Menu Close

Опрессовка системы отопления что это такое: Опрессовка системы отопления, что это и под каким давлением проводится

Что такое опрессовка системы отопления – описание процесса, последовательность выполнения работ

Содержание:

Водяное отопление нового поколения представляет собой сложную и дорогостоящую инженерную систему, выполненную с применением современных технологий. Для отопительной системы очень важно наличие таких качеств, как эффективность, надежность и бесперебойная работа. Однако в любой коммуникации может обнаружиться участок, где в процессе монтажа была допущена ошибка, также любая система со временем приходит в негодность. Помимо этого довольно часто наблюдается разгерметизация контуров. Выявить наличие утечки или обнаружить аварийный участок помогает опрессовка системы отопления. Для многих домовладельцев этот процесс неизвестен, что приводит к появлению вопроса, что такое опрессовка труб отопления.


Описание процесса — что это такое

Под опрессовкой следует понимать процесс проверки работоспособности оборудования или трубопровода путем нагнетания воды или воздуха под высоким давлением. Другими словами система проверяется на прочность и плотность способом неразрушающего контроля. Идея опрессовки заключается в следующем: отсутствие протечек при повышенном давлении рабочей среды гарантирует бесперебойную работу системы в нормальном режиме.

Очень важно понимать, что опрессовка здания подразумевает комплексное выполнение следующих действий:

  • Испытание трубопроводов с одновременной промывкой системы.
  • Ремонт или замена некоторых элементов.
  • Обновление изоляции.

В частном секторе опрессовка выполняется в системах отопления, водоснабжения и канализации, а также в контуре ГВС.

Гидравлические испытания проводятся со следующей целью:

  • Проверить на прочность корпуса и стенки трубных участков, радиаторов и теплообменников, а также запорной арматуры.
  • Определить степень герметичности соединения различных узлов системы.
  • Проверить работоспособность разных кранов и датчиков.

В процессе эксплуатации трубы подвергаются воздействию коррозии и механическим повреждениям, не исключено наличие заводского брака. Все это приводит к появлению слабых участков, включая места обвязки котлов и арматуры, сборные фитинги и места соединений. В результате воздействия высоких температур и гидравлических ударов на слабых участках появляются протечки, которые помогает выявить опрессовка котла и опрессовка батарей.

Типы опрессовки

Опрессовка системы отопления в многоэтажных домах делится на несколько видов, это зависит от того, для чего нужна опрессовка системы отопления.

Первичной опрессовке подвергается вновь собранная система перед непосредственной сдачей в эксплуатацию. Диагностика предназначена для проверки качества сборки, поэтому выполняется после того, как будут подключены радиаторы, теплогенератор и расширительный бак. Однако маскировать систему отопления за декоративную обшивку или заливать стяжкой лучше всего после проведения опрессовки.


Вторичная опрессовка проводится в профилактических целях. Наиболее подходящим для этого считается время, когда отопительный сезон закончился и проведено плановое обслуживание. Основной целью плановой опрессовки является подготовка к следующему отопительному сезону и снижение риска возникновения аварийных ситуаций.

Внеплановая опрессовка проводится после проведения ремонтных работ на одном из участков, например, после отсоединения котла или демонтажа радиаторов. Подобный процесс необходим после промывки системы, а также в случае запуска после долгого простоя. С помощью опрессовки выявляются повреждения и утечки системы при различных неполадках.

Правила проведения опрессовки системы отопления

В поисках ответа на вопрос, что это такое опрессовка системы отопления, важно понимать, выполнение работ подобного рода проводится в соответствии с определенными нормативными документами. В частности с требованиями к проведению опрессовки можно ознакомиться в таких документах:

  • Санитарные Нормы и Правила 41-01 от 2003 года «Отопление, вентиляция и кондиционирование».
  • СНиП 3.05.01 от 1985 года «Внутренние санитарно-технические системы».
  • «Правила технической эксплуатации тепловых энергоустановок» №115, утвержденные Приказом Минэнерго России от 24 марта 2003 года.

Этапы выполнения работы

Перед выполнением работ важно узнать, как происходит опрессовка системы отопления. Процесс протекает по схеме, общей для всех систем, в частности предполагается следующий порядок действий:

  • Выполняется отключение проверяемого участка, для чего используются краны.
  • Приостанавливается работа теплогенератора.
  • Проводится слив теплоносителя.
  • В контур заливают воду температурой не выше 450С, для этой цели в нижней части системы имеется патрубок.
  • В процессе заполнения контура водой сбрасывают воздух.
  • Проводят подключение устройства, которое будет нагнетать давление в системе.
  • После достижения рабочего уровня давления визуально осматривают систему на предмет целостности.
  • Стараясь не допускать рывков, повышают давление до испытательного уровня и фиксируют показатели датчиков.
  • Под таким давлением система должна простоять около 10 минут.
  • Проводят повторный осмотр системы, выявляя утечки и запотевания в местах соединения с помощью пайки, сварки или фитингов. Также выполняют поиск разрывов и свищей на отдельных узлах, включая корпус арматуры, секции радиаторов и стенки трубных участков, проверяют работу кранов и запорной арматуры.
  • Проверяют показания датчиков давления. Проверку можно считать успешной, если показатели давления остались без изменения. Если опрессовка центрального отопления выявила места течи, то следует слить воду из контура, провести ремонт слабого участка и повторить процесс.
  • Результаты испытания системы на плотность и прочность фиксируются в специальном документе. Поэтому важно знать, как правильно написать акт опрессовки системы отопления.

Акт  имеет определенную форму, которая утверждена соответствующими структурами управления тепловым хозяйством и руководителями предприятий энергетической отрасли. Бланк акта опрессовки системы отопления в каждом районе может иметь некоторые отличия. Он может иметь название «Ведомость поэтапной приемки» или «Справка готовности оборудования», но суть документа всегда остается неизменной.

В некоторых случаях опрессовку проводят воздухом. Такая ситуация возникает:

  • Когда заполнить систему водой не представляется возможным.
  • Если испытания проводятся при низкой температуре и есть вероятность замерзания воды.

Определить разгерметизацию контура при опрессовке систем теплоснабжения воздухом помогают показания контрольного датчика. Для обнаружения утечки места, где может возникнуть такая проблема, обрабатывают мыльным раствором. Чаще всего это относится к местам резьбового или фитингового соединения.

Какое давление должно быть в системе отопления многоквартирного дома

Информацию о величине испытательного давления при опрессовке системы отопления должны знать застройщики в обязательном порядке. В регламентирующих документах сказано, что проверка выполняется давлением, которое превышает рабочие показатели в 1,25-1,5 раза. Об этом сказано в соответствующих Санитарных Нормах и Правилах, а также в «Правилах технической эксплуатации тепловых энергоустановок».

Чтобы определить рабочее давление системы, необходимо ориентироваться на этажность дома. В автономном отоплении частного дома высотой не больше 3 этажей давление не превышает 2 атмосфер. При этом регулировка проводится автоматически, избыточное давление сбрасывается специальным клапаном. В домах до 5 этажей показатель рабочего давления может составлять около 6 атмосфер. В зданиях высотой более 8 этажей системы имеют рабочее давление до 10 атмосфер.


Однако для проведения опрессовки системы отопления в многоквартирном доме важно знать и максимальный порог испытательного давления. Эти данные дает организация, которая занималась разработкой проекта.

При определении, какое давление опрессовки системы отопления воздухом может быть максимальным, во внимание принимаются характеристики всех элементов, входящих в состав отопительной системы. В частности речь идет о трубах, теплогенераторах, отопительных приборах и различной арматуре. Чтобы не причинить вреда отоплению при проведении опрессовки, вводятся ограничения максимального пробного давления. К примеру, для чугунных радиаторов можно использовать давление не более 6 атмосфер, а для панельных – не больше 10 атмосфер.

Инструменты, используемые для опрессовки

 Прочность и плотность водяного отопления испытываются с помощью нагнетающего устройства. Этот аппарат выполнен в виде насоса, который подключается к патрубку системы с помощью шланга высокого давления и обратного клапана. При выборе устройства следует учитывать следующие параметры:

  • Производительность.
  • Давление.
  • Напряжение, к которому могут подключаться модели электрического типа.

Для выполнения работ небольшого объема можно воспользоваться ручным опрессовщиком отопительной системы, который оснащен гидравлическим цилиндром.


Электрические устройства с поршневым насосом считаются более удобными, так как более эффективно нагнетают давление. В этом случае давление накачивается быстрее с наименьшими трудозатратами. К базовой комплектации электрических опрессовщиков могут быть добавлены специальные манометры и контрольные блоки.

Частные коттеджи оборудуются системами с рабочим давлением в 2 атмосферы, поэтому для опрессовки достаточно давления сети водоснабжения. Контур заполняют водой из крана водопроводной системы и контролируют показания установленных манометров.

Стоимость гидравлических испытаний

Выполнять самостоятельно испытания отопительной системы не рекомендуется, так как подобные мероприятия считаются достаточно важными. Лучше всего доверить работу лицензированной подрядной организации, специалисты которой знают, как произвести опрессовку системы отопления и могут гарантировать высокое качество выполненных работ.

Чаще всего стоимость опрессовки складывается из следующего:

  • Объем выполняемых работ.
  • Техническое состояние системы.
  • Необходимость выполнения дополнительных операций, включая промывку, устранение течи, замену приборов контроля и измерений.

Подрядная организация предоставляет заказчику договор на выполнение опрессовки и смету. В этом случае гарантируется высокий результат проведенных работ в соответствии с техническим заданием. Кроме того все полученные результаты обязательно будут занесены в акт, составленный по определенным правилам.

Из всего сказанного выше можно понять, что опрессовка системы отопления – это достаточно важное и ответственное мероприятие, позволяющее определить работоспособность отопительной сети.


что это такое и в каких случаях ее необходимо применять?

Опрессовка системы отопления что это такое? Этот вопрос зачастую возникает у собственников жилья во время подготовки систем отопления к новому отопительному сезону. В этой статье мы подробно рассмотрим тему опрессовки и промывки систем отопления.

Неисправности системы отопления и их диагностика

Система отопления представляет собой сложную инженерную систему, позволяющую человеку создать комфортную атмосферу в жилище в холодную погоду. И как во всякой сложной системе, в ней не исключается возникновение неисправностей. Основной неисправностью в системе отопления является потеря герметичности её контуров, следствием чего служит появление протечек теплоносителя. Для диагностирования возможных утечек в комплексе отопительных приборов, труб и прочих элементов применяется так называемая опрессовка отопления.

Так что такое опрессовка системы отопления? Это неразрушающий метод контроля, заключающийся в испытании контуров трубопроводов, отопительных приборов и прочих частей системы методом кратковременного повышения в ней давления теплоносителя. При этом руководствуются логичным принципом – если протечки отсутствуют при повышенном давлении, то их не будет и при нормальных условиях эксплуатации. В момент повышения давления проявляются все дефекты в местах соединения или прогнивания труб и отопительных приборов.

Такое гидравлическое испытание позволяет проверить:

  • прочность стенок трубопроводов, корпусов отопительных приборов и перегородок теплообменников, запорной арматуры;
  • плотность в местах соединения элементов системы;
  • работоспособность измерительных приборов, клапанов, кранов и прочей инженерной оснастки контуров.

Руководящие документы

Существует целый ряд нормативных документов, описывающих, как опрессовать систему отопления. К ним принадлежат:

  1. СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».
  2. СНиП 3.05.01-85 «Внутренние санитарно-технические системы зданий».
  3. «Правила технической эксплуатации тепловых энергоустановок», утверждённые Приказом МинэнергоРФ №115 от 24.03.2003.

Несоблюдение требований этих документов при проведении подготовки к отопительному сезону может вылиться в создание аварийных ситуаций во время эксплуатации систем отопления. Авария в условиях низких температур чревата разморозкой контуров отопительной системы, что может привести к частичной или полной замене трубопроводов.

Порядок проведения работ

Важно понимать, что опрессовка систем отопления – не только простое повышение давления, это целый комплекс процедур, куда входит промывка контуров, ревизия и, по потребности, замена элементов системы (запорной арматуры, секций или целиком отопительных приборов и т.д.), восстановление теплоизоляционных покрытий трубопроводов и многое другое. В индивидуальном домохозяйстве опрессовке могут подвергаться так же и системы водоснабжения, канализации и даже трубы в водяной скважине.

По таким работам, как опрессовка системы отопления инструкция выглядит следующим образом:

  1. Проверяемый участок с помощью устанавливаемых отсечек или кранов изолируется от остальной сети.
  2. Производится слив теплоносителя.
  3. Контур проверяемого участка через находящийся в нижнем фрагменте системы патрубок заполняется холодной (не превышая температуры 45 С) водой.
  4. В процессе заполнения производится выпуск воздуха из системы отопления.
  5. После наполнения системы подключают к ней подающее давление устройство.
  6. В контуре поднимают давление до рабочего (указанного в проекте) и производят визуальный осмотр элементов испытываемого участка системы.
  7. Производят плавное повышение давления до испытательного значения (обычно это в 1,5 раза выше рабочего).
  8. Фиксируются показания контрольного прибора (манометра).
  9. Испытательное давление выдерживается по времени не менее 10 минут. За это время проводят визуальный контроль всех частей проверяемого участка на предмет выявления протечек или «запотевания» мест соединения элементов системы.
  10. Проверяются показания контрольного прибора (манометра). При отсутствии падения давления проверка пройдена успешно. При наличии неполадок воду из контура сливают и производят их устранение, затем проверку проводят повторно.
  11. Составляется Акт по итогам испытаний.

Допускается, в исключительных случаях, и опрессовка труб отопления воздухом. К ним относятся невозможность заполнить контур водой и испытания при низких температурах, не исключающих возможность замерзания воды в трубопроводах. При данном способе по контрольному манометру проверяют герметичность системы, а для обнаружения утечек возможные проблемные места (соединительные фитинги, краны, швы и места соединений) обильно обмазывают мыльным раствором. Пузырение раствора показывает места утечек.

Опрессовка системы отопления в многоквартирных зданиях

Необходимо так же отдельно рассмотреть, как проводится опрессовка системы отопления в многоквартирных зданиях. Как принято, опрессовка системы отопления многоквартирного дома проводится по окончанию сезона отопления, начиная с конца апреля. Как правило, эксплуатирующей организацией за отопительный сезон собрана предварительная информация о проблемных местах в отопительной системе здания по поступающим жалобам от жильцов.

Это могут быть замечания на недостаточно высокую температуру в помещениях, наличие подтёков теплоносителя и многое другое. Поэтому перед проведением опрессовки в первую очередь проверяются и исправляются неполадки по имеющейся информации.

Перед испытаниями системы отопления проводят следующие подготовительные мероприятия:

  • Промывку стояков, по которым поступали жалобы на недостаточную температуру теплоносителя.
  • Проверку работы запорно-регулирующей арматуры на стояках и в элеваторном узле. В многоквартирных домах практически всегда устанавливают чугунные задвижки, в которых из-за воздействия высоких температур во время отопительного сезона сальниковая набивка теряет герметичность и начинает течь. Поэтому следует заново набить сальники, заменить прокладки между фланцами задвижек, поменять прикипевшие болты.
  • Методом визуального контроля проверяют систему целиком на наличие подтёков и протечек на запорных элементах и трубопроводах. Обнаруженные неполадки устраняют.
  • Проверяют целостность теплоизоляции на трубопроводах и устраняют её повреждения.

После выполнения подготовительных мероприятий приступают непосредственно к опрессовке. Методика и правила опрессовки системы отопления многоквартирного здания не отличаются от рассмотренных выше, за исключением того, что выполняется она в несколько этапов и выдержка системы отопления под повышенным давлением составляет не 10, а 30 минут.

На первом этапе проверяют контуры системы всего здания, а на втором отдельно испытывают тепловой узел.

Разделение на этапы обусловлено тем, что проверку теплового узла на вводе в здание производят под более высоким давлением (обычно 10 атмосфер).

Промывка системы отопления

Отдельно стоит заострить внимание над темой промывки системы отопления. Заиливание и засорение контуров отопительной системы в многоквартирных домах происходит не моментально, а на протяжении длительного времени. Особенно выражено это проявляется в местах минимальной скорости движения теплоносителя, например в радиаторах отопления и тупиковых ветках контура. Под воздействием высоких температур на внутренних поверхностях трубопроводов так же образуется осадок минеральных солей, что неуклонно уменьшает внутренний диаметр трубопровода.

Немаловажной причиной засорения является также присутствие твёрдых инородных взвесей в составе теплоносителя. Это обусловлено тем, что в ТЭЦ происходит круглосуточный непрерывный нагрев колоссальных объёмов жидкости, подвергнуть которую тонкой фильтрации практически невозможно. Вследствие этого твёрдые частицы в местах медленного протекания теплоносителя год за годом наслаиваются друг на друга. И если на протяжении долгого времени не оказывать этому процессу должного внимания, система отопления может полностью выйти из строя.

Сегодня применяют два метода промывки – химический и гидропневматический.

Химический метод

Химический метод заключается в заполнении контуров системы химреагентов вместо теплоносителя и применяется в случаях, когда система отопления многоквартирного здания эксплуатировалась на протяжении десятилетий. В качестве реагентов обычно выступают либо щёлочь, либо растворы фосфорных кислот. Затем с помощью специального насоса на протяжении не менее 2-х часов раствор циркулирует в системе, растворяя образовавшийся в трубах осадок. Впоследствии раствор сливается, производится заполнение системы теплоносителем и её опрессовка.

Гидропневматический метод

Гидропневматическая промывка уже долгие годы считается высокоэффективной, при комплексном подходе к таким работам, как промывка и опрессовка системы отопления стоимость работ выходит весьма привлекательной. Суть данного метода элементарна: контуры отопительной системы выводятся на сброс в канализацию, а в систему компрессором подаётся сжатый воздух. Вода, проходящая по всем трубам контура на высокой скорости, частично откалывает накипь и рыхлит илистые отложения, унося их в канализацию. Максимально действенным такой способ будет, если промывать стояки поочерёдно, не более 7-10 за один раз.

Для частных домохозяйств и малоквартирных жилых зданий зачастую выгодно установить на каждый прибор отопления промывочные краны, так как засорение в первую очередь происходит именно в них. Этот подход позволит промывать систему отопления частично, по мере необходимости и только в нужных местах.

Стоимость проведения работ

В заключении следует рассмотреть, сколько стоит опрессовка системы отопления и её промывка. Ввиду сложности процесса и необходимости получения на заключительном этапе официальных бумаг для государственных структур, самостоятельно данные работы проводить весьма проблематично. Целесообразным будет обратиться к непосредственно проводящим эти работы организациям, имеющим на них соответствующую аттестацию и свидетельство СРО. Пообщавшись с тремя-четырьмя представителями таких фирм можно будет определить для себя стоимость опрессовки системы отопления здания и её промывки в средних пределах.

На такие работы, как промывка и опрессовка системы отопления цена может иметь довольно большие расхождения под влиянием нескольких параметров. Обычно за основу берут площадь здания, в основном она влияет на протяжённость трубопроводов, количество отопительных приборов, тепловую производительность оборудования и, соответственно, трудозатраты на проведение работ. Но стоимость опрессовки системы отопления может возрасти в случае неисправности задвижек на вводе в здание, которые необходимо починить перед испытанием, так же могут повлиять ещё многие и многие факторы.

Необходимо понимать, что в таких работах, как опрессовка системы отопления цена всегда индивидуальна и не может быть фиксированной. Некоторые организации указывают стоимость нормо-часа проведения работ и в результате, учитывая впоследствии стоимость расходных материалов, состояние приборов учёта и подвергнутых ремонту элементов контура, определяется окончательная для такой работы как опрессовка системы отопления стоимость работ и включается в счёт.

Справочная информация:

  1. По ОКПД опрессовка системы отопления относится к коду 70.32.13.854 (работы по техническому обслуживанию систем отопления).
  2. По КОСГУ опрессовка системы отопления относится к статье 225.


что это такое и в каких случаях ее необходимо применять?

Опрессовка системы отопления что это такое? Этот вопрос зачастую возникает у собственников жилья во время подготовки систем отопления к новому отопительному сезону. В этой статье мы подробно рассмотрим тему опрессовки и промывки систем отопления.

Неисправности системы отопления и их диагностика

Система отопления представляет собой сложную инженерную систему, позволяющую человеку создать комфортную атмосферу в жилище в холодную погоду. И как во всякой сложной системе, в ней не исключается возникновение неисправностей. Основной неисправностью в системе отопления является потеря герметичности её контуров, следствием чего служит появление протечек теплоносителя. Для диагностирования возможных утечек в комплексе отопительных приборов, труб и прочих элементов применяется так называемая опрессовка отопления.

Так что такое опрессовка системы отопления? Это неразрушающий метод контроля, заключающийся в испытании контуров трубопроводов, отопительных приборов и прочих частей системы методом кратковременного повышения в ней давления теплоносителя. При этом руководствуются логичным принципом – если протечки отсутствуют при повышенном давлении, то их не будет и при нормальных условиях эксплуатации. В момент повышения давления проявляются все дефекты в местах соединения или прогнивания труб и отопительных приборов.

Такое гидравлическое испытание позволяет проверить:

  • прочность стенок трубопроводов, корпусов отопительных приборов и перегородок теплообменников, запорной арматуры;
  • плотность в местах соединения элементов системы;
  • работоспособность измерительных приборов, клапанов, кранов и прочей инженерной оснастки контуров.

Руководящие документы

Существует целый ряд нормативных документов, описывающих, как опрессовать систему отопления. К ним принадлежат:

  1. СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».
  2. СНиП 3.05.01-85 «Внутренние санитарно-технические системы зданий».
  3. «Правила технической эксплуатации тепловых энергоустановок», утверждённые Приказом МинэнергоРФ №115 от 24.03.2003.

Несоблюдение требований этих документов при проведении подготовки к отопительному сезону может вылиться в создание аварийных ситуаций во время эксплуатации систем отопления. Авария в условиях низких температур чревата разморозкой контуров отопительной системы, что может привести к частичной или полной замене трубопроводов.

Порядок проведения работ

Важно понимать, что опрессовка систем отопления – не только простое повышение давления, это целый комплекс процедур, куда входит промывка контуров, ревизия и, по потребности, замена элементов системы (запорной арматуры, секций или целиком отопительных приборов и т.д.), восстановление теплоизоляционных покрытий трубопроводов и многое другое. В индивидуальном домохозяйстве опрессовке могут подвергаться так же и системы водоснабжения, канализации и даже трубы в водяной скважине.

По таким работам, как опрессовка системы отопления инструкция выглядит следующим образом:

  1. Проверяемый участок с помощью устанавливаемых отсечек или кранов изолируется от остальной сети.
  2. Производится слив теплоносителя.
  3. Контур проверяемого участка через находящийся в нижнем фрагменте системы патрубок заполняется холодной (не превышая температуры 45 С) водой.
  4. В процессе заполнения производится выпуск воздуха из системы отопления.
  5. После наполнения системы подключают к ней подающее давление устройство.
  6. В контуре поднимают давление до рабочего (указанного в проекте) и производят визуальный осмотр элементов испытываемого участка системы.
  7. Производят плавное повышение давления до испытательного значения (обычно это в 1,5 раза выше рабочего).
  8. Фиксируются показания контрольного прибора (манометра).
  9. Испытательное давление выдерживается по времени не менее 10 минут. За это время проводят визуальный контроль всех частей проверяемого участка на предмет выявления протечек или «запотевания» мест соединения элементов системы.
  10. Проверяются показания контрольного прибора (манометра). При отсутствии падения давления проверка пройдена успешно. При наличии неполадок воду из контура сливают и производят их устранение, затем проверку проводят повторно.
  11. Составляется Акт по итогам испытаний.

Допускается, в исключительных случаях, и опрессовка труб отопления воздухом. К ним относятся невозможность заполнить контур водой и испытания при низких температурах, не исключающих возможность замерзания воды в трубопроводах. При данном способе по контрольному манометру проверяют герметичность системы, а для обнаружения утечек возможные проблемные места (соединительные фитинги, краны, швы и места соединений) обильно обмазывают мыльным раствором. Пузырение раствора показывает места утечек.

Опрессовка системы отопления в многоквартирных зданиях

Необходимо так же отдельно рассмотреть, как проводится опрессовка системы отопления в многоквартирных зданиях. Как принято, опрессовка системы отопления многоквартирного дома проводится по окончанию сезона отопления, начиная с конца апреля. Как правило, эксплуатирующей организацией за отопительный сезон собрана предварительная информация о проблемных местах в отопительной системе здания по поступающим жалобам от жильцов.

Это могут быть замечания на недостаточно высокую температуру в помещениях, наличие подтёков теплоносителя и многое другое. Поэтому перед проведением опрессовки в первую очередь проверяются и исправляются неполадки по имеющейся информации.

Перед испытаниями системы отопления проводят следующие подготовительные мероприятия:

  • Промывку стояков, по которым поступали жалобы на недостаточную температуру теплоносителя.
  • Проверку работы запорно-регулирующей арматуры на стояках и в элеваторном узле. В многоквартирных домах практически всегда устанавливают чугунные задвижки, в которых из-за воздействия высоких температур во время отопительного сезона сальниковая набивка теряет герметичность и начинает течь. Поэтому следует заново набить сальники, заменить прокладки между фланцами задвижек, поменять прикипевшие болты.
  • Методом визуального контроля проверяют систему целиком на наличие подтёков и протечек на запорных элементах и трубопроводах. Обнаруженные неполадки устраняют.
  • Проверяют целостность теплоизоляции на трубопроводах и устраняют её повреждения.

После выполнения подготовительных мероприятий приступают непосредственно к опрессовке. Методика и правила опрессовки системы отопления многоквартирного здания не отличаются от рассмотренных выше, за исключением того, что выполняется она в несколько этапов и выдержка системы отопления под повышенным давлением составляет не 10, а 30 минут.

На первом этапе проверяют контуры системы всего здания, а на втором отдельно испытывают тепловой узел.

Разделение на этапы обусловлено тем, что проверку теплового узла на вводе в здание производят под более высоким давлением (обычно 10 атмосфер).

Промывка системы отопления

Отдельно стоит заострить внимание над темой промывки системы отопления. Заиливание и засорение контуров отопительной системы в многоквартирных домах происходит не моментально, а на протяжении длительного времени. Особенно выражено это проявляется в местах минимальной скорости движения теплоносителя, например в радиаторах отопления и тупиковых ветках контура. Под воздействием высоких температур на внутренних поверхностях трубопроводов так же образуется осадок минеральных солей, что неуклонно уменьшает внутренний диаметр трубопровода.

Немаловажной причиной засорения является также присутствие твёрдых инородных взвесей в составе теплоносителя. Это обусловлено тем, что в ТЭЦ происходит круглосуточный непрерывный нагрев колоссальных объёмов жидкости, подвергнуть которую тонкой фильтрации практически невозможно. Вследствие этого твёрдые частицы в местах медленного протекания теплоносителя год за годом наслаиваются друг на друга. И если на протяжении долгого времени не оказывать этому процессу должного внимания, система отопления может полностью выйти из строя.

Сегодня применяют два метода промывки – химический и гидропневматический.

Химический метод

Химический метод заключается в заполнении контуров системы химреагентов вместо теплоносителя и применяется в случаях, когда система отопления многоквартирного здания эксплуатировалась на протяжении десятилетий. В качестве реагентов обычно выступают либо щёлочь, либо растворы фосфорных кислот. Затем с помощью специального насоса на протяжении не менее 2-х часов раствор циркулирует в системе, растворяя образовавшийся в трубах осадок. Впоследствии раствор сливается, производится заполнение системы теплоносителем и её опрессовка.

Гидропневматический метод

Гидропневматическая промывка уже долгие годы считается высокоэффективной, при комплексном подходе к таким работам, как промывка и опрессовка системы отопления стоимость работ выходит весьма привлекательной. Суть данного метода элементарна: контуры отопительной системы выводятся на сброс в канализацию, а в систему компрессором подаётся сжатый воздух. Вода, проходящая по всем трубам контура на высокой скорости, частично откалывает накипь и рыхлит илистые отложения, унося их в канализацию. Максимально действенным такой способ будет, если промывать стояки поочерёдно, не более 7-10 за один раз.

Для частных домохозяйств и малоквартирных жилых зданий зачастую выгодно установить на каждый прибор отопления промывочные краны, так как засорение в первую очередь происходит именно в них. Этот подход позволит промывать систему отопления частично, по мере необходимости и только в нужных местах.

Стоимость проведения работ

В заключении следует рассмотреть, сколько стоит опрессовка системы отопления и её промывка. Ввиду сложности процесса и необходимости получения на заключительном этапе официальных бумаг для государственных структур, самостоятельно данные работы проводить весьма проблематично. Целесообразным будет обратиться к непосредственно проводящим эти работы организациям, имеющим на них соответствующую аттестацию и свидетельство СРО. Пообщавшись с тремя-четырьмя представителями таких фирм можно будет определить для себя стоимость опрессовки системы отопления здания и её промывки в средних пределах.

На такие работы, как промывка и опрессовка системы отопления цена может иметь довольно большие расхождения под влиянием нескольких параметров. Обычно за основу берут площадь здания, в основном она влияет на протяжённость трубопроводов, количество отопительных приборов, тепловую производительность оборудования и, соответственно, трудозатраты на проведение работ. Но стоимость опрессовки системы отопления может возрасти в случае неисправности задвижек на вводе в здание, которые необходимо починить перед испытанием, так же могут повлиять ещё многие и многие факторы.

Необходимо понимать, что в таких работах, как опрессовка системы отопления цена всегда индивидуальна и не может быть фиксированной. Некоторые организации указывают стоимость нормо-часа проведения работ и в результате, учитывая впоследствии стоимость расходных материалов, состояние приборов учёта и подвергнутых ремонту элементов контура, определяется окончательная для такой работы как опрессовка системы отопления стоимость работ и включается в счёт.

Справочная информация:

  1. По ОКПД опрессовка системы отопления относится к коду 70.32.13.854 (работы по техническому обслуживанию систем отопления).
  2. По КОСГУ опрессовка системы отопления относится к статье 225.

Опрессовка системы отопления воздухом и водой

Водяное отопление в доме — это сложный механизм, который должен работать бесперебойно. Очень часто многим пользователям приходится сталкиваться со сбоями и неполадками. Например, на функционировании отопительной системы сказываются недочеты, которые были допущены в процессе установки, изнашивается оборудования и др. Для того, чтобы выявить в каком месте произошел сбой, нужно произвести опрессовку системы отопления.

В статье мы рассмотрим, что такое опрессовка системы отопления, посредством какого давления она выполняется, а также расскажем, как выполнить эту процедуру своими руками.

Опрессовка системы отопления дома

Опрессовка системы отопления

Опрессовка — что это за процедура?

Опрессовка системы отопления — это способ проверки её герметичности и того, насколько качественно выполнена сборка. Это означает, что система выдерживается под определенным давлением на протяжении некоторого времени. По итогам такой проверки уже можно судить, готова ли система к использованию или нет. На прочность проверяются все приборы, входящие в комплектацию системы: теплообменники, радиаторы, насосы, запорная и регулирующая арматура и т.д.

Опрессовка здания — это совокупность операций, среди которых выделяются промывка трубопроводов, проверка и, в случае необходимости, замена определенных элементов, восстановление целостности изоляции. В частных постройках кроме отопительной системы, опрессовке поддается и канализация, и контур горячего водоснабжения.

Операция опрессовки включается в себя:

  • опробование трубопровода и его полная промывка и прочистка;
  • проверка и, в случае необходимости, замена деталей;
  • реабилитация неисправной теплоизоляции.

Посредством влияния высокого давления осуществляется осмотр:

  • надежности корпуса, стенок труб, радиаторов, теплообменников, арматуры и т.д.;
  • выдержка, работоспособность и исправность кранов, манометров, клапанов и задвижек;
  • насколько хорошо были закреплены составляющие систему детали при соединении.

Способы опрессовки системы отопления

Существует несколько различных способов опрессовки системы отопления, каждый из которых имеет свои особенности.

Опрессовка водой. Данный способ заключается в подсоединении шланга от водопровода к крану, который размещен на коллекторе или котле. После того, как система заполняется водой, уровень давления должен дойти до 1,5 Атм.

Опрессовка посредством воздуха. Такой метод основан на подключении опрессовщика — специального компрессора, выполняющего функцию нагнетания воздушных масс. Давление у места, которое проверяется должно превысить показатели рабочего (1,5 -2 Атм.). В такой ситуации на участок, где монтируется кран Маевского, помещается переходник, который применяется для присоединения компрессора.

Для того, чтобы сэкономить на покупке дорогостоящего опрессовщика, выполняя проведение опрессовки отопительной системы своими руками, вы можете использовать автомобильный насос с манометром.

Опрессовка воздухом выполняется в той ситуации, когда отсутствует способ подключения к водопроводу, а еще и зимой, когда есть высокая вероятность того, что вода может остаться в трубах и замерзнуть. В процессе проверки воздухом целостность системы определяется исходя из показателей на манометре. Если нагнетенное давление остается на том же уровне и скачки отсутствуют, то утечек нет. Для того, чтобы увидеть свищи, предполагаемый участок нужно покрыть мыльным раствором.

Виды и причины проведения

Исходя из того какие задачи ставятся, выделяются три основные разновидности опрессовки системы отопления в многоквартирных и частных домах:

  1. Первичная. Прежде, чем отопительная система будет готова к эксплуатации, ее в обязательном порядке необходимо продиагностировать. Это осуществляется после того, как все детали будут подключены (радиаторы, теплогенераторы, расширительный бак). Однако, до того, как трубопроводы будут скрыты за каркасами обшивки или, например, залиты стяжками. Главная роль отводится проверке качества сборки.
  2. Очередная (повторная). В целях профилактики гидравлические испытания системы специалисты советуют выполнять ежегодно. Наиболее подходящее время — это когда отопительный сезон завершен и система была подвержена плановому обслуживанию. Главная задача здесь — подготовиться к будущей зиме и минимизировать риск возникновения аварийной ситуации.
  3. Внеочередная (аварийная). Акт опрессовки системы отопления необходимо производить в том случае, если какой-либо узел системы подвергался ремонту, например, выполнялся демонтаж радиатора, котла и т.д. Считается, что после того, как система подвергалась промывке или запускалась после длительного простоя, ее также следует испытать давлением.

Как опрессовать систему отопления? Последовательность выполнения действий

Изначально нужно подготовить систему. Если она автономная, то для начала необходимо отключить теплогенератор. Если же неавтономная, то посредством кранов надо перекрыть то место, которое будет подвергаться проверке.

Важное требование — необходимость слива теплоносителя.

Затем контур системы надо заполнить водой, которая нагрета не более чем до 45°С. Прим этом воздух понемногу сбрасывается. На следующем этапе вы должны подсоединить компрессор для опрессовки системы отопления, так в трубы начнет попадать воздух. Изначально давление надо довести до рабочей отметки и хорошо осмотреть пространство на возможные недочеты.

После этого давление последовательно увеличивается до испытательного уровня — так его надо выдержать примерно 10-15 минут. Затем надо хорошо осмотреть все места на наличие утечек. Обязательно надо проверить арматуру, радиаторы и все стенки труб на наличие свищей.

В случае обнаружения каких-либо недочетов их надо зарегистрировать. Также нужно убедиться в том, что все краны и клапаны исправны. Далее, при помощи параметров манометра, задается падение уровня давления. И, наконец, исходя из полученных результатов проверки готовится акт.

Давление в трубах

Исходя из требований СНиП, испытательный уровень давления должен превышать рабочее в 1,5 раза, однако — не заходить за отметку в 0,6 Мпа. Правила технической эксплуатации тепловых сетей диктуют, что норма — когда давление в 1,25 раза превышает рабочее, но не переходит показатель в 0,2 Мпа.

В загородном доме с тремя этажами чаще всего показатели давления не превосходят 2 Атм. В случае, когда рубеж перешагивается, сразу же срабатывает специальный клапан и осуществляется сброс давления. В домах с 5 этажами, давление достигает 3-6 Атм, в строениях от 8 этажей и выше — этот показатель варьируется в промежутке от 7 до 10 Атм. Наиболее высокий уровень испытательного давления находится в непосредственной зависимости от показателей главных звеньев системы: радиаторов, труб, арматуры.

Как выполнить опрессовку отопительной системы своими руками

Очень часто в процессе обустройства дома изначально устанавливается отопительная система, а уже после подсоединяется вода. В связи с этим, для закачивания воды в трубы применяется крупная цистерна с водой и погружной насос. В процессе осуществления манипуляции надо постоянно отслеживать давление и отслеживать уровень жидкости в емкости, и, при необходимости, пополнять запасы. В момент, когда показатели давления дойдут до отметки в 2-2,5 Атм, насос прекратит работу, а неиспользованное количество воздуха начнет медленно спускаться из системы. Осуществляется эта процедура посредством крана Маевского. Затем, после того, как отметка на манометре снизится до 1 Атм и менее, можно продолжать заливать воду. Выполняется это до того момента, пока вода не вытеснит абсолютно весь воздух, а давление не дойдет до 1,2 — 1,5 Атм.

Если утечки и неполадки отсутствуют, то можно подсоединять котел и выполнять запуск системы.

Ручной испытательный насос Rohenberger RP50-S

Ручной насос для опрессовки системы отопления Rohenberger RP50-S

Чтобы осуществить опрессовку отопительной системы самостоятельно, можно воспользоваться дешевыми погружными насосами, а в качестве резервуара для воды вы можете применить бочонок или ведро.

Если вы не имеете опыта в этом вопросе, то во избежание трудностей в момент выполнения процедуры опрессовки, лучше обратиться к специально обученным людям. Так вы обеспечите себя качественным проведением процедуры, к тому же на руках у вас будут все документы о выполненных работах.

В акте о выполненной работе по опрессовке системы отопления обязательно фиксируется временной промежуток, на протяжении которого система подвергалась испытанию давлением и записывается его уровень.

Теперь вы знаете, что такое опрессовка и системы отопления и как она производится.

Опрессовка системы отопления водой и воздухом

Домашняя система водяного отопления – это комплексный и сложный механизм, который в осенне-зимний период работает практически непрерывно. Важно поддерживать его в идеальном состоянии, чтобы гарантировать бесперебойное функционирование всех модулей и свести к минимуму потенциальные сбои/неполадки. 

 

Одним из эффективных методов выявления конструкционных проблем отопительной системы, обнаружения изношенных участков и других проблем, является опрессовка.

 

Опрессовка – основные особенности

Под термином «опрессовка» в общем случае подразумевается процедура гидравлических либо пневматических испытаний трубопроводной системы, функционирующей под давлением, на герметичность и прочность. По итогам проверки могут быть выявлены разнообразные проблем с модулями отопительного комплекса. Тщательному мониторингу поддаются:

  • Тепловые обменники и радиаторы;
  • Основные линии и насосы;
  • Регулирующая и запорная арматура;
  • Прочие компоненты.

Совокупность операций опрессовки включает в себя обязательную промывку трубопроводов, проверку/замену изношенных элементов, восстановление целостности изоляционных слоёв. В частных домовладениях с автономной системой отопления проверке поддаётся не только основное оборудование, но также контур горячего водоснабжения, канализация.

 

Базовые испытания включают в себя:

  • Проверку трубопровода с его промывкой и прочисткой;
  • Замену деталей при необходимости;
  • Восстановление или полную замену тепловой изоляции.

Осмотру поддаются:

  • Корпусные конструкции, стенки тепловых обменников, трубы, радиаторы, арматура, прочие компоненты;
  • Краны, манометры, клапаны и задвижки всех уровней;
  • Закрепления и соединения деталей, компонентов, основных и вспомогательных линий.

Способы опрессовки

В современной практике используются два основных способа опрессовки – это гидравлические и пневматические испытания. Они схожи по алгоритму, однако имеют свои особенности.

 

 

Базовой методикой проверки считается опрессовка водой. При использовании такого способа шлангом соединяется водопровод и кран коллектора/котла. Систему заполняют жидкостью, после чего доводят давление внутри контура до полутора атмосфер.

 

Воздушная опрессовка предопределяет использования пневматического компрессора, нагнетающего в систему воздушную массу с совокупным формированием давления выше рабочего (средний диапазон – 1,5-2 Атм). Пневматическое испытание является альтернативным методом проверки и выполняется при следующих условиях:

  • Проектная документация системы отопления допускает замену гидравлических испытаний на воздушные;
  • Отсутствует удобный способ подключения к водопроводу;
  • Процедуры выполняются в зимний период времени, когда есть вероятность замерзания жидкости в трубах и повреждения оборудования/линий при её расширении.

Если целостность системы при гидравлическом испытании отслеживается очень легко (отсутствие/наличие течи), то в случае проведения пневматического теста основным механизмом мониторинга становится показатели давления манометра.

При пиковой загрузке системы воздушной массой на приборе не должно быть скачков и просадок. Если выявлен потенциальный проблемный участок, то его нужно покрыть мыльным раствором для выявления свищей.

 

При необходимости можно легко отказаться от приобретения дорогостоящего оборудования для самостоятельного проведения пневматической проверки домашней отопительной системы, заменив его на автомобильный насос достаточной мощности, оснащенный манометром.

 

Причины и виды проведения опрессовки

Гидравлические или пневматические испытания подразделяются на три категории в зависимости от причин их проведения.

Первичная опрессовка

Организуется перед первым запуском новой отопительной системы в эксплуатацию. Реализуется на этапе полного подключения всех модулей и деталей (в том числе батарей, теплового генератора, расширительного бака), но до финальной «подгонки» обшивочных каркасов, заливки стяжек и иных процедур скрытия компонентов системы.

Вторичная или повторная опрессовка

Выполняется в рамках профилактических мероприятий для контроля работоспособности отопительной системы и предотвращения потенциальных проблем. Профильные специалисты рекомендуют проводить её ежегодно после завершения осенне-зимнего сезона в контексте планового обслуживания всего инфраструктурного хозяйства дома, квартиры. 

Внеочередная опрессовка

Проведение внеочередных гидравлических или пневматических испытаний в подавляющем большинстве случаев организуется при аварийной или поставарийной ситуации. Иные типичные причины – проведение ремонтных работ в локализации расположения отопительной системы либо длительный её простой.

Последовательность опрессовки системы отопления

Базовый перечень необходимых процедур включает в себя следующие этапы:

  1. Изоляция теплового источника нагрева. Для автономных систем полностью отключается тепловой генератор. При наличии централизированного отопления следует перекрыть запорные краны, блокирующие поступление теплоносителя в трубы и радиатор.
  2. Слив теплоносителя. Производится в обязательном порядке.
  3. Заполнение водой. Контур отопительной системы заполняется водой с температурой не более 40 градусов Цельсия, после чего поэтапно и порционно сбрасывается попавший внутрь воздух.
  4. Присоединение и использование компрессора. К системе подключает компрессор, давление в контуре доводится до рабочего штатного уровня в одну атмосферу. Внешнее пространство визуально осматривается на предмет видимых утечек.
  5. Испытание. С помощью компрессора давление в системе постепенно повышается нужного уровня и удерживается на нем в течение пятнадцати минут. Параллельно проводится тщательный осмотр всех компонентов отопительной системы (арматуры, радиаторов, стенок труб, кранов, клапанов, проч.) на предмет утечек.
  6. Окончание опрессовки. При отсутствии утечек, свищей и иных проблем давление в системе постепенно снижают и её возвращают к исходному состоянию. Если недочеты обнаружены, то они помечаются визуально и производится их письменная регистрация в соответствующем акте гидравлического или пневматического испытания.

О давлении в трубах

Современные отечественные требования строительных норм и правил в рамках гидравлических/пневматических испытаний предопределяют рекомендованные значения повышения давления в 1,5/2 раза по отношению к рабочим параметрам, но не более 0.65 МПа. При этом дополнительно правила техэксплуатации тепловых сетей утверждают, что верхняя граница рабочего давления не должна превышать 0.2 МПа.

Типичные значения давления в отопительной системе для зданий с разной этажностью:

  • Двухэтажные и трехэтажные частные дома – около двух атмосфер;
  • Пятиэтажные здания – от трех до шести атмосфер;
  • Девятиэтажки – от семи до десяти атмосфер.

При значительном превышении вышеозначенных показателей в подавляющем большинстве случае осуществляется автоматический сброс давления, благодаря специальному защитному клапану.

Насколько просто произвести опрессовку отопительной системы самостоятельно?

В большинстве случаев процедура гидравлического или пневматического испытания может выполняться одним человеком без специальных знаний при условии автономной отопительной системы. Для централизированного же отопления не всегда есть возможность изолировать нужный участок контура.

 

В качестве базового оборудования для опрессовки подойдут простые погружные насосы, манометр, а резервуаром может выступать бочонок необходимой ёмкости либо соответствующая цистерна. 

Повторите процедуры по алгоритму, описанному выше. Если неисправности и проблемы обнаружены – устраните их самостоятельно или с помощью профильного специалиста, после чего выполните повторное контрольное испытание. 

 

 

Что такое опрессовка отопления.

Что такое опрессовка системы отопления? Это комплекс работ, которые позволяют выявить и обнаружить «слабые» места системы, которые необходимо проводить ежегодно для поддержания её в рабочем состоянии.

Любая система отопления требует постоянного вмешательства при проведении эксплуатации. Глубокое заблуждение собственников здания заключается в том, что трубопроводы, радиаторы, запорная арматура теплоснабжения могут существовать без внимания. Для любой инженерной системы будь то отопление или водоснабжение требуется постоянная эксплуатация, и чем чаще за ней наблюдать и поддерживать, тем дольше система будет находится в рабочем состоянии. Если ежегодно летом понемногу менять вентили, ремонтировать задвижки, менять изоляцию, пришедшую в негодность, то впоследствии не придется «вбухивать» огромные средства на её реанимацию. 

Опрессовка отопления должна проводится ежегодно. В комплекс работ входит: проверка запорной арматуры на работоспособность, смена манометров и термометров на элеваторном узле и его окраска, приведение изоляции в надлежащее состояние, при необходимости промывка труб и собственно проведение гидравлических испытаний.

 

Как опрессовать систему отопления.

Как опрессовать систему отопления школы, торгового центра , магазина или парикмахерской?

В каждом здании, в независимости от его назначения, будь то административное здание, школа, магазин или загородный дом на элеваторном тепловом узле или в котельной на магистральных трубопроводах имеется спускной кран или по-другому «спускник», через который производится слив и наполнение системы. Это обычный шаровой кран с резьбой. Через этот кран трубопроводы наполняют водой, так чтобы система была полностью заполнена. Через воздухосборники и воздушные отводчики выпускают воздух из верхних точек. После чего к «спускнику» подключают ручной или электрический опрессовочный насос, которым поднимают давление в трубах выше рабочего.

В течение 30 минут проверяют систему на утечку. Проверяются все резьбовые и сварные соединения, радиаторы и батареи.

Если сразу после подъёма давления нет видимых утечек, то проверку на герметичность выполняют по осмотру манометра на элеваторном или тепловом узле. Если в течение 30 минут стрелка манометра не падает, то система считается герметичной и прошедшей гидравлические испытания.

 

Рабочее давление системы отопления и давление при опрессовке. 

Рабочее давление в системе отопления – это то давление с которым система отопления работает в течение всего отопительного периода с октября по май месяц ( эти данные приведены для Москвы).

Опрессовочное давление в системе отопления – это давление, с которым выполняется гидравлические испытания в системе ( опрессовка) – проверка на герметичности системы и её соединений.

От чего зависит рабочее давление системы отопления?

Давление в системе зависит от многих факторов, таких как: 
1. принадлежность здания (административное или коттедж),
2. Какое количество этажей в здании  
3. Какая марка нагревательных приборов установлена при строительстве дома (чугунные радиаторы, радиаторы или конвекторы).

Загородный дом или коттедж это невысокие строения не более трех этажей, поэтому давление в системе не более 1,9 атмосфер. Величина давления  ограничено аварийным клапаном сброса избыточного давления, который устанавливается в котельной. Клапан срабатывает и сбрасывает давление при давлении в 1,9 атмосфер.

В городском многоэтажном строительстве (школы, офисные центры, административные здания, магазины, жилые дома),  рабочее давление в системе определяется такими параметрами как этажность дома и марка отопительных приборов.  В пятиэтажных домах рабочее давление, как правило, достигает не более 3-6 атмосфер. Опрессовочное давление в пятиэтажках  6-7 атмосфер. Эта величина опрессовочного давления определяется маркой установленных радиаторов, для пятиэтажек это, как правило — чугунные радиаторы. Опрессовочное давление в пятиэтажках  6-7 атмосфер.

В жилых и общественных зданиях большей этажности от 7этажей и выше рабочее давление не превышает 7-10 атмосфер. Для таких зданий подходят конвекторы или радиаторы. Опрессовочное давление превышает рабочее на 15-25%.

Величина опрессовочного давления согласно СНиП зависит от этажности дома и от марки установленных в нем приборов при строительстве. Чтобы не повредить систему отопления при опрессоке необходимо обязательно обращать внимание на то, какие отопительные приборы установлены в доме.

Для чугунных радиаторов максимальное давление при опрессовке это – 6-7 атм, для стальных радиаторов и конвекторов — 10 атм.

 

 

Как расценить опрессовку системы отопления.

Расценить опрессовку системы отопления возможно после обследования здания, в котором находится система. При обследовании необходимо выяснить то, какие работы по мимо опрессовки необходимо выполнить.

Как мы уже ранее писали, опрессовка системы отопления — это комплекс работ. В одних зданиях нужно выполнять дополнительные работы, а в других нет, или нужно, но не все, а только частично.

В процессе обследования необходимо ознакомиться с тем, в каком состоянии изоляция трубопроводов в подвале, в каком состоянии элеваторный узел и запорная арматура на нем, имеются ли маномерты и термометры. После этого можно полностью расценить опрессовкву отопления.

Любую работу должны выполнять профессионалы. Заключая договор с нами, вы получаете все гарантии, сроки и качество работ.

Звоните, всегда готовы вам помочь выполнить опрессовку 8(495)787-17-43. 

 

Что такое опрессовка отопления — как опрессовать систему отопления

Что такое опрессовка отопления

Что такое опрессовка отопления?

Разделы статьи:

Если простым языком сказать о том, что такое опрессовка отопления, то это работы, связанные с запуском отопительной системы и по выявлению течей, а также других неисправностей. Опрессовка отопления проводится каждый год, перед началом отопительного сезона.

Перед тем как заполнить водой теплый пол и систему отопления, производится тщательный осмотр и проверка запорной арматуры, измерительный узлов и блоков безопасности. При необходимости, утепляются и окрашиваются отдельные участки трубопроводов, после чего вся система опрессовывается водой.

О том, что такое опрессовка отопления, и как она правильно выполняется, будет рассказано ниже.

Что такое опрессовка отопления

Комплекс работ, по выявлению течей и других неисправностей отопительной системы — называется «опрессовкой». Для опрессовки системы отопления может быть использована как обычная вода, выступающая в качестве теплоносителя, так и воздух, закачанный в трубы под давлением.

Как опрессовать систему отопления

Нужно сказать о том, что эффективность опрессовки отопления воздухом несколько выше, в отличие от гидравлического испытания трубопровода водой. Тем не менее, опрессовка системы отопления посредством воды, самый доступный способ выявить течи в трубах и их соединениях. Поэтому данный вариант наибольше всего используется в быту.

Перед тем как опрессовать систему отопления, нужно усвоить несколько простых правил, которые помогут безошибочно выполнить первый запуск отопления.

Как опрессовать систему отопления

Чтобы опрессовать систему отопления водой, следует сначала проверить работоспособность запорной арматуры, её наличие на узлах отопительной систему. Также, проверяются и контрольно-измерительные приборы на предмет их корректной установки и нормального состояния.

Обязательно, перед тем как опрессовать систему отопления водой, следует открыть автоматические развоздушиватели. О том, что такое автоматический воздухоотводчик, можно прочесть в прошлом обзоре сайта https://remstroisovet.ru.

Что такое опрессовка отопления - как опрессовать систему отопления

Далее, можно действовать как поочерёдно, запитав водой сначала стояки отопления, а затем батареи, так и опрессовать сразу всю отопительную систему. Здесь важно по отдельности развоздушить батареи отопления, постепенно переходя от одного отопительного прибора к другому, при этом открывая каждый раз подпитку отоплении водой.

Давление в трубах, при опрессовке отопления в частном доме, должно быть не больше 2 Bar, а вести контроль, следует при помощи манометра. Для многоэтажных домов, давление в трубах отопления, должно быть несколько большего значения, но, как правило, не более 3 bar.

Чем и как производится опрессовка многоквартирных домов.

В наших статьях мы решили осветить вопрос, который вас интересует — вопрос о том, чем и как проводится опрессовка систем отопления многоквартирного жилого дома. Хочу ответить сразу, что в целом опрессовка многоквартирного дома или детского сада или торгового центра значительных отличий не имеют.

Опрессовку отопления обычно начинают производить после окончания отопительного сезона, который заканчивается в конце апреля — начале мая.

Выполняют эти работы для определения неисправностей в системе, утечек воды в трубопроводах или арматуре.

Основной задачей эксплуатирующей или подрядной организации является проверка состояния запорной арматуры стояков, магистралей, элеваторного или теплового узла, проверка работы стояков системы отопления.

За прошедший отопительный период, как правило, известны стояки и  квартиры, откуда поступали жалобы на низкую температуру. Зная такие проблемные стояки, мы рекомендуем их проверить, на отсутствие засора в стояке, появившегося от избыточного количества ржавчины и окалины в трубах и нагревательных приборах. Для ликвидации таких проблем необходимо произвести промывку под давлением конкретного стояка или системы в целом.

Перед началом опрессовки системы отопления многоквартирных домов необходимо выполнить ряд подготовительных мероприятий, а именно:

1)Необходимо проверить запорно-регулирующую арматуру на элеваторном узле, магистралях и стояках.

В многоэтажных домах в целях экономии, как правило, устанавливаются чугунные задвижки. Во время эксплуатации от высоких температур уплотнительные шнуры (сальниковая набивка) начинают терять свои герметичные свойства и начинают течь. Поэтому при проведении подготовительных работ набивают новый сальник. На задвижках меняют изжившие паронитовые прокладки между фланцами задвижек и прикипевшие болты.

Также на элеваторном узле обязательно меняют манометры или отправляют их на поверку к государственному поверителю. В металлической оправе термометра проверяют наличие масла. Сам узел окрашивают черной краской.

2)Выполняют обследование всей системы отопления в целом с целью обнаружения утечек на трубопроводах и арматуре. При обнаружении таковых — их устраняют.

3)Следующим этапом проверяют состояния тепловой изоляции по подвалу на магистральных трубопроводах и стояках.

 

На этом подготовительные мероприятия заканчиваются, после чего приступают непосредственно к процессу опрессовки системы отопления многоквартирного дома.

Эти работы выполняют в несколько этапов: сначала испытания проводят на всей системе, после чего на тепловом узле. Так как испытания на узле обычно выполняют с давлением более высоким, чем в системе отопления.

1) Заполняют систему сетевой водой, подключают ручной насос — пресс или электрический пресс, которым создают повышенное давление в системе.

2) Если после создания повышенного давления, стрелка манометра остается на том же месте в течение 30 минут, значит, течи в системе нет, и опрессовка считается законченной. Если этого не происходит, то снова осматривают систему, в поиске течи. Узел ввода прессуется отдельно на 10 атмосфер.

После этого телефонограммой вызывают инспектора МОЭК и теплосетевой компании, которые составляют «Акт готовности системы к отопительному периоду».

Кроме проведения таких работ инспектор может проверить систему на жесткость. Из любого крана наполняется небольшая емкость водой из системы, а лаборант или инспектор проверяет жесткость наполненной воды. Если жесткость укладывается в пределы 70-100 единиц, это значит, что система наполнена сетевой водой и готова к эксплуатации.

ООО «Ремстройсервис» выполняет опрессовку системы отопления многоквартирных домов, а также в любых других типах зданий. Звоните нам по номеру 8(495)787-17-43, всегда готовы Вам помочь.

Смотреть видео:

 

 

Неразрушающий контроль — Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса высокого давления на новом оборудовании, работающем под давлением.

Что подразумевается под давлением?

Испытание под давлением — это неразрушающий контроль, выполняемый для проверки целостности корпуса, работающего под давлением, на новом оборудовании, работающем под давлением, или на ранее установленном оборудовании, работающем под давлением, и трубопроводном оборудовании, которое подвергалось изменениям или ремонту на своих границах.

Испытания под давлением требуются большинством кодов трубопроводов для проверки того, что новая, модифицированная или отремонтированная система трубопроводов способна безопасно выдерживать номинальное давление и герметична.Соблюдение правил трубопроводов может быть предписано регулирующими и правоохранительными органами, страховыми компаниями или условиями контракта на строительство системы. Испытания под давлением, требуемые по закону или нет, служат полезной цели защиты рабочих и населения.

Испытания давлением могут также использоваться для определения номинального давления для компонента или специальной системы, для которых невозможно определить безопасное значение расчетным путем. Прототип компонента или системы подвергается воздействию постепенно увеличивающегося давления до тех пор, пока не произойдет измеримая текучесть, или, альтернативно, до точки разрыва.Затем, используя коэффициенты снижения номинальных характеристик, указанные в коде или стандарте, подходящем для компонента или системы, можно установить номинальное расчетное давление на основе экспериментальных данных.

Коды трубопроводов

Существует множество правил и стандартов, касающихся трубопроводных систем. Два правила, имеющих большое значение для испытаний под давлением и герметичности, — это Кодекс ASME B31 для трубопроводов, работающих под давлением, и Кодекс ASME для котлов и сосудов высокого давления. Хотя эти два правила применимы ко многим трубопроводным системам, другие нормы и стандарты могут быть соблюдены в соответствии с требованиями властей, страховых компаний или владельца системы.Примерами могут служить стандарты AWWA для трубопроводов систем передачи и распределения воды. Кодекс ASME B31 для напорных трубопроводов состоит из нескольких разделов. Их:

  • ASME B31.1 для силовых трубопроводов
  • ASME B31.2 для трубопровода топливного газа
  • ASME B31.3 для технологических трубопроводов
  • ASME B31.4 для систем транспортировки жидкости для углеводородов, сжиженного нефтяного газа, безводного аммиака и спиртов
  • ASME B31.5 для холодильных трубопроводов
  • ASME B31.8 для газотранспортных и газораспределительных систем
  • ASME B31.9 для строительных трубопроводов
  • ASME B31.11 для трубопроводных систем транспортировки жидкого навоза

Кодекс ASME по котлам и сосудам высокого давления также включает несколько разделов, в которых содержатся требования к испытаниям под давлением и испытаниям на герметичность для трубопроводных систем, сосудов высокого давления и других устройств, удерживающих давление. Это:

  • Раздел I для энергетических котлов
  • Раздел III для компонентов атомной электростанции
  • Раздел V неразрушающего контроля
  • Раздел VIII для сосудов под давлением
  • Раздел X для сосудов под давлением из армированного стекловолокном пластика
  • Раздел XI по инспекции компонентов атомной электростанции в процессе эксплуатации

Существует большое сходство требований и процедур тестирования среди многих кодексов.В этой главе будут обсуждаться различные методы испытаний на герметичность, планирование, подготовка, выполнение, документация и стандарты приемки для испытаний под давлением. Оборудование, полезное для опрессовки, также будет включено в обсуждение. Приведенный ниже материал не следует рассматривать как замену полному знанию или тщательному изучению конкретных требований кодов, которые должны использоваться для тестирования конкретной системы трубопроводов.

Методы проверки герметичности

Существует множество различных методов испытаний под давлением и испытаний на герметичность в полевых условиях.Семь из них:

  1. Гидростатические испытания с использованием воды или другой жидкости под давлением
  2. Пневматические или газожидкостные испытания с использованием воздуха или другого газа под давлением
  3. Комбинация пневматических и гидростатических испытаний, при которых сначала используется воздух низкого давления для обнаружения утечек
  4. Первоначальное сервисное испытание, которое включает проверку на герметичность при первом запуске системы
  5. Испытание на вакуум, при котором используется отрицательное давление для проверки наличия утечки
  6. Испытание статическим напором, которое обычно проводится для дренажного трубопровода с водой, оставшейся в стояке на заданный период времени
  7. Обнаружение утечек галогена и гелия

Гидростатические испытания на герметичность
Гидростатические испытания — это предпочтительный и, возможно, наиболее часто используемый метод проверки на герметичность.Наиболее важной причиной этого является относительная безопасность гидростатических испытаний по сравнению с пневматическими испытаниями. Вода — гораздо более безопасная текучая среда для испытаний, чем воздух, потому что она почти несжимаема. Следовательно, объем работы, необходимой для сжатия воды до заданного давления в системе трубопроводов, существенно меньше работы, необходимой для сжатия воздуха или любого другого газа до того же давления. Работа сжатия сохраняется в жидкости в виде потенциальной энергии, которая может внезапно высвободиться в случае отказа во время испытания под давлением.

Расчет потенциальной энергии воздуха, сжатого до давления 1000 фунтов на кв. Дюйм (6900 кПа), по сравнению с потенциальной энергией того же конечного объема воды при 1000 фунтов на квадратный дюйм (6900 кПа) показывает соотношение более 2500 кПа. Следовательно, Потенциальное повреждение окружающего оборудования и персонала в результате отказа во время испытания под давлением намного серьезнее при использовании газообразной испытательной среды. Это не означает, что гидростатические испытания на герметичность не представляют никакой опасности. При гидростатическом испытании может возникнуть значительная опасность из-за попадания воздуха в трубопровод.Даже если весь воздух выпущен из трубопровода перед подачей давления, рабочим рекомендуется проводить любые испытания под высоким давлением с учетом требований безопасности.

Пневматическое испытание на герметичность
Жидкость, обычно используемая для пневматического испытания, — это сжатый воздух или азот, если источником является газ в баллонах. Азот не следует использовать в закрытом помещении, если существует вероятность того, что выходящий азот может вытеснить воздух в ограниченном пространстве. Известно, что при таких обстоятельствах люди теряют сознание, прежде чем осознают, что им не хватает кислорода.Из-за большей опасности травмирования газообразной испытательной средой давление, которое может использоваться для визуального осмотра на предмет утечек, ниже для некоторых норм трубопроводов, чем в случае гидростатических испытаний. Например, для пневматических испытаний ASME B31.1 позволяет снизить давление до 100 фунтов на кв. Дюйм (690 кПа) или расчетного давления во время проверки на утечку.

Комбинированные пневматические и гидростатические испытания
Низкое давление воздуха, чаще всего 25 фунтов на кв. Дюйм (175 кПа), сначала используется для определения наличия серьезных утечек.Такое низкое давление снижает опасность травм, но все же позволяет быстро обнаруживать крупные утечки. При необходимости ремонт можно провести до гидростатических испытаний. Этот метод может быть очень эффективным для экономии времени, особенно если требуется много времени, чтобы заполнить систему водой только для обнаружения утечек с первой попытки. Если утечки будут обнаружены при гидростатическом испытании, потребуется больше времени, чтобы удалить воду и высушить трубопровод в достаточной степени для ремонта.

Гидростатико-пневматическое испытание на герметичность отличается от двухэтапного испытания, описанного в предыдущем абзаце.В этом случае испытание под давлением проводится с использованием комбинации воздуха и воды. Например, сосуд под давлением, предназначенный для содержания технологической жидкости с паровой фазой или воздухом над жидкостью, может быть спроектирован так, чтобы выдерживать вес жидкости до определенной максимальной ожидаемой высоты жидкости. Если сосуд не был спроектирован так, чтобы выдерживать вес при полном заполнении жидкостью, можно было бы испытать этот сосуд только в том случае, если он был частично заполнен технологической жидкостью до уровня, дублирующего эффект максимально ожидаемого уровня.

Первоначальное тестирование на утечку при обслуживании
Эта категория тестирования ограничена кодами определенными ситуациями. Например, ASME B31.3 ограничивает использование этого метода для работы с жидкостями категории D. Гидравлические системы категории D определены как неопасные для человека и должны работать при давлении ниже 150 фунтов на квадратный дюйм (1035 кПа) и при температуре от -20 до 366 ° F (от -29 до 185 ° C). Код ASME B31.1, раздел 137.7.1, не разрешает начальные эксплуатационные испытания внешних трубопроводов котла. Однако тот же раздел ASME B31.1 позволяет проводить первоначальные эксплуатационные испытания других систем трубопроводов, если другие типы испытаний на герметичность нецелесообразны. Первоначальные эксплуатационные испытания также применимы к проверке компонентов атомной электростанции в соответствии с Разделом XI Кодекса ASME по котлам и сосудам высокого давления. Как указано, этот тест обычно выполняется при первом запуске системы. В системе постепенно повышается до нормального рабочего давления, как требуется в ASME B31.1, или до расчетного давления, как требуется в ASME B31.3. Затем давление поддерживается на этом уровне, пока проводится проверка на утечки.

Проверка на герметичность в вакууме
Проверка на герметичность в вакууме — это эффективный способ определить, есть ли утечка где-либо в системе. Обычно это делается путем создания вакуума в системе и удержания вакуума внутри системы. Утечка указывается, если захваченный вакуум повышается до атмосферного давления. Производитель компонентов довольно часто использует этот вид проверки на герметичность в качестве проверки на герметичность производства. Однако очень сложно определить место или места утечки, если она существует.Дымогенераторы использовались для определения места втягивания дыма в трубопровод. Это очень сложно использовать, если утечка не достаточно велика, чтобы втягивать весь или большую часть дыма в трубу. Если дыма образуется значительно больше, чем может быть втянут в трубу, дым, который рассеивается в окружающий воздух, может легко скрыть место утечки. Очевидно, что этот метод не подходит для испытания трубопровода при рабочем давлении или выше него, если трубопровод не должен работать в вакууме.

Проверка герметичности статической головки
Этот метод испытаний иногда называют испытанием на падение, поскольку падение уровня воды в открытой стояке, добавленное к системе для создания необходимого давления, является признаком утечки. После того, как система и опускной заполнена водой, уровень опускной измеряются и отметил. После необходимого периода выдержки высота повторно проверяется, и любое снижение уровня и период выдержки записываются. Любое место утечки определяется визуальным осмотром.

Тестирование утечки галогена и гелия
В этих методах тестирования используется индикаторный газ для определения места утечки и количества утечки. В случае обнаружения утечки галогена в систему загружается газообразный галоген. Зонд галогенного детектора используется для определения утечки индикаторного газа из любого открытого стыка. Детектор утечек галогена, или анализатор, состоит из трубчатого зонда, который всасывает смесь вытекающего газа галогена и воздуха в прибор, чувствительный к небольшим количествам газообразного галогена.

В этом приборе используется диод для определения присутствия газообразного галогена. Утечка газообразного галогена проходит над нагретым платиновым элементом (анодом). Нагреваемый элемент ионизирует газообразный галоген. Ионы стекают на пластину коллектора (катод). Ток, пропорциональный скорости образования ионов и, следовательно, скорости потока утечки, указывается измерителем. Зонд галогенного детектора калибруется с использованием отверстия, через которое проходит известный поток утечки. Зонд детектора проходит над отверстием с той же скоростью, которая будет использоваться для проверки системы на утечку.Предпочтительным индикаторным газом является хладагент 12, но можно использовать хладагенты 11, 21, 22, 114 или хлористый метилен. Галогены нельзя использовать с аустенитными нержавеющими сталями.

Проверка на утечку гелия также может выполняться в режиме сниффера, как описано выше для галогенов. Однако, кроме того, испытание на утечку гелием может быть выполнено с использованием двух других методов, более чувствительных при обнаружении утечки. Это режим трассировки и режим капота или закрытой системы. В режиме индикатора создается вакуум в системе, и гелий распыляется на наружные поверхности соединений, которые проверяются на утечку.Вакуум системы всасывает гелий через любое негерметичное соединение и доставляет его на гелиевый масс-спектрометр. В режиме вытяжки тестируемая система окружена концентрированным гелием.

Испытание на утечку гелия в вытяжном шкафу является наиболее чувствительным методом обнаружения утечек и единственным методом, принятым Разделом V Кодекса ASME как количественный. Производители компонентов, требующих герметичного уплотнения, будут использовать вытяжной метод обнаружения утечки гелия в качестве производственного испытания на герметичность. В этих случаях компонент может быть окружен гелием в камере.К компоненту подключается гелиевый течеискатель, который пытается довести внутренние компоненты компонента до вакуума, близкого к абсолютному нулю.

Любая утечка гелия из окружающей камеры в компонент будет втягиваться в гелиевый течеискатель под действием создаваемого им вакуума. Детектор утечки гелия содержит масс-спектрометр, сконфигурированный для определения присутствия молекул гелия. Этот метод тестирования с замкнутой системой позволяет обнаруживать утечки величиной от 1X10 -10 см3 / сек (6.1X10 -12 куб. Дюймов / сек), стандартный атмосферный воздух. Метод замкнутой системы не подходит для измерения большой утечки, которая может затопить детектор и сделать его бесполезным для дальнейших измерений, пока каждая молекула гелия не будет удалена из детектора.

Метод закрытой системы не подходит для трубопроводной системы в полевых условиях из-за больших объемов. Также он не показывает место утечки или утечек. Наконец, чувствительность обнаружения утечек с использованием замкнутой системы на много порядков выше, чем обычно требуется.Анализатор гелия является наименее чувствительным методом и может давать ложные показания, если гелий из большой утечки в одном месте системы диффундирует в другие места.

Большая утечка также может затопить детектор, временно сделав его непригодным, пока весь гелий не будет удален из масс-спектрометра. Давление гелия, используемое во всех этих методах, обычно составляет одну или две атмосферы, что достаточно для обнаружения очень небольших утечек. Низкое давление также служит для уменьшения количества гелия, необходимого для испытания.Испытания на утечку гелия редко, если вообще когда-либо, используются для демонстрации того, что система может безопасно выдерживать расчетное давление.

Детекторы утечки гелия

не смогут обнаружить утечки, если компонент или система трубопроводов не станут полностью сухими. Жидкость, содержащаяся в небольшом канале утечки из-за капиллярного действия, может перекрыть утечку из-за низкого давления гелия и поверхностного натяжения жидкости. Поэтому требуется большая осторожность при использовании этого подхода в абсолютно сухих условиях.В противном случае эта система может оказаться даже менее чувствительной при обнаружении утечки, чем гидростатическое испытание под высоким давлением. Кроме того, гелиевый течеискатель легко загрязняется маслами и другими соединениями и становится неточным. В полевых условиях обычно не исключается возможность загрязнения течеискателя.

Испытательное давление

Выбранный метод испытания и жидкая испытательная среда вместе с применимыми правилами также устанавливают правила, которым необходимо следовать при расчете требуемого испытательного давления.В большинстве случаев давление, превышающее расчетное, применяется на короткое время, скажем, по крайней мере, 10 минут. Величина этого начального испытательного давления часто как минимум в 1,5 раза превышает расчетное давление для гидростатических испытаний. Однако он может быть другим в зависимости от того, какой код применим и от того, будет ли испытание гидростатическим или пневматическим.

Кроме того, испытательное давление никогда не должно превышать давление, которое могло бы вызвать податливость, или максимально допустимое испытательное давление какого-либо компонента, подвергаемого испытанию.В случае ASME B31, раздел 137.1.4 и Норм для котлов и сосудов высокого давления, максимальное испытательное давление не должно превышать 90 процентов от выхода для любого компонента, подвергающегося испытанию. Испытательное давление необходимо для демонстрации того, что система может безопасно выдерживать номинальное давление. После этого периода давления, превышающего расчетное, часто допустимо снизить давление до более низкого значения для проверки утечек. Давление при осмотре поддерживается в течение времени, необходимого для проведения тщательного

Код Тип испытания
ASME B31.1 Гидростатическая (1)
ASME B31.1 Пневматический
ASME B31.1 Первоначальное обслуживание
ASME B31.3 Гидростатическая
ASME B31.3 Пневматический
ASME B31.3 Первичное обслуживание (3)
ASME I Гидростатическая
ASME III
Раздел 1, подраздел NB
Гидростатическая
ASME III
Раздел 1, подраздел NB
Пневматический
ASME III
Раздел 1 Подраздел NC
Гидростатический
ASME III
Раздел 1 Подраздел NC
Пневматический
ASME III
Раздел 1 Подраздел ND
Гидростатический
ASME III
Раздел 1 Подраздел ND
Пневматический
Код Испытательное давление
минимум
ASME B31.1 в 1,5 раза больше конструкции
ASME B31.1 в 1,2 раза больше дизайна
ASME B31.1 Нормальное рабочее давление
ASME B31.3 1,5-кратное исполнение (2)
ASME B31.3 в 1,1 раза больше дизайна
ASME B31.3 Расчетное давление
ASME I В 1,5 раза больше максимально допустимого рабочего давления (4)
ASME III
Раздел 1, подраздел NB
1.В 25 раз больше расчетного давления в системе (5)
ASME III
Раздел 1, подраздел NB
Давление в системе в 1,25 раза больше расчетного (6)
ASME III
Раздел 1 Подраздел NC
В 1,5 раза больше расчетного давления в системе
ASME III
Раздел 1 Подраздел NC
Давление в системе в 1,25 раза больше расчетного
ASME III
Раздел 1 Подраздел ND
В 1,5 раза больше расчетного давления в системе для завершенных компонентов, в 1,25 раза больше расчетного давления в системе для трубопроводных систем
ASME III
Раздел 1 Подраздел ND
1.В 25 раз больше расчетного давления в системе
Код Испытательное давление
максимальное
ASME B31.1 Максимально допустимое испытательное давление для любого компонента или 90% предела текучести
ASME B31.1 В 1,5 раза больше расчетного или максимально допустимого испытательного давления для любого компонента
ASME B31.1 Нормальное рабочее давление
ASME B31.3 Не превышать предел текучести
ASME B31.3 В 1,1 раза больше расчетного давления плюс меньшее из 50 фунтов на кв. Дюйм или 10 процентов испытательного давления
ASME B31.3 Расчетное давление
ASME I Предел текучести не должен превышать 90%
ASME III
Раздел 1, подраздел NB
Не превышать пределы напряжений, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы (5)
ASME III
Раздел 1, подраздел NB
Не превышать пределы напряжения, указанные в расчетном разделе NB-3226, или максимальное испытательное давление любого компонента системы
ASME III
Раздел 1 Подраздел NC
Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
ASME III
Раздел 1 Подраздел NC
Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
ASME III
Раздел 1 Подраздел ND
Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
ASME III
Раздел 1 Подраздел ND
Если минимальное испытательное давление превышено на 6 процентов, установить предел по нижнему пределу анализа всех испытательных нагрузок или максимального испытательного давления любого компонента
Код Испытательное давление
время выдержки
ASME B31.1 10 минут
ASME B31.1 10 минут
ASME B31.1 10 минут или время на полное обследование на герметичность
ASME B31.3 Время на полное обследование на герметичность, но не менее 10 минут
ASME B31.3 10 минут
ASME B31.3 Время до завершения проверки герметичности
ASME I Не указано, обычно 1 час
ASME III
Раздел 1, подраздел NB
10 минут
ASME III
Раздел 1, подраздел NB
10 минут
ASME III
Раздел 1 Подраздел NC
10 или 15 минут на дюйм проектной минимальной толщины стенки для насосов и клапанов
ASME III
Раздел 1 Подраздел NC
10 минут
ASME III
Раздел 1 Подраздел ND
10 минут
ASME III
Раздел 1 Подраздел ND
10 минут
Код Обследование
давление
ASME B31.1 Расчетное давление
ASME B31.1 Ниже 100 фунтов на кв. Дюйм или расчетного давления
ASME B31.1 Нормальное рабочее давление
ASME B31.3 в 1,5 раза больше конструкции
ASME B31.3 Расчетное давление
ASME B31.3 Расчетное давление
ASME I Максимально допустимое рабочее давление (4)
ASME III
Раздел 1, подраздел NB
Давление больше расчетного или испытательное давление в 0,75 раза больше
ASME III
Раздел 1, подраздел NB
Давление больше расчетного или испытательное давление в 0,75 раза больше
ASME III
Раздел 1 Подраздел NC
Давление больше расчетного или испытательное давление в 0,75 раза больше
ASME III
Раздел 1 Подраздел NC
Давление больше расчетного или испытательное давление в 0,75 раза больше
ASME III
Раздел 1 Подраздел ND
Давление больше расчетного или испытательное давление в 0,75 раза больше
ASME III
Раздел 1 Подраздел ND
Давление больше расчетного или испытательное давление в 0,75 раза больше

Примечания:

1. Наружные трубопроводы котла должны пройти гидростатические испытания в соответствии с PG-99 ASME Code Section I.
2. ASME B31.3 гидростатическое давление должно быть выше 1,5-кратного расчетного давления пропорционально пределу текучести при температуре испытания, деленному на прочность при расчетной температуре, но не должно превышать предел текучести при температуре испытания. Если речь идет о сосуде, расчетное давление которого меньше, чем в трубопроводе, и если сосуд не может быть изолирован, трубопровод и сосуд могут быть испытаны вместе при испытательном давлении сосуда при условии, что испытательное давление сосуда составляет не менее 77 процентов испытательного давления трубопроводов.
3. ASME B31.3: начальные эксплуатационные испытания разрешены только для трубопроводов категории D.
4. Кодекс ASME Раздел I. Гидростатическое испытание под давлением при температуре не менее 70 ° F (21 ° C) и испытательном давлении при температуре менее 120 ° F (49 ° C). Для парогенератора с принудительным потоком, с частями, работающими под давлением, рассчитанными на разные уровни давления, испытательное давление должно быть не менее чем в 1,5 раза больше максимально допустимого рабочего давления на выходе из пароперегревателя, но не менее 1.25-кратное максимально допустимое рабочее давление любой части котла.
5. Кодекс ASME, раздел III, раздел 1, подраздел NB, пределы испытательного давления определены в разделе NB3226; также компоненты, содержащие паяные соединения, и клапаны, которые перед установкой должны быть испытаны при давлении, в 1,5 раза превышающем расчетное давление системы.
6. Кодекса ASME Раздел III, Раздел 1, подраздел NB, давление пневматического испытания для компонентов, частично заполненных водой, должно быть не менее 1.25-кратное расчетное давление системы.

Отказ оборудования, работающего под давлением

Сосуды высокого давления и трубопроводные системы широко используются в промышленности и содержат очень большую концентрацию энергии. Несмотря на то, что их конструкция и установка соответствуют федеральным, государственным и местным нормам и признанным промышленным стандартам, продолжают происходить серьезные отказы оборудования, работающего под давлением.

Существует множество причин выхода из строя оборудования, работающего под давлением: деградация и истончение материалов в процессе эксплуатации, старение, скрытые дефекты во время изготовления и т. Д.. К счастью, периодические испытания, а также внутренние и внешние проверки значительно повышают безопасность сосуда высокого давления или системы трубопроводов. Хорошая программа испытаний и инспекций основана на разработке процедур для конкретных отраслей или типов судов.

Ряд аварий позволил привлечь внимание к опасностям и рискам, связанным с хранением, обращением и перекачкой жидкостей под давлением. Когда сосуды под давлением действительно выходят из строя, это обычно является результатом разрушения корпуса в результате коррозии и эрозии (более 50% разрушения корпуса).


Новое построенное судно разорвано во время гидроиспытаний

Все сосуды под давлением имеют свои собственные специфические опасности, включая большое накопленное потенциальное усилие, точки износа и коррозии, а также возможный отказ предохранительных устройств контроля избыточного давления и температуры.
Правительство и промышленность отреагировали на потребность в улучшенных испытаниях систем, работающих под давлением, разработав стандарты и правила, определяющие общие требования к безопасности под давлением (Кодекс ASME по котлам и сосудам под давлением, Руководство по безопасности под давлением DOE и другие).
Эти правила определяют требования к реализации программы безопасности при испытаниях под давлением. Очень важно, чтобы конструкторский и эксплуатационный персонал использовал эти стандарты в качестве критериев при написании и реализации программы безопасности при испытаниях под давлением.

Программа испытаний под давлением

Хорошая программа безопасности при испытаниях под давлением должна выявлять производственные дефекты и износ в результате старения, растрескивания, коррозии и других факторов до того, как они вызовут отказ сосуда, и определять (1) может ли сосуд продолжать работу при том же давлении, (2) какое могут потребоваться меры контроля и ремонта, чтобы система давления могла работать при исходном давлении, и (3) необходимо ли снижать давление для безопасной эксплуатации системы.

Все компании, работающие с оборудованием под давлением, почти все имеют расширенные технические инструкции по испытаниям сосудов под давлением и трубопроводных систем. Эти руководящие принципы подготовлены в соответствии со стандартами безопасности давления OSHA, DOT, ASME, местными, государственными и другими федеральными кодексами и стандартами.

Документация включает определение ответственности инженерного, управленческого персонала и персонала по безопасности; общие требования к оборудованию и материалам; процедуры гидростатических и пневматических испытаний для проверки целостности системы и ее компонентов; и руководящие принципы для плана испытаний под давлением, аварийных процедур, документации и мер контроля опасностей.Эти меры включают контроль сброса давления, защиту от воздействия шума, экологический и личный мониторинг, а также защиту от присутствия токсичных или легковоспламеняющихся газов и высокого давления.


Пуск нового резервуара при испытании на пневматическое давление воздухом

Определения испытаний под давлением

  • Изменение — Изменение — это физическое изменение любого компонента, имеющее последствия для конструкции, которые влияют на способность сосуда высокого давления выдерживать давление, выходящее за рамки элементов, описанных в существующих отчетах с данными.
  • Допуск на коррозию — Дополнительная толщина материала, добавленная конструкцией, чтобы учесть потери материала в результате коррозионного или эрозионного воздействия.
  • Коррозионная обработка — Любая услуга системы давления, которая из-за химического или другого взаимодействия с материалами конструкции контейнера, содержимым или внешней средой приводит к растрескиванию контейнера, его охрупчиванию, потере более 0,01 дюйма. толщину за год эксплуатации, или испортить любым способом.
  • Расчетное давление — давление, используемое при расчете компонента давления вместе с совпадающей расчетной температурой металла с целью определения минимально допустимой толщины или физических характеристик границы давления. Расчетное давление для сосудов показано на производственных чертежах, а для трубопроводов максимальное рабочее давление указано в перечне трубопроводов. Расчетное давление для трубопровода больше на 110% от максимального рабочего давления или на 25 фунтов на кв. Дюйм от максимального рабочего давления.
  • Инженерная инструкция по безопасности (ESN) — Утвержденный руководством документ, описывающий ожидаемые опасности, связанные с оборудованием, и проектные параметры, которые будут использоваться.
  • Высокое давление — Давление газа выше 20 МПа (3000 фунтов на кв. Дюйм) и давление жидкости выше 35 МПа (5000).
  • Промежуточное давление — Давление газа от 1 до 20 МПа (от 150 до 3000 фунтов на кв. Дюйм) и давление жидкости от 10 до 35 МПа (от 1500 до 5000 фунтов на кв. Дюйм).
  • Испытание на утечку — Испытание давлением или вакуумом для определения наличия, скорости и / или местоположения утечки.
  • Низкое давление -Давление газа менее 1 МПа (150 фунтов на кв. Дюйм) или давление жидкости менее 10 МПа (1500 фунтов на кв. Дюйм).
  • Работа в зоне с персоналом — Операция под давлением, которая может проводиться (в определенных пределах) в присутствии персонала.
  • Максимально допустимое рабочее давление (МДРД) — максимальное допустимое давление в верхней части сосуда в его нормальном рабочем положении при рабочей температуре, указанной для данного давления.Это наименьшее из значений, найденных для максимально допустимого рабочего давления для любой из основных частей сосуда в соответствии с принципами, установленными в разделе VIII ASME. МДРД указано на паспортной табличке емкости. МДРД можно принять таким же, как расчетное давление, но по большей части МДРД основывается на изготовленной толщине за вычетом допуска на коррозию. MAWP относится только к сосудам под давлением.
  • Максимальная расчетная температура — максимальная температура, используемая при проектировании, и не должна быть ниже максимальной рабочей температуры.
  • Максимальное рабочее давление (MOP) — Максимальное давление, ожидаемое во время работы. Обычно это на 10-20% ниже МДРД.
  • Минимально допустимая температура металла (MAMT) — Минимальная температура для существующего сосуда, позволяющая выдерживать испытания или рабочие условия с низким риском хрупкого разрушения. MAMT определяется путем оценки сосудов под давлением, построенных до 1987 года. Этот термин используется в API RP 579 для оценки хрупкого разрушения существующего оборудования.Это может быть одна температура или диапазон допустимых рабочих температур в зависимости от давления.
  • Минимальная расчетная температура металла (MDMT) — Минимальная температура металла, используемая при проектировании сосуда высокого давления. MDMT является термином кода ASME и обычно отображается на паспортной табличке сосуда или в форме U-1 для сосудов, спроектированных в соответствии с ASME Section VIII, Division 1, издание 1987 г. или более поздней версии.
  • МПа — Абсолютное давление в единицах СИ. 1 атмосфера (14,7 фунта на кв. Дюйм) равна 0.1 МПа.
  • Процедура эксплуатационной безопасности (OSP) — Документ, используемый для описания средств управления, необходимых для обеспечения того, чтобы риски, связанные с потенциально опасным исследовательским проектом или уникальной деятельностью, находились на приемлемом уровне.
  • Оборудование, работающее под давлением — Любое оборудование, например, сосуды, коллекторы, трубопроводы или другие компоненты, которое работает при давлении выше или ниже (в случае вакуумного оборудования) атмосферного давления.
  • Сосуд под давлением — Компонент, работающий под давлением (например, сферический или цилиндрический резервуар) с относительно большим объемом, с поперечным сечением больше, чем соответствующий трубопровод.
  • Контрольное испытание — Испытание, в котором прототипы оборудования подвергаются воздействию давления для определения фактического выхода или давления отказа (разрыва) (используется для расчета МДРД).
  • Дистанционное управление — Операция под давлением, которую нельзя проводить в присутствии персонала. Оборудование должно быть установлено в испытательных камерах, за сертифицированными заграждениями или работать из безопасного места.
  • Фактор безопасности (SF) — Отношение предельного (т. Е. Разрыва или отказа) давления (измеренного или рассчитанного) к МДРД.Фактор безопасности, связанный с чем-то другим, кроме давления отказа, должен быть обозначен соответствующим нижним индексом.

Коды, стандарты и ссылки

Американское общество инженеров-механиков (ASME)

  • Котлы и сосуды под давлением Код: Раздел VIII Сосуды под давлением
  • ASME B31.3 Трубопроводы для химических и нефтеперерабатывающих заводов
  • ASME B16.5 Трубные фланцы и фланцевые фитинги

Американское общество испытаний материалов (ASTM)

  • ASTM E 1003 Стандартный метод испытаний на гидростатическую герметичность

Американский институт нефти (API)

  • RP 1110 Испытание давлением стальных трубопроводов для транспортировки газа, нефтяного газа, опасных жидкостей…
  • API 510 Техническое обслуживание, проверка, оценка, ремонт и изменение
  • Обжиговые нагреватели API 560 для нефтеперерабатывающих заводов общего назначения
  • API 570 Осмотр, ремонт, изменение и повторная оценка эксплуатационных трубопроводных систем
  • API 579 Проект рекомендованной практики API для пригодности к эксплуатации

Роберт Б. Адамс

  • Президент и главный исполнительный директор EST Group, Inc. Харлейсвилл, Пенсильвания

Интересные статьи об отказе при испытании давлением

Отказ сосуда под давлением во время пневматического испытания

Отказ сосуда под давлением во время гидроиспытаний

Отказ сосуда под давлением во время испытания воздуха

Замечание (и) автора…

Испытания под давлением ASME B31.3

Трубопроводы обычно проектируются и изготавливаются в соответствии с применимыми нормами. Конечно, использование ASME B31.3 может быть применимо к судам, перевозящим нефть, но вы действительно должны следовать коду, для которого была разработана система трубопроводов. Поскольку я знаком с B31.3, а не с эквивалентом в Европе (или другой стране), я буду основывать свой ответ на B31.3.

ASME B31.3 требует «испытания на герметичность» системы трубопроводов. Это не структурный тест, это всего лишь тест, чтобы определить, есть ли в системе точки утечки.* С другой стороны, существуют нормы, которые могут требовать структурных испытаний, например, по нормам для котлов и сосудов высокого давления. В этом случае проводится гидростатическое испытание, чтобы убедиться, что резервуар и присоединенные к нему трубопроводы являются конструктивными, а не только герметичными.

ASME B31.3, п. 345.1 гласит:
До ввода в эксплуатацию и после завершения соответствующих проверок, требуемых п. 341, каждая система трубопроводов должна быть испытана на герметичность. Испытание должно представлять собой гидростатическое испытание на герметичность в соответствии с п.345.4, за исключением случаев, предусмотренных в данном документе.

Если владелец считает гидростатическое испытание на герметичность нецелесообразным, либо пневматическое испытание в соответствии с п. 345.5 или комбинированное гидростатико-пневматическое испытание в соответствии с п. 345.6 может быть заменен, учитывая опасность энергии, хранящейся в сжатом газе.

Таким образом, согласно нормам, испытание на герметичность с использованием воздуха может быть выполнено, если владелец системы считает гидростатическое испытание нецелесообразным.

Важно понимать, что давление, при котором проводится испытание, является функцией расчетного давления.Расчетное давление является функцией допустимых пределов напряжений в трубопроводе, которая также является функцией рабочей температуры.

  • Для гидростатических испытаний, п. 345.4.2 требует давления, превышающего расчетное давление не менее чем в 1,5 раза.
  • Для пневматического испытания, п. 345.5.4 требует давления не менее 110% от расчетного.

Следующим шагом для инженера (предпочтительно проектировщика трубопроводной системы или специалиста по анализу напряжений) является создание процедур испытаний под давлением.Эти процедуры испытания под давлением рассматривают возможность хрупкого разрушения при низких температурах, что может быть проблемой при указанных температурах. Процедуры испытания давлением на самом деле представляют собой набор процедур (обычно), которые включают в себя такие вещи, как метод создания давления в системе, положения клапана, снятие предохранительных устройств, изоляция частей системы трубопроводов и т. Д.

Относительно низкой температуры, п. 345.4.1 гласит: «Жидкость должна быть водой, если нет возможности повреждения из-за замерзания или неблагоприятного воздействия воды на трубопровод или технологический процесс (см. Параграф.F345.4.1). В этом случае можно использовать другую подходящую нетоксичную жидкость ». Допускается использование гликоля / воды.

Если испытание должно проводиться пневматически, испытательное давление следует повысить до 25 фунтов на кв. Дюйм, после чего должна быть проведена предварительная проверка, включая осмотр всех соединений. Настоятельно рекомендуется использование низкотемпературной пузырьковой жидкости.

Итак, вывод:

  1. Если вам дали задание провести гидроиспытание при 16 бар, то это должно быть 1.5-кратное расчетное давление 10,67 бар. Следовательно, согласно B31.3, пневматическое испытание следует проводить не при 16 бар, а при 1,1-кратном расчетном давлении или 11,7 бар. Доведите пневматическое давление до 11,7 бар.
  2. Возможность хрупкого разрушения должна быть рассмотрена соответствующим инженером. В случае температуры ниже 0 ° C, используемый материал следует проверить, чтобы убедиться, что он не ниже минимально допустимой температуры для этой стали.
  3. Опытный инженер должен разработать набор процедур испытаний под давлением.В этих процедурах необходимо указать, какие участки трубы проверяются, в каких положениях следует размещать клапаны, какие предохранительные устройства необходимо снять (или установить) и т. Д.
  4. Пневматическое испытание необходимо начинать при давлении 25 фунтов на кв. Дюйм, а перед повышением давления необходимо провести предварительную проверку на утечки.
  5. Самое главное, знающий инженер должен также проверить проектную спецификацию трубопровода на предмет всех требований, относящихся к испытаниям на герметичность или давление.

Хотя B31.3 описывает это как «испытание на герметичность», когда выполняется гидростатическое испытание в 1,5 раза больше расчетного, это влияет на испытание конструкции.

Пожалуйста, прочтите статью: Департамент труда США, OSHA

.

Неразрушающий контроль — Манометр, Регистратор температуры и давления, Насосы для гидростатических испытаний

Испытательное оборудование для напорных систем

Манометр

Манометры — это относительно недорогие механические устройства, считывание которых по большей части выполняется вручную.
Один из самых известных типов — манометр Бурдона, который был запатентован во Франции Юджином Бурдоном в 1849 году.

Манометры Бурдона

содержат тонкостенную металлическую трубку, которая обычно ввинчивается в отсек, в котором измеряется давление.По мере увеличения давления в трубке трубка начинает выпрямляться. На другом конце трубки находится рычажная система со стрелкой. По мере выпрямления трубки указатель перемещается по шкале, показывая давление в фунтах на квадратный дюйм (PSI). Обычные формы трубок включают изогнутые или С-образные, спиральные и спиральные. Это механическое устройство, считываемое вручную. Другой тип механического манометра, который работает аналогичным образом и также содержит стрелку, называется диафрагменным манометром.

Традиционные манометры, такие как манометры Бурдона и диафрагменные манометры, чувствительны к вибрации и конденсации.Другой тип называется манометром с «заполнением», и он заполнен вязким маслом. В этой конструкции меньше движущихся частей, чем в традиционных манометрах, и она более надежна. Эта конструкция гасит вибрацию стрелки и не подвержена конденсации.

Регистратор-приемник температуры и давления

Регистратор-приемник температуры и давления — это прибор, предназначенный для общих применений температуры и давления, и ИТ записывает контролируемую температуру и давление на графике.

Система статического давления состоит из спиральной трубки Бурдона, соединенной с системой трубопроводов, и измеряет статическое давление.
Тепловая система состоит из спиральной трубки Бурдона, капилляра и колбы. Обычно все детали из нержавеющей стали.
Механизм записи часто представляет собой ручную систему, которая непрерывно записывает данные. Он преобразует механические входные значения давления и температуры в линии на вращающейся диаграмме.

Насосы для гидростатических испытаний

Насос для гидростатических испытаний — это автономный переносной насос высокого давления небольшого объема, приводимый в действие ручным, воздушным, электрическим или газовым двигателем, со шлангом высокого давления, подключенным к оборудованию.Насос используется для проверки проверяемого компонента, который заполняется несжимаемой жидкостью, обычно водой.
С помощью насоса, включающего соответствующие предохранительные устройства и средства управления, давление тестируемого компонента медленно повышается до заданного значения и поддерживается в течение заданного времени. Затем выполняется визуальный осмотр, чтобы определить, существует ли какая-либо утечка или давление снижается от заданной точки давления.

Это оборудование для испытания гидростатического давления компактно, эффективно и экономично, доступно в различных комбинациях давления и расхода (возможно давление до 1000 бар (14 500 фунтов на кв. Дюйм)).Хотя теоретически вода считается несжимаемой жидкостью, она требует значительного количества подпитки для повышения давления.

.

Неразрушающий контроль — Риски пневматических испытаний сосудов под давлением, теплообменников, колонн, трубопроводов и т. Д.

Многие люди не знают или не осознают, что испытание под давлением может быть очень опасным.

Пневматические испытания широко используются для достижения минимального времени простоя, экономии и удобства испытаний по сравнению с гидростатическими испытаниями. Также полезно обнаруживать очень тонкие пути утечки, которые не могут быть обнаружены при гидростатических испытаниях.

Пневматическое испытание трубопроводов и сосудов под давлением от среднего до высокого или при низких испытательных давлениях с большим объемом более опасно, чем испытание под гидростатическим давлением, поскольку запасенная энергия намного больше в случае сжатых газов.Однако воздух (как и все газы) сжимаем, и в результате в газ нужно вкладывать гораздо больше энергии, чтобы поднять его давление.
Фактически, в диапазонах давлений, обычно используемых для испытания систем водяных трубопроводов, в сжатом газе хранится в 200 раз больше энергии по сравнению с водой при том же давлении и объеме.
Итак, если соединение, труба или любой другой компонент выйдет из строя под испытательным давлением при использовании сжатого газа, энергия может высвободиться со смертельной силой!

Опасности, связанные с потерей защитной оболочки во время пневматических испытаний под давлением, включают как избыточное давление взрыва, так и ракеты.В приложениях, где испытания под давлением с жидкостями нежелательны, например, в криогенных системах трубопроводов и резервуаров, пневматические испытания под давлением могут быть оправданы только в том случае, если осторожность при изготовлении и неразрушающий контроль резервуаров и трубопроводов снижает вероятность потери герметичности до такой степени. небольшое значение, что риск приемлем.

Опасности из-за избыточного давления из-за разрыва сосуда или системы трубопроводов

Температура кипения СПГ при атмосферном давлении составляет приблизительно -160 ° C, любая остаточная вода, оставшаяся в оборудовании, например, при гидравлических испытаниях под давлением, нежелательна.Поэтому пневматические испытания под давлением часто используются для СПГ и других трубопроводов и сосудов, в которых необходимо избегать попадания влаги. Как уже упоминалось, запасенная энергия сжатого газа очень высока, поэтому разрыв системы испытания трубопроводов во время испытания пневматическим давлением может высвободить много энергии. Повреждение из-за разрыва может быть вызвано ударными волнами, разлетающимися осколками снарядов из разорванных трубопроводов, а также неограниченным движением трубопроводов и оборудования, приводимых в движение выходящим газом. Фактически, в промышленности криогенного газа в прошлом были случаи пневматических испытаний под давлением, которые иногда приводили к серьезным травмам и серьезному повреждению оборудования.

Чтобы устранить риски, связанные с испытанием пневматическим давлением, многие компании пытаются ограничить количество запасенной энергии в испытательной системе до предписанного максимального значения, ограничивая размер каждой испытательной системы. Этот подход часто непрактичен для трубопроводов высокого давления типичных диаметров из-за серьезных ограничений, которые он накладывает на размер каждой испытательной системы. Следовательно, такой подход может привести к неоправданно большому количеству тестовых систем. Попытка выделить и протестировать большое количество тест-систем может оказаться непрактичной.Когда подход ограничения количества сохраненной энергии становится непрактичным, альтернативный подход, такой как описанный здесь, может предложить лучший вариант. Независимо от того, какой подход будет выбран, необходимо принять во внимание многие соображения, изложенные в этой статье, для безопасного выполнения пневматических испытаний под высоким давлением.

Разнообразные меры могут повысить безопасность пневматических испытаний. Первостепенное значение имеют меры по обеспечению механической целостности сосудов и трубопроводных систем, подвергаемых испытаниям.Эти меры включают методы проектирования, изготовления и контроля.

Также необходимо запретить персоналу входить в запретные зоны (зона, в которую запрещен вход персонала), окружающие тестируемую емкость или трубопроводную систему, и проводить испытания ночью или в выходные дни, когда поблизости от испытательной площадки мало людей. .

Опасности от избыточного давления

Разрыв системы трубопроводов под давлением вызывает взрывную волну.

Пневматические испытания под давлением, запланированные для систем трубопроводов для одного терминала СПГ, достигли 121 бар изб., В зависимости от класса и размера испытываемых трубопроводов.Такое высокое давление может привести к разрушительному избыточному давлению в атмосфере в пределах запретной зоны из-за взрывной волны или ударной волны, которая возникает при разрыве испытываемой системы трубопроводов. Более низкие испытательные давления также могут представлять значительную опасность. Например, разрыв определенного 8-дюймового сегмента трубы при испытательном давлении 18 бар изб. Может привести к избыточному давлению взрыва 0,5 фунта на кв. Дюйм (0,0345 бар изб.) На расстоянии 28 м.

Избыточное давление может привести к травмам персонала и повреждению оборудования. Избыточное давление — это локальное повышение атмосферного давления воздуха, связанное с прохождением ударной волны.

Избыточное давление, которое сопровождает отказ системы трубопроводов, причиняет вред, который зависит от величины и продолжительности ударной волны. Типичные разрушительные эффекты от избыточного давления перечислены ниже:

  • 0,4 фунта на кв. Дюйм (0,0276 бар изб.) — Ограниченные незначительные структурные повреждения зданий
  • От 0,0345 до 0,0690 бар изб. (Изб. От 0,5 до 1 фунта на кв. Дюйм) — Разрушение стекла со скоростью проникновения тела
  • 0,7 фунтов на кв. Дюйм (0,0483 бар изб.) — Незначительные повреждения конструкций дома
  • 1 фунт / кв. Дюйм (0.0690 барг) — частичное повреждение конструкций дома; сделан нежилым
  • 1 фунт / кв. Дюйм изб. (0,0690 бар изб.) — 95% защита барабанной перепонки с помощью берушей
  • 1 фунт / кв.дюйм изб. (0,0690 бар изб.) — Люди, сбитые с ног, с вероятностью серьезных травм

Избыточное давление может повлиять на большую часть прилегающей территории, окружающей проверяемый трубопровод. Следовательно, минимальная зона исключения в данной работе определяется как зона в пределах радиуса, за пределами которой избыточное давление от разрыва испытываемой системы трубопроводов не будет превышать 0.5 фунтов на квадратный дюйм (0,0345 бар изб.).

Интересные статьи об отказе при опрессовке

  • Отказ сосуда под давлением во время пневматического испытания
  • Отказ сосуда под давлением во время гидроиспытаний
  • Отказ сосуда под давлением во время испытания воздухом
.

показателей жизнедеятельности (температура тела, частота пульса, частота дыхания, артериальное давление)

Что такое жизненно важные признаки?

Показатели жизнедеятельности — это измерения самых основных функций организма. Четыре основных показателя жизненно важных функций, которые регулярно контролируются медицинскими работниками и поставщиками медицинских услуг, включают следующее:

  • Температура тела

  • Частота пульса

  • Частота дыхания (частота дыхания)

  • Артериальное давление (Артериальное давление не считается жизненно важным показателем, но часто измеряется вместе с жизненными показателями.)

Показатели жизненно важных функций полезны при обнаружении или мониторинге медицинских проблем. Жизненно важные показатели можно измерить в медицинских учреждениях, дома, в месте оказания неотложной медицинской помощи или в другом месте.

Что такое температура тела?

Нормальная температура тела человека варьируется в зависимости от пола, недавней активности, потребления пищи и жидкости, времени суток и, у женщин, стадии менструального цикла. Нормальная температура тела может колебаться от 97,8 градусов по Фаренгейту, что эквивалентно 36.От 5 градусов по Цельсию до 99 градусов по Фаренгейту (37,2 градуса по Цельсию) для здорового взрослого человека. Температуру тела человека можно измерить одним из следующих способов:

  • Устно. Температуру можно измерять через рот с помощью классического стеклянного термометра или более современных цифровых термометров, в которых для измерения температуры тела используется электронный зонд.

  • Ректально. Температура, измеренная ректально (с помощью стеклянного или цифрового термометра), как правило, равна 0.На 5–0,7 градусов по Фаренгейту выше, чем при пероральном приеме.

  • Подмышечный. Температуру можно измерять под мышкой с помощью стеклянного или цифрового термометра. Температура, измеряемая этим путем, обычно на 0,3–0,4 градуса по Фаренгейту ниже, чем температура, принимаемая внутрь.

  • На слух. С помощью специального термометра можно быстро измерить температуру барабанной перепонки, которая отражает внутреннюю температуру тела (температуру внутренних органов).

  • По коже. Специальный градусник позволяет быстро измерить температуру кожи на лбу.

Температура тела может быть ненормальной из-за лихорадки (высокая температура) или переохлаждения (низкая температура). По данным Американской академии семейных врачей, лихорадка показана, когда температура тела повышается примерно на один градус или более по сравнению с нормальной температурой 98,6 градусов по Фаренгейту. Гипотермия определяется как падение температуры тела ниже 95 градусов по Фаренгейту.

О стеклянных термометрах, содержащих ртуть

По данным Агентства по охране окружающей среды, ртуть является токсичным веществом, представляющим угрозу для здоровья человека, а также для окружающей среды. Из-за риска поломки стеклянные термометры, содержащие ртуть, следует прекратить использовать и утилизировать надлежащим образом в соответствии с местными, государственными и федеральными законами. Обратитесь в местный отдел здравоохранения, службу утилизации отходов или пожарную службу за информацией о том, как правильно утилизировать ртутные термометры.

Какая частота пульса?

Частота пульса — это измерение частоты пульса или количества ударов сердца в минуту. Когда сердце проталкивает кровь по артериям, они расширяются и сужаются вместе с током крови. Измерение пульса не только измеряет частоту сердечных сокращений, но также может указывать на следующее:

  • Сердечный ритм

  • Сила пульса

Нормальный пульс у здоровых взрослых колеблется от 60 до 100 ударов в минуту.Частота пульса может колебаться и увеличиваться в зависимости от физических упражнений, болезней, травм и эмоций. У женщин в возрасте 12 лет и старше, как правило, частота сердечных сокращений выше, чем у мужчин. Спортсмены, например бегуны, которые много тренируют сердечно-сосудистую систему, могут иметь частоту сердечных сокращений около 40 ударов в минуту и ​​не испытывать никаких проблем.

Как проверить пульс

Когда сердце нагнетает кровь по артериям, вы чувствуете биения, сильно надавливая на артерии, которые расположены близко к поверхности кожи в определенных точках тела.Пульс можно обнаружить сбоку на шее, на внутренней стороне локтя или на запястье. Для большинства людей проще всего измерить пульс на запястье. Если вы используете нижнюю часть шеи, не давите слишком сильно и никогда не давите на пульс с обеих сторон нижней части шеи одновременно, чтобы предотвратить блокировку кровотока в головном мозге. При измерении пульса:

  • Сильно, но осторожно надавите на артерии первым и вторым пальцами, пока не почувствуете пульс.

  • Начните отсчет импульсов, когда секундная стрелка часов будет на 12.

  • Считайте свой пульс в течение 60 секунд (или в течение 15 секунд, а затем умножьте на четыре, чтобы вычислить удары в минуту).

  • Во время счета не смотрите постоянно на часы, а сосредоточьтесь на ударах пульса.

  • Если вы не уверены в своих результатах, попросите другого человека посчитать за вас.

Если ваш врач назначил вам проверять собственный пульс, но вы не можете его определить, проконсультируйтесь с врачом или медсестрой за дополнительными инструкциями.

Какая частота дыхания?

Частота дыхания — это количество вдохов, которые человек делает в минуту. Скорость обычно измеряется, когда человек находится в состоянии покоя, и включает в себя просто подсчет количества вдохов в течение одной минуты путем подсчета того, сколько раз поднимается грудь. Частота дыхания может увеличиваться при лихорадке, болезни и других заболеваниях. При проверке дыхания важно также отметить, нет ли у человека затруднений с дыханием.

Нормальная частота дыхания взрослого человека в состоянии покоя составляет от 12 до 16 вдохов в минуту.

Что такое артериальное давление?

Артериальное давление — это сила давления крови на стенки артерии во время сокращения и расслабления сердца. Каждый раз, когда сердце бьется, оно перекачивает кровь в артерии, что приводит к повышению артериального давления при сокращении сердца. Когда сердце расслабляется, артериальное давление падает.

Два числа записываются при измерении артериального давления. Более высокое значение, или систолическое давление, относится к давлению внутри артерии, когда сердце сокращается и качает кровь по телу.Меньшее число, или диастолическое давление, относится к давлению внутри артерии, когда сердце находится в состоянии покоя и наполняется кровью. И систолическое, и диастолическое давление записываются как «мм рт. Ст.» (Миллиметры ртутного столба). Эта запись показывает, насколько высоко ртутный столбик в старомодном ручном приборе для измерения артериального давления (называемом ртутным манометром или сфигмоманометром) поднимается давлением крови. Сегодня в кабинете вашего врача для этого измерения с большей вероятностью будет использоваться простой циферблат.

Высокое кровяное давление или гипертония напрямую увеличивает риск сердечного приступа, сердечной недостаточности и инсульта. При высоком кровяном давлении артерии могут иметь повышенное сопротивление потоку крови, из-за чего сердцу становится труднее перекачивать кровь.

Артериальное давление классифицируется как нормальное, повышенное или высокое кровяное давление 1 или 2 стадии:

  • Нормальное артериальное давление систолическое менее 120 и диастолическое менее 80 (120/80)

  • Повышенное артериальное давление систолическое от 120 до 129 и диастолическое ниже 80

  • Стадия 1 Высокое артериальное давление систолическое от 130 до 139 или диастолическое от 80 до 89

  • Стадия 2 Высокое кровяное давление — это когда систолическое 140 или выше или диастолическое 90 или выше

Эти цифры следует использовать только в качестве ориентировочных.Одно измерение артериального давления, которое выше нормы, не обязательно является признаком проблемы. Ваш врач захочет увидеть несколько измерений артериального давления в течение нескольких дней или недель, прежде чем поставить диагноз высокого артериального давления и начать лечение. Спросите своего врача, когда с ним или с ней связываться, если ваши показания артериального давления не находятся в пределах нормы.

Почему я должен контролировать свое кровяное давление дома?

Для людей с гипертонией домашний мониторинг позволяет врачу отслеживать, насколько изменяется ваше кровяное давление в течение дня и изо дня в день.Это также может помочь вашему врачу определить, насколько эффективно действует ваше лекарство от артериального давления.

Какое специальное оборудование необходимо для измерения артериального давления?

Для измерения артериального давления можно использовать либо анероидный монитор, который имеет циферблатный индикатор и считывание показаний осуществляется при помощи указателя, либо цифровой монитор, на котором показания артериального давления мигают на маленьком экране.

Об анероидном мониторе

Монитор-анероид дешевле цифрового монитора.Манжета накачивается вручную путем сжатия резиновой груши. В некоторых устройствах даже есть специальная функция, облегчающая надевание манжеты одной рукой. Однако прибор может быть легко поврежден и станет менее точным. Поскольку человек, использующий его, должен отслеживать сердцебиение с помощью стетоскопа, он может не подходить для людей с нарушением слуха.

О цифровом мониторе

Цифровой монитор является автоматическим, измерения отображаются на маленьком экране. Поскольку записи легко читаются, это самый популярный прибор для измерения артериального давления.Его также проще использовать, чем анероидный блок, и, поскольку нет необходимости прослушивать сердцебиение через стетоскоп, это хорошее устройство для пациентов с нарушениями слуха. Одним из недостатков является то, что движение тела или нерегулярная частота сердечных сокращений могут изменить точность. Эти устройства также дороже анероидных мониторов.

О манометрах для измерения давления на руках и на запястье

Испытания показали, что устройства измерения артериального давления на пальцах и / или запястьях не так точны при измерении артериального давления, как другие типы мониторов.К тому же они дороже других мониторов.

Перед тем, как измерить артериальное давление:

Американская кардиологическая ассоциация рекомендует следующие рекомендации по домашнему мониторингу артериального давления:

  • Не курите и не пейте кофе за 30 минут до измерения артериального давления.

  • Перед обследованием сходите в ванную.

  • Расслабьтесь в течение 5 минут перед измерением.

  • Сядьте, опираясь на спину (не садитесь на диван или мягкий стул). Не скрещивайте ноги на полу. Положите руку на твердую плоскую поверхность (например, на стол) так, чтобы верхняя часть руки находилась на уровне сердца. Расположите середину манжеты прямо над сгибом локтя. См. Иллюстрацию в руководстве по эксплуатации монитора.

  • Снимите несколько показаний. При измерении снимайте 2–3 измерения с интервалом в одну минуту и ​​записывайте все результаты.

  • Измеряйте артериальное давление каждый день в одно и то же время или в соответствии с рекомендациями врача.

  • Запишите дату, время и показания артериального давления.

  • Возьмите запись с собой на следующий визит к врачу. Если ваш тонометр имеет встроенную память, просто возьмите его с собой на следующий прием.

  • Позвоните своему провайдеру, если у вас несколько высоких показателей.Не пугайтесь одного показания высокого кровяного давления, но если вы получите несколько высоких показателей, посоветуйтесь со своим врачом.

  • Когда артериальное давление достигает систолического (верхнее значение) 180 или выше ИЛИ диастолического (нижнее значение) 110 или выше, обратитесь за неотложной медицинской помощью.

Попросите своего врача или другого медицинского работника научить вас правильно пользоваться тонометром. Регулярно проверяйте точность монитора, беря его с собой в кабинет врача.Также важно убедиться, что трубка не перекручена, когда вы ее храните, и держите ее подальше от тепла, чтобы предотвратить трещины и утечки.

Правильное использование прибора для измерения артериального давления поможет вам и вашему врачу контролировать ваше артериальное давление.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *