждены имеющимися данными измерений котла. Относительная погрешность расчета температуры пара не превышает 4,5%. Разработанная модель позволяет проводить расчеты для переменных входных условий с целью определения основных параметров работы котла и общего КПД котла. Представленные методы расчета были применены для выявления изменения КПД котла и основных параметров котла при работе с различными частичными нагрузками и при сжигании различных видов угля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *