Menu Close

Коэффициент теплопроводности материалов таблица: Полная таблица теплопроводности строительных материалов

Теплопроводность строительных материалов (таблица и понятие)

Теплоизоляционные материалы
1 Плиты из пенополистиролаДо 100,0492100,0520,059
2 То же 10 — 120,0412100,0440,050
3 « 12 — 140,0402100,0430,049
4 «14-150,0392100,0420,048
5 «15-170,0382100,0410,047
6 «17-200,0372100,0400,046
7 «20-250,0362100,0380,044
8 «25-300,0362100,0380,044
9 «30-350,0372100,0400,046
10 «35-380,0372100,0400,046
11 Плиты из пенополистирола с графитовыми добавками15-200,0332100,0350,040
12 То же20-250,0322100,0340,039
13 Экструдированный пенополистирол25-330,029120,0300,031
14 То же35-450,030120,0310,032
15 Пенополиуретан800,041250,0420,05
16 То же600,035250,0360,041
17 «400,029250,0310,04
18 Плиты из резольно-фенолформальдегидного пенопласта800,0445200,0510,071
19 То же500,0415200,0450,064
20 Перлитопластбетон2000,041230,0520,06
21 То же1000,035230,0410,05
22 Перлитофосфогелевые изделия3000,0763120,080,12
23 То же2000,0643120,070,09
24 Теплоизоляционные изделия из вспененного синтетического каучука60-950,0345150,040,054
25 Плиты минераловатные из каменного волокна1800,038250,0450,048
26 То же40-1750,037250,0430,046
27 «80-1250,036250,0420,045
28 «40-600,035250,0410,044
29 «25-500,036250,0420,045
30 Плиты из стеклянного штапельного волокна850,044250,0460,05
31 То же750,04250,0420,047
32 «600,038250,040,045
33 «450,039250,0410,045
34 «350,039250,0410,046
35 «300,04250,0420,046
36 «200,04250,0430,048
37 «170,044250,0470,053
38 «150,046250,0490,055
39 Плиты древесно-волокнистые и древесно-стружечные10000,1510120,230,29
40 То же8000,1310120,190,23
41 «6000,1110120,130,16
42 «4000,0810120,110,13
43 Плиты древесно-волокнистые и древесно-стружечные2000,0610120,070,08
44 Плиты фибролитовые и арболит на портландцементе5000,09510150,150,19
45 То же4500,0910150,1350,17
46 «4000,0810150,130,16
47 Плиты камышитовые3000,0710150,090,14
48 То же2000,0610150,070,09
49 Плиты торфяные теплоизоляционные3000,06415200,070,08
50 То же2000,05215200,060,064
51 Пакля1500,057120,060,07
52 Плиты из гипса13500,35460,500,56
53 То же11000,23460,350,41
54 Листы гипсовые обшивочные (сухая штукатурка)10500,15460,340,36
55 То же8000,15460,190,21
56 Изделия из вспученного перлита на битумном связующем3000,087120,090,099
57 То же2500,082120,0850,099
58 «2250,079120,0820,094
59 «2000,076120,0780,09
Засыпки
60 Гравий керамзитовый6000,14230,170,19
61 То же5000,14230,150,165
62 «4500,13230,140,155
63 Гравий керамзитовый4000,12230,130,145
64 То же3500,115230,1250,14
65 «3000,108230,120,13
66 «2500,099230,110,12
67 «2000,090230,100,11
68 Гравий шунгизитовый (ГОСТ 32496)7000,16240,180,21
69 То же6000,13240,160,19
70 «5000,12240,150,175
71 «4500,11240,140,16
72 «4000,11240,130,15
73 Щебень шлакопемзовый и аглопоритовый (ГОСТ 32496)8000,18230,210,26
74 То же7000,16230,190,23
75 «6000,15230,180,21
76 «5000,14230,160,19
77 «4500,13230,150,17
78 «4000,122230,140,16
79 Пористый гравий с остеклованной оболочкой из доменного и ферросплавного шлаков (ГОСТ 25820)7000,14230,170,19
80 То же6000,13230,160,18
81 «5000,12230,140,15
82 «4000,10230,130,14
83 Щебень и песок из перлита вспученного (ГОСТ 10832)5000,09120,10,11
84 То же4000,076120,0870,095
85 «3500,07120,0810,085
86 «3000,064120,0760,08
87 Вермикулит вспученный (ГОСТ 12865)2000,065130,080,095
88 То же1500,060130,0740,098
89 «1000,055130,0670,08
90 Песок для строительных работ (ГОСТ 8736)16000,35120,470,58
Конструкционные и конструкционно-теплоизоляционные материалы
Бетоны на заполнителях из пористых горных пород
91 Туфобетон18000,647100,870,99
92 То же16000,527100,70,81
93 «14000,417100,520,58
94 «12000,327100,410,47
95 Бетон на литоидной пемзе16000,52460,620,68
96 То же14000,42460,490,54
97 «12000,30460,40,43
98 «10000,22460,30,34
99 «8000,19460,220,26
100 Бетон на вулканическом шлаке16000,527100,640,7
101 То же14000,417100,520,58
102 «12000,337100,410,47
103 «10000,247100,290,35
104 «8000,207100,230,29
Бетоны на искусственных пористых заполнителях
105 Керамзитобетон на керамзитовом песке18000,665100,800,92
106 То же16000,585100,670,79
107 «14000,475100,560,65
108 «12000,365100,440,52
109 «10000,275100,330,41
110 «8000,215100,240,31
111 «6000,165100,20,26
112 «5000,145100,170,23
113 Керамзитобетон на кварцевом песке с умеренной (до Vв=12%) поризацией)12000,41480,520,58
114 То же10000,33480,410,47
115 «8000,23480,290,35
116 Керамзитобетон на перлитовом песке10000,289130,350,41
117 То же8000,229130,290,35
118 Керамзитобетон беспесчаный7000,1353,560,1450,155
119 То же6000,1303,560,1400,150
120 «5000,1203,560,1300,140
121 «4000,1053,560,1150,125
122 «3000,0953,560,1050,110
123 Шунгизитобетон14000,49470,560,64
124 То же12000,36470,440,5
125 «10000,27470,330,38
126 Перлитобетон12000,2910150,440,5
127 То же10000,2210150,330,38
128 «8000,1610150,270,33
129 Перлитобетон6000,1210150,190,23
130 Бетон на шлакопемзовом щебне18000,52580,630,76
131 То же16000,41580,520,63
132 «14000,35580,440,52
133 «12000,29580,370,44
134 «10000,23580,310,37
135 Бетон на остеклованном шлаковом гравии18000,46460,560,67
136 То же16000,37460,460,55
137 «14000,31460,380,46
138 «12000,26460,320,39
139 «10000,21460,270,33
140 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках18000,58580,70,81
141 То же16000,47580,580,64
142 «14000,41580,520,58
143 «12000,36580,490,52
144 Аглопоритобетон и бетоны на заполнителях из топливных шлаков18000,7580,850,93
145 То же16000,58580,720,78
146 «14000,47580,590,65
147 «12000,35580,480,54
148 «10000,29580,380,44
149 Бетон на зольном обжиговом и безобжиговом гравии14000,47580,520,58
150 То же12000,35580,410,47
151 «10000,24580,30,35
152 Вермикулитобетон8000,218130,230,26
153 То же6000,148130,160,17
154 «4000,098130,110,13
155 «3000,088130,090,11
Бетоны особо легкие на пористых заполнителях и ячеистые
156 Полистиролбетон на портландцементе (ГОСТ 32929)6000,145480,1750,20
157 То же5000,125480,140,16
158 «4000,105480,120,135
159 «3500,095480,110,12
160 «3000,085480,090,11
161 «2500,075480,0850,09
162 «2000,065480,070,08
163 «1500,055480,0570,06
164 Полистиролбетон модифицированный на шлакопортландцементе5000,123,570,130,14
165 То же4000,093,570,100,11
166 «3000,083,570,080,09
167 «2500,073,570,070,08
168 «2000,063,570,060,07
169 Газо- и пенобетон на цементном вяжущем10000,298120,380,43
170 То же8000,218120,330,37
171 «6000,148120,220,26
172 «4000,118120,140,15
173 Газо- и пенобетон на известняковом вяжущем10000,3112180,480,55
174 То же8000,2311160,390,45
175 «6000,1511160,280,34
176 «5000,1311160,220,28
177 Газо- и пенозолобетон на цементном вяжущем12000,3715220,600,66
178 То же10000,3215220,520,58
179 «8000,2315220,410,47
Кирпичная кладка из сплошного кирпича
180 Глиняного обыкновенного на цементно-песчаном растворе18000,56120,70,81
181 Глиняного обыкновенного на цементно-шлаковом растворе17000,521,530,640,76
182 Глиняного обыкновенного на цементно-перлитовом растворе16000,47240,580,7
183 Силикатного на цементно-песчаном растворе18000,7240,760,87
184 Трепельного на цементно-песчаном растворе12000,35240,470,52
185 То же10000,29240,410,47
186 Шлакового на цементно-песчаном растворе15000,521,530,640,7
Кирпичная кладка из пустотного кирпича
187 Керамического пустотного плотностью 1400 кг/м3 (брутто) на цементно-песчаном растворе16000,47120,580,64
188 Керамического пустотного плотностью 1300 кг/м3 (брутто) на цементно-песчаном растворе14000,41120,520,58
189 Керамического пустотного плотностью 1000 кг/м3  (брутто) на цементно-песчаном растворе12000,35120,470,52
190 Силикатного одиннадцатипустотного на цементно-песчаном растворе15000,64240,70,81
191 Силикатного четырнадцатипустотного на цементно-песчаном растворе14000,52240,640,76
Дерево и изделия из него
192 Сосна и ель поперек волокон5000,0915200,140,18
193 Сосна и ель вдоль волокон5000,1815200,290,35
194 Дуб поперек волокон7000,110150,180,23
195 Дуб вдоль волокон7000,2310150,350,41
196 Фанера клееная6000,1210130,150,18
197 Картон облицовочный10000,185100,210,23
198 Картон строительный многослойный6500,136120,150,18
Конструкционные материалы
Бетоны
199 Железобетон25001,69231,922,04
200 Бетон на гравии или щебне из природного камня24001,51231,741,86
201 Раствор цементно-песчаный18000,58240,760,93
202 Раствор сложный (песок, известь, цемент)17000,52240,70,87
203 Раствор известково-песчаный16000,47240,70,81
Облицовка природным камнем
204 Гранит, гнейс и базальт28003,49003,493,49
205 Мрамор28002,91002,912,91
206 Известняк20000,93231,161,28
207 То же18000,7230,931,05
208 «16000,58230,730,81
209 «14000,49230,560,58
210 Туф20000,76350,931,05
211 То же18000,56350,70,81
212 «16000,41350,520,64
213 «14000,33350,430,52
214 «12000,27350,350,41
215 «10000,21350,240,29
Материалы кровельные, гидроизоляционные, облицовочные и рулонные покрытия для полов
216 Листы асбестоцементные плоские18000,35230,470,52
217 То же16000,23230,350,41
218 Битумы нефтяные строительные и кровельные14000,27000,270,27
219 То же12000,22000,220,22
220 «10000,17000,170,17
221 Асфальтобетон21001,05001,051,05
222 Рубероид, пергамин, толь6000,17000,170,17
223 Пенополиэтилен260,048120,0490,050
224 То же300,049120,0500,050
225 Линолеум поливинилхлоридный на теплоизолирующей подоснове18000,38000,380,38
226 То же16000,33000,330,33
227 Линолеум поливинилхлоридный на тканевой основе18000,35000,350,35
228 То же16000,29000,290,29
229 «14000,2000,230,23
Металлы и стекло
230 Сталь стержневая арматурная785058005858
231 Чугун720050005050
232 Алюминий260022100221221
233 Медь850040700407407
234 Стекло оконное25000,76000,760,76
235 Плиты из пеностекла80-1000,041110,0420,042
236 То же101-1200,046110,0470,047
237 То же121- 1400,050110,0510,051
238 То же141- 1600,052110,0530,053
239 То же161- 2000,060110,0610,061

Таблица теплопроводности строительных материалов, рекомендации

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Таблица теплопроводности строительных материаловЧем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводностиИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизоляторомЗамкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностьюВысокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло...» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1 Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных половТаблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичейТеплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПроводимость тепла дереваПрочность разных пород древесиныПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материаловСравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоекТаблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятораОкно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном раствореРасчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стенРасчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

Предыдущая

Строительные материалыИз чего делают цемент: от теории к практике

Следующая

Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Что такое теплопроводность строительных материалов таблица

Общее понятие о теплопроводности и ее природа

Если отвечать простыми словами на вопрос о том, что такое теплопроводность в физике, то следует сказать, что передача тепла между двумя телами или различными областями одного и того же тела является процессом обмена внутренней энергией между частицами, составляющими тело (молекулы, атомы, электроны и ионы). Сама внутренняя энергия состоит из двух важных частей: из кинетической и из потенциальной энергии.

Что такое теплопроводность в физике с точки зрения природы этой величины? На микроскопическом уровне способность материалов проводить тепло зависит от их микроструктуры. Например, для жидкостей и газов указанный физический процесс происходит за счет хаотичных столкновений между молекулами, в твердых телах основная доля переносимого тепла приходится на обмен энергией между свободными электронами (в металлических системах) или фононами (неметаллические вещества), которые представляют собой механические колебания кристаллической решетки.

Способы передачи тепловой энергии

Рассматривая вопрос о том, что такое теплопроводность материалов, следует упомянуть о возможных способах передачи тепла. Тепловая энергия может передаваться между различными телами с помощью следующих процессов:

  • проводимость — этот процесс идет без переноса материи;
  • конвекция — перенос тепла непосредственно связан и с движением самой материи;
  • излучение — передача тепла осуществляется за счет электромагнитного излучения, то есть с помощью фотонов.

Чтобы тепло было передано с помощью процессов проводимости или конвекции, необходим непосредственный контакт между различными телами с тем отличием, что в процессе проводимости не существует макроскопического движения материи, а в процессе конвекции это движение присутствует. Отметим, что микроскопическое движение имеет место во всех процессах теплопередачи.

Для обычных температур в несколько десятков градусов Цельсия можно сказать, что на долю конвекции и проводимости приходится основная часть передаваемого тепла, а количество энергии, переданной в процессе излучения, является незначительным. Однако излучение начинает играть главную роль в процессе теплопередачи при температурах в несколько сотен и тысяч Кельвин, поскольку количество энергии Q, передаваемой этим способом, растет пропорционально 4-й степени абсолютной температуры, то есть ∼ T4. Например, наше солнце теряет большую часть энергии именно за счет излучения.

Коэффициент теплопроводности для твердых тел

Коэффициент термической проводимости для твердых тел k имеет следующий физический смыл: он указывает на количество теплоты, которое проходит за единицу времени через единицу площади поверхности в каком-либо теле единичной толщины и бесконечной длины и ширины при разнице температур на его концах, равной одному градусу. В международной системе единиц СИ коэффициент k измеряется в Дж/(с*м*К).

Данный коэффициент в твердых веществах зависит от температуры, поэтому его принято определять при температуре 300 K с целью сравнения способности проводить тепло различными материалами.

Коэффициент теплопроводности для металлов и неметаллических твердых материалов

Все металлы без исключения являются хорошими проводниками тепла, за перенос которого в них отвечает электронный газ. В свою очередь ионные и ковалентные материалы, а также материалы, имеющие волокнистую структуру, являются хорошими теплоизоляторами, то есть плохо проводят тепло. Для полноты раскрытия вопроса о том, что такое теплопроводность, следует заметить, что этот процесс требует обязательного наличия вещества, если он осуществляется за счет конвекции или проводимости, поэтому в вакууме тепло может передаваться только за счет электромагнитного излучения.

В списке ниже приведены значения коэффициентов теплопроводности для некоторых металлов и неметаллов в Дж/(с*м*К):

  • сталь — 47-58 в зависимости от марки стали;
  • алюминий — 209,3;
  • бронза — 116-186;
  • цинк — 106-140 в зависимости от чистоты;
  • медь — 372,1-385,2;
  • латунь — 81-116;
  • золото — 308,2;
  • серебро — 406,1-418,7;
  • каучук — 0,04-0,30;
  • стекловолокно — 0,03-0,07;
  • кирпич — 0,80;
  • дерево — 0,13;
  • стекло — 0,6-1,0.

Таким образом, теплопроводность металлов на 2-3 порядка превышает значения теплопроводности для изоляторов, которые являются ярким примером ответа на вопрос о том, что такое низкая теплопроводность.

Значение теплопроводности играет важную роль во многих индустриальных процессах. В одних процессах стремятся увеличить ее, используя хорошие теплопроводники и увеличивая площадь контакта, в других же стараются уменьшить теплопроводность, уменьшая площадь контакта и применяя теплоизолирующие материалы.

Конвекция в жидкостях и газах

Передача тепла в текучих средах осуществляется за счет процесса конвекции. Этот процесс предполагает перемещение молекул вещества между зонами с различной температурой, то есть при конвекции происходит перемешивание жидкости или газа. Когда текучая материя отдает тепло, ее молекулы теряют часть кинетической энергии, и материя становится более плотной. Наоборот, когда текучая материя нагревается, ее молекулы увеличивают свою кинетическую энергию, их движение становится более интенсивным, соответственно, объем материи увеличивается, а плотность уменьшается. Именно поэтому холодные слои материи стремятся опуститься вниз под действием силы тяжести, а горячие слои пытаются подняться вверх. Этот процесс приводит к перемешиванию материи, способствуя передачи тепла между ее слоями.

Факторы, влияющие на теплопроводность

Коэффициент теплопроводности материала зависит от нескольких факторов:

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Температура материала


Влияние температуры на способность проводить тепло различается для металлов и неметаллов. В металлах проводимость главным образом связана со свободными электронами. Согласно закону Видемана—Франца теплопроводность металла пропорциональна произведению абсолютной температуры, выраженной в Кельвинах, на его электропроводность. В чистых металлах с увеличением температуры уменьшается электропроводность, поэтому теплопроводность остается приблизительно постоянной величиной. В случае сплавов электропроводность мало изменяется с ростом температуры, поэтому теплопроводность сплавов растет пропорционально температуре.

С другой стороны, передача тепла в неметаллах главным образом связана с колебаниями решетки и обмене решеточными фононами. За исключением кристаллов высокого качества и низких температур, путь пробега фононов в решетке значительно не уменьшается при высоких температурах, поэтому и теплопроводность остается постоянной величиной во всем температурном диапазоне, то есть является незначительной. При температурах ниже температуры Дебая способность неметаллов проводить тепло, наряду с их теплоемкостью, значительно уменьшается.

Фазовые переходы и структура

Когда материал испытывает фазовый переход первого рода, например, из твердого состояния в жидкое или из жидкого в газ, то его теплопроводность может измениться. Ярким примером такого изменения является разница этой физической величины для льда (2,18 Вт/(м*К) и воды (0,90 Вт/(м*К).

Изменения кристаллической структуры материалов также влияют на теплопроводность, что объясняется анизотропными свойствами различных аллотропных модификаций вещества одного и того же состава. Анизотропия влияет на различную интенсивность рассеивания решеточных фононов, основных переносчиков тепла в неметаллах, и в различных направлениях в кристалле. Здесь ярким примером является сапфир, проводимость которого изменяется от 32 до 35 Вт/(м*К) в зависимости от направления.

Электрическая проводимость

Теплопроводность в металлах изменяется вместе с электропроводностью согласно закону Видемана—Франца. Это связано с тем, что валентные электроны, свободно перемещаясь по кристаллической решетке металла, переносят не только электрическую, но и тепловую энергию. Для других материалов корреляция между этими типами проводимости не является ярко выраженной, ввиду незначительного вклада электронной составляющей в теплопроводность (в неметаллах основную роль в механизме передачи тепла играют решеточные фононы).

Процесс конвекции

Воздух и другие газы являются, как правило, хорошими теплоизоляторами при отсутствии процесса конвекции. На этом принципе основана работа многих теплоизолирующих материалов, содержащих большое количество небольших пустот и пор. Такая структура не позволяет конвекции распространяться на большие расстояния. Примерами таких материалов, полученных человеком, являются полистирен и силицидный аэрогель. В природе на том же принципе работают такие теплоизоляторы, как шкура животных и оперение птиц.

Легкие газы, например, водород и гель, имеют высокие значения теплопроводности, а тяжелые газы, например, аргон, ксенон и радон, являются плохими проводниками тепла. Например, аргон, инертный газ, который тяжелее воздуха, часто используется в качестве теплоизолирующего газового наполнителя в двойных окнах и в электрических лампочках. Исключением является гексафторид серы (элегаз), который является тяжелым газом и обладает относительно высокой теплопроводностью, ввиду его большой теплоемкости.

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянииПри нормальной влажностиПри повышенной влажности
Войлок шерстяной0,036-0,0410,038-0,0440,044-0,050
Каменная минеральная вата 25-50 кг/м30,0360,0420,,045
Каменная минеральная вата 40-60 кг/м30,0350,0410,044
Каменная минеральная вата 80-125 кг/м30,0360,0420,045
Каменная минеральная вата 140-175 кг/м30,0370,0430,0456
Каменная минеральная вата 180 кг/м30,0380,0450,048
Стекловата 15 кг/м30,0460,0490,055
Стекловата 17 кг/м30,0440,0470,053
Стекловата 20 кг/м30,040,0430,048
Стекловата 30 кг/м30,040,0420,046
Стекловата 35 кг/м30,0390,0410,046
Стекловата 45 кг/м30,0390,0410,045
Стекловата 60 кг/м30,0380,0400,045
Стекловата 75 кг/м30,040,0420,047
Стекловата 85 кг/м30,0440,0460,050
Пенополистирол (пенопласт, ППС)0,036-0,0410,038-0,0440,044-0,050
Экструдированный пенополистирол (ЭППС, XPS)0,0290,0300,031
Пенобетон, газобетон на цементном растворе, 600 кг/м30,140,220,26
Пенобетон, газобетон на цементном растворе, 400 кг/м30,110,140,15
Пенобетон, газобетон на известковом растворе, 600 кг/м30,150,280,34
Пенобетон, газобетон на известковом растворе, 400 кг/м30,130,220,28
Пеностекло, крошка, 100 — 150 кг/м30,043-0,06
Пеностекло, крошка, 151 — 200 кг/м30,06-0,063
Пеностекло, крошка, 201 — 250 кг/м30,066-0,073
Пеностекло, крошка, 251 — 400 кг/м30,085-0,1
Пеноблок 100 — 120 кг/м30,043-0,045
Пеноблок 121- 170 кг/м30,05-0,062
Пеноблок 171 — 220 кг/м30,057-0,063
Пеноблок 221 — 270 кг/м30,073
Эковата0,037-0,042
Пенополиуретан (ППУ) 40 кг/м30,0290,0310,05
Пенополиуретан (ППУ) 60 кг/м30,0350,0360,041
Пенополиуретан (ППУ) 80 кг/м30,0410,0420,04
Пенополиэтилен сшитый0,031-0,038
Вакуум
Воздух +27°C. 1 атм0,026
Ксенон0,0057
Аргон0,0177
Аэрогель (Aspen aerogels)0,014-0,021
Шлаковата0,05
Вермикулит0,064-0,074
Вспененный каучук0,033
Пробка листы 220 кг/м30,035
Пробка листы 260 кг/м30,05
Базальтовые маты, холсты0,03-0,04
Пакля0,05
Перлит, 200 кг/м30,05
Перлит вспученный, 100 кг/м30,06
Плиты льняные изоляционные, 250 кг/м30,054
Полистиролбетон, 150-500 кг/м30,052-0,145
Пробка гранулированная, 45 кг/м30,038
Пробка минеральная на битумной основе, 270-350 кг/м30,076-0,096
Пробковое покрытие для пола, 540 кг/м30,078
Пробка техническая, 50 кг/м30,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

Применение показателя теплопроводности на практике

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Нужно знать! У теплоизоляционных материалов значения показателя теплопроводности минимальны.

Когда учитывается коэффициент теплопроводности

Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.

Схема утепления деревянного дома

Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).

Коэффициент теплопроводности строительных материалов: как применяется на практике и таблица

Практические значение коэффициента – это правильно проведенный расчет толщины несущих конструкций с учетом используемых утеплителей. Необходимо отметить, что возводимое здание – это несколько ограждающих конструкций, через которые происходит утечка тепла. И у каждой их них свой процент теплопотерь.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.


Теплопотери дома

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”


Стена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки. Конечно, с учетом средней температуры региона придется точно рассчитать толщину стен и других ограждающих элементов. Но, как показывает практика, вносимые изменения не столь значительны, чтобы можно было бы говорить о больших капитальных вложениях.


Устройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

Теплопроводность кирпича: таблица по разновидностям

ФотоВид кирпичаТеплопроводность, Вт/м*К

Керамический полнотелый0,5-0,8
Керамический щелевой0,34-0,43
Поризованный0,22
Силикатный полнотелый0,7-0,8
Силикатный щелевой0,4
Клинкерный0,8-0,9


Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

Теплопроводность дерева: таблица по породам

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница

Теплопроводность, Вт/м С0,150,20,40,110,0950,190,13

Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь

Теплопроводность, Вт/м С0,150,150,0450,150,40,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.


У древесины теплопроводность ниже, чем у бетона и кирпича

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.


Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Теплопроводность металлов: таблица

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь

Теплопроводность, Вт/м С4762236328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При +100°С – 230, при +700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при +100°С – 380, а при +700°С – 350.


Тепловая проводимость у меди выше, чем у стали почти в семь раз

Таблица теплопроводности других материалов

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Минеральная вата (базальтовая)500,048
1000,056
2000,07
Стекловата1550,041
2000,044
Пенополистирол400,038
1000,041
1500,05
Пенополистирол экструдированный330,031
Пенополиуретан320,023
400,029
600,035
800,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Бетон24001,51
Железобетон25001,69
Керамзитобетон5000,14
Керамзитобетон18000,66
Пенобетон3000,08
Пеностекло4000,11

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.


Таблица проводимости тепла воздушных прослоек

Недостатки высокой теплопроводности меди и ее сплавов

Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами. Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев. Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ. Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.

Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.

Можно ли повысить теплопроводность меди

Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов. Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.

Графен с медной фольгой

При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер. Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.

Источники

  • https://FB.ru/article/394480/chto-takoe-teploprovodnost-v-fizike
  • https://ptk-granit.ru/what-to-choose/what-is-the-thermal-conductivity-of-building-materials-table-thermal-conductivity-and-other-characteristics-of-building-materials-in-figures/
  • https://obrabotkametalla.info/stal/koefficient-teploprovodnosti-i-teploperedachi-stali
  • https://kachestvolife.club/otoplenie/koefficienty-teploprovodnosti-stroitel-nyh-materialov-v-tablicah
  • https://instanko.ru/drugoe/teploprovodnost-metallov.html
  • https://homius.ru/tablitsa-teploprovodnosti-stroitelnyih-materialov.html

[свернуть]

Идеальный дом: теплопроводность строительных материалов (таблица)

Понятие теплопроводности

Теплопроводность

– это такое физическое свойство материала, при которой тепловая энергия внутри тела переходит от самой горячей его части к более холодной. Значение показателя теплопроводности показывает степень потери тепла жилыми помещениями. Зависит от следующих факторов:

Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности

Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам

А главное – к большим расходам на отопление.

Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.

Таблица 1

Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.

Теплотехнический расчет стен из различных материалов

Среди многообразия материалов для строительства несущих стен порой стоит тяжелый выбор.

Сравнивая между собой различные варианты, одним из немаловажных критериев на который нужно обратить внимание является «теплота» материала. Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление

Второе становится особенно актуальным при отсутствии подведенного к дому газа

Способность материала не выпускать тепло наружу повлияет на комфорт в помещениях дома и на затраты на отопление. Второе становится особенно актуальным при отсутствии подведенного к дому газа.

Теплозащитные свойства строительных конструкций характеризует такой параметр, как сопротивление теплопередаче (Ro, м²·°C/Вт).

По существующим нормам (СП 50.13330.2012 Тепловая защита зданий.

Актуализированная редакция СНиП 23-02-2003), при строительстве в Самарской области, нормируемое значение сопротивления теплопередачи для наружных стен составляет Ro.норм = 3,19 м²·°C/Вт. Однако, при условии, что проектный удельный расход тепловой энергии на отопление здания ниже нормативного, допускается снижение величины сопротивления теплопередачи, но не менее допустимого значения Ro.тр =0,63·Ro.норм = 2,01 м²·°C/Вт.

В зависимости от используемого материала, для достижения нормативных значений, необходимо выбирать определенную толщину однослойной или конструкцию многослойной стены. Ниже представлены расчеты сопротивления теплопередаче наиболее популярных вариантов конструкций наружных стен.

Расчет необходимой толщины однослойной стены

В таблице ниже определена толщина однослойной наружной стены дома, удовлетворяющая требованиям норм по теплозащите.

Требуемая толщина стены определена при значении сопротивления теплопередачи равном базовому (3,19 м²·°C/Вт).

Допустимая — минимально допустимая толщина стены, при значении сопротивления теплопередачи равном допустимому (2,01 м²·°C/Вт).

№ п/пМатериал стеныТеплопроводность, Вт/м·°CТолщина стены, мм
ТребуемаяДопустимая
1Газобетон

Таблица теплопроводности строительных материалов: коэффициенты

  • Автор: Золотые руки веб-мастера

  • Опубликовано: 14.02.2019 12:57

  • Просмотров:

  • Время чтения (минуты): 1

Любое строительство независимо от его размера всегда начинается с разработки проекта. Его цель – спроектировать не только внешний вид будущего строения, еще и просчитать основные теплотехнические характеристики. Ведь основной задачей строительства считается сооружение прочных, долговечных зданий, способных поддерживать здоровый и комфортный микроклимат, без лишних затрат на отопление. Несомненную помощь при выборе сырья, используемого для возведения постройки, окажет таблица теплопроводности строительных материалов: коэффициенты.

Тепло в доме напярямую зависит от коэффициента теплопроводности строительных материалов

Что такое теплопроводность?

Теплопроводность – это процесс передачи энергии тепла от нагретых частей помещения к менее теплым. Такой обмен энергией будет происходить, пока температура не уравновесится. Применяя это правило к ограждающим системам дома, можно понять, что процесс теплопередачи определяется промежутком времени, за который происходит выравнивание температуры в комнатах с окружающей средой. Чем это время больше, тем теплопроводность материала, применяемого при строительстве, ниже.

Отсутствие теплоизоляции дома скажется на температуре воздуха внутри помещения

Для характеристики проводимости тепла материалами используют такое понятие, как коэффициент теплопроводности. Он показывает, какое количество тепла за одну единицу временного промежутка пройдет через одну единицу площади поверхности. Чем выше подобный показатель, тем сильнее теплообмен, значит, постройка будет остывать значительно быстрее. То есть при сооружении зданий, домов и прочих помещений необходимо использовать материалы, проводимость тепла которых минимальна.

Сравнительные характеристики теплопроводности и термического сопротивления стен, возведенных из кирпича и газобетонных блоков

Что влияет на величину теплопроводности?

Тепловая проводимость любого материала зависит от множества параметров:

  • Пористая структура. Присутствие пор предполагает неоднородность сырья. При прохождении тепла через подобные структуры, где большая часть объема занята порами, охлаждение будет минимальным.
  • Плотность. Высокая плотность способствует более тесному взаимодействию частиц друг с другом. В результате теплообмен и последующее полное уравновешивание температур происходит быстрее.
  • Влажность. При высокой влажности окружающего воздуха или намокании стен постройки, сухой воздух вытесняется капельками жидкости из пор. Теплопроводность в подобном случае значительно увеличивается.
  • Теплопроводность, плотность и водопоглощение некоторых строительных материалов

    Применение показателя теплопроводности на практике

    В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

    Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

    Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

    Теплопроводность готового здания. Варианты утепления конструкций

    При разработке проекта постройки необходимо учесть все возможные варианты и пути потери тепла. Большое его количество может уходить через:

    • стены – 30%;
    • крышу – 30%;
    • двери и окна – 20%;
    • полы – 10%.

    Теплопотери неутепленного частного дома

    При неверном расчете теплопроводности на этапе проектирования, жильцам остается довольствоваться только 10% тепла, получаемого от энергоносителей. Именно поэтому дома, возведенные из стандартного сырья: кирпича, бетона, камня рекомендуют дополнительно утеплять. Идеальная постройка согласно таблице теплопроводности строительных материалов должна быть выполнена полностью из теплоизолирующих элементов. Однако малая прочность и минимальная устойчивость к нагрузкам ограничивает возможности их применения.

    Сравнительный график коэффициентов теплопроводности некоторых строительных материалов и утеплителей

    Самым распространенным вариантом сочетание несущей конструкции из высокопрочных материалов с дополнительным слоем теплоизоляции. Сюда можно отнести:

  • Каркасный дом. При его постройке каркасом из древесины обеспечивается жесткость всей конструкции, а укладка утеплителя производится в пространство между стойками. При незначительном уменьшении теплообмена в некоторых случая может потребоваться утепление еще и снаружи основного каркаса.
  • Дом из стандартных материалов. При выполнении стен из кирпича, шлакоблоков, утепление должно проводиться по наружной поверхности конструкции.
  • Необходимая тепло- и гидроизоляция для сохранения тепла в частном доме

    Таблица теплопроводности строительных материалов: коэффициенты

    В этой таблице собраны показатели теплопроводности самых распространенных строительных материалов. Пользуясь подобными справочниками, можно без проблем рассчитать необходимую толщину стен и применяемого утеплителя.

    Таблица коэффициента теплопроводности строительных материалов:

    Таблица теплопроводности строительных материалов: коэффициенты

    Теплопроводность строительных материалов (видео)

    что это такое + таблица значений

    Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.

    Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.

    Содержание статьи:

    Что такое КТП строительного материала?

    Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

    Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

    Что такое коэффициент теплопроводностиЧто такое коэффициент теплопроводности

    Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

    Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

    Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

    По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

    Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

    Влияние факторов на уровень теплопроводности

    Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

    Основой этого являются:

    • размерность кристаллов структуры;
    • фазовое состояние вещества;
    • степень кристаллизации;
    • анизотропия теплопроводности кристаллов;
    • объем пористости и структуры;
    • направление теплового потока.

    Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

    Изоляционный стройматериалИзоляционный стройматериал

    Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

    В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

    Стройматериалы с минимальным КТП

    Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

    С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

    Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

    Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

    Пористая структура стройматериалаПористая структура стройматериала

    Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

    В современном производстве применяются несколько технологий для получения пористости строительного материала.

    В частности, используются технологии:

    • пенообразования;
    • газообразования;
    • водозатворения;
    • вспучивания;
    • внедрения добавок;
    • создания волоконных каркасов.

    Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

    Значение теплопроводности может быть рассчитано по формуле:

    λ = Q / S *(T1-T2)*t,

    Где:

    • Q – количество тепла;
    • S – толщина материала;
    • T1, T2 – температура с двух сторон материала;
    • t – время.

    Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

    λ = 1,16 √ 0,0196+0,22d2 – 0,16,

    Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

    Влияние влаги на теплопроводность стройматериала

    Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

    Влажный стройматериалВлажный стройматериал

    Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

    Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

    Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

    Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

    Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

    Зимнее строительствоЗимнее строительство

    Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

    Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

    Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

    Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

    Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

    Нагрев металла и теплопроводностьНагрев металла и теплопроводность

    Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

    Методы определения коэффициента

    Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

    1. Режим стационарных измерений.
    2. Режим нестационарных измерений.

    Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

    Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.

    Измеритель теплопроводностиИзмеритель теплопроводности

    Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата

    Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.

    Таблица теплопроводности стройматериалов

    Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

    Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

    Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:

    Материал (стройматериал)Плотность, м3КТП сухая, Вт/мºC% влажн._1% влажн._2КТП при влажн._1, Вт/мºCКТП при влажн._2, Вт/мºC
    Битум кровельный14000,27000,270,27
    Битум кровельный10000,17000,170,17
    Шифер кровельный18000,35230,470,52
    Шифер кровельный16000,23230,350,41
    Битум кровельный12000,22000,220,22
    Лист асбоцементный18000,35230,470,52
    Лист асбестоцементный16000,23230,350,41
    Асфальтобетон21001,05001,051,05
    Толь строительная6000,17000,170,17
    Бетон (на гравийной подушке)16000,46460,460,55
    Бетон (на шлаковой подушке)18000,46460,560,67
    Бетон (на щебенке)24001,51231,741,86
    Бетон (на песчаной подушке)10000,289130,350,41
    Бетон (пористая структура)10000,2910150,410,47
    Бетон (сплошная структура)25001,89231,922,04
    Пемзобетон16000,52460,620,68
    Битум строительный14000,27000,270,27
    Битум строительный12000,22000,220,22
    Минеральная вата облегченная500,048250,0520,06
    Минеральная вата тяжелая1250,056250,0640,07
    Минеральная вата750,052250,060,064
    Лист вермикулитовый2000,065130,080,095
    Лист вермикулитовый1500,060130,0740,098
    Газо-пено-золо бетон8000,1715220,350,41
    Газо-пено-золо бетон10000,2315220,440,50
    Газо-пено-золо бетон12000,2915220,520,58
    Газо-пено-бетон (пенно-силикат)3000,088120,110,13
    Газо-пено-бетон (пенно-силикат)4000,118120,140,15
    Газо-пено-бетон (пенно-силикат)6000,148120,220,26
    Газо-пено-бетон (пенно-силикат)8000,2110150,330,37
    Газо-пено-бетон (пенно-силикат)10000,2910150,410,47
    Строительный гипс плита12000,35460,410,46
    Гравий керамзитовый6002,14230,210,23
    Гравий керамзитовый8000,18230,210,23
    Гранит (базальт)28003,49003,493,49
    Гравий керамзитовый4000,12230,130,14
    Гравий керамзитовый3000,108230,120,13
    Гравий керамзитовый2000,099230,110,12
    Гравий шунгизитовый8000,16240,200,23
    Гравий шунгизитовый6000,13240,160,20
    Гравий шунгизитовый4000,11240,130,14
    Дерево сосна поперечные волокна5000,0915200,140,18
    Фанера клееная6000,1210130,150,18
    Дерево сосна вдоль волокон5000,1815200,290,35
    Дерево дуба поперек волокон7000,2310150,180,23
    Металл дюралюминий260022100221221
    Железобетон25001,69231,922,04
    Туфобетон16000,527100,70,81
    Известняк20000,93231,161,28
    Раствор извести с песком17000,52240,700,87
    Песок под строительные работы16000,035120,470,58
    Туфобетон18000,647100,870,99
    Облицовочный картон10000,185100,210,23
    Многослойный строительный картон6500,136120,150,18
    Вспененный каучук60-950,0345150,040,054
    Керамзитобетон14000,475100,560,65
    Керамзитобетон16000,585100,670,78
    Керамзитобетон18000,865100,800,92
    Кирпич (пустотный)14000,41120,520,58
    Кирпич (керамический)16000,47120,580,64
    Пакля строительная1500,057120,060,07
    Кирпич (силикатный)15000,64240,70,81
    Кирпич (сплошной)18000,88120,70,81
    Кирпич (шлаковый)17000,521,530,640,76
    Кирпич (глиняный)16000,47240,580,7
    Кирпич (трепельный)12000,35240,470,52
    Металл медь850040700407407
    Сухая штукатурка (лист)10500,15460,340,36
    Плиты минеральной ваты3500,091250,090,11
    Плиты минеральной ваты3000,070250,0870,09
    Плиты минеральной ваты2000,070250,0760,08
    Плиты минеральной ваты1000,056250,060,07
    Линолеум ПВХ18000,38000,380,38
    Пенобетон10000,298120,380,43
    Пенобетон8000,218120,330,37
    Пенобетон6000,148120,220,26
    Пенобетон4000,116120,140,15
    Пенобетон на известняке10000,3112180,480,55
    Пенобетон на цементе12000,3715220,600,66
    Пенополистирол (ПСБ-С25)15 – 250,029 – 0,0332100,035 – 0,0520,040 – 0,059
    Пенополистирол (ПСБ-С35)25 – 350,036 – 0,0412200,0340,039
    Лист пенополиуретановый800,041250,050,05
    Панель пенополиуретановая600,035250,410,41
    Облегченное пеностекло2000,07120,080,09
    Утяжеленное пеностекло4000,11120,120,14
    Пергамин6000,17000,170,17
    Перлит4000,111120,120,13
    Плита перлитоцементная2000,041230,0520,06
    Мрамор28002,91002,912,91
    Туф20000,76350,931,05
    Бетон на зольном гравии14000,47580,520,58
    Плита ДВП (ДСП)2000,0610120,070,08
    Плита ДВП (ДСП)4000,0810120,110,13
    Плита ДВП (ДСП)6000,1110120,130,16
    Плита ДВП (ДСП)8000,1310120,190,23
    Плита ДВП (ДСП)10000,1510120,230,29
    Полистиролбетон на портландцементе6000,14480,170,20
    Вермикулитобетон8000,218130,230,26
    Вермикулитобетон6000,148130,160,17
    Вермикулитобетон4000,098130,110,13
    Вермикулитобетон3000,088130,090,11
    Рубероид6000,17000,170,17
    Плита фибролит8000,1610150,240,30
    Металл сталь785058005858
    Стекло25000,76000,760,76
    Стекловата500,048250,0520,06
    Стекловолокно500,056250,060,064
    Плита фибролит6000,1210150,180,23
    Плита фибролит4000,0810150,130,16
    Плита фибролит3000,0710150,090,14
    Клееная фанера6000,1210130,150,18
    Плита камышитовая3000,0710150,090,14
    Раствор цементо-песчаный18000,58240,760,93
    Металл чугун720050005050
    Раствор цементно-шлаковый14000,41240,520,64
    Раствор сложного песка17000,52240,700,87
    Сухая штукатурка8000,15460,190,21
    Плита камышитовая2000,0610150,070,09
    Цементная штукатурка10500,15460,340,36
    Плита торфяная3000,06415200,070,08
    Плита торфяная2000,05215200,060,064

    Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:

    Выводы и полезное видео по теме

    Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.

    Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.

    Если у вас появились вопросы или есть ценная информация  по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

    сравнительная таблица теплопроводности строительных материалов — Рамблер/новости

    Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

    Чем ниже теплопроводность строительных материалов, тем теплее в доме

    Содержание статьи 1 Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

    2 Основные параметры, от которых зависит величина теплопроводности

    3 Коэффициент теплопроводности строительных материалов – таблицы 3.1 Таблица теплопроводности кирпича

    3.2 Таблица теплопроводности металлов

    3.3 Таблица теплопроводности дерева

    3.4 Таблица проводимости тепла бетонов

    3.5 Какой коэффициент теплопроводности у воздушной прослойки 4 Калькулятор расчёта толщины стены по теплопроводности Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

    Что же за «зверь» теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

    Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту. ИСТ-1 – прибор для определения теплопроводности Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом. Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

    Основные параметры, от которых зависит величина теплопроводности

    Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы: Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

    Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

    Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы. «Холодно, холодно и сыро. Не пойму, что же в нас остыло » Даже Согдиана знает о том, что сырость и холод вечные соседи, от которых не спрячешься в тёплом свитере

    Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Проводимость тепла материалов. Часть 2

    Таблица теплопроводности изоляционных материалов для бетонных полов

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4 0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 1

    Теплоэффективность разных видов металлов. Часть 2

    Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Проводимость тепла дерева

    Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят ответственные узлы зданий с последующим утеплением, когда же из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Теплопроводность

    63 50.2 9007

    63 50,2 9007 34,7

    000
    Материал Теплопроводность
    (кал / сек) / (см 2 C / см)
    Теплопроводность
    (Вт / м · К) *
    Алмаз 1000
    Серебро 1,01 406,0
    Медь 0,99 385,0
    Золото 314
    Латунь… 109,0
    Алюминий 0,50 205,0
    Железо 0,163 79,5
    Сталь
    Меркурий 8,3
    Лед 0,005 1,6
    Стекло обычное 0,0025 0.8
    Бетон 0,002 0,8
    Вода при 20 ° C 0,0014 0,6
    Асбест 0,0004 0,08
    7 900000057
    0,08
    Стекловолокно 0,00015 0,04
    Кирпич изоляционный 0,15
    Кирпич красный 0,6
    Пробковая плита 0,00011 0,04
    Войлок 0,0001 0,04
    Каменная вата Полиуретан ) 0,033
    Полиуретан 0,02
    Дерево 0,0001 0,12-0,04
    Воздух при 0 ° C 0,024
    Гелий (20 ° C) 0,138
    Водород (20 ° C) 0,172
    Азот (20 ° C) 0,0234
    Кислород (20 ° C) 0,0238
    Аэрогель кремнезема 0,003

    * Большая часть от Янга, Хью Д., Университетская физика, 7-е изд.Таблица 15-5. Значения для аэрогеля алмаза и кремнезема из Справочника по химии и физике CRC.

    Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. С учетом этого два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

    Значение 0,02 Вт / мК для полиуретана может быть принято как номинальное значение, которое делает пенополиуретан одним из лучших изоляторов. NIST опубликовал программу численного приближения для расчета теплопроводности полиуретана на сайте http: // cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана с фреоновым наполнением плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

    Индекс

    Таблицы

    Ссылка
    Young
    Ch 15.

    .

    Теплопроводность металлов, металлических элементов и сплавов

    Теплопроводность — k — это количество тепла, переданное за счет единичного температурного градиента в единицу времени в установившихся условиях в направлении, нормальном к поверхности единицы площади. Теплопроводность — k — используется в уравнении Фурье.

    9 0038190 9003 8 0-25
    Металл, металлический элемент или сплав Температура
    — t —
    ( o C)

    Теплопроводность
    — k —
    (Вт / м K)
    Алюминий-73 237
    « 0 236
    » 127 240
    « 327 232
    « 527 220
    Алюминий — дюралюминий (94-96% Al, 3-5% Cu, следы Mg) 20 164
    Алюминий — силумин (87% Al, 13% Si) 20 164
    Алюминиевая бронза 0-25 70
    Алюминиевый сплав 3003, прокат 0-25
    Алюминиевый сплав 2014.отожженный 0-25 190
    Алюминиевый сплав 360 0-25 150
    Сурьма -73 30,2
    « 0 25,5
    « 127 21,2
    » 327 18,2
    « 527 16,8
    Бериллий -73 301
    » 0 218
    « 127 161
    » 327 126
    « 527 107
    » 727 89
    « 927 73
    Бериллиевая медь 25 80
    Висмут-73 9.7
    « 0 8,2
    Бор-73 52,5
    » 0 31,7
    « 127 18,7
    « 327 11,3
    » 527 8,1
    « 727 6,3
    » 927 5.2
    Кадмий-73 99,3
    « 0 97,5
    » 127 94,7
    Цезий-73 36,8
    « 0 36,1
    Хром-73 111
    » 0 94,8
    « 127 87.3
    « 327 80,5
    » 527 71,3
    « 727 65,3
    » 927 62,4
    Кобальт-73 122
    « 0 104
    » 127 84,8
    Медь-73 413
    « 0 401
    « 127 392
    » 327383
    « 527 371
    » 727 357
    « 927 342
    Медь электролитическая (ETP) 0-25 390
    Медь — Адмиралтейская латунь 20 111
    Медь — алюминиевая бронза (95% Cu, 5% Al) 20 83
    Медь — Бронза (75% Cu, 25% Sn) 20 26
    Медь — латунь (желтая латунь) (70% Cu, 30% Zn) 20 111
    Медь — патронная латунь (UNS C26000) 20 120
    Медь — константан (60% Cu, 40% Ni) 20 22.7
    Медь — немецкое серебро (62% Cu, 15% Ni, 22% Zn) 20 24,9
    Медь — фосфористая бронза (10% Sn, UNS C52400) 20 50
    Медь — красная латунь (85% Cu, 9% Sn, 6% Zn) 20 61
    Мельхиор 20 29
    Германий-73 96,8
    « 0 66.7
    « 127 43,2
    » 327 27,3
    « 527 19,8
    » 727 17,4
    » 927 17,4
    Золото-73 327
    « 0 318
    » 127 312
    « 327 304
    « 527 292
    » 727 278
    « 927 262
    Гафний-73 24.4
    « 0 23,3
    » 127 22,3
    « 327 21,3
    » 527 20,8
    » 727 20,7
    « 927 20,9
    Hastelloy C 0-25 12
    Инконель 21-100 15
    Инколой 0-100 12
    Индий-73 89.7
    « 0 83,7
    » 127 75,5
    Иридий-73 153
    « 0 148
    « 127 144
    » 327 138
    « 527 132
    » 727 126
    « 927 120
    Железо-73 94
    « 0 83.5
    « 127 69,4
    » 327 54,7
    « 527 43,3
    » 727 32,6
    » 927 28,2
    Железо — литье 20 52
    Железо — перлитное с шаровидным графитом 100 31
    Кованое железо 20 59
    Свинец-73 36.6
    « 0 35,5
    » 127 33,8
    « 327 31,2
    Свинец химический 0-25 35
    Сурьма свинец (твердый свинец) 0-25 30
    Литий-73 88,1
    « 0 79.2
    « 127 72,1
    Магний-73 159
    » 0 157
    « 127 153
    « 327 149
    » 527 146
    Магниевый сплав AZ31B 0-25 100
    Марганец-73 7.17
    « 0 7,68
    Меркурий-73 28,9
    Молибден-73 143
    » 0 139
    « 127 134
    » 327 126
    « 527 118
    » 727 112
    « 927 105
    Монель 0-100 26
    Никель-73 106
    « 0 94
    » 127 80.1
    « 327 65,5
    » 527 67,4
    « 727 71,8
    » 927 76,1
    Никель — Кованые 0-100 61-90
    Мельхиор 50-45 (константан) 0-25 20
    Ниобий (колумбий)-73 52.6
    « 0 53,3
    » 127 55,2
    « 327 58,2
    » 527 61,3
    » 727 64,4
    « 927 67,5
    Осмий 20 61
    Палладий 75.5
    Платина-73 72,4
    « 0 71,5
    » 127 71,6
    « 327 73,0
    « 527 75,5
    » 727 78,6
    » 927 82,6
    Плутоний 20 8.0
    Калий-73 104
    « 0 104
    » 127 52
    Красная латунь 0-25 160
    Рений-73 51
    « 0 48,6
    » 127 46,1
    « 327 44.2
    « 527 44,1
    » 727 44,6
    « 927 45,7
    Родий-73 154
    « 0 151
    » 127 146
    « 327 136
    » 527 127
    « 727 121
    « 927 115
    Рубидий-73 58.9
    « 0 58,3
    Селен 20 0,52
    Кремний-73 264
    » 0 168
    « 127 98,9
    » 327 61,9
    « 527 42,2
    » 727 31.2
    « 927 25,7
    Серебро-73 403
    » 0 428
    « 127 420
    « 327 405
    » 527 389
    « 727 374
    » 927 358
    Натрий-73 138
    « 0 135
    Припой 50-50 0-25 50
    Сталь — углерод, 0.5% C 20 54
    Сталь — углеродистая, 1% C 20 43
    Сталь — углеродистая, 1,5% C 20 36
    « 400 36
    « 122 33
    Сталь — хром, 1% Cr 20 61
    Сталь — хром, 5% Cr 20 40
    Сталь — хром, 10% Cr 20 31
    Сталь — хромоникель, 15% Cr, 10% Ni 20 19
    Сталь — хромоникель, 20% Cr , 15% Ni 20 15.1
    Сталь — Hastelloy B 20 10
    Сталь — Hastelloy C 21 8,7
    Сталь — никель, 10% Ni 20 26
    Сталь — никель, 20% Ni 20 19
    Сталь — никель, 40% Ni 20 10
    Сталь — никель, 60% Ni 20 19
    Сталь — хром никель, 80% никель, 15% никель 20 17
    Сталь — хром никель, 40% никель, 15% никель 20 11.6
    Сталь — марганец, 1% Mn 20 50
    Сталь — нержавеющая, тип 304 20 14,4
    Сталь — нержавеющая, тип 347 20 14,3
    Сталь — вольфрам, 1% W 20 66
    Сталь — деформируемый углерод 0 59
    Тантал-73 57.5
    « 0 57,4
    » 127 57,8
    « 327 58,9
    » 527 59,4
    » 727 60,2
    « 927 61
    Торий 20 42
    Олово-73 73.3
    « 0 68,2
    » 127 62,2
    Титан-73 24,5
    « 0 22,4
    « 127 20,4
    » 327 19,4
    « 527 19,7
    » 727 20.7
    « 927 22
    Вольфрам-73 197
    » 0 182
    « 127 162
    « 327 139
    » 527 128
    « 727 121
    » 927 115
    Уран -73 25.1
    « 0 27
    » 127 29,6
    « 327 34
    » 527 38,8
    » 727 43,9
    « 927 49
    Ванадий-73 31,5
    » 0 31.3
    « 427 32,1
    » 327 34,2
    « 527 36,3
    » 727 38,6
    » 927 41,2
    Цинк-73 123
    « 0 122
    » 127 116
    « 327 105
    Цирконий-73 25.2
    « 0 23,2
    » 127 21,6
    « 327 20,7
    » 527 21,6
    » 727 23,7
    « 927 25,7

    Сплавы — температура и теплопроводность

    Температура и теплопроводность для

    • Hastelloy A
    • Инконель
    • Navarich
    • Advance
    • Монель

    сплавы:

    Alloys - temperature and thermal conductivity - Hastelloy A, Inconel, Nichrome V, Kovar, Advance, Monel

    .

    Удельное сопротивление и проводимость — температурные коэффициенты для обычных материалов

    Удельное сопротивление равно

    • электрическое сопротивление единичного куба материала, измеренное между противоположными гранями куба

    Калькулятор сопротивления электрического проводника

    Этот калькулятор можно использовать для рассчитать электрическое сопротивление проводника.

    Коэффициент удельного сопротивления (Ом · м) (значение по умолчанию для меди)

    Площадь поперечного сечения проводника (мм 2 ) — Калибр провода AWG

    Алюминий 2 .65 x 10 -8 3,8 x 10 -3 3,77 x 10 7
    Алюминиевый сплав 3003, прокат 3,7 x 10 -8
    Алюминиевый сплав 2014, отожженный 3,4 x 10 -8
    Алюминиевый сплав 360 7,5 x 10 -8
    Алюминиевая бронза 12 x 10 -8
    Животный жир 14 x 10 -2
    Животный жир 0.35
    Сурьма 41,8 x 10 -8
    Барий (0 o C) 30,2 x 10 -8
    Бериллий 4,0 x 10 -8
    Бериллиевая медь 25 7 x 10 -8
    Висмут 115 x 10 -8
    Латунь — 58% Cu 5.9 x 10 -8 1,5 x 10 -3
    Латунь — 63% Cu 7,1 x 10 -8 1,5 x 10 -3
    Кадмий 7,4 x 10 -8
    Цезий (0 o C) 18,8 x 10 -8
    Кальций (0 o C) 3,11 x 10 -8
    Углерод (графит) 1) 3-60 x 10 -5 -4.8 x 10 -4
    Чугун 100 x 10 -8
    Церий (0 o C) 73 x 10 -8
    Хромель (сплав хрома и алюминия) 0,58 x 10 -3
    Хром 13 x 10 -8
    Кобальт 9 x 10 -8
    Константан 49 x 10 -8 3 x 10 -5 0.20 x 10 7
    Медь 1,724 x 10 -8 4,29 x 10 -3 5,95 x 10 7
    Купроникель 55-45 (константан) 43 x 10 -8
    Диспрозий (0 o C) 89 x 10 -8
    Эрбий (0 o C) 81 x 10 -8
    Эврика 0.1 x 10 -3
    Европий (0 o C) 89 x 10 -8
    Гадолий 126 x 10 -8
    Галлий (1,1K) 13,6 x 10 -8
    Германий 1) 1 — 500 x 10 -3 -50 x 10 -3
    Стекло 1 — 10000 x 10 9 10 -12
    Золото 2.24 x 10 -8
    Графит 800 x 10 -8 -2,0 x 10 -4
    Гафний (0,35 K) 30,4 x 10 — 8
    Hastelloy C 125 x 10 -8
    Гольмий (0 o C) 90 x 10 -8
    Индий ( 3.35K) 8 x 10 -8
    Инконель 103 x 10 -8
    Иридий 5,3 x 10 -8
    Железо 9,71 x 10 -8 6,41 x 10 -3 1,03 x 10 7
    Лантан (4,71K) 54 x 10 -8
    Свинец 20.6 x 10 -8 0,45 x 10 7
    Литий 9,28 x 10 -8
    Лютеций 54 x 10 -8
    Магний 4,45 x 10 -8
    Магниевый сплав AZ31B 9 x 10 -8
    Марганец 185 x 10 -8 1.0 x 10 -5
    Меркурий 98,4 x 10 -8 8,9 x 10 -3 0,10 x 10 7
    Слюда (мерцание) 1 x 10 13
    Мягкая сталь 15 x 10 -8 6,6 x 10 -3
    Молибден 5,2 x 10 -8
    Монель 58 x 10 -8
    Неодим 61 x 10 -8
    Нихром (сплав никеля и хрома) 100 — 150 х 10 -8 0.40 x 10 -3
    Никель 6,85 x 10 -8 6,41 x 10 -3
    Никелин 50 x 10 -8 2,3 x 10 -4
    Ниобий (колумбий) 13 x 10 -8
    Осмий 9 x 10 -8
    Палладий 10.5 x 10 -8
    Фосфор 1 x 10 12
    Платина 10,5 x 10 -8 3,93 x 10 -3 0,943 x 10 7
    Плутоний 141,4 x 10 -8
    Полоний 40 x 10 -8
    Калий 7.01 x 10 -8
    Празеодим 65 x 10 -8
    Прометий 50 x 10 -8
    Протактиний (1,4 K) 17,7 x 10 -8
    Кварц (плавленый) 7,5 x 10 17
    Рений (1,7 K) 17.2 x 10 -8
    Родий 4,6 x 10 -8
    Твердая резина 1 — 100 x 10 13
    Рубидий 11,5 x 10 -8
    Рутений (0,49K) 11,5 x 10 -8
    Самарий 91,4 x 10 -8
    Скандий 50.5 x 10 -8
    Селен 12,0 x 10 -8
    Кремний 1) 0,1-60 -70 x 10 -3
    Серебро 1,59 x 10 -8 6,1 x 10 -3 6,29 x 10 7
    Натрий 4,2 x 10 -8
    Грунт, типичный грунт 10 -2 — 10 -4
    Припой 15 x 10 -8
    Нержавеющая сталь 10 6
    Стронций 12.3 x 10 -8
    Сера 1 x 10 17
    Тантал 12,4 x 10 -8
    Тербий 113 x 10 -8
    Таллий (2,37K) 15 x 10 -8
    Торий 18 x 10 -8
    Тулий 67 x 10 -8
    Олово 11.0 x 10 -8 4,2 x 10 -3
    Титан 43 x 10 -8
    Вольфрам 5,65 x 10 -8 4,5 x 10 -3 1,79 x 10 7
    Уран 30 x 10 -8
    Ванадий 25 x 10 -8
    Вода дистиллированная 10 -4
    Вода пресная 10 -2
    Вода соленая 4
    Иттербий 27.7 x 10 -8
    Иттрий 55 x 10 -8
    Цинк 5,92 x 10 -8 3,7 x 10 -3
    Цирконий (0,55K) 38,8 x 10 -8

    1) Примечание! — удельное сопротивление сильно зависит от наличия примесей в материале.

    2 ) Примечание! — удельное сопротивление сильно зависит от температуры материала.Приведенная выше таблица основана на эталоне 20 o C.

    Электрическое сопротивление в проводе

    Электрическое сопротивление провода больше для более длинного провода и меньше для провода с большей площадью поперечного сечения. Сопротивление зависит от материала, из которого оно изготовлено, и может быть выражено как:

    R = ρ L / A (1)

    , где

    R = сопротивление (Ом, ). Ω )

    ρ = коэффициент удельного сопротивления (Ом · м, Ом · м)

    L = длина провода (м)

    A = площадь поперечного сечения провода (м 2 )

    Фактором сопротивления, учитывающим природу материала, является удельное сопротивление.Поскольку он зависит от температуры, его можно использовать для расчета сопротивления провода заданной геометрии при различных температурах.

    Обратное сопротивление называется проводимостью и может быть выражено как:

    σ = 1 / ρ (2)

    , где

    σ = проводимость (1 / Ом · м)

    Пример — сопротивление алюминиевого провода

    Сопротивление алюминиевого кабеля длиной 10 м и площадью поперечного сечения 3 мм 2 можно рассчитать как

    R = (2.65 10 -8 Ом м) (10 м) / ((3 мм 2 ) (10 -6 м 2 / мм 2 ))

    = 0,09 Ом

    Сопротивление

    Электрическое сопротивление компонента схемы или устройства определяется как отношение приложенного напряжения к протекающему через него электрическому току:

    R = U / I (3)

    где

    R = сопротивление (Ом)

    U = напряжение (В)

    I = ток (A)

    Закон Ома

    Если сопротивление является постоянным более значительным диапазон напряжения, затем закон Ома,

    I = U / R (4)

    можно использовать для прогнозирования поведения материала.

    Удельное сопротивление в зависимости от температуры

    Изменение удельного сопротивления в зависимости от температуры можно рассчитать как

    = ρ α dt (5)

    где

    dρ = изменение удельного сопротивления ( Ом м 2 / м)

    α = температурный коэффициент (1/ o C)

    dt = изменение температуры ( o C)

    Пример — изменение удельного сопротивления

    Алюминий с удельным сопротивлением 2.65 x 10 -8 Ом · м 2 / м нагревается от 20 o C до 100 o C . Температурный коэффициент для алюминия составляет 3,8 x 10 -3 1/ o C . Изменение удельного сопротивления можно рассчитать как

    dρ = (2,65 10 -8 Ом · м 2 / м) (3,8 10 -3 1/ o C) ((100 o C) — (20 o C))

    = 0.8 10 -8 Ом м 2 / м

    Окончательное удельное сопротивление можно рассчитать как

    ρ = (2,65 10 -8 Ом м 2 / м) + (0,8 10 -8 Ом м 2 / м)

    = 3,45 10 -8 Ом м 2 / м

    Калькулятор коэффициента удельного сопротивления в зависимости от температуры

    использоваться для расчета удельного сопротивления материала проводника в зависимости оттемпература.

    ρ — Коэффициент удельного сопротивления (10 -8 Ом м 2 / м)

    α Температурный коэффициент (10 -3 1/ o C)

    dt изменение температуры ( o C)

    Сопротивление и температура

    Для большинства материалов электрическое сопротивление увеличивается с температурой.Изменение сопротивления можно выразить как

    dR / R с = α dT (6)

    , где

    dR = изменение сопротивления (Ом)

    с = стандартное сопротивление согласно справочным таблицам (Ом)

    α = температурный коэффициент сопротивления ( o C -1 )

    dT = изменение температура от эталонной температуры ( o C, K)

    (5) может быть изменена на:

    dR = α dT R s (6b)

    «Температурный коэффициент сопротивления» — α — материала — это увеличение сопротивления резистора 1 Ом из этого материала при повышении температуры 9 0013 1 o С .

    Пример — сопротивление медной проволоки в жаркую погоду

    Медная проволока с сопротивлением 0,5 кОм при нормальной рабочей температуре 20 o C в жаркую солнечную погоду нагревается до 80 o C . Температурный коэффициент для меди составляет 4,29 x 10 -3 (1/ o C) , а изменение сопротивления можно рассчитать как

    dR = ( 4,29 x 10 -3 1/ o C) ((80 o C) — (20 o C) ) (0.5 кОм)

    = 0,13 (кОм)

    Результирующее сопротивление для медного провода в жаркую погоду будет

    R = (0,5 кОм) + (0,13 кОм)

    = 0,63 ( кОм)

    = 630 (Ом)

    Пример — сопротивление углеродного резистора при изменении температуры

    Угольный резистор с сопротивлением 1 кОм при температуре 20 o C нагревается до 120 o С .Температурный коэффициент для углерода отрицательный. -4,8 x 10 -4 (1/ o C) — сопротивление снижается с повышением температуры.

    Изменение сопротивления можно рассчитать как

    dR = ( -4,8 x 10 -4 1/ o C) ((120 o C) — (20 o C) ) (1 кОм)

    = — 0,048 (кОм)

    Результирующее сопротивление для резистора будет

    R = (1 кОм) — (0.048 кОм)

    = 0,952 (кОм)

    = 952 (Ом)

    Калькулятор сопротивления в зависимости от температуры

    Этот счетчик можно использовать для расчета сопротивления в проводнике в зависимости от температуры.

    R с сопротивление (10 3 (Ом)

    α температурный коэффициент (10 -3 1/ o C)

    dt Изменение температуры ( o C)

    Температурные поправочные коэффициенты для сопротивления проводника

    900
    Температура проводника
    (° C)
    Коэффициент Преобразовать в 20 ° C Обратно в преобразовать из 20 ° C
    5 1.064 0,940
    6 1,059 0,944
    7 1,055 0,948
    8 1,050 0,952
    9 1,046 0,956
    10 1,042 0,960
    11 1,037 0,964
    12 1,033 0.968
    13 1,029 0,972
    14 1,025 0,976
    15 1,020 0,980
    16 1,016 0,984
    17 1,012 0,988
    18 1,008 0,992
    19 1,004 0,996
    20 1.000 1.000
    21 0,996 1.004
    22 0,992 1.008
    23 0,988 1.012
    24 0,984 1.016
    25 0,980 1,020
    26 0,977 1,024
    27 0,973 1.028
    28 0,969 1,032
    29 0,965 1,036
    30 0,962 1,040
    31 0,958 1,044
    32 0,954 1,048
    33 0,951 1,052
    .

    Вода — теплопроводность

    Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

    «количество тепла, передаваемого через единицу толщины материала в направлении, нормальном к поверхности единицы площади — из-за градиента единичной температуры в условиях устойчивого состояния»

    Теплопроводность конвертер величин

    Теплопроводность воды зависит от температуры и давления, как показано на рисунках и таблицах ниже:

    См. также другие свойства Вода при различных температуре и давлении : Точки кипения при высоком давлении, Точки кипения при вакуумном давлении, Плотность и удельный вес, Динамическая и кинематическая вязкость, Энтальпия и энтропия, Теплота испарения, Константа ионизации, pK w , нормальной и тяжелой воды, Точки плавления при высоком давлении, Число Прандтля, Свойства газа -Условия жидкого равновесия, давление насыщения, удельный вес, удельная теплоемкость (теплоемкость), удельный объем, тер маль диффузии и давления пара при газожидкостном равновесии и теплофизических свойств при стандартных условиях ,
    , а также теплопроводности
    воздуха, аммиака, бутана, диоксида углерода, этилена, водорода, метана, азота и пропана.Информацию о теплопроводности строительных материалов см. В соответствующих документах внизу страницы.


    Вернуться к началу

    Теплопроводность воды при заданных температурах (° C) и 1 бар абс .:

    0,514
    Состояние
    воды
    Температура Теплопроводность
    [° C] [мВт / м K] [ккал (IT) / (hm K)] [BTU (IT) / (h ft ° F)]
    Жидкость 0.01 555,75 0,4779 0,3211
    10 578,64 0,4975 0,3343
    20 598,03 0,5142 0,3455
    0,3551
    40 628,56 0,5405 0,3632
    50 640,60 0.5508 0,3701
    60 650,91 0,5597 0,3761
    70 659,69 0,5672 0,3812
    80 667,02 0,57354 0,57354 90 672,88 0,5786 0,3888
    99,6 677,03 0,5821 0,3912
    Газ 100 24.57 0,0211 0,0142
    125 26,66 0,0229 0,0154
    150 28,83 0,0248 0,0167
    175 31,09 0,02
    200 33,43 0,0287 0,0193
    225 35,85 0,0308 0.0207
    250 38,34 0,0330 0,0222
    275 40,91 0,0352 0,0236
    300 43,53 0,0374 0,0252 48,98 0,0421 0,0283
    400 54,65 0,0470 0,0316
    450 60.52 0,0520 0,0350
    500 66,58 0,0573 0,0385
    550 72,81 0,0626 0,0421
    600 79,17 0,048 0,04
    700 92,28 0,0794 0,0533
    800 105,81 0,0910 0.0611
    900 119,67 0,1029 0,0691

    Вернуться к началу
    Теплопроводность воды при заданных температурах (° F) и 14,5 psia:

    0,12 450 900 900
    Состояние воды Температура Теплопроводность
    [° F] [BTU (IT) / (h ft ° F)] [BTu (IT) дюйм / (час фут) 2 ° F)] [мВт / м · K] [x 10 -3
    кал (IT) / (с · см 2 K)]
    Жидкость 32 0.3211 3,853 555,73 1,327
    40 0,3273 3,927 566,39 1,353
    60 0,3408 4,089 589.80 1,409 0,3520 4,225 609,30 1,455
    100 0,3615 4,338 625,62 1.494
    120 0,3694 4,433 639,35 1,527
    140 0,3761 4,513 650,91 1,555
    160 0,3817 4,560
    160 0,3817 4,560 1,578
    180 0,3862 4,635 668,45 1,597
    200 0.3897 4,677 674,49 1,611
    211,3 0,3912 4,694 677,03 1,617
    Газ 212 0,0142 0,0142 900 0,059
    250 0,0152 0,183 26,33 0,063
    300 0.0166 0,199 28,73 0,069
    350 0,0181 0,217 31,25 0,075
    400 0,0196 0,235 33,86 0,081
    0,0211 0,254 36,56 0,087
    550 0,0244 0,293 42,24 0.101
    600 0,0261 0,313 45,20 0,108
    650 0,0279 0,334 48,24 0,115
    700 51 0,0297 0,356 0,123
    750 0,0315 0,378 54,52 0,130
    800 0.0334 0,400 57,76 0,138
    900 0,0372 0,447 64,41 0,154
    1000 0,0412 0,494 71,27 0,170
    0,0453 0,543 78,32 0,187
    1200 0,0494 0,593 85,53 0.204
    1400 0,0580 0,696 100,35 0,240
    1600 0,0668 0,802 115,63 0,276

    Конвертер единиц теплопроводности

    вверху

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *