Menu Close

Индукционный счетчик: Индукционный счетчик электроэнергии: принцип работы, конструкция

Индукционный счетчик электроэнергии: принцип работы, конструкция

Что нужно знать об индукционных счётчиках

Для учета электроэнергии в бытовых и производственных целях используются электросчётчики. Приборы учёта электроэнергии имеют два вида:

  1. Индукционные.
  2. Электронные.

В статье будет рассмотрен такой прибор учёта, как индукционный счётчик электроэнергии.

Конструкция индукционного счётчика

В устройство индукционного прибора учёта заложены катушки, одна из которых тока, а другая – напряжения. Катушка тока имеет последовательное подключение, а катушка напряжения – параллельное. С помощью этих катушек образуется электромагнитное поле. Катушка тока имеет пропорциональный по силе тока электромагнитный поток, а катушка напряжения – пропорционально сетевого напряжения.

Кунструкция

Электромагнитный поток заставляет алюминиевый диск вращаться, что соединён с механизмом счёта зубчатой и червячной передачей, приводя в движение счётный механизм, которым обладает индукционный счётчик электроэнергии.

Как работает индукционный счётчик

Суть работы индукционных счетчиков электроэнергии, основан на таком принципе, когда на движущуюся деталь в одно время воздействует крутящийся и затормаживающий момент. Данный момент имеет пропорцию величине учёта, момент торможения имеет пропорцию скорости раскрутки движущейся части. Состоит индукционный однофазный счетчик электроэнергии из нескольких элементов:

  • Катушки напряжения, что расположили на магнитопроводе;
  • Диск вращения из алюминия;
  • Передаточный механизм устройства учёта;
  • Катушки тока на магнитопроводе;
  • Постоянный магнит.

Сделана катушка из провода с большим сечением, что может выдерживать большую нагрузку. Витки на катушки имеются в небольших количествах, обычно 13-30 витков на катушке. Распределены они в равномерном положении на двух стержнях магнитопровода, что имеет U форму и сделан из электротехнической стали. Сердцевина работает для создания определённой концентрации магнитного потока, который пересекает счётный диск и вращает его.

Счетчик индПодсоединяется обмотка напряжения на фазу напряжения сети и всегда имеет работоспособное состояние, наравне с потребителем, из-за этого она имеет название параллельной цепи. Катушка напряжения требуется для производства магнитного потока, который будет пропорционален сетевому напряжению. Она имеет определённые конструктивные отличия от катушки тока тем, что имеет больше витков, около 8000 – 12 000 и небольшим сечением проводника 0.1 – 0.15 мм2. В большом количестве витки создают более высокое индуктивное сопротивление, чем имеет активное сопротивление обмотки, что является довольно важным для соблюдения правила сдвига на 90° и даёт возможность уменьшит потребление электроэнергии, на однофазном счётчике.

Магнитный поток катушки тока и катушки напряжения, что проходят по диску, образуют в нём трансформационные токи, за счёт чего создаётся вращающийся момент. Чтобы создать противодействующий момент, что будет пропорционален скорости движения диска, используются постоянные тормозные магниты, чей магнитный поток пересекает крутящийся диск из электропроводящего материала.

Образующиеся в диске токи резания, всегда соблюдают скорость вращения пропорционально диска. То есть когда счётчик работает, он соблюдает определённую закономерность,чем большая мощность потребления, тем более быстро будет происходить вращение диска по его оси. Момент противодействия, что образуется при взаимодействии магнитного потока с дисковым током, всегда будет пропорционален скорости вращения. Когда диск проходит волну, что создаёт тормозной магнит, на нём наводится ЭДС резания, что идёт от середины диска. Потоковая сила тормозного магнита при взаимодействии с током диска имеет прямую пропорциональность ЭДС резания и имеет направление против движения диска. Замедляющий процесс зависит от дальности магнита от центра диска, определяется как произведение плеча на значение силы. То есть регулировка быстроты кручения происходит путём перемещения магнита, что позволяет настроить его в зависимости от передаточного числа.

Для более точной настройки на счётчиках используют специальные устройства для регулировки. Данные приборы – это короткозамкнутые медные, алюминиевые витки, или обмотка из витков провода из меди, что замкнут на настраиваемое сопротивление.

Плюсы и минусы индукционных счётчиков

Приборы учёта электроэнергии бывают только однотарифными, потому как в них отсутствует система дистанционного снятия показаний в автоматическом режиме, то есть счётчик не может работать по дневному и ночному тарифу. Это существенный недостаток, которым обладает индукционный электросчетчик, так как оплата за ток будет намного больше, чем у электронных.

Индукционные счётчики имеют ряд своих преимуществ и недостатков. Из преимуществ можно отметить:

  1. Обладают относительно низкой ценой.
  2. Высокий уровень надёжности.
  3. Не зависимы к перепадам электроэнергии.
  4. Имеют длительный срок эксплуатации.
  5. Подходит для таких манипуляций, как отмотка показаний и остановка счётчика.
  6. Продаётся в большинстве точек по продаже электротоваров.

Однако на фоне этого имеются и негативные моменты, а в частности:

  1. Низкий класс точности.
  2. Большой процент погрешности на маленьких нагрузках.
  3. Можно использовать всего один тариф.

Производители индукционных счётчиков работают над улучшением своей продукции, увеличивая класс точности и срок службы, но конструкция, которой обладают индукционные электросчетчики, не позволяет существенно улучшить эти показатели. Именно из-за этого пришли на смену электронные приборы учёта, которые более стабильны и обладают множеством положительных моментов.

описание и принцип действия, плюсы и минусы

Содержание статьи:

Индукционный счетчик электроэнергии с электромеханическим устройством подсчета расхода энергии до сих пор является надежным прибором, установленным в жилых помещениях. Пользователей привлекает его надежность, простота в обслуживании, долгий срок службы и низкая стоимость.

Конструкция индукционного счётчика

Однофазный индукционный счетчик

Основными составными элементами индукционного электросчетчика являются электромагниты напряжения и электрического тока. При их взаимодействии вместе с входящими в них магнитопроводами появляется электромагнитное поле. Через передаточное устройство поле воздействует на алюминиевый диск вращения.

Электромагнит тока при работе испытывает большие нагрузки, поэтому его обмотка изготовлена из проволоки большого сечения. Число витков не превышает тридцати. Проволока равномерно намотана на двух магнитах, которые с помощью зажимов подключены последовательно к сети.

Катушка напряжения параллельно подсоединена к сети и создает электромагнитное поле, прямо пропорциональное действующему напряжению. Обмотка катушки выполнена из тонкой проволоки сечением 0,1…0,15 мм². Число витков может достигать 12000, что позволяет создать индуктивное сопротивление больше, чем активное. Такое устройство позволяет уменьшить расход электроэнергии при работе счетчика.

Все компоненты механического однофазного электросчетчика размещены в пластмассовом корпусе. Данные по расходу электричества за текущий период выводятся на цифровой барабан. Интенсивность расхода энергии можно определить по величине скорости вращения диска.

Как работает индукционный счётчик

Внутреннее устройство индукционного счетчика

Алюминиевый диск индукционного счетчика электрической энергии является подвижным токопроводящим элементом, на который воздействует электромагнитное поле, создаваемое в катушках счетчика. В результате их действия возникает магнитное поле, переменное по направлению и действующее на диск, в котором создаются вихревые токи, совпадающие по направлению с магнитными потоками.

Между вихревыми токами и магнитными потоками происходит взаимодействие, которое создает вращающий момент, меняющийся по величине и приводящий во вращение алюминиевый диск. Между вращающим моментом и суммарным магнитным потоком от двух катушек тока и напряжения создается зависимость, с учетом сдвига фазы на 90º и обратной связью. Для получения сдвига фазы магнитный поток электромагнита напряжения разложен на две части.

Под воздействием вращающего момента диск крутится с частотой в зависимости от величины поступающей энергии. Ось диска связана со счетным устройством цифрового барабана, на котором отражается действительное количество потребляемой энергии.

Плюсы и минусы приборов

Дисковый электросчетчик старого образца имеет несколько преимуществ перед новыми электронными моделями счетчиков, которые активно внедряются в жилые дома:

  • имеют высокую степень надежности;
  • простая схема исполнения и принцип действия;
  • стоимость электросчетчика старого образца ниже, чем электронного;
  • безразличны к возможным перепадам напряжения электрической сети;
  • обладают длительным сроком эксплуатации.

При низком классе точности электросчетчика потребитель может как переплачивать за электроэнергию, так и недоплачивать

В то же время электромеханические счетчики имеют и ряд недостатков, к которым относятся:

  • Низкий класс точности учета электрической энергии, особенно при малых нагрузках.
  • Для оплаты электроэнергии используется только один тариф, в то время как большинство электрических компаний предоставляет разную стоимость электроэнергии в дневное и ночное время.
  • Возможность остановить вращение диска, и даже отмотать показатели назад, чем могут воспользоваться недобросовестные пользователи. Остановка диска возможна и в случае поломки.

Все недостатки, присущие индукционным изделиям, известны заводам изготовителям. Они постоянно работают над модернизацией и улучшением качества своей продукции, повышая класс точности и срок службы. Однако особенности конструкции не позволяют в полной мере воплотить все эти полезные необходимые условия в устройстве. Поэтому на смену индукционным приборам приходят более совершенные, электронные.

Нужно ли менять счетчики на новые

Электросчетчик необходимо менять в случае окончания срока эксплуатации

Если у вас установлен старый индукционный счетчик, не спешите его поменять на новый. Вполне возможно, что он прослужит еще долгое время, до окончания срока службы, указанного в паспорте, а это почти 20 лет. Однако в некоторых случаях могут заставить произвести замену и вы обязаны будете приобрести новый счетчик.

Электросчетчики подлежат замене в таких случаях:

  • Проводятся работы по плановому обновлению электрической сети с заменой всех счетчиков.
  • Счетчик неисправен.
  • Закончился срок эксплуатации прибора согласно данным техпаспорта.

В частный дом разрешено устанавливать электросчетчики с классом точности не более 2

По закону пользователь при замене необязательно должен устанавливать электронный счетчик. Если ему удобно, он может поставить любой индукционный счетчик электроэнергии, главное, чтобы точность измерений соответствовала требованиям закона: класс точности должен быть 2.0 и выше.

Оплату расходов по приобретению счетчика и его установке несет владелец, если только не производится плановая замена. В отдельных случаях права собственности на прибор требуют уточнения:

  • Когда счетчик установлен в квартире, домовладельцы обязаны следить за техническим состоянием прибора, снимать показания и производить замену при необходимости. Все расходы при этом несут жильцы квартиры.
  • Когда электросчетчик старого образца установлен в общем коридоре, и его используют несколько квартир, прибор является общей собственностью всех владельцев. Расходы по его замене будут нести все стороны. Если это предусмотрено договором с обслуживающей компанией, сама компания меняет счетчик за счет собранных средств.
  • Когда счетчик является собственностью энергетической компании, имеющей лицензию на производство подобных работ, замена производится за ее счет.

Если нет веских причин менять счетчик электроэнергии, требования проверяющих органов по замене не законны. При этом прибор учета должен быть исправен, не просрочен.

Тарифная система учета

Пример показаний индукционного счетчика

Самым существенным недостатком является невозможность использования нескольких тарифов для оплаты электроэнергии. Поэтому необходимость менять старый электросчетчик на новый зависит от того, как меняется расход энергии в течение суток. Если ночью значительный расход, есть смысл для перехода на более современный электронный прибор учета. Правда при этом следует учесть затраты на покупку и установку нового электронного счетчика.

Снятие показаний

Электромеханические счетчики снабжены цифровым барабаном, на котором отображается расход электроэнергии в киловаттах. Эти данные можно сдать в расчетную службу или самостоятельно производить расчеты.

В зависимости от модели на барабанном табло появляется 5 или 7 цифр, причем последняя отделена от остальных запятой и выделена цветом. При учете не надо считать десятые и сотые доли киловатт – только целые числа. Полученный расход киловатт за месяц умножают на стоимость 1 киловатта и получают сумму, которую надо заплатить за электричество.

Индукционный и электронный счетчик — что лучше?

Всем здравствуйте.

По просьбам моих читателей и друзей сегодняшняя статья будет называться «Индукционный и электронный счетчик — что лучше?»

И действительно, мы с Вами уже знаем как правильно выбрать и приобрести электросчетчик, знаем схемы подключения электросчетчиков, их устройство и принцип работы, но до сих пор не определились, что же все таки лучше: индукционный счетчик или электронный?

На данное время в России продолжают вести учет электроэнергии около 50 млн. индукционных электросчетчиков. Нужно ли нам переходить на электронные счетчики? Давайте разберемся более подробно с этим вопросом.

Достоинства индукционного счетчика электроэнергии:

  • очень надежны в эксплуатации
  • большой ресурс их работы (несколько десятков лет)
  • не зависят от качества электроэнергии (скачки и понижения напряжения)
  • относительно низкая стоимость по сравнению с электронными

Недостатки индукционного счетчика электроэнергии:

  • класс точности очень низкий — 2,0
  • при уменьшении нагрузки увеличивается его погрешность
  • значительное собственное потребление по токовым цепям и цепям напряжения (читайте статью о том, как самостоятельно измерить фактическую нагрузку трансформатора напряжения)
  • практически отсутствует защита от хищения электроэнергии
  • при учете нескольких видов электроэнергии (активной и реактивной) необходимо использовать несколько счетчиков
  • учет электроэнергии ведется в одном направлении
  • большие габаритные размеры

Достоинства электронного счетчика электроэнергии:

  • класс точности высокий — 1,0 и выше
  • имеет несколько тарифов (от 2 и выше)
  • при учете нескольких видов электроэнергии можно использовать один прибор
  • учет электроэнергии ведется в двух направлениях
  • производит измерение качества и количества мощности
  • производит хранение данных по учету электроэнергии длительное время
  • простой доступ к данным по учету электроэнергии
  • в случае хищения электрической энергии происходит фиксация несанкционированного доступа
  • возможность дистанционно снимать показатели электроэнергии по разным интерфейсам связи
  • возможность использования в системах АСКУЭ и АСТУЭ (автоматизированные системы учета электрической энергии)
  • длительный срок межповерочного интервала (МПИ)
  • малые габаритные размеры

Недостатки электронного счетчика электроэнергии:

Но везде ли эти достоинства важны. Или эти недостатки так критичны…

Вывод:

Естественно, что у электронных счетчиков больше достоинств, чем у индукционных. Поэтому при выборе электросчетчика рекомендуется проанализировать место его установки и точки учета (предприятие или быт), а также определиться — все ли достоинства счетчика нам требуются.

В быту класса точности 2,0 будет достаточно (Постановление Правительства РФ №442 от 04.05.2012). Высокий класс точности необходим для учета электроэнергии больших мощностей на предприятиях.

Зачем же тогда переплачивать за класс точности и другие достоинства электронного счетчика, которые мы не будем использовать?

P.S. И хотелось бы узнать Ваше мнение: какой счетчик Вы предпочитаете?

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Индукционный счетчик электроэнергии — принцип работы и разновидности

индукционный прибор учета

В последние годы индукционный счетчик электроэнергии активно вытесняется с рынка приборов учёта более современными и совершенными, элекртонными моделями.

Тем не менее, именно такие счётчики имеют достаточно большое количество преимуществ, благодаря которым до сих пор эксплуатируются отечественными потребителями во многих регионах нашей страны.

Плюсы и минусы

Механические приборы учёта относятся к категории надежных в эксплуатации электросчётчиков и выгодно отличаются продолжительным сроком службы.

Немаловажным преимуществом является также устойчивость к перепадам напряжения в электрической сети.

Стоимость индукционного прибора учёта на порядок ниже цены новомодных электронных счётчиков, поэтому такое устройство по-прежнему считается самым доступным для широкого круга отечественных потребителей.

Тем не менее, класс точнoсти у таких приборов достаточно низкий, и варьируется в пределах 2.0-2.5 единиц, а также практически полностью отсутствует защита от хищений электроэнергии.

Кроме всего прочего, к недостаткам можно отнести высокое энергопотребление самим прибором и значительный рост погрешности измерений в условиях малых нагрузок. Определенное неудобство в процессе эксплуатации создают и внушительные габариты самого механического электросчётчика.

Важно помнить, что при необходимости выполнять одновременный учет реактивной и активной электрической энергии, потребуется устанавливать сразу несколько электросчётчиков индукционного типа.

Принцип работы индукционного счетчика электроэнергии

Стандартное счетное устройство механического прибора учёта – вращающийся алюминиевый диск и специальные цифровые барабаны, которые отражают расход электрической энергии в режиме реального времени.

Принцип работы достаточно прост, и заключается во взаимодействии электромагнитного поля с диском, представляющим собой подвижный токовый проводник. Сохранение стабильной работоспособности индукционного электросчетчика возможно только в условия фазового сдвига, который должен быть равен девяносто градусам.

как устроен счетчик

Устройство индукционного счетчика электроэнергии

Индукционные приборы имеют катушку напряжения и тока. При этом подключение токовой катушки производится только последовательно, а катушка на напряжение запитывается параллельно. В процессе работы обе катушки формируют электромагнитный поток, который у токовой катушки является неизменно пропорциональным силе тока, а у катушки напряжения – пропорционален напряжению в сети.

Закономерностью принципа работы электрического счётчика индукционного типа является наличие прямой пропорциональности потребляемой мощностью и скорости вращения счётного устройства в виде алюминиевого диска.

Установка

однофазный многофункциональный электронный счётчик электрической энергии DDS28UТрехфазные приборы заметно отличаются от однофазных электрических счётчиков, и способны функционировать в условиях значительной мощности электросети.

Однофазный прибор может эксплуатироваться при номинальной мощности не выше 10 кВт.

Трехфазные приборы учёта пригодны для использования в условиях номинальной мощности в 15 кВт и более.

Такие приборы учёта относятся к категории многофункциональных, поэтому применяются не только в бытовой сети, но и при выполнении контроля трехфазных двигателей.

пломбаОпломбировка счетчика – обязательное мероприятие для каждого потребителя электроэнергии. Как опломбировать счетчик электроэнергии – порядок действий описан в статье.

Инструкция по снятию показаний с электросчетчика приведена тут.

Несмотря на то что счетчик может работать многие годы, существуют нормативы, согласно которым через определенный промежуток времени после установки прибор нужно заменить. Каков срок эксплуатации электросчетчика, расскажем далее.

Однофазные

Самым простым вариантом является однофазное подключение, выполняемое посредством кабелей и нагрузки. Провода «заземление», «фаза» и «ноль» должны подключаться на вход электросчётчика и выход из прибора учёта. Перед электросчётчиком требуется установить устройство автоматического выключения, что сделает эксплуатацию максимально безопасной и удобной.

Конструкцией стандартного электросчетчика предусмотрено наличие шины, представленной обычной медной планкой. Фиксация планки осуществляется диэлектрическими зажимами. По всей длине проделаны отверстия, позволяющие легко подводить и надежно крепить все электрические кабели.

монтаж прибора учета

Схема подключения однофазного счетчика

Стандартная пошаговая схема самостоятельного подключения однофазного индукционного счётчика электроэнергии:

  • установка и фиксация прибора учёта в щиток;
  • установка выключателей на DIN-рейке и фиксация при помощи подпружиненной защелки;
  • установка шин заземляющего и защитного типа на DIN-рейке или изоляторах щитка;
  • подключение нагрузки на выключатели и последующее соединение автомата со счетчиком;
  • подключение электросчётчика;
  • подключение «фазы» на нижние зажимы выключателя, соединение нулевой шины с кабелем «ноль» и проводов заземления с заземляющей шиной;
  • установка перемычек на зажимы;
  • подключение электрического счетчика на нагрузку;
  • отключение подачи электричества, соединение провода «ноль» с третьей клеммой прибора учёта и подключение кабеля «фаза» на первую клемму.

На заключительном этапе проверяется работоспособность установленного оборудования на минимальной и максимальной нагрузке.

Обязательно нужно обратиться в организацию энергосбыта для того, чтобы установленный самостоятельно прибор учёта электрической энергии был проверен, а затем опломбирован специалистами.

Трехфазные

Трехфазный прибор учёта расходуемой электроэнергии принято относить к категории более безопасных счётчиков, что обусловлено разделением потребителей на отдельные группы. Такой тип электросчетчика способен измерять не только активную, но и реактивную энергию с учётом потокового направления.

трехфазный счетчик - подключение

Схема подключения трехфазного счетчика через трансформаторы тока

Стандартная трёхфазная модель имеет восемь клемм, поэтому подключение осуществляется в следующем порядке:

  • подключение общесетевых кабелей с одинаковой цветовой маркировкой на первую, третью, пятую и седьмую клеммы;
  • подключение квартирных кабелей с одинаковой цветовой маркировкой на вторую, четвертую, шестую и восьмую клеммы.

В процессе самостоятельной установки в обязательном порядке должна соблюдаться схема, учитывающая подключение входных кабелей посредством четырёхполюсника от вводного автомата.

После выполнения установки, прибор учёта обязательно должен пломбироваться и ставиться на учет специалистами энергоснабжающей компании, которые фиксируют стартовые показания счетчика и выдают разрешение на эксплуатацию.

Тарифная система учета

Дифференцированный вариант системы учёта базируется на расходе электроэнергии в зависимости от временного интервала, что позволяет осуществлять оплату потребленного электричества по разным тарифам: дневному и ночному.

Следует отметить, что приборы учёта электроэнергии индукционного типа относятся к категории однотарифных, и не имеют системы дистанционного снятия показаний. Соответственно, оплата потребленного электричества при использовании такого прибора будет на порядок выше, чем расходы электроэнергии в условиях эксплуатации более современных многотарифных моделей.

Снятие показаний

Общие показатели расхода электрической энергии определяются на шкале значений всеми цифрами, расположенными до запятой. Последнее число, которое выделяется рамкой красного цвета, отображает десятые доли одного киловатта, и при выполнении расчётов не учитывается.

Чтобы самостоятельно опередить расход электроэнергии за один месяц, необходимо вычислить разницу между цифровыми данными текущего месяца и показаниями прибора учёта в предыдущем месяце.

Оплата счёта за израсходованное количество кВт осуществляется в соответствии с тарифами, которые устанавливаются в каждом регионе индивидуально.

Безусловно, индукционные счетчики имеют большой ресурс эксплуатации и на их работоспособность не оказывают влияния как скачки напряжения в сети, так и качество передаваемого тока, но сэкономить на оплате электроэнергии за счёт многотарифной системы расчёта, увы, не получится.

Видео на тему

Разновидности электросчетчиков, преимущества и недостатки

В современном мире без этих приборов уже не обойтись. Ведь у каждого в доме есть электропроводка, следовательно, и электросчетчик должен быть. Но вот проблема. Как только приходит время заменить или установить счетчик, мы идем в магазин и на нас обрушивается шквал разнообразия выбора. Мы начинаем теряться и в итоге выбираем не то, что нам нужно. Чтобы такого не происходило, давайте разберемся, какие бывают счетчики, и какой подходит именно вам. На сегодня существует два основных типа счетчиков: индукционные (механические) и электронные.

Индукционные (механические) электросчетчики


Рис.1. Индукционный однофазный электросчетчик

Счетчики с вращающимся диском знакомы практически каждому. Это те, за прозрачной панелью которых есть вращающееся колесико. Наверняка многие не раз наблюдали за скоростью его вращения — чем выше скорость, тем больше расход энергии. А показания счетчика обозначаются цифрами на специальных барабанах.

Принцип работы таких счетчиков заключается в следующем. В электрическом счетчике имеется 2 катушки (рис. 2 — 1 и 4 указатели) — катушка напряжения (служит ограничителем переменного тока, преградой для помех и пр., создает магнитный поток, соразмерный напряжению) и токовая катушка (создает переменный магнитный поток, соразмерный току).


Рис.2. Принцип работы индукционного электросчетчика

Магнитные потоки, создаваемые катушками, проникают сквозь алюминиевый диск (рис.2, указатель 5). При этом потоки, которые создает токовая катушка, пронизывают диск несколько раз за счет своей U-образной формы. Как следствие, появляются электромеханические силы, которые и вращают диск.

Далее ось диска взаимодействует со счетным механизмом в виде червячной (зубчато-винтовой) передачи (Рис. 3), которая передает необходимые сигналы и информацию на цифровые барабаны. Чем выше крутящий момент диска, тем выше мощность подаваемого сигнала (крутящий момент равнозначен мощности сети), а значит и расход электроэнергии больше.


Рис.3. Червячная передача

Когда мощность подаваемого электромагнитного сигнала снижается, в действие приходит постоянный магнит торможения (Рис.2, указатель 3). Он и выравнивает колебания частоты вращения диска за счет взаимодействия с вихревыми потоками. Магнит создает электромеханическую силу, обратную кручению диска. Это заставляет диск снизить скорость или вообще остановиться.

Эта группа счетчиков наиболее дешевая и простая. Широко использовались индукционные электросчетчики в советское время (и по нынешнее время у большинства в квартирах установлены именно такие приборы). Но постепенно на смену им приходят электронные счетчики за счет ряда недостатков индукционных приборов. Например, индукционный электросчетчик не может снять показания автоматически, а также в показаниях зачастую присутствует погрешность.

Достоинства и недостатки индукционных счетчиков

Достоинства
  1. Надежны в использовании
  2. Многoлетний срок эксплуатации счетчика
  3. Независимость от перепадов электрoэнергии
  4. Дешевле электронных
Недостатки
  1. Класс точнoсти достаточно низок — 2,0; 2,5
  2. Практически oтсутствует защищенность от хищения электрической энергии
  3. Высокое собственное потребление тока
  4. При малых нагрузках вырастает погрешность (чем меньше класс точности, тем больше погрешность)
  5. При учете нескольких типов электроэнергии (активной и реактивной) возникает необходимость использования нескольких приборов учета энергии
  6. Энергоучет ведется в одном направлении
  7. Крупные габариты приборов

Электронные электросчетчики


Рис.4. Электронный электросчетчик

Эти приборы несколько дороже индукционных, но на сегодняшний день это наиболее выгодные и приоритетные в использовании счетчики. Они имеют более высокий класс точности и позволяют учитывать многотарифность.

Электронные электросчетчики работают за счет преобразования входного аналогового сигнала с датчика тока в цифровой код, равнозначный потребляемой мощности. Этот код отправляется расшифровываться на специальный микроконтроллер. После чего на дисплей (или цифровой барабан) выводится количество расходуемой электроэнергии.

Самая главная составляющая этих счетчиков — это микроконтроллер. Именно он производит анализ сигнала и рассчитывает количество расходуемой электроэнергии. А также передает информацию на выводящие, электромеханические устройства и дисплей.


Рис.5. Принцип работы электронного электросчетчика

Сам прибор состоит из корпуса, трансформатора тока, преобразователя сигнала и тарификационного модуля. Если же разбирать более подробно, в состав счетчика входят еще и:

  • ЖК-дисплей (или цифровой барабан)
  • источник вторичного питания (преобразует переменное напряжение)
  • микроконтроллер (просчитывает входные импульсы, рассчитывает расходуемую электроэнергию, обменивается данными с другими узлами и схемами счетчика)
  • преобразователь (преобразует аналоговый сигнал в цифровой с последующим преобразованием его в импульсный сигнал, равнозначный потребляемой энергии)
  • супервизор (формирует сигнал сброса при перебоях с питанием, выводит аварийный сигнал при снижении входного напряжения)
  • память (хранит данные об электроэнергии)
  • телеметрический выход (принимает импульсный сигнал об энергопотреблении)
  • часы реального времени (отсчитывают текущее время и дату)
  • оптический порт (считывает показания счетчика, а также программирует его)

Достоинства и недостатки электронных электросчетчиков

Достоинства
  1. Класс тoчности — от 1,0 — высокий
  2. Многотарифность (от 2)
  3. Достаточно одного счетчика при учете нескольких типов электрической энергии
  4. Энергоучет ведется в 2 направлениях
  5. Ведут измерение качества и объема мощности
  6. Хранят данные учета электроэнергии
  7. Данные легко доступны
  8. В случае хищения электроэнергии осуществляется фиксация несанкционированного доступа
  9. Возмoжность дистанциoнно снимать пoказатели
  10. Возможно применение при автоматизированном техническом учёте и контроле учета электроэнергии (АСТУЭ и АСКУЭ)
  11. Длительный срок метрологического интервала (МПИ)
  12. Малые по размеру
Недостатки
  1. Очень чувствительны к перепадам напряжения
  2. Дороже индукционных
  3. Достаточно сложно отремонтировать

Маркировка на электросчетчиках

Помимо видов счетчиков существует еще несколько нюансов, которые следует знать. На любом электросчетчике имеется определенная маркировка, условно обозначающаяся буквами и цифрами.


Рис.6. Обозначения на электросчетчике

ОбозначениеПояснение
СТип устройства (счетчик)
А, РВид учитываемой энергии (активная энергия/реактивная энергия)
ООднофазный счетчик
3, 4Число фазовых проводов в сети (четырёхпроводная/трёхпроводная)
УУниверсальность
ИТип измерительной системы (индукционный счетчик). Далее может стоять трёхзначное число, которое означает конструктивное исполнение счетчика (конструкция счетчика может быть индукционной или электронной).
ТТип счетчика в тропическом исполнении
П, МТип исполнения (прямоточный — если нет подключения к трансформатору/модернизированный). Далее могут быть такие сокращения, как «380/220 17А, 2001», что означает рабочие напряжения в проводах, максимальный поток тока и год изготовления. Также в конце надписи может стоять заводской номер.

Что касается класса точности электросчетчика, то по этим параметрам определяется точность показаний расходуемой электроэнергии. В квартирах, как правило, установлены счетчики класса 2,0, но могут быть и выше. Что это означает? А то, что ваш электросчетчик может учесть на 2% больше или меньше электроэнергии от своей собственной мощности. Или проще говоря — погрешность счетчика. Чем меньше цифра, тем меньше погрешность. В целом, в бытовых условиях достаточно электросчетчика класса 2,0. Более высокие классы точности необходимы скорее на предприятиях, где нужна большая мощность энергии.

Итак, на сегодняшний день мы можем себя не ограничивать в выборе электросчетчиков. Каждый из них имеет свои определенные особенности и функции. В этой статье мы разобрали основные особенности этих приборов и принципы их работы, что поможет вам сориентироваться в многообразии выбора.

Счетчики электроэнергии. Часть 1. Индукционные и электронные

В современном мире без этих приборов уже не обойтись. Ведь у каждого в доме есть электропроводка, следовательно, и электросчетчик должен быть. Но вот проблема. Как только приходит время заменить или установить счетчик, мы идем в магазин и на нас обрушивается шквал разнообразия выбора. Мы начинаем теряться и в итоге выбираем не то, что нам нужно. Чтобы такого не происходило, давайте разберемся, какие бывают счетчики, и какой подходит именно вам. На сегодня существует два основных типа счетчиков: индукционные (механические) и электронные.

  • Индукционные (механические) электросчетчики
    • Достоинства и недостатки индукционных счетчиков
      • Достоинства
      • Недостатки
  • Электронные электросчетчики
    • Достоинства и недостатки электронных электросчетчиков
      • Достоинства
      • Недостатки
  • Маркировка на электросчетчиках

Индукционные (механические) электросчетчики


Рис.1. Индукционный однофазный электросчетчик

Счетчики с вращающимся диском знакомы практически каждому. Это те, за прозрачной панелью которых есть вращающееся колесико. Наверняка многие не раз наблюдали за скоростью его вращения — чем выше скорость, тем больше расход энергии. А показания счетчика обозначаются цифрами на специальных барабанах.

Принцип работы таких счетчиков заключается в следующем. В электрическом счетчике имеется 2 катушки (рис. 2 — 1 и 4 указатели) — катушка напряжения (служит ограничителем переменного тока, преградой для помех и пр., создает магнитный поток, соразмерный напряжению) и токовая катушка (создает переменный магнитный поток, соразмерный току).


Рис.2. Принцип работы индукционного электросчетчика

Магнитные потоки, создаваемые катушками, проникают сквозь алюминиевый диск (рис.2, указатель 5). При этом потоки, которые создает токовая катушка, пронизывают диск несколько раз за счет своей U-образной формы. Как следствие, появляются электромеханические силы, которые и вращают диск.

Далее ось диска взаимодействует со счетным механизмом в виде червячной (зубчато-винтовой) передачи (Рис. 3), которая передает необходимые сигналы и информацию на цифровые барабаны. Чем выше крутящий момент диска, тем выше мощность подаваемого сигнала (крутящий момент равнозначен мощности сети), а значит и расход электроэнергии больше.


Рис.3. Червячная передача

Когда мощность подаваемого электромагнитного сигнала снижается, в действие приходит постоянный магнит торможения (Рис.2, указатель 3). Он и выравнивает колебания частоты вращения диска за счет взаимодействия с вихревыми потоками. Магнит создает электромеханическую силу, обратную кручению диска. Это заставляет диск снизить скорость или вообще остановиться.

Эта группа счетчиков наиболее дешевая и простая. Широко использовались индукционные электросчетчики в советское время (и по нынешнее время у большинства в квартирах установлены именно такие приборы). Но постепенно на смену им приходят электронные счетчики за счет ряда недостатков индукционных приборов. Например, индукционный электросчетчик не может снять показания автоматически, а также в показаниях зачастую присутствует погрешность.

Достоинства и недостатки индукционных счетчиков

Достоинства
  1. Надежны в использовании
  2. Многoлетний срок эксплуатации счетчика
  3. Независимость от перепадов электрoэнергии
  4. Дешевле электронных
Недостатки
  1. Класс точнoсти достаточно низок — 2,0; 2,5
  2. Практически oтсутствует защищенность от хищения электрической энергии
  3. Высокое собственное потребление тока
  4. При малых нагрузках вырастает погрешность (чем меньше класс точности, тем больше погрешность)
  5. При учете нескольких типов электроэнергии (активной и реактивной) возникает необходимость использования нескольких приборов учета энергии
  6. Энергоучет ведется в одном направлении
  7. Крупные габариты приборов

Электронные электросчетчики


Рис.4. Электронный электросчетчик

Эти приборы несколько дороже индукционных, но на сегодняшний день это наиболее выгодные и приоритетные в использовании счетчики. Они имеют более высокий класс точности и позволяют учитывать многотарифность.

Электронные электросчетчики работают за счет преобразования входного аналогового сигнала с датчика тока в цифровой код, равнозначный потребляемой мощности. Этот код отправляется расшифровываться на специальный микроконтроллер. После чего на дисплей (или цифровой барабан) выводится количество расходуемой электроэнергии.

Самая главная составляющая этих счетчиков — это микроконтроллер. Именно он производит анализ сигнала и рассчитывает количество расходуемой электроэнергии. А также передает информацию на выводящие, электромеханические устройства и дисплей.


Рис.5. Принцип работы электронного электросчетчика

Сам прибор состоит из корпуса, трансформатора тока, преобразователя сигнала и тарификационного модуля. Если же разбирать более подробно, в состав счетчика входят еще и:

  • ЖК-дисплей (или цифровой барабан)
  • источник вторичного питания (преобразует переменное напряжение)
  • микроконтроллер (просчитывает входные импульсы, рассчитывает расходуемую электроэнергию, обменивается данными с другими узлами и схемами счетчика)
  • преобразователь (преобразует аналоговый сигнал в цифровой с последующим преобразованием его в импульсный сигнал, равнозначный потребляемой энергии)
  • супервизор (формирует сигнал сброса при перебоях с питанием, выводит аварийный сигнал при снижении входного напряжения)
  • память (хранит данные об электроэнергии)
  • телеметрический выход (принимает импульсный сигнал об энергопотреблении)
  • часы реального времени (отсчитывают текущее время и дату)
  • оптический порт (считывает показания счетчика, а также программирует его)

Достоинства и недостатки электронных электросчетчиков

Достоинства
  1. Класс тoчности — от 1,0 — высокий
  2. Многотарифность (от 2)
  3. Достаточно одного счетчика при учете нескольких типов электрической энергии
  4. Энергоучет ведется в 2 направлениях
  5. Ведут измерение качества и объема мощности
  6. Хранят данные учета электроэнергии
  7. Данные легко доступны
  8. В случае хищения электроэнергии осуществляется фиксация несанкционированного доступа
  9. Возмoжность дистанциoнно снимать пoказатели
  10. Возможно применение при автоматизированном техническом учёте и контроле учета электроэнергии (АСТУЭ и АСКУЭ)
  11. Длительный срок метрологического интервала (МПИ)
  12. Малые по размеру
Недостатки
  1. Очень чувствительны к перепадам напряжения
  2. Дороже индукционных
  3. Достаточно сложно отремонтировать

Маркировка на электросчетчиках

Помимо видов счетчиков существует еще несколько нюансов, которые следует знать. На любом электросчетчике имеется определенная маркировка, условно обозначающаяся буквами и цифрами.


Рис.6. Обозначения на электросчетчике

ОбозначениеПояснение
СТип устройства (счетчик)
А, РВид учитываемой энергии (активная энергия/реактивная энергия)
ООднофазный счетчик
3, 4Число фазовых проводов в сети (четырёхпроводная/трёхпроводная)
УУниверсальность
ИТип измерительной системы (индукционный счетчик). Далее может стоять трёхзначное число, которое означает конструктивное исполнение счетчика (конструкция счетчика может быть индукционной или электронной).
ТТип счетчика в тропическом исполнении
П, МТип исполнения (прямоточный — если нет подключения к трансформатору/модернизированный). Далее могут быть такие сокращения, как «380/220 17А, 2001», что означает рабочие напряжения в проводах, максимальный поток тока и год изготовления. Также в конце надписи может стоять заводской номер.

Что касается класса точности электросчетчика, то по этим параметрам определяется точность показаний расходуемой электроэнергии. В квартирах, как правило, установлены счетчики класса 2,0, но могут быть и выше. Что это означает? А то, что ваш электросчетчик может учесть на 2% больше или меньше электроэнергии от своей собственной мощности. Или проще говоря — погрешность счетчика. Чем меньше цифра, тем меньше погрешность. В целом, в бытовых условиях достаточно электросчетчика класса 2,0. Более высокие классы точности необходимы скорее на предприятиях, где нужна большая мощность энергии.

Итак, на сегодняшний день мы можем себя не ограничивать в выборе электросчетчиков. Каждый из них имеет свои определенные особенности и функции. В этой статье мы разобрали основные особенности этих приборов и принципы их работы, что поможет вам сориентироваться в многообразии выбора.

Современные индукционные счетчики — Энергетика и промышленность России — № 5 (69) май 2006 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 5 (69) май 2006 года

Какие мысли приходят, когда мы слышим словосочетание «Индукционный счетчик»? Устаревший прибор, класс точности 2.5, подлежит замене. Возможно, еще дешевизна. Увы, эта цепочка ассоциируется у многих с электромеханическими приборами учета электроэнергии. Мы попробуем разубедить их. Расскажем сегодня о современных образцах индукционных счетчиков.

Начнем с главного – класса точности. Ведь объективно это единственный показатель, в котором электронные аналоги имеют безоговорочное преимущество. 2.0‑2.5 против 1.0 у электроники (с возможностью прецизионной настройки вплоть до десятых долей процента погрешности). Однако на мировом рынке индукционные электросчетчики с классом точности 1.0 уже заняли свою нишу! Например, в благополучной и технически развитой Германии имеют место обратные процессы перехода с электроники на индукционные приборы. Немецкий концерн RWE в ногу со временем в начале века перешел на электронные приборы учета. Однако в 2004 году вновь вернулся к индукционным счетчикам с магнитным подвесом. Они полностью удовлетворяли компанию по всем параметрам. Вдохновленные подобными примерами, ведущие производители стараются привести индукционные счетчики в класс точности 1.0, и непонятно, почему российские предприятия пока не освоили современные индукционные образцы.

Каков секрет настройки индукционных счетчиков в класс электронных? Это не сложные и многократные дорогостоящие операции по получению нужной погрешности – все значительно проще. Не секрет, что одна из основных составляющих погрешности индукционного прибора – это сила трения опоры оси вращения диска, неизбежно возникающая при контакте оси с точкой опоры. Минимизировать силу трения и повысить точность счетчика можно использованием специальных материалов, уменьшением поверхности соприкосновения деталей, либо магнитным подвесом. Организовать при помощи магнитов систему взаимодействия оси и опоры таким образом, чтобы исключить соприкосновение деталей, а значит, исключить и силу трения из подсчета погрешности. Именно такой способ (вкупе с рядом других новаций, о них ниже) позволяет настроить индукционный счетчик в класс точности 1.0.

Рассмотрим магнитный подвес подробнее. Сам вращающийся диск сделан как одно целое с осью, имеющей червячную передачу, не требующую никакой смазки, и покрыт специальным защитным слоем. Использование современных материалов (таких, как феррит стронция) и защитного покрытия (например, полиамиды) исключает коррозию и другие неприятные явления и делает счетчик настолько долговечным, что некоторые образцы бесперебойно работают несколько десятилетий. Но уникальность технологии в самой системе подвеса. Верхняя опора оси – вставка из твердосплавного материала. Здесь трение невелико, так как не отягощено силой реакции опоры. А вот нижняя опора использует эффект магнитного отталкивания одноименных полюсов постоянного магнита. Таким образом, ось диска вращается без трения, обеспечивая стабильную и надежную работу на протяжении всего времени работы счетчиками. Кажется, что всё достаточно просто. Но на самом деле это не так. К примеру, под воздействием температуры расстояние между двумя полюсами магнита может измениться, соответственно увеличится и погрешность. Для борьбы с этим явлением используется температурное компенсирующее устройство, способное строго сохранять заданное изначально расстояние. Эта технология позволяет добиваться от индукционных счетчиков класса точности 1.0.

Сравнявшись с электронным счетчиком по классу точности, индукционный прибор имеет другой недостаток – ограниченные возможности по построению систем АИИС КУЭ, за которыми многие видят завтрашний день энергетики. Однако и здесь индукционные приборы имеют свои козыри. Козырь первый – широкая распространенность. Миллионы индукционных счетчиков работают во всем мире. И дело не ограничивается странами СНГ, точно такие же программы, как и у нас (по замене устаревших приборов) действуют, к примеру, в Италии.
В зарубежных странах, помимо плановой замены отслуживших свой век электросчетчиков, также преследуется цель введения автоматизированного учета АИИС КУЭ. И именно поэтому делается акцент на электронные приборы, которые намного технологичнее вписываются в такие схемы. Хорошо, если бы в России мы шли в ногу со временем и ставили перед собой аналогичные задачи. Увы, наша страна не может похвастаться даже простым наличием поквартирного учета электроэнергии. Даже в столичных городах есть тысячи домохозяйств, которые вообще не используют счетчики электроэнергии. Прекрасно, что мы заботимся об автоматизации учета, но как можно автоматизировать то, чего нет? Да и сами по себе системы АИИС КУЭ скорее предназначены для промышленного сектора. Во всей России не отыщется и 100 жилых домов, оснащенных АИИС КУЭ! Тогда к чему устанавливать в квартиры электронные приборы, самые значимые функции которых даже не пригодятся потребителю? А ведь он за них платит из собственного кармана.

Но даже АИИС КУЭ вполне возможно создать на базе индукционных приборов. Подобный опыт имеет одна из бывших союзных республик – Киргизия. Обладая огромным парком индукционных счетчиков, киргизские энергетики сталкивались с массовыми хищениями электроэнергии, с невозможностью контроля точек потребления и фиксации показаний счетчика, с желанием перейти на двухтарифный учет. Установить электронные счетчики – решение в свете последних веяний напрашивается само собой. Однако заменить такое количество счетчиков – это большая нагрузка на бюджет. Выход подсказали в Национальной академии наук Кыргызстана. Ученые разработали автоматизированную систему учета электроэнергии, основывающуюся на индукционных приборах учета! Достигается это посредством установки на счетчик дополнительного адаптера, который фиксирует вращение диска. При этом получился многотарифный прибор – несложный адаптер в состоянии различать дневной и ночной тарифы. Адаптер имеет беспроводной интерфейс, по которому контроллеры могут получать информацию без непосредственного доступа к самому счетчику. Плюс обмануть такую систему стало намного сложнее. Но самое интересное, что монтаж такой схемы АИИС КУЭ обошелся в 5‑6 раз дешевле (по словам энергетиков), чем закупка и монтаж электронных счетчиков. В ближайшее время в качестве эксперимента система начнет функционировать в одном из домов столицы. Получается, что и системы АИИС КУЭ можно монтировать с участием индукционных приборов без больших финансовых вливаний. А как повысится надежность и отказоустойчивость, если провести такой эксперимент не на устаревшем оборудовании, а на индукционных счетчиках, о которых мы сегодня рассказываем?

Низкая цена, долговечность, ремонтопригодность, долгосрочная стабильность метрологических параметров, широкий диапазон перегрузочной способности (до 1000%), а теперь еще и высокий класс точности, а также использование в построении АИИС КУЭ – вот признаки современного индукционного счетчика. Привычным стал для всех стопорный механизм и механизм, позволяющий учитывать обратный поток энергии как прямой. Все эти технологии живут и процветают за рубежом. В Аргентине, Иране, Китае строятся новые заводы по производству индукционных счетчиков. И это в то время, когда в России производители электронных приборов учета старательно лоббируют свои интересы, сравнивая свои последние разработки с индукционными электросчетчиками разработки 70‑х годов, пренебрегая международным опытом. Однако, хоть и доля рынка индукционных счетчиков уменьшается, сам рынок индукции в количественном отношении остается стабильным. Количество продаваемых индукционных электросчетчиков не увеличивается, но и не уменьшается. Можно с уверенностью полагать, что и российские производители приборов учета в ближайшее время освоят действительно современные образцы электромеханических счетчиков. А затем уже сами энергосистемы и потребители поймут, что похороны индукционных приборов учета оказались преждевременными.

Провод, Приборы учета, Электроэнергия , Энергия , Кабельная арматура, СРО

Асинхронный двигатель

— основные, однофазные и трехфазные асинхронные двигатели

Что такое асинхронный двигатель?

Двигатель только с обмотками армортиссера называется асинхронным. Асинхронный двигатель в большинстве случаев является самой скромной электрической машиной с точки зрения конструкции. Асинхронный двигатель работает по принципу индукции, когда электромагнитное поле индуцируется в роторе, когда вращающееся магнитное поле статора разрезает неподвижный ротор. Индукционные машины на сегодняшний день являются наиболее распространенным типом двигателей, используемых в промышленных, коммерческих или жилых помещениях.Это трехфазный двигатель переменного тока. Его характерные особенности:

  • Простая и прочная конструкция
  • Низкая стоимость и минимальное техническое обслуживание
  • Высокая надежность и достаточно высокий уровень квалификации
  • Не требует дополнительного пускового двигателя и необходимости синхронизации

Каковы основные части индукционной Мотор?

Асинхронный двигатель в основном состоит из двух частей: статора и ротора.

Статор:

Статор состоит из различных штамповок с пазами для трех фазных обмоток.Он намотан на определенное количество полюсов. Обмотки разделены геометрически на 120 градусов. В асинхронных двигателях используются два типа роторов: ротор с короткозамкнутым ротором и ротор с обмоткой. Для работы машины не требуется постоянного тока возбуждения. Напряжение ротора индуцируется в обмотках ротора, а не физически связано проводами.

Induction Motor Induction Motor Асинхронный двигатель

Ротор:

Ротор — это вращающаяся часть электромагнитной цепи. Самый распространенный тип ротора — это ротор с короткозамкнутым ротором.Ротор состоит из многослойного цилиндрического сердечника с размещенными в осевом направлении параллельными пазами для переноса проводников. Каждый слот имеет стержень из меди, алюминия или сплава. Ротор трехфазных асинхронных двигателей также часто используется как якорь. Целью этого названия является форма якоря роторов, используемых в довольно ранних электрических устройствах. В электрооборудовании обмотка якоря индуцируется магнитным полем, хотя в трехфазных асинхронных двигателях эту роль играет ротор.

Асинхронный двигатель имеет такой же физический статор, что и синхронная машина с чередованием ротора. Асинхронный двигатель может работать как двигатели или как генератор. С другой стороны, они в основном используются как асинхронные двигатели.

Два типа асинхронных двигателей

Однофазный асинхронный двигатель: Однофазный асинхронный двигатель не запускается автоматически. Когда двигатель подключен к однофазному источнику питания, основная обмотка проходит переменный ток.Логично, что наименее дорогостоящий механизм сортировки с минимальным обслуживанием должен использоваться наиболее регулярно. Они бывают разных типов в зависимости от способа запуска, поскольку они не запускаются автоматически. Это двигатели с расщепленной фазой, с экранированными полюсами и конденсаторные двигатели. И снова конденсаторные двигатели — это конденсаторные пусковые, конденсаторные и постоянные конденсаторные двигатели. Двигатель с постоянным конденсатором показан ниже.

Induction Motor Circuit Induction Motor Circuit В этих типах двигателей пусковая обмотка может иметь последовательный конденсатор и / или центробежный переключатель.При подаче напряжения питания ток в основной обмотке отстает от напряжения питания из-за импеданса основной обмотки. А ток в пусковой обмотке опережает / отстает от напряжения питания в зависимости от импеданса пускового механизма. Угол между двумя обмотками составляет достаточную разность фаз, чтобы обеспечить вращающееся магнитное поле для создания пускового момента. Момент, когда двигатель достигает от 70% до 80% синхронной скорости, центробежный переключатель на валу двигателя размыкается и отключает пусковую обмотку.

Применения однофазных асинхронных двигателей

Они используются в приложениях с низким энергопотреблением и широко используются как в бытовых, так и в промышленных целях. И некоторые из них упомянуты ниже

  • Насосы
  • Компрессоры
  • Маленькие вентиляторы
  • Смесители
  • Игрушки
  • Высокоскоростные пылесосы
  • Электробритвы
  • Сверлильные станки

Трехфазный индукционный двигатель Эти двигатели самозапускаются и не используют конденсатор, пусковую обмотку, центробежный переключатель или другое пусковое устройство.Трехфазные асинхронные двигатели переменного тока широко используются в промышленных и коммерческих целях. Они бывают двух типов: двигатели с короткозамкнутым ротором и с контактным кольцом. Двигатели с короткозамкнутым ротором широко используются из-за их прочной конструкции и простой конструкции. Двигателям с контактным кольцом требуются внешние резисторы для обеспечения высокого пускового момента.
Асинхронные двигатели используются в промышленности и бытовых приборах, потому что они имеют прочную конструкцию, не требующую особого обслуживания, что они сравнительно дешевы и требуют питания только на статоре.

Области применения трехфазного асинхронного двигателя

  • Лифты
  • Краны
  • Подъемники
  • Вытяжные вентиляторы большой мощности
  • Токарные станки
  • Дробилки
  • Маслоэкстракционные заводы
  • Текстильные изделия и т. Д.

    Конструкция двигателя и способ подачи электроэнергии дают асинхронному двигателю несколько преимуществ, показанных на рисунке ниже. И давайте посмотрим на них вкратце.

    Advantages of Induction Motor Advantages of Induction Motor Преимущества асинхронного двигателя

    Низкая стоимость: Асинхронные машины очень дешевы по сравнению с синхронными двигателями и двигателями постоянного тока. Это связано с скромной конструкцией асинхронного двигателя. Следовательно, эти двигатели в подавляющем большинстве предпочтительны для приложений с фиксированной скоростью в промышленных приложениях, а также для коммерческих и бытовых приложений, где можно легко подключить питание от сети переменного тока.

    Низкие затраты на техническое обслуживание: Асинхронные двигатели не требуют технического обслуживания в отличие от двигателей постоянного тока и синхронных двигателей.Конструкция асинхронного двигателя очень проста и, следовательно, проста в обслуживании, что приводит к низкой стоимости обслуживания.

    Простота эксплуатации: Работа асинхронного двигателя очень проста, потому что нет электрического соединителя с ротором, который подает питание и ток, индуцируемый движением трансформатора, совершается на роторе из-за низкого сопротивления вращающихся катушек . Асинхронные двигатели — это двигатели с самозапуском. Это может привести к сокращению усилий, необходимых для обслуживания.

    Изменение скорости: Изменение скорости асинхронного двигателя почти постоянно. Скорость обычно изменяется всего на несколько процентов от холостого хода до номинальной нагрузки.

    Высокий пусковой момент: Пусковой момент асинхронного двигателя очень высок, что делает двигатель полезным для операций, где нагрузка прикладывается до запуска двигателя. В отличие от синхронных двигателей, трехфазные асинхронные двигатели будут иметь самозапускаемый момент. Однако однофазные асинхронные двигатели не имеют самозапуска крутящего момента и вращаются с помощью некоторых вспомогательных устройств.

    Долговечность: Другим важным преимуществом асинхронного двигателя является его долговечность. Это делает ее идеальной машиной для многих применений. В результате двигатель работает в течение многих лет без затрат и обслуживания.

    Все эти преимущества позволяют использовать асинхронный двигатель во многих приложениях, таких как промышленность, бытовая техника и во многих приложениях.

    Проекты на основе асинхронных двигателей

    Кредит на фото

    .

    Трехфазный асинхронный двигатель — Simulink

    Трехфазный асинхронный двигатель

    Описание

    Блок индукционного двигателя реализует трехфазный Индукционный двигатель. Блок использует трехфазные входные напряжения для регулировать отдельные фазные токи, позволяя управлять двигателем крутящий момент или скорость.

    По умолчанию в блоке Simulation Введите параметр в Непрерывный , чтобы использовать непрерывный время выборки во время моделирования.Если вы хотите сгенерировать код для двух- и цели одинарной точности, учитывая установку параметра на Дискретный . Затем укажите Sample Time, Ts параметр.

    Трехфазная синусоидальная модель электрической системы

    Блок реализует уравнения, которые выражаются в стационарном рамка ротора (qd). Ось d совпадает с осью a. Все величины в системе отсчета ротора относятся к статору.

    Блок использует эти уравнения для расчета электрической скорости ( ω em ) и скорости скольжения ( ω скольжение ).

    Для расчета электрической скорости ротора dq относительно ось A ротора ( dA ), блок использует разницу между скоростью оси a статора ( да ) и скоростью скольжения:

    Чтобы упростить уравнения для преобразований магнитного потока, напряжения и тока, блок использует стационарный опорный кадр:

    Расчет Уравнение
    Поток
    Текущий
    Индуктивность
    Электромагнитный момент

    Преобразование dq, инвариантное по мощности, чтобы гарантировать, что dq и трехфазная мощность равны

    В уравнениях используются эти переменные.

    ω м

    Угловая скорость ротора

    ω em

    Скорость электрического ротора

    ω скольжение

    Электрическая скорость скольжения ротора

    ω синхр.

    Синхронная скорость ротора

    ω da

    статора dq электрическая скорость относительно ротора Ось a

    ω dA

    dq электрическая скорость статора относительно ротора Ось A

    Θ da

    dq электрический угол статора относительно ротора Ось А

    .

Добавить комментарий

Ваш адрес email не будет опубликован.