Menu Close

Свет уф: эффективная дезинфекция и безопасность / Хабр

Ультрафиолетовое излучение подтипы и воздействие на человека. — «Электрон Свет»

Подтипы УФ излучения

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[2] даёт следующие определения:

 

НаименованиеДлина волны в нанометрахКоличество энергии на фотонАббревиатура
Ближний400—300 нм3,10—4,13 эВNUV
Ультрафиолет А, длинноволновой диапазон400—315 нм3,10—3,94 эВUVA
Средний300—200 нм4,13—6,20 эВMUV
Ультрафиолет B, средневолновой315—280 нм3,94—4,43 эВUVB
Дальний200—122 нм6,20—10,2 эВFUV
Ультрафиолет С, коротковолновой280—100 нм4,43—12,4 эВUVC
Экстремальный121—10 нм10,2—124 эВEUV, XUV

 

Ближний ультрафиолетовый диапазон часто называют «чёрным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения вследствие явления фотолюминесценции.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Воздействие на здоровье человека УФ излучения

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь УФ-C и приблизительно 90 % УФ-B поглощаются при прохождении солнечного света через земную атмосферу. Излучение из диапазона УФ-A достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет УФ-A и в небольшой доле — УФ-B.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине. Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)». Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и преждевременное старение.

Действие на глаза

Ультрафиолетовое излучение средневолнового диапазона (280—315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение — ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются т. к. человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий. После регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью. Мягкий ультрафиолет длинноволнового диапазона (315—400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[3]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают. Ультрафиолет коротковолнового диапазона (100—280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).

Защита глаз

  • Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
  • Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
  • Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм[4]; в более коротковолновой области прозрачны лишь специальные сорта стекол (до 300—230 нм), кварц прозрачен до 214 нм, флюорит — до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива, и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Ультрафиолетовое излучение — это… Что такое Ультрафиолетовое излучение?

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9·1014 — 3·1016 Герц).

История открытия

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 29 сентября 2011.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля, Македонио Меллони и др.

Подтипы

Электромагнитный спектр ультрафиолетового излучения может быть по-разному поделен на подгруппы. Стандарт ISO по определению солнечного излучения (ISO-DIS-21348)[1] даёт следующие определения:

НаименованиеАббревиатураДлина волны в нанометрахКоличество энергии на фотон
БлижнийNUV400 нм — 300 нм3.10 — 4.13 эВ
СреднийMUV300 нм — 200 нм4.13 — 6.20 эВ
ДальнийFUV200 нм — 122 нм6.20 — 10.2 эВ
ЭкстремальныйEUV, XUV121 нм — 10 нм10.2 — 124 эВ
Ультрафиолет А, длинноволновой диапазонUVA400 нм — 315 нм3.10 — 3.94 эВ
Ультрафиолет B, средневолновойUVB315 нм — 280 нм3.94 — 4.43 эВ
Ультрафиолет С, коротковолновойUVC280 нм — 100 нм4.43 — 12.4 эВ

Ближний ультрафиолетовый диапазон часто называют «черным светом», так как он не распознаётся человеческим глазом, но при отражении от некоторых материалов спектр переходит в область видимого излучения.

Для дальнего и экстремального диапазона часто используется термин «вакуумный» (VUV), в виду того, что волны этого диапазона сильно поглощаются атмосферой Земли.

Воздействие на здоровье человека

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

  • Ближний ультрафиолет, УФ-A лучи (UVA, 315—400 нм)
  • УФ-B лучи (UVB, 280—315 нм)
  • Дальний ультрафиолет, УФ-C лучи (UVC, 100—280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водяным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле — UVB.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине [4, 5]. Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» [6]. Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Длительное воздействие ультрафиолетового излучения может способствовать развитию меланомы и преждевременному старению.

Действие на сетчатку глаза

Ультрафиолетовое излучение практически неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Мягкий ультрафиолет (300-380 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста[2]. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают.

Защита глаз

  • Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.
  • Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).
  • Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм[3]; в более коротковолновой области прозрачны лишь cпециальные сорта стекол (до 300—230 нм), кварц прозрачен до 214 нм, флюорит — до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива и приходится применять отражательную оптику — вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Источники ультрафиолета

Природные источники

Основной источник ультрафиолетового излучения на Земле — Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

  • от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)
  • от высоты Солнца над горизонтом
  • от высоты над уровнем моря
  • от атмосферного рассеивания
  • от состояния облачного покрова
  • от степени отражения УФ-лучей от поверхности (воды, почвы)
Две ультрафиолетовые лампы дневного света, обе лампы излучают «длинные волны», длина которых находится в диапазоне от 350 до 370 нм Лампа ДРЛ без колбы — мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи.

Искусственные источники

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др.).Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

  • Эритемные лампы были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий, в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorder — Сезонозависимое расстройство) Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

Лазерные источники

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях.

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргонный лазер[4], азотный лазер[5] и др.), конденсированные инертные газы[6], специальные кристаллы, органические сцинтилляторы[7], либо свободные электроны, распространяющиеся в ондуляторе[8].

В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны — 124 нм), то есть в диапазоне вакуумного ультрафиолета[9].

Деградация полимеров и красителей

Многие полимеры, используемые в товарах народного потребления, деградируют под действием УФ света. Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света. Проблема проявляется в исчезновении цвета, потускнению поверхности, растрескиванию, а иногда и полному разрушению самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света.

Описанный эффект известен как УФ старение и является одной из разновидностей старения полимеров. К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидное волокно. Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры. Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата.[10]

Сфера применения

Чёрный свет

На кредитных картах VISA при освещении УФ лучами появляется изображение парящего голубя

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в темном помещении существует некоторая опасность связанная именно с незначительным излучением в видимом спектре. Это обусловлено тем, что в темноте зрачок расширяется и относительно большая часть излучения беспрепятственно попадает на сетчатку.

Обеззараживание ультрафиолетовым (УФ) излучением

Стерилизация воздуха и твёрдых поверхностей
Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды

Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Обеззараживание ультрафиолетовым (УФ) излучением — безопасный, экономичный и эффективный способ дезинфекции. Ни озонирование, ни ультрафиолетовое излучение не обладают бактерицидным последействием, поэтому их не допускается использовать в качестве самостоятельных средств обеззараживания воды при подготовке воды для хозяйственно-питьевого водоснабжения, для бассейнов. Озониpование и ультрафиолетовое обеззараживаниe применяются как дополнительные методы дезинфекции, вместе с хлорированием, повышают эффективность хлорирования и снижают количество добавляемых хлорсодержащих реагентов.[11]

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жесткого ультрафиолета.

Хотя по эффективности обеззараживания воды УФ обработка в несколько раз уступает озонированию, на сегодняшний день использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды невелик.

В настоящее время в развивающихся станах, в регионах испытывающих недостаток чистой питьевой воды внедряется метод дезинфекции воды солнечным светом (SODIS), в котором основную роль в очистке воды от микроорганизмов играет ультрафиолетовая компонента солнечного излучения[12][13].

Химический анализ

УФ — спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс — длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны фотарии, которые в быту часто называют соляриями.

Ультрафиолет в реставрации

Один из главных инструментов экспертов — ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки — более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине — белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м — титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок — это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances. Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных. Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов Мощные эксимерные лазеры и новые источники когерентного излучения в вакуумном ультрафиолете // УФН. — 1985. — Т. 147. — С. 587—604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал. — 1977. — Т. 22. — № 1. — С. 157—158.
  6. А. Г. Молчанов Лазеры в вакуумной ультрафиолетовой и рентгеновской областях спектра // УФН. — 1972. — Т. 106. — С. 165—173.
  7. В. В. Фадеев Ультрафиолетовые лазеры на органических сцинтилляторах // УФН. — 1970. — Т. 101. — С. 79—80.
  8. Ультрафиолетовый лазер // Научная сеть nature.web.ru
  9. Laser Twinkles in Rare Color  (рус.), Science Daily (Dec. 21, 2010). Проверено 22 декабря 2010.
  10. Р. В. Лапшин, А. П. Алехин, А. Г. Кириленко, С. Л. Одинцов, В. А. Кротков (2010). «Сглаживание наношероховатостей поверхности полиметилметакрилата вакуумным ультрафиолетом» (PDF). Поверхность. Рентгеновские, синхротронные и нейтронные исследования (МАИК) (1): 5-16. ISSN 0207-3528..
  11. ГОСТ Р 53491.1-2009 Бассейны. Подготовка воды. Часть 1. Общие требования (DIN 19643-1:1997)
  12. Clean water at no cost, the SODIS way. // hindu.com. Архивировано из первоисточника 23 июня 2012. Проверено 17 июня 2012.
  13. New technology uses solar UV to disinfect drinking water. // phys.org. Архивировано из первоисточника 23 июня 2012. Проверено 17 июня 2012.

Ультрафиолет — это… Что такое Ультрафиолет?

  • Эритемные лампы (ЛЭЗО, ЛЭР40) были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «анитирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305—315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ. которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

  • В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.
  • В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorders). Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подтверждено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке — 17 %, на Аляске — 28 %, даже во Флориде — 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечном недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристик которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

  • Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

Сфера применения

Чёрный свет

На кредитных картах VISA при освещении УФ лучами появляется изображение парящего голубя

Лампа чёрного света — лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт очень немного видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека.

Стерилизация

Стерилизация воздуха и твёрдых поверхностей

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления 86 % излучения приходится на длину волны 254 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 254 нм, которое оказывает наибольшее влияние на ДНК, однако кварцевое стекло, ранее используемое для изготовления колбы лампы, также как и другие природные вещества (например, вода) задерживают проникновение УФ. Степень дезинфекции зависит от дозы, которая равна произведению интенсивности на время. Излучение «ненужных» для дезинфекции длин волн приводит к тому, что для облучения объекта необходимой дозой УФ лампе требуется большее количество времени, а следовательно снижается КПД устройства. Вот почему в настоящее время на замену морально устаревших кварцевых бактерицидных ламп, которые имели сравнительно низкий КПД по причине низкой пропускной способности, а также из-за того, что излучали весь спектр УФ при необходимой длине волны равной исключительно 254 нм, приходят УФ лампы нового поколения, в которых с внутренней стороны стекла нанесено покрытие, разработанное с применением нано-технологий, позволяющее увеличить пропускную способность стекла только для УФ волн с длиной равной 254 нм. Это позволяет в разы уменьшить энергопотребление УФ лампами и увеличить их эффективность.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Дезинфекция питьевой воды

Метод дезинфекции с использованием УФ-излучения [1] доказал свою эффективность при дезактивации переносимых водой болезнетворных микроорганизмов и вирусов без ухудшения вкуса и запаха воды и без внесения в воду нежелательных побочных продуктов. Такой метод дезинфекции завоёвывает популярность в качестве альтернативы или дополнения к традиционным средствам дезинфекции, таким как хлор, из-за своей безопасности, экономичности и эффективности.

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов.

Хотя по эффективности обеззараживаня воды УФ обработка в десятки раз уступает озонированию, на сегодняшний день использование УФ-излучения — один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды не велик.

Химический анализ

УФ — спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс- длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала — флюорит и циркон — не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон — лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяются при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D. В настоящее время популярны солярии.

УФ в реставрации

Один из главных инструментов экспертов – ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки – более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине – белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м – титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок – это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

См. также

Ультрафиолет

УЛЬТРАФИОЛЕТ – ИЗЛУЧЕНИЕ ТЫСЯЧИ ПРИМЕНЕНИЙ

Ультрафиолетовая (УФ) область излучений, охватывает длины волн от 9 до 400нм.

УФ-излучение инициирует в облучаемом веществе фотохимические превращения за счёт способности активировать любые атомы (молекулы), с которыми взаимодействует, возбуждая в них электроны.

Человечество научилось применять УФ-излучение во многих областях жизнедеятельности.

УФ излучение подразделяют:

УФ-С — 120 -280 нм,

УФ-В — 280 -320 нм,

УФ — А — 320 -400нм.

Излучения области С обладают бактериальным действием. Их применяют для стерилизации воздуха и воды, для предохранения продуктов от порчи. Также излучения области С обладают свойством озонировать воздух. На использовании излучения этой области основано действие источников света — люминесцентных ламп.

Излучения области В (средней) оказывают на организм антирахитное действие, регулируют обмен веществ в живых организмах, благотворно действуют на рост домашней птицы и животных, обладают эритемным эффектом, т.е. способностью вызывать покраснение и загар человеческой кожи.

Излучения области А (ближней) широко применяются для люминесцентного анализа, для активации светящихся веществ в сигнальных, декоративных и других устройствах.

Однако, необходимо иметь в виду, что деление это не слишком строгое, так как свойства УФ-радиации, приписанные одной области, часто присущи и соседним областям, но в меньшей мере.

Ультрафиолетовое излучение лежит в основе принципов работы многих технических систем и технологических процессов, таких как:

  1. Устройства для фотографирования и светокопирования;
  2. Технологии отбеливания;
  3. Системы для производства витамина Д из эргостерина;
  4. Люминесцентные источники света;
  5. Методики идентификации материалов при их сортировке по свойствам, чистоте и происхождению, например, в дефектоскопии — для обнаружения пор и трещин в отливках и сварных швах, в криминалистике — для выявления подделки денег, документов, так как небольшие изменения в сортах бумаги и красок проявляются в люминесценции, в искусствоведении — при исследовании и восстановлении старых картин и пергаментов.

Ниже мы кратко рассмотрим лишь некоторые аспекты УФ-излучения: его источники, приемники и отдельные вопросы взаимодействия с объектами живой природы.

Источники ультрафиолетового излучения (естественные и искусственные)

Раскалённый шар, находящийся в газообразном состоянии и называемый нами Солнцем, является естественным источником электромагнитных волн, доходящих до Земли.

Спектр излучения Солнца сплошной и, в общих чертах, совпадает со спектром излучения абсолютно черного тела, нагретого примерно до 5800К. Максимум излучения находится в синезеленой области спектра при 460 нм, что соответствует максимуму чувствительности зрения человека.

Солнечное излучение поглощается уже в наружных слоях Солнца (до Земли доходит примерно 0.132 Вт/см2). Далее солнечное излучение частично поглощается в земной атмосфере, основными компонентами которой являются азот и кислород в соотношении 4:1.

Коротковолновая часть (УФ) солнечного излучения обладает очень важной, с биологической точки зрения, способностью изменять газовый состав атмосферы. При взаимодействии с солнечным излучением преобладающая часть химических реакций происходит с кислородом О2. Молекулярный кислород легче всего диссоциирует при поглощении излучения в области 100-200нм, максимальной скорости распада соответствует высота примерно 100 км. Атомы, образовавшиеся в процессе фотораспада, обладают большой химической активностью и являются активными центрами цепных реакций, приводя к возникновению новых частиц, в частности, атомарный кислород может взаимодействовать с атомами и молекулами кислорода. В первом случае происходит рекомбинация и восстанавливается молекула О2. Для установившегося равновесия характерен баланс распада и рекомбинации. Спектр поглощения О2 состоит из серии полос, начиная с λ =193,5 — 202нм, сильнее поглощаются лучи с λ =186нм, поэтому коротковолновая область спектра солнечного излучения, доходящего до земной поверхности, укорачивается до λ = 200-220нм. В результате взаимодействия атомарного кислорода с молекулами О2 может образоваться молекула озона О3. Образующийся озон находится, в основном, на высоте 40-70 км, (в среднем -50км), толщина слоя примерно 3 мм. Излучение длин 175-290нм почти полностью поглощается в озоновом слое, который работает как фильтр, защищающий Землю от УФ излучения. Наименьшая наблюдавшаяся длина волны солнечного излучения на Земле составляет 286нм, она была выявлена в полярной области.

Начавшееся истощение озонового слоя будет существенно влиять на экологическую обстановку на Земле. Согласно оценкам, уменьшение среднего содержания озона на 5% увеличит падающую на Землю радиацию с длинами до 300нм на 10%, что может привести к 10% увеличению случаев рака кожи. Усиление УФ излучения отрицательно сказывается на адаптации и миграции, подавляет процессы размножения и развития всех форм жизни на Земле. Из 200 видов растений — 2/3 чувствительны к ультрафиолету, наиболее сильно — семейство тыквенных (огурцы, тыквы), бобовых (горох, соя), лучше всего переносят увеличение дозы УФ излучения подсолнечник, хлопчатник. УФ излучение прежде всего поражает икру и мальков, личинки креветок и устриц, крабов. Это весьма ощутимо для человечества, так как потребление рыбы в странах Европы составляет примерно 20%, а в странах Азии эта доля доходит до 70%. Отсюда видно, что возможное разрушение озонового слоя, который защищает все живое на Земле от губительного воздействия жесткой ультрафиолетовой радиации представляет собой глобальную проблему. Помимо способности изменять химический состав внешней среды, УФ является и ионизатором воздуха, вызывает ионизацию газов в верхних слоях атмосферы, что обуславливает ее высокую проводимость. Кроме того, ультрафиолет, проходя через земную атмосферу, встречает на своем пути твердые и жидкие поверхности (частички облаков, пыли, дыма) и вызывает фотоэлектрический эффект, выбивая электроны. Эти электроны, соединяясь с молекулами воздуха, создают отрицательные ионы, что также повышает проводимость верхних слоев атмосферы. Химическое и ионизирующее действие УФ радиации приводит к возникновению ядер конденсации в атмосфере, которыми обусловлены многие гидрометеорологические явления на Земле. Таким образом, с одной стороны, земная атмосфера служит фильтром, защищая Землю от высокоэнергетичных фотонов коротковолновой части солнечного спектра и существенно изменяет состав дошедшей до Земли радиации, с другой стороны, сама является результатом этого действия. По оценкам, УФ-поток, составляет не более 1.5% общей солнечной энергии, достигающей поверхности Земли. Кроме процессов поглощения, часть излучения при прохождении сквозь атмосферу, рассеивается молекулами воздуха и мелким частицами, взвешенными в нем. Рассеяние излучения зависит от длины волны, особенно этот эффект проявляется в ультрафиолетовой области спектра. Лучи отклоняются от первоначального направления, не теряя при этом своей энергии и достигают земной поверхности через излучение неба. Излучение неба оказалось практически постоянным до высот 3300м. Излучение неба составляет от 50 до 80% общего излучения Солнца и неба, поэтому даже в тени можно получить загар. Почти вся потребность человеческого организма в УФ-излучении все же покрывается за счет естественной радиации Солнца. Однако содержание УФ -лучей в солнечном спектре подвержено большим изменениям (сезонные колебания по интенсивности, широте местности, потери за счет запыленности воздуха, особенно в условиях промышленных городов), поэтому в целях профилактики и коррекции УФ-недостаточности и для исследовательских целей большую роль приобретают искусственные источники ультрафиолета.

Искусственные источники УФ.

Искусственные источники в ультрафиолетовой области спектра разделяют на температурные, газоразрядные и люминесцентные.

1. Температурным источником электромагнитного излучения является любое нагретое тело. Широко используемые лампы накаливания имеют температуру 2000-3000К, так что их излучение лежит, в основном, в инфракрасной области спектра, сравнительно небольшая доля его приходится на видимую область и совсем ничтожная—на ультрафиолетовую.

С повышением температуры источника происходит увеличение доли ультрафиолетовой составляющей. Большой мощностью УФ-потока обладает угольная дуга, благодаря более высокой температуре 4000К. В пламени кислородно-ацетиленовой или кислородно-водородной горелки достигается температура выше и твердые тела, нагретые им, могут излучать УФ. В плазменной горелке может быть достигнута температура свыше 6000К, в результате чего возникает интенсивное ультрафиолетовое излучение.

2. Газоразрядные источники являются наиболее распространенными в технике ультрафиолетовыми излучателями. Их спектр состоит преимущественно из линий (линейчатый спектр), причем значительная часть энергии излучения приходится на ультрафиолетовую область спектра. Газоразрядных излучателей сконструировано очень много, в основе действия их всех лежит один принцип, основанный на квантованности состояний электронов в атомах. С помощью электрического поля проводится возбуждение атома, т.е. электрон в атоме переводится в более высокое энергетическое состояние, после чего электрон спускается в более низкое энергетическое состояние, высвечивая разницу энергий состояний в виде фотона, как раз эта разница энергий в атоме соответствует энергиям ультрафилетового диапозона. Среди разрядов в газах и в парах металлов, применяющихся для получения УФ, разряд в парах ртути имеет наибольшее значение, так как он дает в УФ-спектре наибольшее количество интенсивных линий. В зависимости от давления паров ртути различают разряд низкого давления, происходящий при давлении 0.01-1мм.рт.ст. и разряд высокого давления, происходящий при давлении паров от 100 мм.рт.ст. до нескольких атмосфер. Спектры излучения высокого и низкого давлений содержат одни и те же линии, различаются лишь по интенсивности. Большая часть излучаемой энергии в ртутных лампах низкого давления приходится на λ 253.7нм, что почти соответствует максимуму бактерицидной эффективности, поэтому они используются для борьбы с микробами. Ртутные лампы высокого давления дают более интенсивные линии при длинах волн 254,297, 303, 313, 365нм , а линия 253.7 теряет свое превалирующее значение. Такие источники УФ используются в фототерапии кожных болезней и в промышленности — в фотохимических реакторах, в печатном деле. Среди других газоразрядных ламп чаще используются ксеноновые лампы высокого давления потому, что спектр их излучения близок к спектру Солнца над стратосферой. В люминесцентных лампах ультрафиолетовое излучение, генерируемое ртутным паром в инертном газе при низком давлении активирует люминесцентный материал (люминофор), покрывающий внутреннюю поверхность стеклянной трубки. Люминофор преобразует коротковолновое УФ излучение в длинноволновое или видимый свет в зависимости от используемого люминофора, от давления газа в лампе.

3. Люминесцентные источники делятся на: люминесцентные солнечные лампы и источники «черный свет». Люминесцентные солнечные лампы содержат люминофор, излучающий в основном при длине волны λ = 340нм. Диапазон длин волн генерируемого излучения лежит от 275 до 380нм. Этот источник эффективен с точки зрения «загара». Преимущество — возможность получения однородного поля значительной протяженности. В источнике «черного» света используемый люминофор излучает энергию в диапазоне 300-410нм с максимумом в области 350-365нм. Эти лампы используются для свечения люминесцентных красок и для фототерапии кожи с фотоактивными лекарственными веществами. Источники излучения в области УФ имеют либо линейчатый, либо смесь сплошного и линейчатого спектров. Из сложного излучения выделить излучение узкого спектрального состава удается с помощью фильтров. В УФ-области нейтральными фильтрами для ослабления излучения чаще всего служат тонкие слои платины на кварцевом стекле или металлические сетки.

3. Приемники ультрафиолетового излучения.

Биологическими приемниками УФ излучения могут быть все живые организмы.

4.Воздействие УФ на человека

Если говорить о лечебном действии солнечных лучей на организм человека, то указания о лечебном действии солнечного света можно найти еще у Геродота (484-425 гг. до н.э.). Первым врачом, рекомендовавшим применение солнечных ванн в лечебных и профилактических целях, считают Гиппократа.

Хотя основными приемниками излучения у человека являются кожа и глаза, но действие солнечной энергии на человека состоит из множества совокупно действующих факторов.

В настоящее время обычно выделяют следующие области применения УФ-радиации:

  1. Бактерицидную. В воздухе обитаемых людьми помещений всегда присутствуют в значительном количестве болезнетворные микробы, находящиеся во взвешенном состоянии. Проникая в организм человека через дыхательные пути, они вызывают аэрогенные инфекционные болезни: грипп, пневмонию и т.д. Если рассматривать бактерии как своеобразный приемник излучения, то этот приемник обладает наибольшей чувствительностью в области 253,7 — 265,4 нм. Известно, что при воздействии излучения с λ =253.7нм и мощности 0.01вт в объеме воздуха 30м за 1минуту убывает 63% микробов, за 10 минут 99.99%. Изменения, происходящие под действием УФ-излучения в бактериях и низших организмах, проходят следующие три стадии: возбуждение и усиление движения, начало деструктивных изменений, смерть клетки в результате фотохимических процессов. Кривая бактерицидной эффективности УФ-излучения соответствует спектру поглощения нуклеиновых кислот, т.е. мишенью УФ являются молекулы ДНК. Бактерицидным эффектом УФ пользуются для санации и дезинфекции различных объектов внешней среды — воздуха, воды, пищевых продуктов и тары, хирургического оборудования. Роль УФ в борьбе с микробами не ограничивается только губительным действием на внешнюю среду, но проявляется и в повышении иммунологических свойств организма, так в облученных УФ-помещениях наряду с уменьшением количества бактерий воздуха, уменьшается тяжесть и средняя длительность заболевания находящихся там людей.
  2. Эритемную. У млекопитающих действию УФ подвергаются, в первую очередь, глаза и кожа. Благодаря высокому содержанию поглощающих свет веществ (белки, нуклеиновые кислоты, пигменты), а также неоднородностям, кожа за счет поглощения, отражения и рассеивания ослабляет внешнее излучение. Самый верхний слой кожи — роговой слой- состоит из неживых клеток, не имеющих ядер и представляет собой, в значительной мере, мертвую ткань, лишенную собственного обмена веществ, но находящуюся в состоянии диффузионного обмена с расположенными глубже живыми слоями кожи.

Роговой слой неживых клеток служит фильтром, защищающим нижние живые слои от воздействия УФ-излучения длин волн меньше 200-210нм. Биологическое действие УФ на кожу проявляется в возникновении эритемы и пигментации. Ультрафиолетовая эритема определяется как покраснение кожи из-за расширения капилляров. В отличие от тепловой эритемы, возникающей вслед за интенсивным нагревом кожи, УФ -эритема проявляется по прошествии некоторого времени (латентный период). Интенсивность эритемы возрастает до некоторого максимального значения, а затем уменьшается. Прозрачность различных участков кожи зависит от толщины наружного рогового слоя: проникающие в него лучи с λ ∼ 200-250нм вызывают эритему, лучи с λ 250- 270нм проходят через зернистый слой, вызывая пигментацию и эритему, лучи с λ 270-320нм проникают до сосудистого слоя, вызывая обильную пигментацию и эритему, стимулируют работу жировых желез и нервных окончаний кожи, лучи с λ 320÷400нм 19 проходят через дерму, вызывая пигментацию. До подкожной клетчатки доходят лучи с λ 390-400нм, производя тепловой эффект и, вызывая покраснение кожи за счет переполнения кровью сосудистого слоя. Продолжительность латентного периода и характер изменения интенсивности покраснения во времени зависит от спектрального распределения энергии источника УФ излучения. между облучением и образованием эритемы. Эритема, вызванная УФ лучами, заканчивается пигментацией облученного участка кожи, т.е. загаром. Известно, что для образования минимально заметной эритемы, необходимо 4.8 мкал/см2 при 269.7нм. Частично загар связан с миграцией поверхностного меланина, находящегося в базальных клетках, в поверхностные слои кожи. В настоящее время распространена теория, что эти гранулы меланина служат защитным экраном от УФ излучения более важным, чем толщина ороговевшего слоя. Эритемная реакция кожи зависит от патологических процессов, происходящих в организме человека, резкое снижение фоточувствительности кожи наблюдается при гипертрофии, инфекционных заболеваниях. Изменение функционального состояния кожных рецепторов, поражение спинного мозга и т.д. изменяет эритемную реакцию. Так, облучение УФ во время наркоза дает резкое ослабление эритемы, повреждение спинного мозга влечет за собой угнетение эритемы ниже повреждения. В период развития и формирования эритемы наблюдается снижение порога болевой чувствительности, что позволяет применять её в качестве анальгезирующего средства. Разрушение большого количества живых клеток при УФ-облучении вызывает известное раздражение, так как разрушенные клетки должны быть удалены или восстановлены. В результате этого усиливается активность ферментов, гормонов, витаминов в слоях кожи, прилегающих к поверхности, т.е. усиливаются все обменные процессы. Таким образом, УФ эритема является сложным нервно- рефлекторным процессом, находящимся в зависимости как от периферической, так и от центральных отделов нервной системы. Все это является основанием широкого применения эритотерапии в клиниках внутренних и нервных заболеваний. С другой стороны, превышение безопасных доз УФ облучения приводит к злокачественным новообразованиям, к серьезнейшим заболеваниям глаз, кожи и других органов.

3         Антирахитную. Отсутствие солнечной радиации может привести к развитию патологического состояния, известного как «световое голодание» или недостаточность витаминов Д. При авитаминозе Д ухудшается фосфорно- кальциевый обмен, наблюдается снижение механической прочности костей, кариес зубов, склонность к костным переломам, у детей развивается рахит. При облучении λ 280 ÷ 302 нм в коже образуются витамины группы Д. Они оказывают существенное влияние на деятельность фермента фосфатазы, активируя её, что способствует мобилизации неорганического фосфора и связыванию кальция крови с фосфатами, которые откладываются в костях. Минимальное количество УФ, необходимое для поддержания физиологического уровня кальция и фосфора крови, составляет 1/8 — 1/9 эритемной дозы в день.

Действие УФ-излучения на органы зрения.

Визуальные рецепторы млекопитающих и человека не могут обнаружить УФ излучение из-за поглощения его в глазных тканях, прежде чем оно попадает на сетчатку. Ультрафиолетовое излучение λ < 300нм , в основном, поглощается роговой оболочкой и водянистой влагой, а в хрусталик попадает лишь незначительное количество радиации этого диапазона. Роговая оболочка глаза по-разному реагирует на УФ с длинами волн 220- 250нм и 250-310нм, так от λ 250нм симптомы глазного заболевания появлялись вскоре после воздействия УФ и через 14 часов возвращались к норме. Если длина волны < 250нм, то симптомы проявлялись через 9-11 часов после облучения и острота зрения была ниже нормы ∼ 24 часа после прекращения воздействия. Нарушения, вызываемые коротковолновой радиацией быстро устраняются, а длинноволновая вызывает более серьезную реакцию. Экспериментально определенный порог фотокератита для человека при λ 270 нм составляет 50 Дж/м 2 . Известно много случаев кератита роговой оболочки глаза, катаракты, обусловленных действием УФ-радиации, источниками которой были сварочная дуга, солнечный свет, отражение от снега и песка, пульсирующие ртутные лампы высокого давления

Перечисленные области воздействия не исчерпывают все возможности УФ излучения. Так, исследования последних лет показали, что УФ облучение крови приводит к фотомодификации поверхности клеток крови, их активации и освобождению из них биологически активных веществ, улучшению микроциркуляции крови. Эти эффекты положены в основу метода аутотрансфузии УФ-облученной крови (АУФОК), который имеет большие лечебные перспективы использования, в частности, при ишемической болезни сердца.

Механизм биологических реакций на УФ-воздействие сложен, многообразен, зависит от дозы, методики воздействия и складывается из целого ряда процессов. Различные аспекты биологического излучения приобретают в настоящее время особую актуальность, что связано как с опасностью начавшегося разрушения озонового слоя атмосферы, так и с большей изоляцией человека от окружающей среды.

Что важно знать о солнечном излучении: УФ А и УФ В — Библиотека

Авторы: Skin cancer foundation

Всем известно, что Солнце — центр нашей системы планет и стареющая звезда — испускает лучи. Солнечное излучение состоит из ультрафиолетовых лучей (УФ / UV) типа А, или UVA — длинноволновых, типа В, или UVB — коротковолновых. Наше понимание того, какие виды повреждений они могут причинять коже и как лучше всего защититься от УФ, похоже, меняется каждый год — по мере появления новых исследований. Например, когда-то считалось, что только UVB вредны для кожи, но мы все больше и больше узнаем из исследований о повреждениях, вызванных UVA. Как следствие, появляются и улучшенные формы защиты от UVA, которые способны при правильном применении предотвратить повреждения от воздействия солнца.

Что такое УФ-излучение?

УФ-излучение является частью электромагнитного (светового) спектра, который достигает Земли от Солнца. Длина волн УФ-излучения меньше спектра видимого света, что делает его невидимым для невооруженного глаза. Излучение по длине волн делится на UVA, UVB и UVC, причем UVA — наиболее длинноволновое (320–400 нм, где нм — миллиардная часть метра). UVA подразделяется еще на два диапазона волн: UVA I (340–400 нм) и UVA II (320–340 нм). Диапазон UVB — от 290 до 320 нм. Более короткие лучи UVC поглощаются озоновым слоем и не достигают поверхности земли.

Однако два типа лучей — UVA и UVB — проникают в атмосферу и являются причиной многих болезней — преждевременного старения кожи, повреждения глаз (включая катаракту) и рака кожи. Они также подавляют работу иммунной системы, уменьшая способность организма бороться с этими и другими заболеваниями.

УФ-излучение и рак кожи

Повреждая клеточную ДНК кожи, чрезмерное УФ-излучение вызывает генетические мутации, которые могут привести к раку кожи. Поэтому и Департамент здравоохранения и социальных служб США, и Всемирная организация здравоохранения признали УФ доказанным канцерогеном для человека. Ультрафиолетовое излучение считается основной причиной рака кожи немеланомы (NMSC), включая карциному базальной клетки (BCC) и плоскоклеточную карциному (SCC). Эти виды рака поражают ежегодно более миллиона людей в мире, из которых более 250 000 — граждане США. Многие эксперты считают, что, особенно для людей с бледной кожей, УФ-излучение часто играет ключевую роль в развитии меланомы — самой опасной формы рака кожи, которая ежегодно убивает более 8 000 американцев.

УФ А-излучение

Большинство из нас подвергается воздействию большого количества ультрафиолета на протяжении жизни. Лучи UVA составляют до 95 % УФ-излучения, достигающего поверхности Земли. Хотя они менее интенсивны, чем UVB, лучи UVA в 30–50 раз более распространены. Они присутствуют с относительно равной интенсивностью в течение всего светового дня в течение года и могут проникать сквозь облака и стекло.

Именно UVA, которое проникает в кожу более глубоко, чем UVB, виновато в старении кожи и возникновении морщин (так называемая солнечная геродермия), но до недавнего времени ученые полагали, что UVА не наносило значительного ущерба эпидермису (самый внешний слой кожи), где локализуется большинство случаев рака кожи. Однако исследования последних двух десятилетий показывают, что именно UVA повреждает клетки кожи, называемые кератиноцитами, в базальном слое эпидермиса, где развивается большинство случаев рака кожи. Базальные и плоскоклеточные клетки — это разновидности кератиноцитов.

Также именно UVA вызывает в основном загар, и теперь мы знаем, что загар (безразлично, где он получен — на открытом воздухе или в солярии) наносит коже ущерб, который усугубляется с течением времени, поскольку повреждаются ДНК кожи. Оказывается, кожа темнеет именно потому, что таким образом организм пытается предотвратить дальнейшее повреждение ДНК. Данные мутации могут привести к раку кожи.

Вертикальный солярий в основном излучает UVA. Лампы, используемые в салонах для загара, излучают дозы UVA в 12 раз больше, чем солнце. Неудивительно, что у людей, которые используют салон для загара, в 2,5 раза чаще развивается плоскоклеточный рак и в 1,5 раза чаще — базально-клеточный рак. Согласно недавним исследованиям, первое воздействие солярия в молодом возрасте повышает риск меланомы на 75%.

УФ В-излучение

UVB, которые являются главной причиной покраснения кожи и солнечных ожогов, наносят в основном ущерб более поверхностным эпидермальным слоям кожи. UVB играет ключевую роль в развитии рака кожи, старении и потемнении кожи. Интенсивность излучения зависит от сезона, местоположения и времени суток. Самое значительное количество UVB поражает США в период с 10:00 до 16:00 с апреля по октябрь. Однако лучи UVB могут повреждать кожу круглый год, особенно на больших высотах и на отражающих поверхностях, таких как снег или лед, которые отдают назад до 80% лучей, так что они попадают на кожу дважды. Радует только то, что UVB практически не проникают через стекло.

Защитные меры

Помните, что защищаться от УФ-излучения следует как внутри помещений, так и снаружи. Всегда ищите тень на улице, особенно между 10:00 и 16:00. А поскольку UVA проникает через стекло, подумайте над укреплением тонированной UV-защитной пленки на верхних частях боковых и задних стекол вашего автомобиля, а также на окнах дома и офиса. Такая пленка блокирует до 99,9% УФ-излучения и пропускает до 80% видимого света.

На открытом воздухе одевайте, чтобы ограничить воздействие УФ-излучения, специальную солнцезащитную одежду с UPF (коэффициент защиты от ультрафиолетового излучения). Чем выше значения UPF, тем лучше. Например, рубашка с UPF 30 означает, что только 1/30-я ультрафиолетового излучения Солнца может достичь кожи. Существуют и специальные добавки в средства для стирки, которые в обычных тканях обеспечивают более высокие значения UPF. Не игнорируйте возможность защититься — выбирайте те ткани, у которых лучшая защита от солнечных лучей. Например, яркая или темная блестящая одежда отражает больше УФ-излучения, чем светлые и отбеленные хлопчатобумажные ткани; правда, свободная одежда обеспечивает больший барьер между вашей кожей и солнечными лучами. Наконец, широкополые шляпы и солнцезащитные очки с УФ-защитой помогают защитить чувствительную кожу на лбу, шее и вокруг глаз — именно в этих областях обычно бывают наиболее тяжелые повреждения.

Защитный фактор (SPF) и УФ В-излучение

С появлением современных солнцезащитных кремов появилась традиция измерять их эффективность фактором защиты от солнца, или SPF. Как ни странно, SPF — это не фактор и не мера защиты как таковой.

Эти числа просто указывают, сколько времени потребуется, чтобы UVB-лучи вызвали покраснение кожи при использовании солнцезащитного крема по сравнению с тем, как кожа будет краснеть без применения данного продукта. Например, пользуясь солнцезащитным кремом с SPF 15, человек продлит время безопасного нахождения на солнце в 15 раз по сравнению с пребыванием в аналогичных условиях без солнцезащитного крема. Солнцезащитный крем SPF 15 экранирует 93% солнечных лучей UVB; SPF 30 — 97%; и SPF 50 — до 98%. Крем с SPF 15 или даже выше необходимы для адекватной повседневной защиты кожи в солнечное время года. Для более длительного или интенсивного воздействия солнца, например нахождения на пляже, рекомендуется SPF 30 или выше.

Солнцезащитный компонент

Поскольку UVA и UVB вредны для кожи, то нужна защита от обоих видов лучей. Эффективная защита начинается с SPF от 15 или выше, также важны следующие ингредиенты: stabilized a avobenzone, ecamsule (также известный как MexorylTM), oxybenzone, titanium dioxide, и zinc oxide. На этикетках солнцезащитных средств можно прочесть фразы типа «защищает от нескольких спектров лучей», «с широким спектром защиты» или «защита от UVA/UVB — все это указывает на то, что предусмотрена защита от UVA. Однако такие фразы могут не совсем соответствовать действительности.

В настоящее время 17 активных ингредиентов одобрены FDA (Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов) для использования в солнцезащитных кремах. Эти фильтры делятся на две широкие категории: химические и физические. Большинство УФ-фильтров — химические, то есть они образуют тонкую защитную пленку на поверхности кожи и поглощают УФ-излучение, прежде чем лучи проникнут в кожу. Физические солнцезащитные средства чаще всего состоят из нерастворимых частиц, отражающих УФ-лучи от кожи. Большинство солнцезащитных кремов содержат смесь химических и физических фильтров.

Солнцезащитные средства, одобренные FDA

Название активного ингредиента / УФ-фильтра

Диапазон охвата

UVA1: 340-400 nm

UVA2: 320-340 nm

UVB: 290-320 nm

Химические абсорбенты:

Aminobenzoic acid (PABA)

UVB

Avobenzone

UVA1

Cinoxate

UVB

Dioxybenzone

UVB, UVA2

Ecamsule (Mexoryl SX)

UVA2

Ensulizole (Phenylbenzimiazole Sulfonic Acid)

UVB

Homosalate

UVB

Meradimate (Menthyl Anthranilate)

UVA2

Octocrylene

UVB

Octinoxate (Octyl Methoxycinnamate)

UVB

Octisalate ( Octyl Salicylate)

UVB

Oxybenzone

UVB, UVA2

Padimate O

UVB

Sulisobenzone

UVB, UVA2

Trolamine Salicylate

UVB

Физические фильтры:

Titanium Dioxide

UVB, UVA2

Zinc Oxide

UVB,UVA2, UVA1

Если следовать современным рекомендациям по профилактике солнечных ожогов, можно наслаждаться досугом на открытом воздухе, оставаясь защищенным от UVA и UVB круглый год — независимо от погоды и места, где вы находитесь.

Профилактические рекомендации

  • Ищите тень, особенно между 10:00 и 16:00.
  • Не обгорайте.
  • Избегайте интенсивного загара и вертикального солярия.
  • Носите закрытую одежду, в том числе широкополую шляпу и солнцезащитные очки с ультрафиолетовыми фильтрами.
  • Используйте солнцезащитный крем широкого спектра (UVA/UVB) с SPF 15 или выше каждый день. Для продолжительной активности на открытом воздухе используйте водостойкий солнцезащитный крем с широким спектром (UVA/UVB) с SPF 30 или выше.
  • Наносите достаточную порцию (2 столовые ложки минимум) солнцезащитного крема на все тело за 30 минут до выхода на улицу. Повторно применять крем следует каждые два часа или сразу после купания/чрезмерного потоотделения.
  • Берегите новорожденных от солнца, поскольку солнцезащитные кремы можно использовать только для младенцев старше шести месяцев.
  • Каждый месяц проверяйте свою кожу с ног до головы — если обнаружили что-то подозрительное, то бегом к доктору.
  • Ежегодно посещайте врача для профессионального обследования кожи.

опубликовано 12/07/2018 11:53
обновлено 27/08/2018
— Детский отдых, спорт и путешествия, Безопасность детей

Я на солнышке лежу… | Наука и жизнь

С наступлением теплых летних дней нас так и тянет погреться на солнышке. Солнечный свет улучшает настроение, стимулирует образование в коже жизненно необходимого витамина D, но в то же время, к сожалению, способствует появлению морщин и увеличивает риск развития рака кожи. Значительная часть как полезных, так и вредных эффектов связана с той частью солнечного излучения, которая невидима для человеческого глаза, — ультрафиолетом.

Спектр электромагнитного излучения и спектр солнца. Граница между ультрафиолетом В и С соответствует пропусканию земной атмосферы.

Ультрафиолет вызывает различные повреждения молекул ДНК в живых организмах.

Интенсивность ультрафиолета B зависит от широты и времени года.

Одежда из хлопка служит хорошей защитой от ультрафиолета.

Солнце служит главным источником энергии для нашей планеты, а поступает эта энергия в виде излучения — инфракрасного, видимого и ультрафиолетового. Ультрафиолетовая область расположена за коротковолновой границей видимого спектра. Когда речь идет о влиянии на живые организмы, в ультрафиолетовом спектре солнца обычно выделяют три области: ультрафиолет А (УФ-А; 320-400 нанометров), ультрафиолет В (УФ-В; 290-320 нм) и ультрафиолет С (УФ-С; 200-290 нм). Деление это достаточно произвольно: граница между УФ-В и УФ-С выбрана из тех соображений, что свет с длиной волны менее 290 нм не достигает поверхности Земли, поскольку земная атмосфера, благодаря кислороду и озону, выполняет роль эффективного природного светофильтра. Граница между УФ-В и УФ-А основана на том, что излучение короче 320 нм вызывает гораздо более сильную эритему (покраснение кожи), чем свет в диапазоне 320-400 нм.

Спектральный состав солнечного света во многом зависит от времени года, погоды, географической широты и высоты над уровнем моря. Например, чем дальше от экватора, тем сильнее коротковолновая граница сдвигается в сторону длинных волн, поскольку в этом случае свет падает на поверхность под косым углом и проходит большее расстояние в атмосфере, а значит, сильнее поглощается. На положение коротковолновой границы влияет и толщина озонового слоя, поэтому под «озоновыми дырами» на поверхность Земли попадает больше ультрафиолета.

В полдень интенсивность излучения на длине волны 300 нм в 10 раз выше, чем за три часа до этого или три часа спустя. Облака рассеивают ультрафиолет, но только темные тучи способны блокировать его полностью. Ультрафиолетовые лучи хорошо отражаются от песка (до 25%) и снега (до 80%), хуже от воды (менее 7%). Поток ультрафиолета возрастает с высотой, приблизительно на 6% с каждым километром. Соответственно в местах, расположенных ниже уровня моря (например, у берегов Мертвого моря), интенсивность излучения меньше.

ЖИЗНЬ ПОД СОЛНЦЕМ

Без света жизнь на Земле не могла бы существовать. Растения используют солнечную энергию, запасают ее с помощью фотосинтеза и обеспечивают энергией через пищу всех остальные живые существа. Человеку и другим животным свет обеспечивает возможность видеть окружающий мир, регулирует биологические ритмы организма.

Эту жизнерадостную картину немного осложняет ультрафиолет, поскольку его энергии достаточно, чтобы вызвать серьезные повреждения ДНК. Ученые насчитывают более двух десятков различных болезней, которые возникают или усугубляются под действием солнечного света, среди них пигментная ксеродерма, плоскоклеточный рак кожи, базалиома, меланома, катаракта.

Конечно, в процессе эволюции наш организм выработал механизмы защиты от ультрафиолета. Первый барьер, который преграждает потенциально опасному излучению доступ в организм, — кожа. Практически весь ультрафиолет поглощается в эпидермисе, наружном слое кожи толщиной 0,07-0,12 мм. Чувствительность к свету во многом определяется наследственной способностью организма производить меланин, темный пигмент, который поглощает свет в эпидермисе и тем самым защищает более глубокие слои кожи от фотоповреждений. Меланин вырабатывают особые клетки кожи — меланоциты. Ультрафиолетовое облучение стимулирует выработку меланина. Наиболее интенсивно этот биологический пигмент образуется при облучении светом УФ-В диапазона. Правда, эффект проявляется не сразу, а спустя 2-3 дня после пребывания на солнце, зато сохраняется в течение 2-3 недель. При этом ускоряется деление меланоцитов, возрастает число меланосом (гранул, содержащих меланин), увеличивается их размер. Свет УФ-А диапазона тоже способен вызывать загар, но более слабый и менее стойкий, поскольку число меланосом не увеличивается, а происходит лишь фотохимическое окисление предшественника меланина в меланин.

По восприимчивости к солнечным лучам выделяют шесть типов кожи. Кожа типа I очень светлая, она легко обгорает и совсем не покрывается загаром. Кожа типа II легко обгорает и покрывается слабым загаром. Кожа типа III быстро покрывается загаром и обгорает в меньшей степени. Кожа типа IV еще более устойчива к солнечным лучам. Кожа типов V и VI темная от природы (например, у коренных жителей Австралии и Африки) и почти не подвержена повреждающему действию солнца. У представителей негроидной расы риск развития немеланомного рака кожи ниже в 100 раз, а меланомы — в 10 раз по сравнению с европейцами.

Наиболее уязвимы к действию ультрафиолета люди с очень светлой кожей. У них даже кратковременное пребывание на ярком солнце вызывает эритему — покраснение кожи. За возникновение эритемы отвечает в основном УФ-В излучение. В качестве меры действия ультрафиолета на организм часто используют такое понятие, как минимальная эритемная доза (МЭД), то есть такая, при которой глазом заметно слабое покраснение. На самом деле величина МЭД различна не только у разных людей, но и у одного человека на разных участках тела. Например, для кожи живота белого незагорелого человека величина МЭД составляет около 200 Дж/м2, а на ногах — в три с лишним раза выше. Эритема обычно возникает через несколько часов после облучения. В тяжелых случаях развивается настоящий солнечный ожог с волдырями.

Какие вещества в эпидермисе кроме меланина поглощают ультрафиолет? Нуклеиновые кислоты, аминокислоты триптофан и тирозин, уроканиновая кислота. Наиболее опасны для организма повреждения нуклеиновых кислот. Под действием света в диапазоне УФ-В образуются димеры за счет ковалентных связей между соседними пиримидиновыми (цитозином или тимином) основаниями. Поскольку пиримидиновые димеры не вписываются в двойную спираль, эта часть ДНК теряет способность к выполнению своих функций. Если повреждения небольшие, специальные ферменты вырезают дефектный участок (и это еще один довольно эффективный механизм защиты). Однако, если ущерб больше, чем способность клетки к ремонту, клетка гибнет. Внешне это проявляется в том, что обожженная кожа «слезает». Повреждение ДНК может приводить к мутациям и как следствие — к раковым заболеваниям. Происходят и другие повреждения молекул, например образуются сшивки ДНК с белками. Кстати, видимый свет способствует залечиванию повреждений нуклеиновых кислот (это явление называется фотореактивацией). Предотвращать опасные последствия фотохимических реакций помогают антиоксиданты, содержащиеся в организме.

Еще одно следствие ультрафиолетового облучения — подавление иммунитета. Возможно, такая реакция организма призвана ослабить воспаление, вызванное солнечным ожогом, однако при этом снижается устойчивость к инфекциям. Сигналом для подавления иммунитета служат фотохимические реакции уроканиновой кислоты и ДНК.

МОДА НА ЗАГАР — СИМВОЛ ИНДУСТРИАЛЬНОГО ОБЩЕСТВА

Долгое время белая кожа считалась отличительной чертой знатных и богатых: сразу было видно, что ее обладателям не приходится с утра до ночи работать в поле. Но в ХХ веке все изменилось, бедные слои населения теперь проводили целые дни на заводах и фабриках, а богатые могли позволить себе отдыхать на свежем воздухе, у моря, демонстрируя красивый золотистый загар. После Второй мировой войны мода на загар приобрела массовый характер; загорелая кожа стала считаться признаком не только достатка, но и отменного здоровья. Разрослась туристическая индустрия, предлагающая отдых у моря в любое время года. Но прошло некоторое время, и врачи забили тревогу: оказалось, у любителей загара частота рака кожи возросла в несколько раз. И в качестве спасительного средства было предложено всем без исключения пользоваться солнцезащитными кремами и лосьонами, в состав которых входят вещества, отражающие или поглощающие ультрафиолет.

Известно, что еще во времена Колумба индейцы имели обыкновение раскрашивать себя красной краской, чтобы защититься от солнца. Возможно, древние греки и римляне использовали для этих целей смесь песка с растительным маслом, поскольку песок отражал солнечные лучи. Применение химических солнцезащитных средств началось в 1920-х годах, когда в качестве солнцезащитного средства была запатентована парааминобензойная кислота (ПАБК). Однако она растворялась в воде, так что защитный эффект исчезал после купания, и к тому же раздражала кожу. В 1970-е годы на смену ПАБК пришли ее эфиры, почти нерастворимые в воде и не вызывающие сильного раздражения. Настоящий бум в области солнцезащитной косметики начался в 1980-е годы. Поглощающие ультрафиолет вещества (в косметологии за ними закрепилось название «УФ-фильтры») стали добавлять не только в специальные «пляжные» кремы, но и почти во все косметические продукты, предназначенные для использования в дневное время: крем, жидкую пудру, губную помаду.

По принципу действия УФ-фильтры можно разделить на две группы: отражающие свет («физические») и поглощающие («химические»). К отражающим средствам относятся разного рода минеральные пигменты, прежде всего диоксид титана, оксид цинка, силикат магния. Принцип их действия прост: они рассеивают ультрафиолет, не давая ему проникнуть в кожу. Окись цинка захватывает область длин волн от 290 до 380 нм, остальные — несколько меньше. Основной недостаток отражающих средств тот, что они представляют собой порошок, непрозрачны и придают коже белый цвет.

Естественно, что производителей косметики больше привлекали прозрачные и хорошо растворимые «химические» УФ-фильтры (известные в фотохимии как УФ-абсорберы). К ним относятся уже упоминавшаяся ПАБК и ее эфиры (сейчас их почти не используют, так как появились сведения, что они разлагаются с образованием мутагенов), салицилаты, производные коричной кислоты (циннаматы), антраниловые эфиры, оксибензофеноны. Принцип действия УФ-абсорбера заключается в том, что, поглотив квант ультрафиолета, его молекула изменяет свою внутреннюю структуру и преобразует энергию света в тепло. Наиболее эффективные и светостойкие УФ-абсорберы работают по внутримолекулярному циклу переноса протона.

Большинство УФ-абсорберов поглощают свет только в УФ-В области. Обычно солнцезащитные средства содержат не один УФ-фильтр, а несколько, как физических, так и химических. Общее содержание УФ-фильтров может превышать 15 процентов.

Для характеристики защитной эффективности кремов, лосьонов и прочей косметической продукции стали использовать так называемый солнцезащитный фактор (по-английски «sun protection factor», или SPF). Идея солнцезащитного фактора была впервые предложена в 1962 году австрийским ученым Францем Грайтером и принята представителями косметической и фармацевтической промышленности. Солнцезащитный фактор определяется как отношение минимальной дозы ультрафиолета, необходимой для возникновения эритемы при действии на защищенную кожу, к дозе, вызывающей такой же эффект при незащищенной коже. Получила широкое распространение популярная интерпретация: если без защиты вы обгораете за 20 минут, то, намазав кожу кремом с защитным фактором, скажем, 15, получите солнечный ожог только пробыв на солнце в 15 раз дольше, то есть через 5 часов.

ОБМАНЧИВОЕ ЧУВСТВО ЗАЩИТЫ

Казалось бы, решение проблемы ультрафиолета найдено. Но на деле все не так просто. В научной литературе стали появляться сообщения, что у людей, которые постоянно пользуются солнцезащитными препаратами, частота возникновения таких разновидностей рака кожи, как меланома и базалиома, не только не снизилась, но и возросла. Было предложено несколько объяснений этого обескураживающего факта.

Первым делом ученые предположили, что потребители неправильно пользуются солнцезащитными средствами. При тестировании кремов принято наносить на кожу 2 мг крема на 1 см2. Но, как показали исследования, люди часто наносят более тонкий слой, в 2-4 раза меньше, соответственно уменьшается и фактор защиты. Кроме того, кремы и лосьоны частично смываются водой, например во время купания.

Нашлось и другое объяснение. Как уже отмечалось, большинство химических УФ-абсорберов (а именно они наиболее широко используются в косметике) поглощают свет только в УФ-В области, предотвращая развитие солнечного ожога. Но, по некоторым данным, меланома возникает под действием УФ-А излучения. Не пропуская УФ-В излучение, солнцезащитные средства блокируют природный предупреждающий сигнал — покраснение кожи, замедляют образование защитного загара, и в результате человек получает избыточную дозу в области УФ-А, которая как раз и может спровоцировать рак.

Результаты опросов показывают, что те, кто пользуется кремами с более высоким фактором защиты, проводят на солнце больше времени, а значит, неосознанно подвергают себя большему риску.

Нельзя забывать и о том, что смесь химических веществ, которые входят в состав защитных кремов, при длительном воздействии ультрафиолета может стать источником свободных радикалов — инициаторов окисления биомолекул. Некоторые из УФ-фильтров потенциально токсичны либо вызывают аллергию.

«СОЛНЕЧНЫЙ» ВИТАМИН

Настало время вспомнить о том, что поми-мо многочисленных негативных эффектов ультрафиолета есть и позитивные. И самый яркий пример — фотосинтез витамина D3.

В эпидермисе содержится довольно много 7-дигидрохолестерола, предшественника витамина D3. Облучение светом УФ-В диапазона запускает цепочку реакций, в результате которых и получается холекальциферол (витамин D3), пока еще не активный. Это вещество связывается с одним из белков крови и переносится в почки. Там оно превращается в активную форму витамина D3 — 1, 25-дигидроксихолекальциферол. Витамин D3 необходим для всасывания кальция в тонком кишечнике, нормального фосфорно-кальциевого обмена и образования костей, при его недостатке у детей развивается тяжелое заболевание — рахит.

После облучения всего тела в дозе 1 МЭД концентрация витамина D3 в крови возрастает в 10 раз и возвращается к прежнему уровню через неделю. Применение солнцезащитных средств подавляет синтез витамина D3 в коже. Дозы, необходимые для его синтеза, невелики. Считается достаточным ежедневно проводить на солнце примерно по 15 минут, подставляя солнечным лучам лицо и руки. Суммарная годовая доза, необходимая для поддержания уровня витамина D3, составляет 55 МЭД.

Хронический дефицит витамина D3 приводит к ослаблению костной ткани. К группе риска относятся темнокожие дети, живущие в северных странах, и пожилые люди, которые мало бывают на свежем воздухе. Некоторые исследователи считают, что увеличение частоты заболеваемости раком при использовании солнцезащитных средств связано именно с блокировкой синтеза витамина D3. Не исключено, что его дефицит приводит к возрастанию риска рака толстой кишки и молочной железы.

Другие полезные эффекты ультрафиолета связаны в основном с медициной. Ультрафиолетом лечат такие заболевания, как псориаз, экзема, розовый лишай. Датский врач Нильс Финсен в 1903 году получил Нобелевскую премию за применение ультрафиолета в лечении волчаночного туберкулеза кожи. Метод облучения крови ультрафиолетом сейчас успешно применяют для лечения воспалительных и других заболеваний.

СОЛОМЕННАЯ ШЛЯПКА ОТ ЗАГАРА

Вопрос о том, полезен или вреден ультрафиолет, не имеет однозначного ответа: и да, и нет. Многое зависит от дозы, спектрального состава и особенностей организма. Избыток ультрафиолета безусловно опасен, но на защитные кремы полностью полагаться нельзя. Требуются дополнительные исследования, чтобы установить, в какой степени употребление солнцезащитных средств может способствовать развитию раковых заболеваний.

Лучшее средство уберечь кожу от солнечного ожога, преждевременного старения, а заодно и снизить риск развития рака — одежда. Для обычной летней одежды характерны защитные факторы выше 10. Хорошими защитными свойствами обладает хлопок, правда в сухом виде (при намокании он пропускает больше ультрафиолета). Не забудьте про шляпу с широкими полями и солнцезащитные очки.

Рекомендации достаточно просты. Избегайте бывать на солнце в самые жаркие часы. Будьте особенно осторожны с солнцем, если принимаете лекарства, обладающие свойствами фотосенсибилизаторов: сульфаниламиды, тетрациклины, фенотиазины, фторхинолоны, нестероидные противовоспалительные препараты и некоторые другие. Фотосенсибилизаторы входят и в состав некоторых растений, например зверобоя (см. «Наука и жизнь» № 3, 2002 г.). Усиливать действие света могут ароматические вещества, входящие в состав косметики и духов.

Учитывая, что у ученых есть сомнения в эффективности и безопасности солнцезащитных кремов и лосьонов, не пользуйтесь ими (а также дневной косметикой с высоким содержанием УФ-фильтров) без особой необходимости. Если такая необходимость возникла, отдавайте предпочтение тем средствам, что обеспечивают защиту в широком спектре — от 280 до 400 нм. Как правило, такие кремы и лосьоны содержат окись цинка или другие минеральные пигменты, поэтому имеет смысл внимательно прочесть состав на этикетке.

Защита от солнца должна быть индивидуальной, в зависимости от места жительства, сезона и типа кожи.

дальний ультрафиолет против коронавируса / Хабр

Авторы: Алексей Турчин, Роко Мижич

Роко Мижич – автор идеи Роко Василиск, Алексей Турчин – футуролог, автор книги «Структура глобальной катастрофы» и «Футурология. 21 век: бессмертие или глобальная катастрофа» (вместе с мной). Исходник

Статус: здесь много разных неопределенностей, но у идеи есть определенные доказательства и высокая потенциальная отдача. Но вот предлагаем её обсудить.

Tl; dr: Мы должны срочно изучить вопрос о размещении специальных безопасных для человека ламп Far-UVC по всей нашей искусственной среде, чтобы «убивать» вирусы, пока они находятся в воздухе, тем самым значительно сокращая распространение ковид-19.

По мотивам: www.nature.com/articles/s41598-018-21058-w

Минутка заботы от НЛО


В мире официально объявлена пандемия COVID-19 — потенциально тяжёлой острой респираторной инфекции, вызываемой коронавирусом SARS-CoV-2 (2019-nCoV). На Хабре много информации по этой теме — всегда помните о том, что она может быть как достоверной/полезной, так и наоборот.
Мы призываем вас критично относиться к любой публикуемой информации

Официальные источники
Если вы проживаете не в России, обратитесь к аналогичным сайтам вашей страны.
Мойте руки, берегите близких, по возможности оставайтесь дома и работайте удалённо.

Читать публикации про: коронавирус | удалённую работу


Одной из наиболее многообещающих и забытых идей для борьбы с распространением ковид-19 является использование повсеместного ультрафиолетового излучения в нашей искусственной среде (поезда, офисы, больницы и т. д.). Ультрафиолетовый свет уже используется в качестве дезинфицирующего средства во всем мире; это акроним UVGI – «Ультрафиолетовое бактерицидное облучение». Энергичные фотоны ультрафиолетового света разрушают химические связи в ДНК и убивают / инактивируют как вирусы, так и бактерии.

Ультрафиолетовый свет на земле существует в диапазоне от 200 до 400 нм. Свет выше 400 нм — синий видимый свет. Свет ниже 200 нм называется «вакуумным ультрафиолетовым излучением», потому что он сильно поглощается кислородом в обычном воздухе и поэтому не может существовать, кроме как в вакууме или какой-либо другой не воздушной среде. В диапазоне 200-400 нм у нас есть типа УФ: UVA, UVB и UVC, а коротковолновый край полосы UVC мы имеем «Far-UVC»; он имеет длину волны примерно от 200 нм до 220 нм.

Соображения безопасности


Люди также уязвимы для ультрафиолетового излучения. Это вызывает рак кожи и серьезные повреждения глаз.

Тем не менее, недавние исследования показывают, что полоса Far-UVC на самом деле безопасна для кожи человека, потому что она не может проникать через тонкий слой мертвых клеток кожи на поверхности нашей кожи.

Это означает, что можно было бы обеспечить долгосрочную защиты от коронавирусов и других патогенных микроорганизмов, постоянно освещая нашу искусственную среду светом дальнего УФ-диапазона. Если свет Far-UVC действительно безопасен для людей, Far-UVC может быть включен постоянно и может разрушать или дезактивировать вирусные частицы, прежде чем они смогут распространяться от человека к человеку.

Почему это не было рассмотрено соответствующими органами? Far-UVC фигурирует в обзоре литературы ВОЗ, но в настоящее время он не применяется, поскольку количество доказательств в пользу безопасности и эффективности невелико.

Существует некоторая неопределенность в отношении того, будет ли генерирование озона этой полосой (200–220 нм). Озон вреден для здоровья. Однако похоже, что полоса 200-220 нм не является сильным производителем озона. Кроме того, УФ — деградация поверхностей может происходить от хронического воздействия УФ — излучения.

Балансировка вреда действий и бездействия


Даже если Far-UVC несколько вреден, его все же можно использовать. Небольшой вред от света Far-UVC может быть гораздо менее серьезным, чем большой вред от covid-19, или от экономического ущерба, вызванного всеобщей самоизоляцией, которая, по оценкам одного автора, составляет примерно 10 миллионов долларов в минуту, плюс много личных трудностей, которые будут вызваны предстоящей рецессией.

Кроме того, легче защитить человека от ультрафиолетового излучения, чем вируса. Солнцезащитные кремы, одежда и очки, защищающие от ультрафиолета, могут быть менее опасными, чем полупостоянная изоляция населения или экспоненциально растущая вспышка covid-19, которая приводит к миллионам или десяткам миллионов жертв де-факто.
Ультрафиолетовым излучением в искусственной среде можно управлять даже интеллектуально — компьютерное зрение может определять местонахождение людей и включать ультрафиолетовое излучение только в там, где людей нет. Такой проект в лучшем случае будет готов к началу 2021 года.

Если заявления о безопасности Far-UVC не полностью верны, комбинация использования Far-UVC с физической защитой кожи и глаз, такой как очки, может по-прежнему давать приемлемые риски рака и повреждении глаз. В более долгосрочной перспективе такой «почти безопасный» Far-UVC может сочетаться с интеллектуальным управлением на различных уровнях детализации; представьте себе лифт, который ярко освещается Far-UVC каждый раз, когда люди покидают его, или «стены» из столбов света Far-UVC, разделяющие людей, которые автоматически отключаются на мгновение, когда человек проходит через них. В конечном счете, система может даже регулировать мощность Far-UVC с помощью ИИ.

Эпидемиологические соображения


Даже идеальное решение Far-UVC, которое безвредно для человека, 100% смертельно опасно для частиц Covid-19 и легко развертывается в масштабе, может оказаться недостаточным для снижения R0 до точно 0. Но ключевой вопрос заключается в том, может ли оно снизить R0 ниже 1, а также позволяет ли продолжать большую часть экономической активности.

Пока что мы не знаем реальную эффективность и безопасность постоянного использования Far-UVC. Простой предварительный эксперимент, который можно было бы провести: поместить образцы вируса в ящики с мышами – возможно, в аэрозольной форме – и обработать некоторые клетки с помощью Far-UVC, оставив другие клетки в покое, и посмотреть, не снизится ли уровень заражения в обработанных клетках.

Проблемы масштабирования


Даже совершенная система бесполезна, если ее нельзя масштабировать и внедрять по всему миру. Источниками Far-UVC могут быть эксимерные лампы на хлориде криптона, но современные светодиоды Far-UVC с нитридом алюминия (AlN) являются лучшим решением в долгосрочной перспективе. В более долгосрочной перспективе лазеры могут производить коллимированный Far-UV. Необходимы дальнейшие исследования и сбор мнений экспертов о наиболее эффективном источнике Far-UVC.

Энергетические соображения


Количество энергии Far-UVC, необходимое для уничтожения 99% вирусных частиц, оценивается примерно в 20 Дж / м2. При мощности, скажем, 5 Вт / м2, системе потребуется 4 секунды, чтобы в основном стерилизовать вирусный аэрозоль, который может передаваться от человека к человеку. Однако система с низким энергопотреблением все равно будет иметь некоторые преимущества, так как мы знаем, что люди могут заразиться воздухом, который был заражен 30 минутами ранее. Более высокая мощность в этих длинах волн может быть трудно достичь с помощью эксимерных Kr-Cl ламп, так как их КПД составляет ~ 10%. Светодиоды AlN Far-UVC, вероятно, будут иметь гораздо более высокую эффективность преобразования.

Универсальность


Одним из величайших преимуществ Far-UVC является то, что он будет очень распространенным оружием против патогенов. Far-UVC убивает / дезактивирует бактерии, вирусы и другие патогенные микроорганизмы. MRSA, С-ДИФФ, грипп, и т.д. является LL убит UVC, как это имеет место в следующем проблематичный патогене, какой бы она есть.

Резюме


Есть много разных причин, по которым вездесущее распространения Far-UVC освещения может не сработать, но, если оно сработает, он может иметь огромные преимущества. По этой причине авторы считают, что в этот критический момент ему следует уделить больше внимания. Испытания масштабирования, безопасности и эффективности должны проводиться как можно быстрее, предпочтительно параллельно. Что еще более важно, идея требует большего внимания со стороны экспертов в соответствующих областях – физики ультрафиолета, эпидемиологии и людей, которые изучают этиологию рака кожи. На момент написания статьи имеются сообщения о том, что, по оценкам правительства США, эпидемия может продолжаться до 18 месяцев), поэтому такой план, как Far-UVC, на реализацию которого могут уйти месяцы, все же может стать важным компонентом ответных мер в конце этого года.

Приложение. Другие способы использования ультрафиолета для борьбы с коронавирусом


Одним из объяснений сезонности гриппа и других инфекций является то, что солнечное УФ убивает вирусы. Тем не менее, люди проводят много времени в помещении даже летом, особенно во время самоизоляции. Большинство наших инфекций происходит в закрытых помещениях: дома, на транспорте и на рабочих местах. Ультрафиолетовое излучение от Солнца могло бы быть частью объяснения более низких случаев коронавируса в южных странах.

Если мы заменим лампочки повсюду источниками света, которые, помимо обычно света, также излучают ультрафиолетовый свет с определенной длиной волны, мы убьем большинство находящихся в воздухе вирусов и очистим фомиты (вирусные частицы на поверхностях). Таким образом, мы создадим «искусственное лето» везде и снизим R0 коронавируса ниже 1.

Основными препятствиями являются продолжительность экспозиции и возможный вред людям. Недавно в Москве у 20 детей были ожоги глаз после того, как школьный учитель забыл отключить УФ-очиститель в классе.

Помимо идеи использования относительно безопасного диапазона Far-UVC, существует несколько других идей для предотвращения повреждения глаз и кожи человека ульрафиолетом:

1) Интеллектуально контролируемое ультрафиолетовое освещение. Ультрафиолетовый свет включается на максимальном уровне, когда в комнате нет людей. У нас уже есть детекторы движения для освещения, но здесь они будут работать наоборот. Источники освещения с обнаружением движения могут также направлять свет в направлениях, где нет движения, поэтому нет людей. На видео можно увидеть источники ультрафиолетового света с детекторами движения в продаже.
Или, например, сила света может быть временно увеличена после звука чихания. Но это сделает всю систему более сложной, и ее масштабное внедрение займет больше времени.

2) Не «слишком сильные» источники УФ-излучения, которые производят интенсивность уровня УФ-излучения Солнца на уровне земли и действуют в основном на фомиты. Как известно, люди могут прожить не менее 1 часа солнечного света без сильного ущерба (на пляжах). Мы могли бы использовать эту оценку в качестве ориентира для калибровки источников ультрафиолета.

3) Сильное ультрафиолетовое освещение + перчатки. Все будут носить перчатки, маски и очки на улице. В этом случае ни один участок кожи не будет подвергаться воздействию ультрафиолетового освещения (и вирусов). Ношение средств индивидуальной защиты будет эффективным в любом случае. Женщины на Востоке носят одежду с полным покровом, и с ними всё в порядке.

4) Носимая налобная лампа УФ направит ультрафиолетовый свет в направлении, противоположном глазам человека, но осветит все, что он вдыхает или касается, а также руки. Свет будет самым сильным вблизи человеческого лица (но не влиять на лицо), и будет атаковать капли и пылинки, которые человек собирается вдохнуть. Однако этот свет будет рассеиваться на расстоянии 1-2 метра до более безопасного уровня. Ультрафиолетовые налобные фонари и ручные фонарики уже существуют и продаются, но могут быть недостаточно сильны для дезинфекции. Это будет особенно эффективно, если будут использоваться носимые источники света Far UVC, но можно попробовать и другие диапазоны УФ, если кожа защищена. Кроме того, узконаправленные источники УФ можно использовать для стерилизации одноразовых масок и респираторов, что позволит их использовать повторно.

5) УФ фонарик, который излучает ультрафиолетовое излучение в широком луче. Может использоваться очистителями в качестве дополнительного шага при очистке поверхностей.

Плюсы УФ-фонаря

  1. Проще, проще, дешевле и быстрее построить, чем другие решения.
  2. Меньше вреда для людей, поскольку ультрафиолетовый свет может быть направлен и не всегда включен.
  3. Тестовая реализация (Minimal viable product, в терминах стартапа) для более продвинутых реализаций.
  4. Мобильное; может быть использовано в нескольких местах.

Минусы:
  1. Менее эффективен, чем всегда включенные потолочные УФ лампы.
  2. Требует дополнительного времени / усилий в дополнение к обычным процедурам очистки.

Искусственный свет в настоящее время существует почти везде, где живут современные люди: дома, в любом магазине, в автомобилях и даже на улицах. Все, что нам нужно, это заменить часть электрических ламп. Большое количество ламп может быть произведено в течение 0,5-1 года, а меньшее – для критических мест, таких как лифты, – даже в более короткие сроки.

Однако существует проблема фактического тестирования технологии до тех пор, пока она не будет одобрена FDA как безопасная и эффективная. Технически трудно изготовить глубокие ультрафиолетовые (220 нм) светодиоды.

Хорошим началом будет установка ультрафиолетовых ламп в местах непродолжительного использования людьми, где тем не менее высок риск заразиться: лифтах, магазинах, туалетах.
Гораздо удобнее носить защиту от света, чем защиту от вирусов, и после нескольких месяцев блокировки идея возвращения к почти нормальной жизни, но с солнцезащитным кремом и / или перчатками, будет довольно приятной.

Литература:

Welch, D., Buonanno, M., Grilj, V. et al. Far-UVC light: A new tool to control the spread of airborne-mediated microbial diseases. Sci Rep 8, 2752 (2018). doi.org/10.1038/s41598-018-21058-w
Narita K, Asano K, Morimoto Y, Igarashi T, Nakane A (2018) Chronic irradiation with 222- nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses. PLoS ONE 13(7): e0201259. doi.org 10.1371/journal.pone.0201259

Willie Taylor, Emily Camilleri, D. Levi Craft, George Korza, Maria Rocha Granados, Jaliyah Peterson, Renata Szczpaniak, Sandra K. Weller, Ralf Moeller, Thierry Douki, Wendy W.K. Mok, Peter Setlow DNA damage Kills Bacterial Spores and Cells Exposed to 222 nm UV Radiation
Applied and Environmental Microbiology Feb 2020, AEM.03039-19; DOI: 10.1128/AEM.03039-19
Colorado company uses UV lighting technology to kill 99.9 percent of bacteria and viruses. Fox Denver, 7 Macrh 2020

Что такое УФ-свет? (с иллюстрациями)

УФ или ультрафиолетовый свет — это невидимая форма электромагнитного излучения, длина волны которого короче, чем свет, который люди могут видеть. Он несет больше энергии, чем видимый свет, и иногда может разрушать связи между атомами и молекулами, изменяя химический состав материалов, подвергающихся воздействию. Ультрафиолетовый свет также может вызывать излучение видимого света некоторыми веществами — явление, известное как флуоресценция . Эта форма света, присутствующая в солнечном свете, может быть полезна для здоровья, поскольку стимулирует выработку витамина D и может убивать вредные микроорганизмы, но чрезмерное воздействие может вызвать солнечный ожог и повысить риск рака кожи.УФ-свет имеет множество применений, включая дезинфекцию, люминесцентные лампы и астрономию.

Поскольку многие насекомые могут видеть свет в ультрафиолетовой части спектра, у цветущих растений выработались схемы привлечения опылителей, которые не видны человеческим глазам.

Термин «ультрафиолет» означает «за пределами фиолетового».В видимой части спектра длина волны уменьшается — а энергия электромагнитных волн увеличивается — от красного до оранжевого, желтого, зеленого, синего и фиолетового, поэтому УФ-свет имеет более короткую длину волны и больше энергии, чем фиолетовый свет. Длины волн измеряются в нанометрах (нм) или миллиардных долях метра, а длина ультрафиолетовых волн находится в диапазоне от 10 до 400 нм. Его можно классифицировать как УФ-А, УФ-В или УФ-С в порядке убывания длины волны. Альтернативная классификация, используемая в астрономии, — «ближний», «средний», «дальний» и «крайний».”

Ультрафиолетовый свет имеет длину волны, слишком короткую для человеческого глаза.

Солнце излучает ультрафиолетовый свет всех категорий; однако более короткие волны с более высокой энергией поглощаются кислородом в атмосфере и, в частности, озоновым слоем.В результате ультрафиолет, который достигает поверхности, состоит в основном из УФ-А с небольшим количеством УФ-В. Именно ультрафиолетовое излучение B вызывает солнечные ожоги. Солнечный свет, достигающий поверхности Земли, несет в себе как преимущества, так и опасности.

Ультрафиолетовый свет можно использовать для отверждения стоматологической смолы.
Преимущества

Ультрафиолетовый свет, особенно УФ-В, необходим для того, чтобы кожа вырабатывала витамин D. Он превращает химическое вещество, обнаруженное в коже, в предшественник витамина, который затем образует сам витамин.Этот витамин необходим для здоровья человека, а его недостаток приводит к нарушениям иммунной системы, сердечно-сосудистым заболеваниям, высокому кровяному давлению и различным видам рака. Тяжелый дефицит приводит к заболеванию костей, которое называется рахитом. Недостаток солнечного света — основная причина дефицита витамина D, а солнцезащитный крем препятствует его образованию.

Солнечный свет содержит лучи УФ-А, УФ-В и УФ-С.

Есть и другие преимущества, связанные с ультрафиолетом, которые кажутся независимыми от выработки витамина D. Частое воздействие умеренного количества солнечного света, то есть количества, недостаточного для возникновения солнечных ожогов, может обеспечить некоторую защиту от рака кожи. Есть данные, что люди, работающие на открытом воздухе, менее подвержены заболеванию. Дети, которые проводят много времени на свежем воздухе, также, по-видимому, имеют меньший риск развития рака кожи в более позднем возрасте.Другие возможные полезные эффекты включают снижение частоты сердечно-сосудистых заболеваний, улучшение некоторых кожных заболеваний и улучшение настроения.

Черный свет использует ультрафиолетовый свет.

Многие потенциально вредные микроорганизмы быстро погибают или инактивируются под воздействием УФ-излучения.Инфекции, передающиеся воздушно-капельным путем, такие как грипп, обычно передаются воздушно-капельным путем при кашле и чихании. Частицы вируса в этих каплях недолго выживают под воздействием солнечного света, и, как следствие, эти болезни не могут распространяться так легко в солнечных условиях.

УФ-свет используется для дезинфекции питьевой воды.
Опасности

Способность ультрафиолетового света вызывать химические изменения также представляет опасность. Более энергичный УФ-B вызывает солнечные ожоги, может вызвать преждевременное старение кожи и может изменить ДНК таким образом, что это может привести к раку кожи, например меланоме. Он также может повредить глаза и вызвать катаракту.Ультрафиолетовый свет стимулирует выработку пигмента меланина, и из-за этого люди могут намеренно подвергать себя воздействию сильного солнечного света, чтобы получить загорелую кожу. Эффекты, связанные с этой формой света, могут усугубляться популярностью студий для загара и соляриев, которые используют искусственно созданный ультрафиолетовый свет, чтобы вызвать загар.

УФ-сушилки используются для некоторых маникюров с гелем.
Использует
Дезинфекция и стерилизация

Воздействие ультрафиолетового света на вирусы, бактерии и паразитов привело к его использованию для дезинфекции питьевой воды.Его преимущества заключаются в том, что он не требует особого ухода, не влияет на вкус очищенной воды и не оставляет после себя потенциально вредных химикатов. Главный недостаток заключается в том, что в отличие от некоторых химических методов, таких как хлорирование, он не защищает от загрязнения после обработки. УФ также используется для стерилизации пищевых продуктов и в микробиологических лабораториях.

В ночных клубах часто используют черный свет.
Флуоресценция

Некоторые вещества при воздействии ультрафиолетового излучения излучают свет с видимой длиной волны, это явление известно как флуоресценция. Например, обычные люминесцентные лампы питаются от ультрафиолетового света, образующегося при ионизации паров ртути низкого давления.Этот свет поглощается специальным флуоресцентным покрытием, которое, в свою очередь, излучает видимый свет. Люминесцентные лампы более энергоэффективны, чем обычные лампочки.

Ультрафиолетовый свет часто используется в целях безопасности. На конфиденциальных документах, таких как валюта, водительские права, кредитные карты и паспорта, есть невидимые символы, которые загораются только в присутствии ультрафиолетового света.Фальсификаторам трудно их скопировать.

Биологи и зоологи очень любят ультрафиолет, поскольку он помогает им проводить ночные исследования организмов в полевых условиях. Некоторые птицы, рептилии и беспозвоночные, такие как насекомые, флуоресцируют в ультрафиолетовом свете, и быстрое мигание светом небольшой площади может позволить наблюдателям подсчитать приблизительное количество организмов данного типа.Это очень полезно, потому что многие из этих животных в основном ведут ночной образ жизни и их редко можно увидеть днем.

Многие ткани, используемые в одежде, также флуоресцируют, и «черный свет», часто используемый в ночных клубах и на вечеринках, использует этот факт, заставляя одежду светиться в темноте. Эти источники света в основном излучают свет в ультрафиолетовой части спектра, но они также дают легкое фиолетовое свечение.Также могут быть созданы специальные плакаты или другие произведения искусства с явной целью флуоресценции определенным образом в черном свете.

Ловушки для насекомых

Многие насекомые могут видеть ультрафиолетовый свет и привлекаются им, поэтому свет часто используется в ловушках для насекомых.Они могут использоваться энтомологами для изучения популяции насекомых в определенной среде обитания или для отлова и уничтожения вредных насекомых в продовольственных магазинах ресторанов.

Астрономия

Картирование Млечного Пути и других галактик в ультрафиолетовом свете позволяет астрономам составить картину того, как галактики эволюционируют с течением времени.Молодые звезды производят больше ультрафиолетового излучения, чем старые звезды, такие как Солнце. Они также производят более высокую долю ультрафиолетового света в крайнем конце спектра. Поэтому области, в которых образуются новые звезды, светятся более ярко в УФ, что позволяет астрономам идентифицировать и наносить на карту эти области.

Другое применение

Ультрафиолетовый свет может использоваться и для других целей:

  • Спектрофотометрия — для анализа химических структур.
  • Анализ минералов — флуоресценция в ультрафиолетовом свете позволяет различать минералы, которые выглядят одинаково в видимом свете.
  • Микроскопия — более короткая длина волны ультрафиолетового света может разрешить детали, слишком мелкие, чтобы их можно было увидеть с помощью обычного светового микроскопа.
  • Химические маркеры — вещества, флуоресцирующие в УФ-свете, такие как зеленый флуоресцентный белок (GFP), могут использоваться для изучения биологических процессов.
  • Фотохимиотерапия — используется для лечения псориаза и некоторых других кожных заболеваний.
  • Фотолитография с очень высоким разрешением — используется при производстве полупроводниковых компонентов в электронной промышленности.
  • Проверка электрической изоляции — «коронный разряд», когда поврежденная изоляция электрического оборудования приводит к ионизации воздуха, может быть обнаружен по излучению ультрафиолетового света.
  • Отверждение клеев и покрытий — некоторые вещества полимеризуются и затвердевают под воздействием ультрафиолета.
Солнечный свет стимулирует выработку витамина D в организме человека..

Решения для коронавируса — Технология УФ-излучения

УФ-свет — это проверенная технология, когда речь идет о сокращении количества бактерий, вирусов и других вредных микроорганизмов, представляющих риск для здоровья человека. Ультрафиолетовый (УФ-С) свет убивает или инактивирует микроорганизмы, разрушая нуклеиновые кислоты и разрушая их ДНК, делая их неспособными выполнять жизненно важные клеточные функции.

На протяжении многих лет бактерицидные УФ лампы используются для дезинфекции воздуха и поверхностей в больницах, домах престарелых, лабораториях и многих других организациях, где гигиена и чистота имеют первостепенное значение.В свете текущей вспышки коронавируса УФ-излучение — это лишь одна из многих доступных технологий, которые используются для уменьшения и контроля распространения.

Сигнифай и Национальная лаборатория новых инфекционных заболеваний при Медицинской школе Бостонского университета объединились и выпустили информацию об уровнях доз УФ-С, необходимых для деактивации SARS-CoV-19, вируса, вызывающего COVID-19.

Их данные показывают, что доза УФ-C 50 Дж / м2 требовалась для достижения 99% снижения и 220 Дж / м2 для 99.999% снижение .

Эта информация позволяет нам рассчитать необходимое время воздействия для каждой из наших УФ-дезинфекционных ламп на основе определенного расстояния / площади от источника.

Тележка для дезинфекции LightSaverUV (радиус до 4,5 м)

  • 10 минут для 99,9999% уменьшение

Ручная бактерицидная лампа UVC (область A4, расстояние от УФ-лампы до поверхности 20 см)

  • 1,33 секунды для 99% уменьшения
  • 5.87 секунды для 99,9999% уменьшения

Бактерицидный блок UVC 150 Вт (площадь 4 м x 4 м, исходя из высоты потолка 2,5 м)

  • 10 минут для 99,9999% уменьшения

Наши измерения соответствуют национальным стандартам, что позволяет нам точно рассчитывать время воздействия для соответствия уровням доз УФ-С, опубликованным независимыми лабораториями и организациями.

.

Все, что вам нужно знать об УФ-фонариках

Ультрафиолетовые фонарики — отличные инструменты для наблюдения за вещами, которые обычно невидимы. Но с таким большим количеством вариантов и технических условий может быть немного запутанно и сложно понять, правильно ли вы совершаете покупку. Прочтите наше руководство, чтобы быть уверенным, что вы получаете лучший продукт!

Что такое УФ-фонарик?


Ультрафиолетовый фонарик излучает ультрафиолетовое излучение — вид световой энергии, невидимой человеческому глазу.Когда ультрафиолетовый свет попадает на определенные объекты, они могут флуоресцировать — явление, подобное яркому свечению. Многие предметы и вещества, такие как краски, красители, минералы, животные и биологические жидкости, обладают флуоресценцией, а это означает, что их присутствие можно обнаружить только тогда, когда на них попадает УФ-источник света.

УФ-фонарик имеет ту же форму и формат, что и стандартный фонарик белого света, но вместо излучения белого света он излучает ультрафиолетовый свет. Практически все УФ-фонарики используют светодиодную технологию.

Должен ли я получить УФ-фонарик для моего приложения?


УФ-освещение имеет множество применений, но УФ-фонарики могут быть наиболее полезны в ситуациях, когда важны портативность и простота использования. УФ-фонари обычно недостаточно сильны, чтобы вызвать какие-либо химические или физические реакции (например, отверждение), но дают достаточно УФ-света для наблюдения эффектов флуоресценции.

Ниже приведены некоторые примеры использования УФ-фонарей:


  • Судебная экспертиза и проверка подделок

  • Наблюдение за минералами и драгоценными камнями

  • Проверка на наличие пятен мочи (например.г. домашние животные) или другие биологические жидкости

  • Поиск насекомых и рептилий



Имеет ли значение, какой УФ-фонарик я использую?


Поскольку УФ-фонари различаются по типу и качеству, может быть трудно понять, какие УФ-фонари подойдут для вашего конкретного случая использования, не глядя на спецификации. См. Ниже, на что следует обратить внимание:

Получите правильную длину волны. УФ-свет — это общий термин для широкого диапазона длин волн УФ-излучения в УФ-спектре.Подобно тому, как видимый свет измеряется в видимом спектре, УФ-свет также описывается в спектре с использованием его длины волны, измеряемой в нанометрах (нм). При поиске любого ультрафиолетового света чрезвычайно важно знать, на какой длине волны (в нанометрах или нм) он излучает.


Почему так важна длина волны? Короче говоря, чтобы быть полезным, УФ-свет должен вызывать флуоресценцию. Не все длины волн УФ-излучения способны вызывать достаточный эффект флуоресценции, поэтому вы можете полностью упустить цель, купив неправильную длину волны.

Хотя оптимальные длины волн могут варьироваться в зависимости от материалов и объектов, большая часть флуоресценции наиболее сильна на длинах волн около 360 нм. Поэтому важно, чтобы вы приобрели УФ-фонарик с длиной волны 365 нм или около нее — в противном случае УФ-энергия, производимая фонариком, может быть совершенно бесполезной и производить желаемое флуоресцентное свечение.

Из-за тенденций в производстве светодиодов, светодиоды с более высокой длиной волны проще и дешевле производить.В результате светодиоды с длиной волны 415 нм (видимый, фиолетовый свет) и 405 нм (пограничный видимый фиолетовый свет) часто используются в качестве «ультрафиолетовых» светодиодов. Если продавец или производитель не указывает используемую длину волны — будьте осторожны — они вполне могут использовать фиолетовый или пурпурный светодиод, который не является настоящим источником УФ-света.

Обычный вариант длины волны — 395 нм. Строго говоря, это ультрафиолетовые светодиоды, когда мы используем определение <400 нм для определения УФ. Но поскольку эти светодиоды так близки к границе отсечки 400 нм, они по-прежнему излучают большую часть своей энергии в виде фиолетового света.В результате многие объекты будут освещены тусклым фиолетовым цветом, не давая достаточно УФ-света с более низкой длиной волны, чтобы вызвать флуоресценцию.

Достаточно ли мощности? Даже правильная длина волны ультрафиолетового света может быть бесполезной, если ее просто недостаточно. Другими словами, вам нужно убедиться, что у вас есть и качество (хорошая длина волны), и количество.

Но как узнать, сколько излучается ультрафиолетового света? К сожалению, это сложная спецификация, которую не перечисляет большинство продуктов.В отличие от белых фонарей, которые используют метрику люменов для описания яркости, поскольку УФ-излучение невидимо, эта мера неприменима. Хотя есть способы измерения УФ-излучения, это может быть не слишком практично при покупке УФ-фонарей, поскольку большинство производителей не предоставляют много информации.

Как правило, два аспекта конструкции УФ-фонарика определяют, сколько УФ-света он может испускать. Первый — это потребляемая мощность, обычно измеряемая в ваттах. Большинство фонарей меньшего размера будут работать с мощностью 1 Вт или около того, в то время как более крупные фонари могут работать с мощностью 3 Вт или более.Не дайте себя обмануть количеством светодиодов — просто потому, что светодиодов больше, не обязательно означает, что стало больше мощности. Важна общая мощность — 1 светодиод, работающий на 3 Вт, больше мощности, чем 3 светодиода, работающих на 0,5 Вт каждый.

Второй аспект — эффективность светодиодов. Не все светодиоды преобразуют одинаковое отношение электрической энергии к энергии УФ-излучения, и это может сыграть важную роль в определении количества излучаемой энергии УФ-света. Низкоэффективный светодиод может означать, что даже ультрафиолетовый фонарик большой мощности на самом деле не производит много полезного УФ-излучения.Эффективность УФ-светодиода определить непросто, но, как правило, стоит обратить внимание на более дешевые УФ-фонари, поскольку светодиодный чип обычно является самым дорогим компонентом фонарика, а низкие значения эффективности обычно являются результатом низкой стоимости или низкой стоимости. перегруженные светодиодные чипы.

Как он питается? Многие УФ-фонарики могут питаться от одноразовых батареек AA или AAA. Часто это самый дешевый и практичный подход для случайного, легкого использования — если, например, вы используете его только в течение нескольких минут за раз, чтобы проверить мочу домашних животных.Что делать, если вы ожидаете более строгого или длительного использования? Вы можете рассмотреть вариант с перезаряжаемой батареей.

Самый распространенный тип батареи — литий-ионный аккумулятор 18650. Аккумуляторы 18650 могут вмещать до 2500 мАч (при 3,6 В) или более, что эквивалентно примерно 3-4 батареям одноразового типа AA. Используя аккумуляторную батарею, вы сэкономите на долгосрочных расходах на батарею. Многие ультрафиолетовые фонарики также имеют USB-порт или аналогичный порт для зарядки аккумуляторных батарей.

18650 аккумуляторы бывают двух вариантов — защищенные и незащищенные. Защищенный элемент 18650 включает в себя интегральную схему, которая защищает аккумулятор от перегрева, взрыва или утечки. Хотя защищенные батареи действительно стоят немного дороже, риск взрыва батареи из-за отсутствия защиты цепи может означать разницу между сгоранием дома и получением телесных повреждений.

Является ли УФ-свет от УФ-фонарика вредным или опасным?


Заявление об ограничении ответственности: Содержание , опубликованное ниже, предназначено только для информационных целей.Он не предназначен для замены профессионального медицинского совета, и на него нельзя полагаться как на медицинский или личный совет.

Всегда обращайтесь за советом к своему врачу или другому квалифицированному медицинскому работнику по любым вопросам, которые могут у вас возникнуть относительно вашего здоровья или состояния здоровья. Никогда не пренебрегайте советом медицинского работника и не откладывайте его поиск из-за того, что вы прочитали на этом сайте.

УФ-свет часто изображается в новостях и СМИ как вредный, поэтому вы можете беспокоиться о том, безопасны ли УФ-фонари.Короткий ответ: они, как правило, безопасны, если вы следуете некоторым правилам здравого смысла, которые мы обсудим ниже.

Но во-первых, важно понять риски, связанные с УФ-светом, и то, где УФ-фонарики находятся с точки зрения этих рисков. Так же, как мы обсуждали, что длина волны и мощность являются детерминантами того, насколько сильны эффекты флуоресценции, риски и опасность УФ-света также зависят от длины волны и мощности.

Мы получаем от солнца значительное количество УФ-А (315-400 нм) и УФ-В (280-315 нм).Длина волны УФ-В короче и, следовательно, более вредна. Большинство рисков, связанных с чрезмерным воздействием солнечного света (солнечные ожоги, раздражение глаз и рак), являются результатом длин волн УФ-В. Поскольку УФ-фонари, излучающие на длинах волн 365 нм или выше, излучают в диапазоне УФ-А, их можно считать менее опасными, чем длины волн УФ-В.

Вообще говоря, общее количество УФ-света, излучаемого УФ-фонариком, также намного меньше, чем то, что вы найдете на улице в солнечный день.Естественный солнечный свет имеет около 32 Вт УФ-энергии на квадратный метр, что более чем в 30 раз превышает количество УФ-энергии, излучаемой УФ-фонариком мощностью 3 Вт (при условии эффективности 30%).

Хотя мы видим, что вредный потенциал УФ-фонарика намного меньше, чем от естественного солнечного света, мы также не можем полностью исключить опасность и вред от УФ-фонарика. Чтобы еще больше снизить эти риски, можно предпринять определенные шаги.

Прежде всего — никогда не смотрите прямо в УФ-фонарик.Ультрафиолетовый свет невидим и не вызывает такой же естественной реакции на косоглазие или взгляд в сторону, как если бы мы смотрели прямо в белый фонарик. То, что он не кажется ярким, не означает, что он не излучает много ультрафиолетового света. Обязательно держите УФ-фонарик подальше от детей или тех, кто не знает, что фонарик излучает УФ-свет.

Если вам все еще немного некомфортно из-за аспектов безопасности, вы можете предпринять дальнейшие шаги для дальнейшей защиты, как если бы вы выходили на улицу при ярком солнечном свете.Например, вы можете приобрести защитные очки или солнцезащитные очки, блокирующие УФ-излучение, которые помогут уменьшить количество УФ-излучения, попадающего в ваши глаза. Используя ультрафиолетовый фонарик, вы также можете стараться не направлять свет прямо на голую кожу и носить одежду с длинными рукавами. И, на практике, держите УФ-фонарик включенным только до тех пор, пока это необходимо.

.

Стерилизация УФ-светом: высокотехнологичные решения в LightSources

Стерилизация ультрафиолетовым светом: более века проверенных результатов

UV Light Sterilization Ультрафиолетовый свет

доказал свою мощную бактерицидную эффективность еще в конце 19 века, когда компания Downes & Blunt провела первое научное исследование в 1877 году, показавшее эффективность стерилизации ультрафиолетовым светом . Как подробно изложено в отчете общественного здравоохранения «История бактерицидного ультрафиолетового облучения для дезинфекции воздуха», науке и медицине потребуются многие десятилетия, чтобы продолжить исследования и понять мощные преимущества ультрафиолетового света для стерилизации.

Нильс Финсен получил Нобелевскую премию по физиологии и медицине в 1903 году за свой вклад в лечение заболеваний с помощью концентрированного ультрафиолетового света. В 1930-х годах Уильям Уэллс продемонстрировал способность бактерицидного ультрафиолетового излучения предотвращать распространение болезней, передающихся воздушно-капельным путем.

Несмотря на эти ранние доказанные успехи использования ультрафиолетового света для стерилизации, интерес к медицинскому применению и дальнейшим исследованиям ультрафиолетового света угас до 1980-х годов, отчасти из-за роста заболеваемости туберкулезом (ТБ).Туберкулез является основной причиной смерти взрослых от одного инфекционного агента, с уровнем летальности около 23%. Бактерицидные ультрафиолетовые лампы доказали свою высокую эффективность в борьбе с туберкулезом при использовании в настенных системах очистки воздуха UVGI в верхней комнате, согласно данным Политехнического института Ренсселера, Исследовательского центра освещения, Контроль передачи туберкулеза с помощью ультрафиолетового излучения.

Эффективность бактерицидной стерилизации УФ-светом

Ультрафиолетовое излучение обеспечивает максимальную бактерицидную эффективность для инактивации микроорганизмов при излучении на оптимальной длине волны 253.7 нанометров (нм), называемое ультрафиолетовым бактерицидным облучением (UVGI). Бактерицидная эффективность снижается при излучении на длинах волн, отличных от оптимальных. Вот почему так важны высококачественные УФ стерилизационные лампы, которые эффективно доставляют нужное количество УФ-излучения для желаемого применения.

Стерилизация УФ-светом эффективно инактивирует микроорганизмы, повреждая ДНК клеток. ДНК отвечает за репликацию клеток, таким образом, повреждение структуры ДНК делает клетки неспособными к репликации и неспособными распространять болезнь.УФ-фотоны поглощаются клеткой, образуя димеры пиримидина. Это заставляет два соседних основания тимина или цитозина связываться друг с другом, а не поперек двойной спирали, как обычно.

Молекула ДНК с димерами пиримидина неспособна функционировать должным образом, что приводит к гибели организма или неспособности к репликации. Организм, который не может воспроизводиться, больше не способен распространять болезнь.

Качественные лампы — ключ к эффективной стерилизации УФ-светом

Инженеры по ультрафиолетовому излучению в LightSources разбираются в технологии, лежащей в основе ультрафиолетового света, и понимают, как использовать максимальный, наиболее оптимальный нанометр в широком спектре УФ-ламп для стерилизации.Мы разрабатываем индивидуальные запатентованные решения для УФ-ламп, которые соответствуют вашим требуемым бактерицидным характеристикам в любой области применения. УФ-лампы для стерилизации от LightSources можно найти во всем мире для стерилизации воздуха, поверхности и воды, обеспечивая длительную и сильную бактерицидную эффективность.

Являясь мировыми лидерами в области бактерицидных УФ-технологий, компания LightSources и наш стратегический партнер LightTech предлагают OEM-производителям самый широкий ассортимент стандартных УФ-ламп и компонентов с индивидуальными требованиями.Наши инновационные лампы предлагают безопасные, эффективные и доступные решения для бесчисленных промышленных применений, в то же время позволяя OEM-производителям соблюдать строгие местные нормы и правила безопасности FDA.

Измерение дозы УФ-излучения, плотности энергии и энергетической освещенности

Компания

LightSources спроектирует, спроектирует и изготовит УФ-стерилизационную лампу, которая соответствует вашим точным спецификациям с оптимальной плотностью потока энергии или дозой УФ-излучения в соответствии с требованиями вашего приложения. Доза УФ-излучения — это произведение УФ-излучения (мкВт / см2) на удельное время воздействия в секундах на данный микроорганизм.
Энергия излучения и плотность потока энергии используются как взаимозаменяемые, поскольку они практически идентичны в устройстве с коллимированным пучком. Флюенс — это подходящий термин для определения «дозы УФ» и измеряется в миллиджоулях на квадратный сантиметр (мДж / см2).

Эффективная доза УФ-излучения, или плотность энергии, варьируется для разных форм бактерий и вирусов, при этом для некоторых патогенов требуется более длительное время воздействия, чем для других. Наши инженеры порекомендуют подходящие лампы для оптимальной стерилизации ультрафиолетовым светом в соответствии с вашими потребностями с широким выбором высококачественных ультрафиолетовых ламп, доказавших свою долговечность и превосходящие по характеристикам сопоставимые лампы.

Наши стандартные бактерицидные лампы UVC включают:

  • Лампы ртутные низкого давления
  • Лампы из амальгамы низкого давления
  • Технология MPUV
  • Гильзы кварцевые
  • Электронные балласты

В каждой конструкции лампы доступно множество запатентованных технологий, обеспечивающих более длительный срок службы и высокую производительность. LightSources также предоставляет OEM-производителям нестандартные компоненты ламп и смеси люминофора в соответствии с вашими потребностями с быстрым временем обработки прототипов и производства.Все производство осуществляется в соответствии со строгими процедурами качества в рамках нашей сертификации ISO9001: 2015.

LightSources и наш стратегический партнер LightTech предлагают OEM-производителям несколько преимуществ, включая своевременную поставку высококачественных ламп, а также высокую бактерицидную эффективность за счет более длительного срока службы. Мы предлагаем решения для стерилизации УФ-светом с лампами, предназначенными для любой отрасли или области применения.

Преимущества ультрафиолетового излучения для стерилизации

Стерилизация УФ-светом — это экологически безопасный метод уничтожения бактерий, плесени, грибков и вирусов без использования вредных химикатов и не приводит к образованию коррозионных материалов или побочных продуктов дезинфекции (DBP).Во многих отраслях промышленности дезинфекция поверхностей без использования химикатов имеет решающее значение, а стерилизация УФ-светом может обеспечить безопасное и эффективное решение. Доказано, что системы УФ-дезинфекции и стерилизации:

  • Высокоэффективный
  • Экономичный
  • Низкие эксплуатационные расходы
  • Не содержит химикатов

УФ-лампы используются во многих отраслях и сферах применения, обеспечивая жизненно важные решения для улучшения здоровья и благополучия людей в жилых, коммерческих и промышленных помещениях.Он используется для дезинфекции воздуха от возбудителей инфекций, грибков, бактерий, вирусов, пылевых клещей и спор.

УФ-стерилизация улучшает здоровье во многих отраслях промышленности

Доказано, что системы стерилизации УФ-светом

улучшают здоровье и самочувствие людей во многих отраслях промышленности и в различных средах. УФ-стерилизация защищает людей от вредных бактерий, вирусов, плесени и других патогенов во многих отраслях и сферах применения:

Пищевая промышленность — Для облучения используются УФ-лампы.Стерилизация ультрафиолетовым светом убивает вирусы, бактерии, дрожжи и грибки за секунды, а также может продлить срок хранения и пищевую ценность. Пищевые продукты включают упаковочные материалы, конвейерные ленты, транспортные контейнеры, рабочие поверхности, столешницы и емкости для жидкого сахара для уничтожения плесени и бактерий.

UV Hormesis — новая многообещающая разработка, представляющая собой процесс, который помогает снизить послеуборочные потери за счет задержки созревания фруктов и овощей. Эта технология дает возможность сэкономить много денег в будущем.

Очистка воздуха в жилых помещениях — В соответствии с главой 62 справочника ASHRAE «Ультрафиолетовая обработка воздуха и поверхности» целью проектирования внутренней дезинфекции УФ-светом является равномерное распределение УФ-энергии во всех направлениях по длине воздуховода или воздуха. единица обработки (AHU). Это доставляет соответствующее количество УФ-излучения воздуху, движущемуся через зону облучения. Повышение отражательной способности внутренней части вентиляционной установки с помощью таких материалов, как алюминий, также может улучшить характеристики UVGI, поскольку отражение энергии UVC обратно в зону облучения увеличивает эффективную дозу ультрафиолета.

Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE) также заявляет, что системы стерилизации ультрафиолетовым светом способны поддерживать чистоту поверхностей охлаждающих змеевиков и поддонов для конденсата при установке рядом с оборудованием. Освещенность систем с воздуховодом должна находиться в диапазоне от 1000 до 10000 мкВт / см2, хотя может быть ниже или выше в зависимости от требований приложения. Системы дезинфекции воздуха в воздуховоде должны быть рассчитаны на наихудшие условия.

Очистка воздуха в здравоохранении — В исследовании, проведенном Авинашем Кулкарни (PhD), Aeropure UV Systems Pvt Ltd, ИНДИЯ, были изучены УФ-системы очистки воздуха уровня 1 и 2 в медицинских учреждениях. Системы уровня 1 считаются UVGI на охлаждающих змеевиках в AHU, тогда как системы уровня 2 определяются как локализованные UVGI верхнего помещения. Исследования неоднократно показывали сокращение количества бактерий от 70% до 80% как для систем уровня 1, так и для систем уровня 2.

Бактерицидная УФ-технология

особенно важна в больницах и других учреждениях, где она интегрирована в системы кондиционирования воздуха для стерилизации патогенов, вызывающих заболевания, и загрязняющих веществ, которые могут усугубить респираторные заболевания.

Промышленная очистка воздуха — УФ-лампы используются для удаления вредных или токсичных химикатов, производимых во многих отраслях промышленности, а также для уменьшения или устранения ЛОС и промышленных выхлопных газов, содержащих растворители.

Стерилизация воды — Стерилизация ультрафиолетовым светом очень эффективна при удалении многих вредных патогенов из воды и убивает некоторые бактерии, которых не дает хлор. Системы УФ-дезинфекции воды используются для очистки питьевой воды, стерилизации воды на очистных сооружениях, бассейнах и спа, в медико-биологических науках и во многих других областях применения воды.

Поверхностная стерилизация — УФ-лампы используются во многих средах, таких как рестораны для стерилизации кухонного оборудования и поверхностей, больницы для стерилизации медицинского оборудования, буфеты с едой и во многих других средах, где поверхностная стерилизация улучшает здоровье населения.


ЛАМПА ХАРАКТЕРИСТИКИ:
Бактерицидные УФ лампы
ЛАМПА Применения:
УФ бактерицидные применения

LightSources и наши дочерние компании представляют ведущих высокотехнологичных дизайнеров и производителей в ламповой промышленности.Наши продукты используются по всему миру во множестве приложений и отраслей, например, в наших бактерицидных УФ-лампах, которые предлагают защищенные патентами и ориентированные на OEM решения. Свяжитесь с нами, чтобы узнать больше о наших патентованных бактерицидных технологиях, разработанных для стерилизации УФ-светом.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *