Сравнение теплоотдачи радиаторов | Lammin
Теплоотдача радиаторов — показатель, который определяет эффективность системы обогрева жилых, производственных и офисных помещений. Она зависит от многих факторов и является важным критерием при выборе батарей.
Зависимость теплоотдачи от различных факторов
Теплоотдача или тепловая мощность отражает количество тепла, которое передается отопительным прибором в единицу времени. Она влияет на микроклимат в помещении и обеспечивает создание комфортных условий.
Первичные факторы
Величина тепловой мощности одной секции батареи указывается в технической документации, прилагаемой производителями оборудования для водяной системы отопления. Она зависит от следующих факторов:
- Материала изготовления. Каждый металл имеет определенный коэффициент теплопроводности, влияющий на теплоотдачу. Самыми высокими показателями отличаются медь и серебро, но их не используют для производства батарей из-за значительной стоимости.
- Температуры теплоносителя, циркулирующего в сети обогрева. Чем она выше, тем больше тепла отдает прибор отопления.
- Площади теплообмена. Ее величина определяется особенностями конструкции радиаторов, количеством секций и габаритными размерами.
Чтобы повысить эффективность функционирования сети обогрева, можно остановить свой выбор на радиаторах из металла, который имеет более высокую теплопроводность. Среди материалов, используемых для массового производства батарей, таким является алюминий. Еще один способ ускорить нагрев воздуха в помещениях до комфортных показателей — увеличить температуру теплоносителя. Его можно использовать в автономных сетях частных домов, учитывая при этом технические характеристики радиаторов и условия эксплуатации.
Подбирая изделия по площади теплообмена, следует отдавать предпочтение моделям с большим межосевым расстоянием и с ребристой поверхностью, которая значительно повышает эффективность обогрева.
Вторичные факторы
На уровень тепловой мощности приборов отопления и скорость нагрева помещений влияют и другие факторы, среди которых:
- месторасположение;
- способ подключения;
- цветовое решение и вид покрытия батарей;
- климатическая зона.
Поскольку на окна может приходиться до 26% от общих потерь тепла, то самый оптимальный вариант размещения радиаторов — под ними. Такое расположение отопительных приборов способствует созданию тепловой завесы и позволяет уменьшить утечку тепла из помещения. Использование декоративных экранов, закрывающих батареи, снижает их эффективность на 5-7% при наличии снизу пространства для доступа воздуха, и на 20% — при его отсутствии.
В целом общая тепловая мощность приборов отопления, установленных в помещении, должна быть больше потерь тепла примерно на 10-20%. В этом случае обеспечивается поддержание в комнатах комфортной температуры без лишних затрат.
Способ подключения радиаторов определяется их типом. Наиболее эффективными считаются модели с боковым односторонним и диагональным подключением. Первый вариант востребован, если количество секций не превышает 12, а второй целесообразно использовать при подсоединении более габаритных батарей. Изменение способа подключения, как и повышение температуры теплоносителя или увеличение габаритных размеров помогает повысить уровень теплоотдачи. Прежде чем воспользоваться одним из этих методов, следует произвести перерасчет мощности.
Эффективность обогрева системы также зависит от наличия пыли на поверхности, циркуляции воздуха в помещении и способа отделки стены. Чем больше отражающие свойства поверхности, тем лучше теплоотдача.
Сравнение теплоотдачи
При выборе радиаторов по материалу изготовления недостаточно оценивать их возможности по величине теплоотдачи. Сравнение приборов нужно проводить, учитывая особенности отопительной сети и ее основные технические параметры.
Стальные
У стальных батарей наименьший показатель тепловой мощности среди аналогичных изделий из других металлов. Это обусловлено низким коэффициентом теплопроводности, которым отличается конструкционная сталь. Кроме того, панельные приборы отопления имеют небольшую площадь теплообмена, которую нельзя увеличить путем добавления секций. Такой вариант изменения габаритных размеров можно использовать только для секционных моделей из стали. Для них также характерно следующее:
- чувствительность к составу теплоносителя и склонность к заиливанию при использовании загрязненной воды;
- низкая стойкость к гидравлическим ударам;
- образование коррозии при сливе рабочей среды.
Стальные приборы отопления целесообразно применять при обустройстве автономной сети отопления.
Чугунные
Коэффициент теплопроводности чугуна составляет 50-56 Вт/(м*К), поэтому приборы из этого металла отличаются большей эффективностью обогрева, чем стальные аналоги. Затрудняет передачу тепла и повышенная толщина стенок. Мощность моделей старого образца составляла 60-80 Вт, а у новых изделий она варьируется в пределах 140-160 Вт. Передача тепла в основном осуществляется путем излучения, а на конвекцию приходится не более 20%. Чугунные модели отличаются большим весом и хрупкостью, которая приводит к разрушению изделий под воздействием гидравлических ударов. Они медленно нагреваются и также остывают. Радиаторы из чугуна не чувствительны к качеству теплоносителя, способны выдерживать до 9 атм и востребованы в автономных системах отопления частных домов и загородных коттеджей.
Алюминиевые
Самая лучшая теплопроводность у алюминия: она составляет 230 Вт/(м*К). Поэтому по теплоотдаче алюминиевые батареи превосходят аналогичные свойства приборов отопления, выпускаемых из других материалов. Максимальная эффективность обогрева достигается благодаря особым свойствам металла и значительной полезной площади, увеличенной за счет оребрения поверхности. Передача тепла осуществляется путем конвекции и излучения.
Выбирая алюминиевые приборы отопления, нужно учитывать следующие недостатки изделий:
- склонность к появлению коррозии из-за электрохимических процессов, причиной которых является низкое качество теплоносителя;
- неспособность выдерживать гидравлические удары и рабочее давление выше 9 атм.
Их используют при прокладке автономных сетей для малоэтажных домов. Батареи из алюминия отличаются малым весом и предоставляют возможность подобрать модель с нужным количеством секций.
Биметаллические
Биметаллические приборы отопления представляют собой конструкцию, для изготовления которой служат два металла. В результате получают изделия, которые почти не уступают по уровню теплоотдачи аналогам из алюминия. Причина снижения эффективности заключается в особой конструкции. Сердечник производят из конструкционной стали, поэтому он отличается сравнительно небольшой теплопроводностью. Однако стальной элемент быстро нагревает алюминиевые панели, что обеспечивает интенсивное распространение тепла и высокую теплоотдачу. К другим преимуществам биметаллических радиаторов относятся:
- устойчивость к появлению ржавчины и низкая чувствительность к качеству теплоносителя;
- высокое рабочее давление, достигающее не менее 20-35 атм;
- способность сохранять свои параметры при возникновении гидравлических ударов в сети;
- простая форма, благодаря которой значительно упрощаются уход и обслуживание.
Биметаллические изделия можно устанавливать в автономных системах частных домов, но наиболее эффективно их использование в центральных сетях многоквартирных зданий. Сравнение радиаторов на примере продукции Lammin представлено в таблице.
Сравнение приборов отопления с межосевым расстоянием 350 мм
Вид батарей | Теплоотдача секции, Вт | Максимально допустимая температура, °C |
Биметаллические Eco | 110 | 110 |
Алюминиевые Eco | 115 | 110 |
Биметаллические Premium | 130 | 110 |
Алюминиевые Premium | 135 | 110 |
Подбор радиаторов по тепловой мощности
После сравнения теплопередачи разных типов батарей и оценки условий эксплуатации изделий подбирают оптимальный вариант. Однако в техническом паспорте приборов отопления этот параметр указывается по отношению к одной секции или к их общему количеству. Чтобы выбрать радиатор, который оптимально подойдет для помещения по габаритным размерам, нужно провести предварительный расчет. Для этого нужно воспользоваться формулой, позволяющей определить нужное количество секций с учетом обогреваемой площади помещения и величины теплоотдачи одной секции.
Особенности радиаторов Lammin
Приборы отопления, выпускаемые компанией Lammin, представлены алюминиевыми и биметаллическими моделями двух серий — Eco и Premium. Для них характерен высокий показатель тепловой мощности, который достигается:
- в изделиях из алюминия благодаря использованию уникального сплава, содержащего помимо основного металла добавки в виде цинка, железа и кремния;
- в биметаллических моделях за счет особой конструкции, состоящей из стальных труб и алюминиевого корпуса с высоким коэффициентом теплопроводности.
Среди других преимуществ радиаторов Lammin можно выделить надежную защиту внутренней поверхности в виде прочного и гладкого слоя, препятствующего оседанию частиц. Их окрашивают методом двухступенчатой окраски, что позволяет сохранить привлекательный вид на протяжении длительного времени.
Показатели теплоотдачи и другие характеристики радиаторов Lammin с разным межосевым расстоянием приведены в таблице.
Тип батарей | Межосевое расстояние, мм | Показатель теплоотдачи 1 секции, Вт | Рабочая температура, °C |
Биметаллические Premium | 350 | 130 | 110 |
Биметаллические Premium | 500 | 153 | 110 |
Алюминиевые Premium | 350 | 135 | 110 |
Алюминиевые Premium | 500 | 165 | 110 |
Биметаллические Eco | 350 | 110 | 110 |
Биметаллические Eco | 500 | 139 | 110 |
Алюминиевые Eco | 200 | 115 | 110 |
Алюминиевые Eco | 350 | 115 | 110 |
Алюминиевые Eco | 500 | 133 | 110 |
Как увеличить эффективность теплоотдачи радиаторов отопления
Вполне очевидно, что главной задачей радиатора отопления является максимально эффективный обогрев помещения. Основным параметром, который определяет, насколько отопительный прибор справляется с этой задачей, является теплоотдача радиатора…
Ключевым показателем эффективности любого радиатора отопления является теплоотдача. Данный показатель является индивидуальным для каждой модели радиаторов, кроме того, на него влияет тип подключения прибора, особенности его размещения и другие факторы. Как подобрать оптимальный с точки зрения теплоотдачи радиатор, как подключить его максимально эффективно, как увеличить теплоотдачу?
Теплоотдача представляет собой показатель, обозначающий количество тепла, переданное радиатором в помещение за определенное время. Синонимами теплоотдачи являются такие термины как мощность радиатора, тепловая мощность, тепловой поток и т.д. Измеряется теплоотдача отопительных приборов в Ваттах (Вт). В некоторых источниках тепловая мощность радиатора приводится в калориях в час. Эту величину можно перевести в Ватты (1 Вт=859,8 кал/ч).
Теплопередача от радиатора отопления осуществляется в результате трех процессов:
— Теплообмена;
— Конвекции;
— Излучения (радиации).
Каждый радиатор отопления использует все три типа переноса тепла, однако их соотношение у разных типов отопительных устройств отличается. По большому счету, радиаторами могут называться только те приборы, у которых не менее 25% тепловой энергии передается в результате прямого излучения, однако сегодня значение этого термина значительно расширилось. Потому очень часто под называнием «радиатор» можно встретить устройства конвекторного типа.
Выбор радиаторов отопления для установки в дом или квартиру должен основываться на максимально точных расчетах необходимой мощности. С одной стороны, всем хочется сэкономить, потому покупать лишние батареи не следует, но с другой – если радиаторов будет недостаточно, то в квартире не получится поддерживать комфортную температуру.
Способов расчета необходимой тепловой мощности отопительных приборов несколько.
Самый простой способ основывается на количестве наружных стен и окон в них.
Расчет производится так:
— Если в помещение одна наружная стена и одно окно, то на каждые 10 м2 площади помещения необходимо 1 кВт тепловой мощности батарей отопления.
— Если в помещение две наружные стены, то на каждые 10 м2 площади помещения необходимо минимум 1,3 кВт тепловой мощности батарей отопления.
Второй способ более сложен, но он дает возможность получить максимально точное значение требуемой мощности.
Расчет производится по формуле:
S x h x41, где: S – площадь комнаты, для которой производится расчет. h – высота помещения. 41 – нормативный показатель минимальной мощности на 1 кубический метр объема помещения. Полученная величина и будет необходимой мощностью отопительных приборов. Далее следует эту мощность поделить на номинальную теплоотдачу одной секции радиатора (как правило, эту информацию содержит инструкция к отопительному прибору).
В результате мы получаем необходимое для эффективного отопления количество секций.
Если в результате деления у вас получилось дробное число – округляйте его в большую сторону, так как недостаток мощность отопления гораздо сильнее снижает уровень комфорта в помещении, чем его избыток.
Отопительные приборы из разных материалов отличаются по теплоотдаче. Поэтому, выбирая радиаторы для квартиры или дома, необходимо внимательно изучать характеристики каждой модели – очень часто даже близкие по форме и габаритам радиаторы имеют разную мощность.
Чугунные радиаторы – обладают относительно небольшой поверхностью теплоотдачи, отличаются низкой теплопроводностью материала. Теплоотдача происходит в основном за счет излучения, лишь около 20% приходится на долю конвекции. «Классический» чугунный радиатор Номинальная мощность одной секции чугунного радиатора МС-140 при температуре теплоносителя в 90 град. С составляет около 180 Вт, однако данные цифры справедливы лишь для лабораторных условий. На самом деле в системах централизованного отопления температура теплоносителя редко поднимается выше 80 градусов, при этом некоторая часть тепла теряется по пути к самой батарее. В итоге температура поверхности такого радиатора составляет около 60 град. С, а теплоотдача одной секции не превышает 50-60 Вт.
Стальные радиаторы сочетают в себе положительные качества секционных и конвекционных радиаторов. Как правило, стальной радиатор включает в себя одну или несколько панелей, внутри которых циркулирует теплоноситель. Для повышения тепловой мощности радиатора к панелям дополнительно привариваются стальные ребра, которые и работают как конвектор. Теплоотдача стальных радиаторов не намного больше, чем у чугунных – потому к преимуществам таких отопительных приборов можно причислить разве что относительно небольшую массу и более привлекательный дизайн. При снижении температуры теплоносителя теплоотдача стального радиатора снижается очень сильно. Поэтому, если в вашей системе отопления циркулирует вода с температурой 60-750, показатели теплоотдачи стального радиатора могут разительно отличаться от заявленных производителем.
Теплоотдача алюминиевых радиаторов существенно выше, чем у двух предыдущих разновидностей (одна секция – до 200 Вт), но существует фактор, который ограничивает применение алюминиевых отопительных приборов. Этот качество воды: при использовании чересчур загрязненного теплоносителя внутренняя поверхность алюминиевого радиатора постепенно подвергается коррозии. Вот почему, несмотря на хорошие показатели по мощности, алюминиевые радиаторыв основном устанавливают в частных домах с автономной системой отопления.
Биметаллические радиаторы по показателям теплоотдачи ничуть не уступают алюминиевым. Но за эффективность всегда приходится платить, а потому цена биметаллических радиаторов несколько выше, чему батарей из других материалов.
Как все же можно управлять теплоотдачей уже купленного радиатора в зависимости от подключения.
Теплоотдача радиатора зависит не только от температуры теплоносителя и материала, из которого радиатор изготовлен, но и от способа подключения радиатора к системе отопления:
Прямое односторонне подключение считается самым выгодным с точки зрения теплоотдачи. Именно поэтому номинальная мощность радиатора рассчитывается именно при прямом подключении (схема приведена на фото).
Диагональное подключение применяется в том случае, если подключается радиатор с числом секций боле 12. Такое подключение максимально снижает теплопотери.
Нижнее подключение радиатора используется для присоединения батареи к скрытой в стяжке пола системе отопления. Потери теплоотдачи при таком подключении составляют до 10%.
Однотрубное подключение является наименее выгодным с точки зрения мощности. Потери теплоотдачи при таком подключении могут составлять от 25 до 45%.
Каким бы мощным ни был ваш радиатор, часто хочется увеличить его теплоотдачу. Особенно актуальным это желание становится в зимний период, когда радиатор, даже работающий на полную мощность, не справляется с поддержанием температуры в помещении.
Есть несколько способов увеличения теплоотдачи радиаторов:
Первый способ – это регулярная влажная уборка и очистка поверхности радиатора. Чем чище радиатор, тем выше уровень его теплоотдачи. Также важно правильно окрашивать радиатор, особенно если вы используете чугунные секционные батареи. Толстый слой краски препятствует эффективному теплообмену, потому перед покраской батарей необходимо удалить с них слой старой краски.
Также эффективно будет использование специальных красок для труб и радиаторов, имеющих низкое сопротивление теплопередаче. Чтобы радиатор обеспечивал максимальную мощность, его нужно правильно смонтировать. Среди наиболее распространенных ошибок в монтаже радиаторов специалисты выделяют наклон батареи, установку слишком близко к полу или стене, перекрытие радиаторов неподходящими экранами или предметами интерьера
.
Правильный и неправильный монтаж Для повышения эффективности можно также провести ревизию внутренней полости радиатора. Часто при подключении батареи к системе остаются заусенцы, на которых со временем образуется засор, препятствующий движению теплоносителя. Еще одним способом обеспечения максимально отдачи является монтаж на стену за радиатором теплоотражающего экрана из фольгированного материала. Особенно эффективен данный способ при усовершенствовании радиаторов, установленных на наружных стенах здания.
Теплоотдача радиаторов отопления: советы по улучшению
При выборе радиатора изучают многие факторы: мощность, теплопроводность, внешний вид, количество секций, размер и другие. Но одним из главных критериев является теплоотдача. Этот показатель важен, так как влияет на скорость прогрева комнаты и на эффективность обогрева в целом. Рассмотрим, какими показателями обладают современные радиаторы, как увеличить их теплоотдачу и что делать если плохо топят батареи.
Радиаторы имеют разные характеристики из-за особенностей металла, из которого они изготовлены. Материалы различны по степени теплопроводности, теплоотдачи и другим показателям. Поэтому при выборе стоит их изучить, чтобы выбрать вариант, наиболее оптимальныq для конкретных условий.
Теплоотдача радиаторов отопления, таблица по основным показателям которых представлена ниже, выражается в калориях в час или Ваттах и иначе называется мощностью. Важность ее заключается также в том, что при невысокой температуре теплоносителя радиатор способен прогреваться и передавать тепло в помещение. Это способствует работе котла с меньшей нагрузкой, что продлевает срок его службы.
Кроме теплоотдачи стоит обращать внимание на параметр теплового излучения и для какого давления рассчитан радиатор
Алюминиевые радиаторы — наиболее экономичный и эффективный вариант. Для квартиры оптимальным по характеристикам будет биметалл, который стоит немногим дороже
Из таблицы становится ясно, что алюминиевые радиаторы обладают значительно большей теплоотдачей, так как сам материал имеет высокий показатель теплопередачи. Стальные и биметаллические (которые выполнены из стали и алюминия, поэтому имеют характеристики обоих материалов) отличаются невысокой мощностью, а наименьшим показателем обладает чугун. Казалось бы, исходя из этого стоит выбрать алюминиевый радиатор. Но не все так просто. Батареи из алюминия очень требовательны к качеству воды (теплоносителя), поэтому их рекомендуют использовать только для автономной системы частного дома.
Чугунные батареи в ретро-стиле способны украсить интерьер комнаты
Существуют и другие важные характеристики батарей, как например, тепловое излучение. Наибольшим излучением обладает чугун, это обозначает, что при одинаковой температуре теплоносителя, чугунные передадут большее количества тепла в помещение, чем другие виды радиаторов. То есть они позволят сократить расходы на отопление, так как не потребуют нагревать теплоноситель до высокого значения. Или если плохо топят батареи в многоквартирном доме, чугунный обогреватель сможет «выдать» максимум из возможного.
Теплоотдача чугунных радиаторов отопления, судя по приведенной таблице, самая высокая.
Чугун также способен аккумулировать тепло и выделять его на протяжении нескольких часов после отключения системы отопления. Но он отличается медленной скоростью нагрева.
ВЫВОД: однозначно ответить на вопрос о том, какой радиатор лучше, попросту нельзя, и стоит выбрать такой, который покажется наиболее приемлемым для конкретных условий с учетом вышеизложенного.
Наименьшим уровнем теплопотерь отличается диагональное и боковое подсоединение
На равномерность и полноту прогрева батареи влияет схема ее подключения. Например, часто встречаются ситуации, когда половина батареи холодная. Что делать в таком случае и какова причина? Вероятнее всего, она кроется в выборе нерациональной схемы. Существуют такие способы подключения:
- Диагональное. Наиболее эффективный вариант, способствующий равномерному прогреву радиатора. Вход теплоносителя осуществляется вверху батареи, а выход – внизу в противоположном углу. Этот способ выбирают, если радиатор состоит из большого количества секций (свыше 10).
- Одностороннее боковое. Чаще всего выполняется в многоквартирных домах с однотрубной системой отопления. Подключение трубопровода осуществляется с одной стороны радиатора, вверху – вход, внизу – выход.
Нижнее подключение отличается максимальным уровнем теплопотерь, но позволяет скрыть разводку трубопровода
Нижнее. Подразумевает вход и выход теплоносителя через нижние патрубки или в одной точке (для панельных батарей). Чаще всего применяется, когда трубопровод зашит в стене или проходит под полом. Это позволяет вывести трубы только для подвода к радиатору. С точки зрения внешнего вида, этот метод наиболее благоприятный, так как все трубы скрыты, но в относитшении эффективности он невысок, так как ему присущи большие теплопотери (доходят до 20%).
Итак, чтобы обеспечить эффективный прогрев радиатора, стоит выбрать диагональное или боковое подключение. Это позволит не беспокоиться в дальнейшем о том, что делать, если батареи чуть теплые, так как данные варианты позволяют теплоносителю равномерно прогревать радиатор. Выбрать нижнее подключение можно только при необходимости (если требуется скрыть трубы), и тогда нужно быть готовым к более низкой эффективности.
При установке батареи нужно осуществить правильный выбор оборудования, а также схему подключения. Это позволит не решать впоследствии проблему, что делать если плохо топят батареи. Произведя все подсчеты, можно сориентироваться, достаточно ли тепла будет от выбранного вида радиаторов и количества секций. Если есть сомнения, можно предпринять ряд мероприятий, чтобы сделать обогрев эффективнее. Существует несколько вариантов, как улучшить теплоотдачу радиатора отопления:
Добиться высокой теплоотдачи радиатора можно, выполнив его установку с учетом всех требований
- Перед установкой батареи нужно наклеить на стену сзади нее теплоотражающий экран, выполненный из фольгированной пленки.
- Установить батарею требуется на расстоянии не менее 5 мм от стены. Это способствует движению теплого воздуха, он весь будет направляться в комнату, а не отапливать стену.
- Размещать радиатор нужно на расстоянии 6-10 см от пола и 10-12 см от подоконника, это также способствует конвекции теплого воздуха.
- Батарея должна быть строго отрегулирована относительно горизонтали и вертикали. Уклон может составлять не более 1°. Этого будет достаточно, чтобы воздух, содержащийся в системе, скапливался в наивысшей точке, для его последующего спуска.
Задавшись вопросом, как сделать теплее в квартире, потребуется просто соблюдать эти простые правила при монтаже или замене радиаторов.
Если есть проблемы с обогревом комнаты, декоративные панели устанавливать не стоит
Если плохо греют батареи, что делать при монтаже мы рассмотрели выше, но последующий уход также влияет на теплоотдачу. Например, следует систематически вытирать с них пыль. Слой пыли или иных загрязнений снижает уровень теплопередачи. Если установлен чугунный радиатор, требующий покраски, нужно выбирать специальную краску, а также не наносить ее в несколько слоев. При повторной покраске, старый слой нужно снимать. Чем больше слоев, тем меньше теплоотдача батареи. Кроме того, не стоит возле нее устанавливать мебель, так как она станет преградой для движения теплого воздуха в комнату. Стоит отказаться и от декоративных экранов и перфорированных панелей, загораживающих радиатор.
Если в квартире холодные батареи, не смотря на соблюдение всех правил монтажа, проблема может заключаться в засоре трубопровода. В этом случае стоит произвести ревизию радиатора. Иногда при некачественном срезе трубы, на ней остаются заусеницы. Впоследствии в этом месте скапливаются частицы мусора, содержащиеся в теплоносителе, из-за чего образуется засор. Стоит произвести очистку, что улучшит движение теплоносителя и решит проблему обогрева.
com/embed/b2OdgLNGVbY?rel=0&showinfo=0″ frameborder=»0″ allowfullscreen=»allowfullscreen»/>
таблица и сравнение основных видов батарей, увеличение КПД
Главной характеристикой отопительных приборов является показатель их теплоотдачи. С вопросом выбора радиаторов сталкиваются чаще всего на стадии проектирования дома и его системы отопления. При расчете необходимого количества тепла для обогрева помещения нужно учитывать массу факторов.
Чтобы упростить задачу, можно воспользоваться таблицами теплоотдачи алюминиевых радиаторов отопления или батарей, изготовленных из других материалов.
При выборе радиатора нужно учитывать множество факторовОсновные виды
Если разрабатывается проект нового дома, то часто приходится искать информацию о том, у каких батарей лучше теплоотдача. Сегодня на рынке можно найти устройства, изготовленные из различных материалов, что оказывает значительное влияние на теплоотдачу прибора. Вполне очевидно, что этот показатель разный у всех видов устройств.
Чугунные батареи
Эти устройства различаются габаритами, а также числом секций в сборке. Следует заметить, что каждая секция может иметь один либо два канала. Ширина радиатора зависит от площади обогрева. Чем этот показатель выше, тем больше должно быть соединено секций. Кроме этого, нужно помнить, что на температуру внутри помещения влияют и другие факторы:
В этом видео вы узнаете, как рассчитать теплоотдачу одной секции:
- Количество и габариты оконных проемов.
- Число стен, контактирующих с внешней средой.
- Материал строения.
- Степень утепления потолка, стен, пола и т.д.
Так как вес чугунных батарей достаточно большой, при их монтаже приходится использовать прочные крепления. Также сегодня на рынке встречаются модели, оснащенные ножками. Среди преимуществ чугунных устройств можно отметить их нетребовательность к качеству воды. В результате внутренняя полость батареи слабо подвержена коррозии, это значительно увеличивает срок ее эксплуатации.
Следует заметить, что стоимость чугунных отопительных устройств значительно ниже в сравнении с конкурентами.
Алюминиевые радиаторы
Батареи из алюминия с внешней стороны покрыты слоем специального порошка, что позволяет увеличить устойчивость устройств к негативному воздействию внешней среды. Нанесено защитное полимерное покрытие и на внутреннюю поверхность. Отличительной чертой радиаторов из алюминия является их привлекательный внешний вид.
В этом плане они превосходят чугунные устройства. Все алюминиевые батареи можно разделить на две группы в зависимости от способа изготовления:
- Литые. Батарея отливается под давлением.
- Экструдированные. Из пластичного алюминия экструдируются секции, а верхняя и нижняя части радиатора отливаются. Затем все элементы конструкции склеиваются.
Подобные батареи делятся на 2 группыУстройства первого типа имеют более прочную конструкцию и способны лучше переносить гидроудары.
Биметаллические отопительные приборы
Технические характеристики этих устройств напрямую связаны с их конструкцией — в алюминиевом корпусе находится стержень, изготовленный из антикоррозийного сплава, контактирующий с теплоносителем. В результате увеличивается антикоррозийная устойчивость и теплоотдача. Биметаллические радиаторы имеют небольшой вес, что облегчает процесс их монтажа.
Также производятся полубиметаллические приборы. В них из стали изготовлены усиливающие вертикальные трубки элементы, а с теплоносителем контактирует алюминий. Срок службы таких радиаторов ниже в сравнении с биметаллическими, как и стоимость. Таким образом, при установке батарей в системы центрального отопления стоит использовать биметаллические устройства. У биметаллических радиаторов отопления характеристики теплоотдачи самые высокие среди всех типов батарей.
Данные батареи легко устанавливатьСтальные устройства
На рынке радиаторы, изготовленные из стали, представлены в большом количестве. В соответствии с конструктивными особенностями их можно разделить на две группы — трубчатые и панельные. В первом случае устройство состоит из верхнего и нижнего коллектора, соединенных с помощью вертикальных трубок. Чтобы увеличить площадь рабочей поверхности батареи, можно соединять несколько секций.
Панельные радиаторы из стали представляют собой две пластины, соединенные точечной сваркой, между которыми циркулирует теплоноситель. Благодаря такой конструкции значительно повышается показатель теплоотдачи. Панели можно соединять, но в такой ситуации радиатор становится очень тяжелым. Оба вида стальных батарей обладают большим сроком эксплуатации. Чтобы было проще сделать выбор, можно воспользоваться таблицей теплоотдачи радиаторов отопления.
Способы установки
Показатель теплоотдачи радиаторов отопления зависит не только от материала, использовавшегося для их изготовления. Не менее важно правильно выполнить подключение устройств к системе отопления. Для этого применяется несколько способов:
- Диагональный. Подающая теплоноситель труба подсоединяется сверху слева, а отвод по диагонали — справа снизу. Это наиболее эффективный способ подключения радиаторов, так как устройство полностью прогревается.
- Боковой. Обе трубы подсоединяются с одной стороны. Не самый эффективный способ — если в состав батареи входит много секций, то они не смогут полностью прогреться.
- Нижнее подсоединение. Трубы подсоединяется с двух сторон снизу.
- Верхнее подключение. Подводящая теплоноситель труба подключается сверху слева, а отвод — снизу справа.
youtube.com/embed/Ug2nGFyo2vs» allowfullscreen=»allowfullscreen»/>
Увеличение теплоотдачи и КПД
Чтобы добиться максимально эффективной работы радиаторов, нужно рассчитать площадь помещения и мощность оборудования. В умеренном климате рекомендуется на каждый 1 м2 помещения монтировать батареи, имеющие показатель теплопроводности от 70 до 100 Вт/м2. В северных регионах не обойтись без использования более мощных устройств — 150-200 Вт/м2.
Чтобы повысить показатель отдачи тепловой энергии батарей, рекомендуется:
- Утепление помещений. Чтобы снизить теплопотери строения, его необходимо утеплить. Причем это нужно сделать не только изнутри, но и снаружи, не забывая о крыше. Наиболее популярным утеплителем для домов являются пенопластовые панели.
- Монтаж отражателей. Чаще всего используется фольга либо пенопропилен. Отражатель необходимо установить на стене за радиатором.
- Герметичность. Потери тепла в помещении значительно увеличиваются, когда есть сквозняки. Утепляя дом, нужно позаботиться об окнах и дверях.
Для обеспечения эффективной работы системы отопления зачастую достаточно правильно рассчитать показатель мощности батареи. В таблицах КПД радиаторов отопления приведен расчетный показатель, гарантированный производителем. Однако его можно увеличить благодаря нескольким простым рекомендациям:
- Необходимо поддерживать батареи в чистоте, так как пыль способна значительно снижать теплопередачу радиаторов.
- Окрашивать батареи стоит в темные цвета. После этого КПД может повыситься на 15%.
- Увеличить площадь поверхности устройства.
При выборе радиаторов нужно внимательно изучить его технические характеристики. Благодаря некоторым мероприятиям можно увеличить эффективность работы системы отопления. Хотя монтаж радиаторов и не является сложным процессом, стоит эту работу доверить профессионалам.
Как увеличить теплоотдачу батареи: 5 способов
Автор Галина На чтение 7 мин. Просмотров 151 Опубликовано Обновлено
Жильцы квартир, оборудованных центральной системой отопления, нередко замечают, что год от гада эффективность нагрева помещений становится все меньше. Им приходится добавлять дополнительные источники тепла — электрические радиаторы, которые греют эффективно, но локально. Кроме того, счета за электричество существенно повышают общую плату за коммунальные услуги.
Есть иной выход из ситуации — с помощью нехитрых способов повысить теплоотдачу радиатора центрального отопления.
Не нужно приглашать специалиста или закупать дополнительные инструменты — все можно сделать своими руками, используя подручные средства.Типичные причины снижения теплоотдачи
Чтобы понять принцип действия разных способов улучшения теплоотдачи, необходимо понять какие факторы оказывают решающее влияние на КПД центральной системы отопления. К ним относят:
- материал изготовления секций;
- площадь нагревательного полотна, которая должна подбираться в зависимости от площади отапливаемого помещения;
- тип обвязки;
- скорость движения носителя;
- первоначальный уровень нагрева.
Для примера приведем данные для радиаторов, выполненных из различных материалов.
Радиаторы | Максимальное рабочее давление (Бар) | Тепломощность секции (Вт) | Температура воды (максимальные показатели, С0) | Вид теплоносителя |
Чугун | 6-9 | 80-160 | 150 | Вода и другие (зависит от котла) |
Биметаллические | 16-36 | 200 | 130 | Вода и др. |
Алюминий | 6-25 | 190 | 130 | Вода |
Сталь | 10-12 | 150 | 100-120 | Вода и др. |
Факторы, снижающие мощность работы системы отопления
Ряд факторов оказывают негативное влияние на работу отопительных радиаторов, снижая их мощность:
- воздушные пробки — воздух необходимо спускать при каждом запуске системы после сезонного «отдыха»;
- внутреннее засорение припоем, ржавчиной, кальциевыми отложениями;
- монтаж внешний коробов, выполненных из материалов с низкой теплопроводностью;
- частое окрашивание без удаления старого слоя краски;
- внешние загрязнения — пыль, жир и др.
Однако, коммунальщики редко заморачиваются профилактическими мероприятиями. Самостоятельно выполнить промывку тоже нереально. Для проведения таких манипуляций необходимо слить носитель со всей системы (даже в летний период) и загнать в нее специальный раствор под давлением.
Важно: мы говорим о классических радиаторах, выполненных из чугуна. Если заменить их на современные биметаллические — теплоотдача повысится в несколько раз. Кроме того, накипь и ржавчина будут меньше образовываться на стенках. Выполнить такие работы самостоятельно сложно, необходим мастер и слив системы.
Другая причина снижение теплоотдачи отопительной системы — теплопотери. Еще на этапе строительства проводится теплотехнический расчет, подбирается оборудование. Стены утепляются. Если речь идет о домах, где провести дополнительное утепление уже невозможно, стоит обратить внимание на качество окон — именно они становятся основным источником теплопотери. Рекомендуется заменить их на более современные.
Потери тепла в домеВ случае если вы хотите согреться в холодном помещении, не прибегая к сложным манипуляциям с батареями, вы можете ознакомиться о других эффективных способах как согреть комнату в нашей статье как быстро согреть комнату без обогревателя — действенные лайфхаки.
Установка экрана-отражателя
Для этих целей подходит вспененный полиэтилен, одна из сторон которого покрыта фольгированным (отражающим) слоем. Необходимо подобрать размер экрана — он должен быть больше, чем площадь, занимаемая радиатором. Вырезанный экран необходимо поместить за радиатор и закрепить его на стене с помощью скотча. Фольгированный слой направляется в сторону жилого помещения. Принцип работы экрана:
- вспененный слой дополнительно утепляет стену под окном;
- фольгированный слой не дает уходить теплу, направляя его обратно в комнату.
Совет: не обязательно применять именно этот материал, хорошо справляются со своей задачей базальтовые плиты с дополнительным алюминиевым слоем.
Способ является действенным. Но и у него есть ряд противников, которые считают, что установка экрана приводит к:
- сдвигу точки росы. Нужно понимать, что площадь устанавливаемого экрана значительно меньше, чем площадь всей стены за радиатором. Поэтому оказать какое-либо существенное влияние и сдвинуть точку росы он просто не в состоянии. На этот показатель оказывает влияние сразу несколько параметров: влажность внутри и снаружи помещения, материал стен, вид и способ монтажа утеплителя и др. Один кусок вспененного полиэтилена не может оказать более существенное влияние, чем все эти факторы вместе взятые;
- охлаждение стены и ее промерзание. Этот довод тоже можно считать несостоятельным как раз из-за небольшой площади экрана.
Алюминиевый кожух и окраска
Чтобы повысить температуру в помещении, можно увеличить площадь нагреваемой поверхности с помощью кожуха из алюминия. Он надевается на радиатор, нагревается от горячих секций, тем самым повышая теплоотдачу. Кожух, кроме того, выполняет декоративную роль. Стоит такое приспособление недорого, а эффект от него существенный.
Удивительно, на роль играет и тот цвет, в которые окрашены радиаторы отопления. Мы привыкли красить их в светлые тона, преимущественно — белый. Но у более темных оттенков теплоотдача существенно выше. Например, отопительные секции, выкрашенные в коричневый цвет имеют теплоотдачу выше, чем белые примерно на 25 %.
Кожух алюминиевый для радиаторовУлучшение конвекции путем увеличения циркуляции воздуха
Законы физики говорят о том, что увеличение скорости движения воздушных потоков в помещении способствуют быстрейшему прогреву. Для этих целей подойдет вентилятор, который необходимо установить так, чтобы воздух направлялся от нагретых секций к центру комнаты..
Совет: не обязательно приобретать специальные вентиляторы. Если дома есть старый компьютер, подойдет кулер из блока. Его можно установить под радиатором, чтобы направление теплого воздуха шло в сторону центра комнаты. Это увеличит конвекцию и комната прогреется гораздо быстрее.
Если же отопительные секции смонтированы таким образом, что находятся глубоко под подоконником (при его большой ширине), можно выполнить в нем дополнительные отверстия. Это поможет циркуляции воздуха, он не будет копиться и застаиваться в нише. Конечно, это касается ситуаций, когда подоконник выполнен из пластика или дерева. Продолбить бетонное или гранитное изделие самостоятельно будет сложно. Отверстие можно закрыть декоративными заглушками.
Совет: использование даже самых красивых декоративных штор существенно снижает теплоотдачу радиатора отопления, заставляя теплый воздух застаиваться в нише. Рекомендуется зашторивать окна как можно реже.
Продувка системы
Завоздушивание или засорение радиаторов приводит к полностью холодному полотну или его части. Поможет продувка системы. Существует несколько способов, каждый из которых потребует дополнительных приспособлений:
- гидравлическая продувка;
- пневмогидроимпульсивная;
- использование химсоставов или кальцинированной соды.
Такие виды, чаще всего, предусматривают обслуживание всей системы. Это представляется наиболее эффективным, ведь центральное отопление представляет собой сложную систему труб и трубопроводов.
Рекомендуется провести единую коллективную прочистку, которая будет гораздо более эффективной, чем индивидуальная.Изменение способа подключения радиатора
Нередки ситуации, когда после подключения и спуска лишнего воздуха из системы, половина секций все равно остается еле теплыми по сравнению с другой половиной. В этой ситуации стоит винить способ подключения. Это касается вариантов подачи носителя как снизу, так и сверху — дальние от входа секции будут иметь более низкую температуру носителя.
Для одностороннего подключения рационально использовать специальные оптимизаторы — например, удлинители потока.
Двустороннее подключение не выход — как верхнее, так и нижнее. Для него так же свойственна разница температур, только более холодными оказывается низ или верх секций.
Оптимальный вариант — диагональное подключение с верхней раздачей. Изменение схемы подключения и разводки труб не всегда возможно. Рекомендуется приобрести и смонтировать радиаторы, имеющие особую конструкцию внутреннего пространства — в них установлена дополнительная перегородка между двумя частями полотна. Ее назначение — изменить направление теплоносителя таким образом, чтобы прогреть все секции без исключения.
Диагональная схема подключения радиаторов отопленияИзменение подключения радиатора представляется самым эффективным способом повышения теплоотдачи. Конечно, лучше планировать такие мероприятия еще на стадии монтирования батарей. Однако, дополнительные изменения можно провести и позже. В таком случае не придется навешивать на систему дополнительные приспособления.
Заключение
Нередки ситуации, когда теплоотдача батареи снижается под воздействием ряда факторов. Для ее повышения можно воспользоваться лайфхаками, которые не потребуют особых усилий или приспособлений.
Рекомендуется провести замену радиатора на изделие, выполненное из материала с повышенным КПД, обязательно проводить профилактические мероприятия по обслуживанию.
4 таблицы теплоотдачи разных радиаторов отопления + сравнительная таблица
Непосвященному человеку трудно понять, в чем разница между алюминиевым и биметаллическим отопителем, и чем они оба отличаются от старых добрых чугунных батарей.
Специалисты утверждают, что основным показателем является теплопередача. Но не стоит ориентироваться только на это при выборе новых батарей. Нужно учитывать материал, размеры отопительного прибора, а также рабочее давление и общий вес. Именно такой комплексный подход поможет выбрать оптимальный вариант, не переплачивая за отопление.
Таблица теплоотдачи чугунных радиаторов
Особой популярностью такие батареи пользовались в СССР. Но сейчас выпускаются современные модели с лаконичным дизайном, а также лучшими параметрами работы. Чугунные модели различаются по размерам и количеству каналов. Зависимость прямая: чем больше площадь обустраиваемого помещения, тем шире должна быть конструкция. Чугунные приборы обладают самой высокой теплоотдачей, устойчивы к любым теплоносителям, и, кроме того, эти модели самые дешевые на рынке. Но есть минусы – производители не исключают возможность протечек.
Модификация | Konner Модерн | ЧМ3 | ЧМ2 | ЧМ1 | МС-140 |
Высота | 565 | 370-570 | 372-572 | 370-570 | 388-588 |
Ширина | 60 | 90 | 80 | 80 | 93 |
Глубина | 80 | 120 | 100 | 70 | 140 |
Рабочее давление, атм | 12 | 9 | 9 | 9 | 12 |
Тепловые показатели, Вт | 120-150 | 108-157 | 101-142 | 75-110 | 120-160 |
Объем воды в одной секции, л | 0,66-0,96 | 0,95-1,38 | 0,7-0,95 | 0,66-0,9 | 1,11-1,45 |
Вес, кг | 3,5-4,75 | 4,8-7 | 4,5-6,3 | 3,3-4,8 | 5,7-7,1 |
Таблица теплоотдачи биметаллических радиаторов
Особенность батарей этого типа – их конструкция. В алюминиевом корпусе находится стальной или медный нагревательный элемент. Он устойчив к коррозии, внешним воздействиям. Такое сочетание обеспечивает максимальную мощность, хороший теплообмен, удобство монтажа. Но есть один минус – высокая стоимость.
Модификация | Style 500 | Style 350 | Tenrad 500 | Tenrad 350 | Альтермо РИО | Альтермо ЛРБ | Grandi 500 | Grandi 350 |
Высота | 575 | 425 | 550 | 400 | 570 | 575 | 580 | 430 |
Ширина | 80 | 80 | 80 | 80 | 82 | 82 | 80 | 80 |
Глубина | 80 | 80 | 77 | 77 | 80 | 80 | 80 | 82 |
Рабочее давление, бар | 35 | 35 | 24 | 24 | 18 | 18 | 16 | 16 |
Показатели теплопроводности, Вт | 268 | 125 | 161 | 120 | 166 | 169 | 167 | 130 |
Производитель | Global | Global | Tenrad | Tenrad | Альтермо | Альтермо | Grandi | Grandi |
Таблица теплоотдачи алюминиевых радиаторов
Алюминиевые отопители – своеобразный компромисс между чугуном и биметаллом. Они легкие, современные, при этом устойчивы к ржавчине и не бьют по кошельку. Но имеют невысокую теплопроизводительность, не слишком долговечны.
Модификация | Green HP 500 | Green HP 350 | 500R | 350R | Alux 500 | Alux 350 | Alux 200 | Alum 500 | Alum 350 |
Высота | 580 | 430 | 577 | 430 | 545 | 395 | 245 | 565 | 415 |
Ширина | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
Глубина | 80 | 80 | 95 | 95 | 100 | 100 | 100 | 90 | 90 |
Рабочее давление, бар | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 20 |
Показатели теплопроводности, Вт | 180 | 136 | 190 | 140 | 180 | 160 | 92 | 183 | 140 |
Объем теплоносителя в одной секции, л | 0,33 | 0,26 | 0,58 | 0,43 | 0,23 | 0,11 | 0,11 | 0,27 | 0,19 |
Вес, кг | 1,48 | 1,12 | 1,6 | 1,4 | 1,31 | 0,82 | 0,83 | 1,45 | 1,2 |
Производитель | Faral | Faral | Radiatori 2000 S.p.A. | Radiatori 2000 S.p.A. | Rovall | Rovall | Rovall | Rifar | Rifar |
Таблица теплоотдачи стальных радиаторов
Стальные модели характеризуются разнообразным дизайном, высокой тепловой отдачей, долгим сроком службы. Приборы из стали делятся на трубчатые и панельные радиаторы. Отличительная особенность последних – точечная сварка. Данный метод увеличивает пропускную способность , а также качественные свойства приборов. Однако по весу стальная конструкция из нескольких панелей равняется советской чугунной батарее.
Тип | 11 | 12 | 22 | |||||||||
Высота | 300 | 400 | 500 | 600 | 300 | 400 | 500 | 600 | 300 | 400 | 500 | 600 |
Длина, мм | Тепловые показатели, Вт | |||||||||||
400 | 298 | 379 | 459 | 538 | 372 | 473 | 639 | 745 | 510 | 642 | 772 | 900 |
500 | 373 | 474 | 574 | 673 | 465 | 591 | 799 | 931 | 638 | 803 | 965 | 1125 |
600 | 447 | 568 | 688 | 808 | 558 | 709 | 958 | 1117 | 766 | 963 | 1158 | 1349 |
700 | 522 | 663 | 803 | 942 | 651 | 827 | 1118 | 1303 | 893 | 1124 | 1351 | 1574 |
800 | 596 | 758 | 918 | 1077 | 744 | 946 | 1278 | 1490 | 1021 | 1284 | 1544 | 1799 |
900 | 671 | 852 | 1032 | 1211 | 837 | 1064 | 1437 | 1676 | 1148 | 1445 | 1737 | 2024 |
1000 | 745 | 947 | 1147 | 1346 | 930 | 1182 | 1597 | 1862 | 1276 | 1605 | 1930 | 2249 |
1100 | 820 | 1042 | 1262 | 1481 | 1023 | 1300 | 1757 | 2048 | 1404 | 1766 | 2123 | 2474 |
1200 | 894 | 1136 | 1376 | 1615 | 1168 | 1418 | 1916 | 2234 | 1531 | 1926 | 2316 | 2699 |
1400 | 1043 | 1326 | 1606 | 1884 | 1302 | 1655 | 2236 | 2607 | 1786 | 2247 | 2702 | 3149 |
1600 | 1192 | 1515 | 1835 | 2154 | 1488 | 1891 | 2555 | 2979 | 2042 | 2558 | 3088 | 3598 |
1800 | 1341 | 1705 | 2065 | 2473 | 1674 | 2128 | 2875 | 3352 | 2297 | 2889 | 3474 | 4048 |
2000 | 1490 | 1894 | 2294 | 2692 | 1860 | 2364 | 3194 | 3724 | 2552 | 3210 | 3860 | 4498 |
Сравнительная таблица теплоотдачи радиаторов
Для удобства сравнения ниже представлена общая таблица теплопередачи приборов из разных материалов. Но нужно помнить, что кроме тепловых характеристик, следует сравнивать показатели давления, объема жидкости, веса. А правильный расчет количества элементов зависит от таких факторов, как площадь помещения, размер окон, средняя температура в комнате.
Материал, межосевое расстояние | Чугун, 300 мм | Чугун, 500 мм | Биметалл, 350 мм | Биметалл, 500 мм | Алюминий, 350 мм | Алюминий, 500 мм |
Показатели теплоотдачи, Вт | 140 | 160 | 136 | 204 | 139 | 183 |
Рабочее давление, бар | 9 | 9 | 20 | 20 | 20 | 20 |
Давление опрессовки, бар | 15 | 15 | 30 | 30 | 30 | 30 |
Объем теплоносителя в одной секции, л | 1,1 | 1,45 | 0,18 | 0,2 | 0,19 | 0,27 |
Вес, кг | 5,4 | 7,12 | 1,36 | 1,92 | 1,2 | 1,45 |
Способы повышения теплоотдачи
Важно понимать, что заявленные технические характеристики немного отличаются от реальной работы в бытовых условиях. Потери тепла зависят от множества факторов, порой, эти потери просто колоссальны.
Вот несколько способов улучшить обогрев, чтобы приблизить условия работы к табличным:
- Утеплить помещение с помощью специальных пенопластовых панелей. Это можно сделать как снаружи, так и изнутри. Если приборы предназначены для частного дома, то следует утеплить крышу.
- Перед монтажом батареи нужно установить теплоотражатель. Как правило, это фольгированный полипропилен. Он крепится на стену за прибором, отражает инфракрасные лучи, повышая тем самым КПД.
- Тщательно загерметизировать все окна и двери, потому что они являются главными «растратчиками» тепла.
Исследование рассеивания тепла радиатором процессора компьютера
[1] К.А. Вудбери, Ю. Чен, Дж. К. Паркер и др.: AFS Transactions Vol. 116 (1998), с. 705.
[2] Дж.С. Сим, Дж. Ha: Международные коммуникации в области тепло- и массообмена Vol. 38 (2011), стр.572.
[3] В.Т. Борухов, О. Костюкова: International Journal of Heat and Mass Transfer Vol.59 (2013), стр.286.
[4] С. В. Гриффит: Металлургические операции и материалы B Vol. 31 (2000), стр.255.
[5] К.Н. Прабху, Б. Н. Равишанкер: Материаловедение и инженерия. 360 (2003), стр.293.
[6] Ю.З. Лю, З.С. Хуанг, Б. Фэн, Дж.H. Wei и J.M. Zeng: Advanced Materials Research Vols. 941-944 (2014), с. 2465.
Механизм рассеивания тепла | Renesas Electronics
Renesas Electronics
Все
Новости Инвесторов Параметрический поискМоя учетная запись
- Посмотреть портал MyRenesas
- Редактировать свой профиль
- Измените свой пароль
- Подписки на продукт
- Мой список загрузки
Сохраняйте спокойствие на МКС
В странном новом мире, где горячий воздух не поднимается и тепло не проходит, системы терморегулирования Международной космической станции поддерживают тонкий баланс между глубокой заморозкой космоса и палящим жаром Солнца. Это вторая из пяти статей о строительстве МКС. Первый исследовал архитектуру и строительный дизайн станции. В будущих выпусках будут исследованы мощность, сантехника и эргономика станции. (требуется RealPlayer)21 марта 2001 г. — Вселенная — это место обширных крайностей: свет, тьма … влажность, сухость … воздух, вакуум … голод, сыт. Человеческая жизнь стремится к равновесию.Мы чувствуем себя наиболее комфортно в местах, где не слишком жарко или слишком холодно, не слишком светло или слишком темно — другими словами, в местах, которые «подходят».
Большая часть нашей планеты подходит под это описание. Пока вы держитесь подальше от Южного полюса и не упадете в вулкан, Земля — довольно удобный мир. Но теперь, когда люди отправляются в космос — не в качестве посетителей, а в качестве поселенцев, — найти правильный баланс стало более сложной задачей.Рассмотрим, например, Международную космическую станцию (МКС).
Без управления температурой температура обращенной к Солнцу стороны орбитальной космической станции взлетела бы до 250 градусов F (121 C), а термометры на темной стороне упали бы до минус 250 градусов F (-157 C). Где-то посреди станции может быть удобное место, но искать его не так уж и весело!
К счастью для экипажа и всего оборудования станции, МКС спроектирована и построена с учетом теплового баланса и оснащена системой терморегулирования, которая поддерживает прохладу и комфорт астронавтов в их доме на орбите.
|
Здесь, на Земле, тепло окружающей среды передается в воздухе в основном за счет теплопроводности (столкновения между отдельными молекулами воздуха) и конвекции (циркуляция или объемное движение воздуха).
«Вот почему вы можете изолировать свой дом, используя воздух, оставшийся внутри вашей изоляции», — сказал Эндрю Хонг, инженер и специалист по терморегулированию в Космическом центре имени Джонсона НАСА. «Воздух плохо проводит тепло, а волокна домашней изоляции, удерживающие воздух, по-прежнему минимизируют конвекцию».
«В космосе нет воздуха для теплопроводности или конвекции», — добавил он. Космос — это среда, в которой преобладает радиация. Предметы нагреваются, поглощая солнечный свет, и охлаждаются, испуская инфракрасную энергию — вид излучения, невидимого для человеческого глаза.
В результате изоляция Международной космической станции не похожа на пушистый мат из розовых волокон, который часто встречается в земных домах. Вместо этого изоляция станции представляет собой высокоотражающее одеяло, называемое многослойной изоляцией (или MLI), сделанное из майлара и дакрона.
Вверху слева : Обычная изоляция дома на Земле. Вверху справа : Многослойная изоляция — или MLI — для Международной космической станции. Отражающая серебряная сетка изготовлена из алюминизированного майлара.Материал цвета меди — каптон, более тяжелый слой, который защищает листы хрупкого майлара, которые обычно имеют толщину всего 0,3 мил или 3/10000 дюйма. Фото любезно предоставлено Andrew Hong, JSC.
«Майлар алюминирован, поэтому солнечное тепловое излучение не может пройти через него», — поясняет Хонг. Здесь, на Земле, мы используем одеяла, содержащие алюминизированный майлар, чтобы обернуть людей, подвергшихся воздействию холода или травм. Такие одеяла особенно популярны у охотников и отдыхающих!
«Слои дакроновой ткани разделяют листы майлара, что предотвращает передачу тепла между слоями», — продолжил он.«Это гарантирует, что излучение будет наиболее распространенным методом теплопередачи через одеяло».
За исключением окон, большая часть МКС покрыта радиационно-тормозной системой MLI.
«Окна — это огромная утечка тепла, — сказал Хонг, — но астронавтам они нужны для эргономики, а также для их исследований. Мы должны это проектировать». ИзоляцияMLI выполняет двойную функцию: не пропускает солнечную радиацию и не дает пронизывать пронизывающий холод космоса металлическую оболочку станции.
Он выполняет свою работу настолько хорошо, что МКС представляет собой еще одну тепловую задачу для инженеров — иметь дело с внутренними температурами, которые постоянно повышаются в этой сверхизолированной орбитальной лаборатории, полностью укомплектованной множеством видов тепловыделяющих приборов.
Right : Тепловые одеяла MLI — лишь один из многих материалов космической эры, защищающих МКС от суровых условий космоса. [дополнительная информация]
Представьте, что «ваш дом был действительно, очень хорошо изолирован, и вы закрыли его и отключили кондиционирование воздуха», — сказал Джин Ангар, специалист по анализу теплоносителя в Космическом центре имени Джонсона НАСА.«Почти каждый ватт энергии, проходящий по электрическим проводам, превращается в тепло».
Именно это и происходит на космической станции. Энергия солнечных батарей поступает на МКС для работы авионики, электроники … всех многочисленных систем станции. Все они выделяют тепло, и нужно что-то делать, чтобы избавиться от его избытка.
Основной ответ — установить теплообменники. Конструкторы создали Active Thermal Control System, или сокращенно ATCS, чтобы отводить тепло от космического корабля.
Отработанное тепло удаляется двумя способами: через холодные пластины и теплообменники, оба из которых охлаждаются контуром циркуляции воды. Воздухо-водяные теплообменники охлаждают и осушают внутреннюю атмосферу космического корабля. К холодным плитам, изготовленным по индивидуальному заказу, крепятся генераторы высокой температуры. Холодная вода, циркулирующая с помощью крыльчатки размером с четверть 17000 об / мин, проходит через эти теплообменные устройства для охлаждения оборудования.
«Избыточное тепло удаляется с помощью этой очень эффективной системы жидкостного теплообмена», — сказал Унгар.