При разработке системы вентиляции необходимо, в первую очередь, определить её тип. Вентиляционные системы классифицируют по таким основным признакам, как: 1. По назначению: вытяжная и приточная системы вентиляции; 2. По способу перемещения воздуха различают искусственную и естественную системы; 3. По зоне обслуживания: общеобменная или местная системы; 4. По конструкции: моноблочная или наборная системы вентиляции. Вытяжная и приточная вентиляция.Для подачи в помещения свежего воздуха используется приточная вентиляция. При необходимости, подаваемый воздух очищается от пыли и нагревается. Вытяжная вентиляция, напротив, служит для удаления из помещения загрязнённого или нагретого воздуха. Обычно в помещении устанавливают как вытяжную, так и приточную вентиляции. Крайне важно, чтобы их производительность была сбалансирована. В противном случае, в помещении может образоваться недостаточное или чрезмерное давление, которое приводит к появлению неприятного эффекта «хлопающих дверей». Такая система является наиболее универсальной и эффективной на сегодняшний день, поскольку приточно вытяжная вентиляция выполняет функции и приточной и вытяжной вентиляционных систем. Искусственные и естественные системы вентиляции.Естественная система вентиляции не требует применения какого-либо электрооборудования и осуществляется за счёт естественных факторов — ветрового давления, разности температур воздуха и пр. К достоинствам таких систем можно отнести надёжность, вызванную отсутствием оборудования, а также дешевизну и простоту монтажа. Естественная вентиляция представляет собой вентиляционные короба, которые располагают на кухне и в санузлах. Такие системы нашли широкое применение в строительстве типового жилья. Искусственная (механическая) система вентиляции применяется в том случае, если недостаточно естественной. В искусственных системах используют оборудование (фильтры, воздухонагреватели, вентиляторы и т.д.), позволяющее очищать, нагревать и перемещать воздух. Эти системы могут удалять и подавать воздух в помещения, вне зависимости от условий окружающей среды. Поскольку искусственная система вентиляции гарантированно создаёт комфортные условия, её рекомендуется использовать в жилых домах и офисах. | Общеобменная и местная системы вентиляции.Общеобменная система вентиляции, предназначена для осуществления вентиляции всего помещения, и может быть приточной или вытяжной. Так как приточную вентиляцию выполняют с фильтрацией и последующим подогревом приточного воздуха, она должна быть механической (искусственной). Поскольку удаляемый воздух не требует обработки, вытяжная общеобменная вентиляция значительно проще приточной. Эта система выполняется в виде вентилятора, который устанавливают в окне или отверстии в стене. При небольшом объеме вентилируемого воздуха, можно установить естественную вытяжную систему вентиляции, которая гораздо дешевле механической. Местная система вентиляции также подразделяется на приточную и вытяжную. Приточную местную вентиляцию используют для того, чтобы подавать свежий воздух в установленные места. Вытяжная местная вентиляция предназначается для удаления загрязненного воздуха. Такую систему применяют в тех случаях, когда участки вредных выделений локализованы, и не допускается их распространение по всей площади помещения. При таких условиях использование местной вентиляции сравнительно недорогое и достаточно эффективное. Местная система вентиляции, в основном, используется на производстве, а общеобменная — в бытовых условиях. Исключением являются кухонные вытяжки, представляющие собой местную вытяжную вентиляцию. | Моноблочная и наборная системы вентиляции.Все конструктивные компоненты моноблочных систем вентиляции размещены в едином, изолированном от шума, корпусе. Моноблочная вентиляция бывает двух видов: приточная или приточно-вытяжная. Приточно-вытяжные установки имеют встроенный рекуператор, который служит для экономии электроэнергии. По сравнению с наборными вентиляционными системами, моноблочные системы имеют несколько существенных преимуществ: 1. Уровень шума в моноблочных установках значительно ниже, поскольку все компоненты размещены в шумоизолированном корпусе. В связи с этим, существует возможность установки моноблочных систем вентиляции в жилые помещения. Наборные системы, как правило, устанавливают только в специально оборудованных вентиляционных камерах или подсобных помещениях. 2. Сбалансированность и функциональная законченность. Все элементы приточных установок подбирают, тестируют и налаживают для работы на этапе производства, вследствие чего моноблочные системы вентиляции обладают максимально возможной эффективностью при эксплуатации. 3. Небольшие габариты. К примеру, моноблочная приточная система вентиляции производительностью до 500 кубических метров в час, выполняется в корпусе прямоугольной формы, высота которого всего лишь 22 сантиметра. 4. Простая и относительно недорогая установка. Монтаж моноблочной приточной вентиляционной системы требует минимальное количество расходных материалов и занимает всего несколько часов. Наборная вентиляционная система собирается из отдельных компонентов, таких как: глушитель, фильтр, вентилятор, система автоматики и т.д. Эту систему вентиляции обычно устанавливают в отдельном помещении — вентилируемой камере или (при небольшой производительности) за подвесным потолком. К достоинствам наборных систем вентиляции можно отнести возможность вентилирования абсолютно любых помещений — от квартир и офисов до целых зданий. Среди недостатков этой системы вентилирования — необходимость профессионального проектирования и расчёта, а габариты наборной установки значительно больше моноблочных. | |
Общеобменная вентиляция производственных помещений. Виды вентиляции для помещений
Существуют следующие виды вентиляции производственных помещений:
- естественная вентиляция и принудительная и системы принудительной вентиляции в зданиях и помещениях производственного назначения;
- общеобменная (общая) вентиляция и системы локальной (местной) вентиляции для помещений производственной деятельности.
Виды вентиляции помещений: естественная и общеобменная вентиляция.
Естественная вентиляция производственных помещений осуществляется под воздействием ветрового побуждения или разницы давлений и температур воздуха в помещении и за его пределами. Также на работу естественной вентиляции влияет разность давления между нижним уровнем помещения и вытяжкой, монтируемой на крыше.
Организация естественной вентиляции в производственном помещении не требует существенных затрат на оборудование. Установка естественной системы вентиляции является самым простым способом организации проветривания помещения и не требует подвода электричества.
Но такая вентиляция имеет существенный недостаток – она зависит от температурных условий за окном (давления воздуха, направления и скорости ветра), поэтому не обеспечивает постоянного воздухообмена. Для помещения промышленного назначения такая организация вентиляции не подходит.
Кроме того, мощность естественной вентиляции нельзя регулировать. Точнее, такая система вентиляции поддается ограниченному регулированию – можно открыть окно на полное или неполное проветривание, но настроить мощность вентиляции на точное требуемое значение в помещении нельзя. Нельзя сделать так, чтобы естественная вентиляция обслуживала и локальные точки в помещении. Системы естественной вентиляции всегда являются общеобменными.
Поэтому естественные системы производственной вентиляции категорически не подходят для помещений, деятельность в которых сопровождается выбросом большого количества опасных веществ.
Для каждого вредного вещества нормами СНиП устанавливается предельная допустимая концентрация (ПДК). Если выброс отравляющих веществ превышает ПДК, установки вентиляции, работающие в помещении, должны удалять вещества до их распространения по всему помещению. Поэтому оборудование естественной вентиляции (осуществляющее общеобменную вентиляцию помещения) не подходит для вредных производств.
Такие системы вентиляции не только не способны постоянно удалять вредные вещества из помещения, работая на определенной мощности. Вентиляция естественного типа не может предотвратить их распространения по всему производственному помещению. Такая производственная вентиляция не может задерживать вредные вещества в специальных фильтрах, не дающих им попасть из помещения во внешнюю среду. Единственное, чем может естественная система быть полезна в случае удаления вредных веществ – она может разбавить воздух в помещении, снижая концентрацию веществ. Но и с этим лучше справляются системы механической локальной приточной вентиляции.
Общеобменная вентиляция производственных помещений применяется в ситуациях, когда во время работы выделяется незначительное (по меркам помещения) количество вредных веществ, а сами вещества распределены относительно равномерно. При таком способе организации воздухообмена дополнительная вентиляция и очистка воздушных потоков не требуются.
Чаще всего использование общеобменной системы вентиляции дополняют локальной системой вентиляции для помещений. Это делается для увеличения эффективности вентиляции и минимизации затрат на воздухообмен в помещении – такая смешанная вентиляция часто применяется для оборудования цеховых и производственных помещений, где вредные выбросы локализованы.
Общая вентиляция для производственных объектов обеспечивает обмен воздуха в помещении создает необходимые условия для осуществления производственной деятельности. Качественная вентиляция должна обеспечить в помещении кратность обмена воздуха, отсутствие сквозняков и посторонних звуковых эффектов.
Общеобменная вентиляция делится на следующие виды: системы вентиляции вытяжного и приточного назначения. Вытяжные виды вентиляции помещений обеспечивают забор воздуха из всего помещения (тогда, как задача локальной вытяжной вентиляции – забор воздуха и вредных примесей непосредственно из места выделения). Приточные виды производственных систем общей вентиляции приносят в помещение чистый воздух с улицы, а приточные установки локальной вентиляции разбавляют воздух около места выделения опасных веществ, снижая их содержание до установленных ПДК.
Приточные виды производственных систем общей вентиляции дополнительно могут работать на поддержание в помещении необходимых условий. Вентиляция может осушать или увлажнять воздух, нагревать или охлаждать, фильтровать его перед подачей в производственное помещение. Такая организация работы приточной вентиляции необходима для производственных помещений специальной деятельности, например, связанных с процессами покраски (системы вентиляции в покрасочных камерах и автосервисах) или хранения портящейся продукции (складские помещения).
Общая вентиляция вида притока или вытяжки не всегда обеспечивает нормальные условия функционирования производства, поэтому дополняется совмещенными приточно-вытяжными системами и местной (локальной) вентиляцией.
Приточно-вытяжная вентиляция на производстве.
Проектирование совмещенной приточно-вытяжной системы для многих видов производственных и общественных помещений предусмотрено нормами СНиП. Совмещенная приточно-вытяжная производственная вентиляция может быть спроектирована в следующих вариантах:
- вытяжная естественная вентиляция и механическая приточная;
- механическая вытяжная вентиляция на производстве и естественная приточная;
- полностью механическая приточно-вытяжная производственная вентиляция.
Вытяжная и приточная вентиляция на производстве оборудованы системой воздуховодов, ведущих от вентиляционных установок к выходам вентиляции на улицу (или в общий вентиляционный канал), а также системой управления, которая автоматически настраивает вытяжную вентиляцию производственных помещений и приточные системы на оптимальные или усиленные режимы работы, а также отвечает за поведение вентиляции и пожаре или задымлении.
Местная вентиляция производственного помещения.
Местная вентиляция используется для проветривания и снижения концентрации опасных веществ на ограниченной площади, меньшей, чем вся площадь производственного помещения.
Местная вытяжная вентиляция забирает воздух с примесями до их попадания в воздух всего помещения и нанесения тем самым вреда здоровью сотрудников. Приточная местная вентиляция производственного помещения подает свежий воздух на ограниченную площадь для разбавления вредных смесей.
При пожаре местная вентиляция производственных помещений вытягивает с ограниченной площади воздух с продуктами горения и подает свежий воздух, позволяя провести эвакуацию сотрудников и обеспечить далее работу спасателей и пожарных по устранению задымления.
Местная система притока также ожжет подавать воздух для производственных помещений, предварительно обрабатывая его – нагревая или охлаждая, очищая и увлажняя.
Типы вентиляции
Типы систем вентиляции различаются по следующим параметрам:
- по способу перемещения воздуха: естественная, механическая и комбинированная;
- по назначению: приточная и вытяжная вентиляция;
- по зоне обслуживания: местная и общеобменная;
- по конструкции: наборная и моноблочная.
Естественная и механическая система вентиляции
Перемещение потока воздуха в системе вентиляции может осуществляться за счет естественных сил или искусственным образом за счет механической энергии.
- Естественная вентиляция работает за счет разности давлений между улицей и помещением. Разность давлений зависит от разности температур, между улицей и помещением, разности высот между воздухозаборной решеткой в помещении и верхом вытяжной шахты и от скорости ветра. Преимущества системы естественной вентиляции, обуславливающие ее широкое применение – это низкие капитальные и эксплуатационные затраты, долговечность. Недостатки – зависимость от внешних погодных условий, в результате которых в теплый период года естественная вентиляция работает плохо или не работает вовсе.
- Механическая (искусственная) вентиляция работает за счет давления создаваемого вентилятором. Преимущества механической вентиляции – это стабильность работы, распределение воздуха по разветвленной сети воздуховодов, управление системой, возможность обработки воздуха (очистка от пыли, нагрев, охлаждение и т.п.)
- Комбинированная система вентиляции совмещает в себе преимущества естественной и механической вентиляции. Комбинированная система вентиляции работает по двум схемам: естественный приток/механическая вытяжка и механический приток/естественная вытяжка. Ярким примером комбинированной системы вентиляции является гигрорегулируемая вентиляция Aereco, в которой приток воздуха осуществляется естественным образом, через стеновые или оконные клапана, а стабильную работу системы обеспечивает механическая вытяжка на основе вентилятора.
Приточная и вытяжная система вентиляции
- Приточная система вентиляции предназначена для притока (подачи) свежего воздуха в обслуживаемые помещения. Приток (поступление) свежего воздуха осуществляется, как естественным, так и механическим образом. Применение вентилятора позволяет проводить разнообразную обработку приточного воздуха: очистку от пыли, нагрев, охлаждение, увлажнение и т.п.
- Вытяжная вентиляция, предназначена для удаления загрязненного (отработанного) воздуха из обслуживаемых помещений. Вытяжная вентиляция может быть, как с естественным, так и с механическим побуждением движения.
Местная и общеобменная система вентиляции
- Местная приточная вентиляция применяется в основном на производственных предприятиях с высоким уровнем вредных выделений. В данном случае приточный воздух подается непосредственно в зону дыхания человека.
- Местная вытяжная вентиляция активно применяется как на производстве, так и в быту (например бытовые вытяжки на кухне). Основное назначение местной вытяжной вентиляции – это локальный сбор и последующее удаление загрязненного воздуха для предотвращение его распределения по всему помещению.
- Общеобменная вентиляция, применяется для создания воздухообмена в помещении или группе помещений в целом. Общеобменная вентиляция может быть как приточной, так и вытяжной, с естественным и с механическим побуждением.
Наборная и моноблочная система вентиляции
Система механической вентиляции состоит из приточной, вытяжной или приточно-вытяжной вентиляционной установки, системы воздуховодов и комплекта воздухораспределителей. Вентиляционная установка может быть наборного или моноблочного исполнения.
- Наборная вентиляционная установка собирается непосредственно на объекте из отдельных функциональных узлов — воздушного фильтра, вентилятора, шумоглушителя, нагревателя и т.д.
- В моноблочной установке все функциональные узлы (воздушный фильтр, вентилятор, нагреватель и т.п.) размещаются в едином звукоизолированном корпусе на этапе заводской сборки.
Функциональные характеристики наборных и моноблочных систем не отличаются друг от друга. Если в работе системы вентиляции есть проблемы, чаще они вызваны неправильным расчетом производительности, давления и т.п., а не применением наборной или моноблочной системы.
Преимущество наборной системы вентиляции – более низкая стоимость, гибкость в монтаже и ремонте, преимущество моноблочной установки – меньший уровень шума, простота монтажа, более эстетичный внешний вид.
Системы местной вытяжной вентиляции
Применение местной вытяжной вентиляции приемлемо, если выделение вредных веществ можно локализовать, и предотвратить их распространение по пространству всего помещения.
Местная вытяжная система производит улавливание и вывод вредных веществ из производственных помещений: пыли, различных газов, и других выделений. Так же, осуществляется частичный отвод тепла от оборудования и станков.
Местные вытяжки должны соответствовать основным критериям:
Конструкция не должна «тормозить» производственный процесс, мешать нормально работать, снижать производительность труда.
Место выделения вредных веществ, должно быть закрыто вытяжкой полностью.
Вредные вещества нужно отводить от места их появления в сторону естественного направления — пыль и холодные газы удаляются в низ, а горячие парообразные вещества отводятся в верх.
Конструкции местных вытяжек распределяются на несколько групп:
Полуоткрытые вытяжки — в основном это зонты, где количество всасываемого воздуха определяется расчётами.
Открытый тип — бортовые вытяжки, отсос вредных веществ достигается только при значительном объёме отводимого воздуха.
Многие воздухоочистительные системы базируются лишь на местных вытяжках. При использование таких систем для овода воздуха содержащего пылевые выделения, нужно использовать фильтры. Как правила, очень сложными считаются те системы, в которых воздух, выбрасываемый во внешнею среду, проходит большую степень очищения от пыли, с использованием нескольких фильтров.
Такие воздухоочистительные системы очень эффективны, так как при небольшом объёме всасываемого воздуха, сводят концентрацию вредных веществ в помещении, к минимуму.
Естественно местные вытяжки не могу справится со всеми задачами, поставленными перед вентиляционными системами. Не все выделения вредных веществ на производстве имеют локализованное место оброзования. Например, если производственный цикл связан с перемещением агрегатов по цеху. В таких случаях, целесообразно использовать общеобменные системы. Они бывают двух видов: вытяжные и приточные. Такая система осуществляет обмен воздуха в помещении в целом.
Чем отличается :: Типы систем вентиляции — ikirov.ru
- По способу создания давления для перемещения воздуха: с естественным и искусственным (механическим) побуждением.
- По назначению: приточные и вытяжные.
- По зоне обслуживания: местные и общеобменные.
- По конструктивному исполнению: канальные и безканальные.
- По конструкции: наборная или моноблочная система вентиляции
Естественная система вентиляции
Создается без применения электрооборудования (вентиляторов, электродвигателей) и происходит «самотоком» вследствие естественных физических причин:
• разности температур атмосферного воздуха и воздуха в помещении;
• разности давлений воздушного столба в нижней и верхней зонах вентиляционного канала;
• разности давлений с наветренных и подветренных сторонах здания (воздействия ветрового давления)
Достоинствами естественных системы вентиляции являются дешевизна, простота монтажа и надежность, вызванная отсутствием электрооборудования и движущихся частей. Благодаря этому, такие системы широко применяются при строительстве типового жилья и представляют собой вентиляционные короба, расположенные на кухне и санузлах. Однако эффективность работы такой системы напрямую зависит от внешних факторов – температуры воздуха, направления и скорости ветра и т. д. Кроме этого, отсутствие механизмов регулирования таких систем не позволяют решить многие задачи в области вентиляции.
Искусственная (механическая) система вентиляции
Применяется там, где недостаточно естественной. В механических системах используются оборудования и приборы (вентиляторы, фильтры, воздухонагреватели и т.д.), позволяющие перемещать, очищать и нагревать воздух. Это позволяет подавать и удалять воздух непосредственно из необходимой зоны, либо по каналам в любые удалённые помещения с требуемой производительностью вне зависимости от условий окружающей среды. На практике, в квартирах и офисах необходимо использовать именно искусственную систему вентиляции, поскольку только она может гарантировать создание комфортных условий.
Приточная система вентиляции
Подает свежий наружный воздух в помещения. Приточные установки обеспечивают комплексное решение всех задач, связанных с подготовкой воздуха, которые возникают при эксплуатации современных зданий: приток свежего воздуха, нагревание, очистка воздуха от пыли и вредных примесей.
Приточные установки успешно применяются как для поддержания нужного температурного режима в каждом из отдельных помещений внутри здания, так и для создания микроклимата в «чистых помещениях» медицинских учреждений, предприятий приборостроительной и радиотехнической отрасли промышленности и т.п.
Условно можно разделить приточные вентиляционные установки на несколько типов:
• по типу нагревателя: — с электрическим или водяным калорифером;
• по расходу воздуха: — до 200-3000 м3/ч -миниприточные установки; — более 3000м3/ч — центральные приточные установки;
• по различному исполнению: для вертикального монтажа, для горизонтального монтажа и универсальные.
Вытяжная система вентиляции
Отводит из помещения использованный (нагретый, загрязненный) воздух. Предпочтительна одновременная установка как приточной, так и вытяжной вентиляции. При этом их производительность должна быть сбалансирована, иначе в помещении будет образовываться недостаточное или избыточное давление, что приведет к неприятному эффекту «хлопающих дверей».
Приточно-вытяжная вентиляция
Основывается на создании двух встречных потоков. Такая система может быть создана либо на основе независимых подсистем притока и вытяжки воздуха — с собственными вентиляторами, фильтрами и т.д., либо на основе одной соответствующей установки, работающей как на приток, так и на вытяжку.
Удобство приточно-вытяжных установок не только в облегчении установки и монтажа, но и в эксплуатации, а также в дополнительных свойствах таких систем.
Одним из таких свойств является рекуперация тепла — процесс, при котором происходит частичное повышение температуры приточного воздуха за счет тепла вытягиваемого воздуха. При этом энергия затрачивается только на организацию воздухопотоков, то есть не расходуется на нагрев поступающего воздуха, за счет чего экономится электроэнергия. Нагрев поступающего воздуха за счет рекуперации может дополняться электрическим или водяным нагревателем.
Местная система вентиляции
Происходит подача свежего воздуха на определенные места (местная приточная вентиляция) или удаление использованного или загрязненного воздуха (местная вытяжная вентиляция). Местная приточная вентиляция организуется непосредственно в рабочей зоне, в виде воздушных: » душей, оазисов, завес, перегородок», и.т.д.
Местная вытяжная вентиляция организуется с целью локализации вредных примесей, избытков тепла, влаги и.т.д. и их удаления непосредственно из рабочей зоны с помощью местных отсосов, зонтов, завес, укрытий, шкафов. В этих случаях местная вентиляция достаточно эффективна и сравнительно недорога. Местная вентиляция используется, преимущественно, в производстве.
Общеобменная система вентиляции
Предназначена для осуществления вентиляции во всем помещении. Общеобменная вентиляция так же может быть приточной и вытяжной. Приточную общеобменную вентиляцию, как правило, необходимо выполнять с подогревом и фильтрацией приточного воздуха. Поэтому такая вентиляция должна быть механической (искусственной).
В ходе такой вентиляции происходит разбавление вредных примесей во всем объеме помещения за счет притока свежего воздуха, который, проходя по помещению, ассимилирует выделяющиеся вредные вещества и затем выбрасывается наружу.
Количество подаваемого вентиляционного воздуха (воздухообмен) рассчитывается на разбавление выделяющихся вредных примесей до допустимых на рабочих местах концентраций. Недостаток способа — неодинаковость санитарно-гигиенических условий воздушной среды в разных местах помещений, а также возможность их недопустимого ухудшения вблизи источников выделения вредных веществ или мест вытяжки воздуха из помещений.
Последнее необходимо учитывать и по возможности устранять соответствующим расположением и назначением необходимого числа устройств для раздачи и вытяжки вентиляционного воздуха. Общеобменная вытяжная вентиляция может быть проще приточной и выполняться в виде вентилятора, установленного в окне или отверстие в стене, в случае, если удаляемый воздух не требуется обрабатывать.
Если удаляемый воздух содержит особо вредные или пахучие примеси, то приходится организовывать предварительную обработку выбрасываемого воздуха или выводить его в верхние слои атмосферы, устраивать высокие шахты или выпускать с большой скоростью (факельный выброс). Местоположение и оформление выпусков должно соответствовать господствующему направлению ветра и устранять выпадение вредностей в населенных местах или вблизи воздухозаборных устройств. При небольших объемах вентилируемого воздуха устанавливают естественную вытяжную вентиляцию, которая заметно дешевле механической.
Бесканальная вентиляция
Схема вентиляции без применения воздуховодов. Так организуют вытяжную вентиляцию больших промышленных помещений, ангаров на базе крышных вентиляторов, которые устанавливаются на кровлю и вытягивают воздух непосредственно из помещения под кровлей.
Наборная система вентиляции
Собирается из отдельных компонентов — вентилятора, глушителя, фильтра, системы автоматики и т. д. Такая система обычно размещается в отдельном помещении — венткамере или за подвесным потолком (при небольшой производительности).
Достоинством наборных систем является возможность вентиляции любых помещений — от небольших квартир и офисов до торговых залов супермаркетов и целых зданий. Недостатком — необходимость профессионального расчета и проектирования, а также большие габариты.
Моноблочная система вентиляции
Все компоненты размещаются в едином шумоизолированном корпусе. Моноблочные системы бывают приточные и приточно-вытяжные. Приточно-вытяжные моноблочные установки могут иметь встроенный рекуператор для экономии электроэнергии. Моноблочные системы вентиляции имеют ряд преимуществ перед наборными системами:
1. Уровень шума моноблочных приточных установок заметно ниже, чем в наборных системах. Благодаря этому моноблочные системы небольшой производительности можно размещать в жилых помещениях.
2. Функциональная законченность и сбалансированность.
3. Небольшие габариты.
4. Простой и недорогой монтаж
Системы вентиляции отличаются по способу cоздания давления, назначению, сфере применения, конструкции и зоне обслуживания. В зависимости от характеристик здания выбирается свой тип вентиляционной системы.
Основные элементы системы вентиляции
Описание основных элементов системы вентиляции
Состав системы вентиляции зависит от ее типа. Наиболее сложными и часто используемыми являются приточные искусственные (механические) системы вентиляции. Их состав мы и рассмотрим. Типовая приточная механическая вентиляционная система состоит из следующих компонентов (расположенных по направлению движения воздуха, от входа к выходу):
Воздухозаборная решетка
Через воздухозаборную решетку в систему вентиляции поступает наружный воздух. Эти решетки, как и все другие элементы вентиляционной системы, бывают круглой или прямоугольной формы. Воздухозаборные решетки не только выполняют декоративные функции, но и защищают систему вентиляции от попадания внутрь капель дождя и посторонних предметов.
Воздушный клапан
Воздушный клапан необходим для предотвращения попадания холодного наружного воздуха в помещение при выключенной вентиляции. Наибольшее распространение получили пружинный обратный клапан («бабочка») и воздушный клапан с электроприводом и возвратной пружиной (возвратная пружина закрывает клапан при пропадании электропитания). Пружинный обратный клапан недорогой, но менее эффективный (возможно попадание холодного воздуха с улицы в помещение при выключенной системе). Воздушный клапан с электроприводом дороже, но он гарантированно перекрывает доступ холодного воздуха и, кроме того, позволяет полностью автоматизировать управление системой — при включении вентилятора (и калорифера) клапан открывается, при выключении — закрывается.
Кроме этого существуют недорогие ручные клапана — управление заслонкой такого клапана производится с помощью рукоятки. Ручной клапан рекомендуется устанавливать совместно с пружинным обратным клапаном для того, чтобы иметь возможность перекрыть доступ холодного воздуха в помещение при отключении системы вентиляции на длительный период (например, при отъезде в отпуск). В противном случае соприкосновение теплого внутреннего воздуха с холодной поверхностью воздуховодов может привести к образованию конденсата, который в виде капель воды будет стекать в помещение.
Фильтр
Фильтр необходим для защиты как самой системы вентиляции, так и вентилируемых помещений от пыли, пуха, насекомых. Обычно устанавливается один фильтр грубой очистки, который задерживает частицы величиной более 10 мкм. Если к чистоте воздуха предъявляются повышенные требования, то дополнительно могут быть установлены фильтры тонкой очистки (задерживают частицы до 1 мкм) и особо тонкой очистки (задерживают частицы до 0,1 мкм).
Фильтрующим материалом в фильтре грубой очистки служит ткань из синтетических волокон, например, акрила. Фильтр необходимо периодически очищать от грязи и пыли, обычно не реже 1 раза в месяц. Для контроля загрязнения фильтра можно установить дифференциальный датчик давления, который контролирует разность давления воздуха на входе и выходе фильтра — при загрязнении разность давления увеличивается.
Калорифер
Калорифер или воздухонагреватель предназначен для подогрева подаваемого с улицы воздуха в зимний период. Калорифер может быть водяным (подключается к системе центрального отопления) или электрическим. Для небольших приточных установок выгоднее использовать электрические калориферы, поскольку установка такой системы требует меньших затрат. Для больших офисов (площадью более 100 кв.м.) желательно использовать водяные нагреватели, иначе затраты на электроэнергию окажутся очень большими.
Существует способ в несколько раз снизить затраты на подогрев поступающего воздуха. Для этого используется рекуператор — устройство, в котором холодный приточный воздух нагревается за счет теплообмена с удаляемым теплым воздухом. Разумеется, воздушные потоки при этом не смешиваются.
Вентилятор
Вентилятор — основа любой системы искусственной вентиляции. Он подбирается с учетом двух основных параметров: производительности, то есть количества прокачиваемого воздуха и полном давлении. По конструктивному исполнению вентиляторы бывают двух видов: осевые (пример — бытовые вентиляторы «на ножке») и радиальные (центробежные) (типа «беличье колесо»). Осевые вентиляторы обеспечивают хорошую производительность, однако характеризуются низким полным давлением, то есть, если на пути воздушного потока встречается препятствие (длинный воздуховод с поворотами, решетка и т.п.), то скорость потока существенно уменьшается. Поэтому в системах вентиляции с разветвленной сетью воздуховодов применяют радиальные вентиляторы, отличающиеся высоким давлением созданного воздушного потока. Другими важными характеристиками вентиляторов является уровень шума и габариты. Эти параметры в большой степени зависят от марки оборудования.
Шумоглушитель
Поскольку вентилятор является источником шума, после него обязательно устанавливают шумоглушитель, чтобы предотвратить распространение шума по воздуховодам. Основным источником шума при работе вентилятора являются турбулентные завихрения воздуха на его лопастях, то есть аэродинамические шумы. Для снижения этих шумов используется звукопоглощающий материал определенной толщины, которым облицовываются одна или несколько стенок шумоглушителя. В качестве звукопоглощающего материала обычно используют минеральную вату, стекловолокно и т.п.
Воздуховоды
После выхода из шумоглушителя обработанный воздушный поток готов к распределению по помещениям. Для этих целей используется воздухопроводная сеть, состоящая из воздуховодов и фасонных изделий (тройников, поворотов, переходников). Основными характеристиками воздуховодов являются площадь сечения, форма (круглая или прямоугольная) и жесткость (бывают жесткие, полугибкие и гибкие воздуховоды).
Скорость потока в воздуховоде не должна превышать определенного значения, иначе воздуховод станет источником шума. Поэтому площадью сечения воздуховода определяется объем прокачиваемого воздуха, то есть размер воздуховодов подбирается исходя из расчетного значения воздухообмена и максимально допустимой скорости воздуха.
Жесткие воздуховоды изготавливаются из оцинкованной жести и могут иметь круглую или прямоугольную форму. Полугибкие и гибкие воздуховоды имеют круглую форму и изготавливаются из многослойной алюминиевой фольги. Круглую форму таким воздуховодам придает каркас из свитой в спираль стальной проволоки. Такая конструкция удобна тем, что воздуховоды при транспортировке и монтаже можно складывать «гармошкой». Недостатком гибких воздуховодов является высокое аэродинамическое сопротивление, вызванное неровной внутренней поверхностью, поэтому их используют только на участках небольшой протяженности.
Распределители воздуха
Через воздухораспределители воздух из воздуховода попадает в помещение. Как правило, в качестве воздухораспределителей используют решетки (круглые или прямоугольные, настенные или потолочные) или диффузоры (плафоны). Помимо декоративных функций, воздухораспределители служат для равномерного рассеивания воздушного потока по помещению, а также для индивидуальной регулировки воздушного потока, направляемого из воздухораспределительной сети в каждое помещение.
Системы регулировки и автоматики
Последним элементом вентиляционной системы является электрический щит, в котором обычно монтируют систему управления вентиляцией. В простейшем случае система управления состоит только из выключателя с индикатором, позволяющего включать и выключать вентилятор. Однако чаще всего используют систему управления с элементами автоматики, которая регулирует мощность калорифера в зависимости от температуры приточного воздуха, следит за чистотой фильтра, управляет воздушным клапаном и т.д. В качестве датчиков для системы управления используют термостаты, гигростаты, датчики давления и т.п.
Системы вентиляции, в отличие от кондиционеров, которые все же не являются предметами первой необходимости, устанавливаются во всех офисных и жилых зданиях. Наличие вентиляционных систем является просто необходимостью, а требования к их техническим характеристикам имеют силу закона. Это можно объяснить тем, что при отсутствии вентиляции в закрытых помещениях возрастает концентрация вредных веществ, в первую очередь углекислого газа, что негативно сказывается на самочувствии людей, вызывает сонливость, головную боль, потерю работоспособности. В некоторой степени эту проблему можно решить, периодически проветривая помещение, однако тогда вместе со свежим воздухом внутрь попадает пыль, разные запахи, уличный шум и другие неприятности. К тому же приходится постоянно открывать и закрывать окно или форточку. Для решения всех этих проблем и существуют системы вентиляции воздуха.
При разработке системы вентиляции в первую определяют ее тип.
Классификация типов вентиляционных систем производится на основе следующих основных признаков:
по способу перемещения воздуха: естественная или искусственная система вентиляции;
по назначению: приточная или вытяжная система вентиляции;
по зоне обслуживания: местная или общеобменная система вентиляции.
Естественная вентиляция создается без применения электрооборудования (вентиляторов, электродвигателей) и происходит вследствие разности температур воздуха, изменения давления в зависимости от высоты, ветрового давления и других естественных факторов. Их достоинствами являются дешевизна, простота монтажа и надежность, которая определяется отсутствием электрооборудования и движущихся частей. Поэтому такие системы широко применяется при строительстве типового жилья и представляют собой вентиляционные короба, расположенные в самых неудобных местах на кухне, в ванной или в коридоре.
Негативной стороной дешевизны естественных систем вентиляции является их сильная зависимость от вышеуказанных внешних факторов – температуры воздуха, направления и скорости ветра и т.д. Более того, такие системы в принципе нерегулируемы и с их помощью очень трудно решить многие задачи в области вентиляции.
Там, где недостаточно естественной, применяется искусственная или механическая вентиляция. В таких системах используются оборудования и приборы (вентиляторы, фильтры, воздухонагреватели и т.д.), позволяющие очищать, перемещать и нагревать воздух. Они не зависят от условий окружающей среды. В квартирах и офисах очень важно использовать именно искусственную систему вентиляции, так как только она может гарантировать создание комфортных условий.
Приточная система вентиляции служит для подачи свежего воздуха в помещения. Подаваемый воздух, при необходимости, может нагреваться и очищаться от пыли. Вытяжная вентиляция, наоборот, удаляет из помещения нагретый или загрязненный воздух. Обычно в помещении устанавливается обе системы вентиляции. При этом, их производительность должна быть сбалансирована; в противном случае в помещении будет образовываться недостаточное или избыточное давление, что может привести к неприятному эффекту «хлопающих дверей».
Назначение местной вентиляции заключается в подаче свежего воздуха на определенные места (местная приточная вентиляция) или в отборе загрязненного воздуха от мест образования вредных выделений (местная вытяжная вентиляция). Когда места выделения вредностей локализованы и можно не допустить их распространения по всему помещению, применяют местную вытяжную вентиляцию. В таких случаях она достаточно эффективна и сравнительно недорога. Местная вентиляция используется, чаще всего, на производстве. Общеобменная вентиляция эффективна для бытовых условий. Здесь исключением являются кухонные вытяжки, которые представляют собой местную вытяжную вентиляцию.
В отличие от местной, общеобменная вентиляция предназначена для осуществления вентиляции во всем помещении. Она так же может быть приточной и вытяжной. Приточная общеобменная вентиляция обычно выполняется с подогревом и фильтрацией приточного воздуха. Поэтому она должна быть механической (искусственной). Общеобменная вытяжная вентиляция, в принципе, проще приточной и выполняется в виде вентилятора, установленного в отверстии в стене или окне, так как удаляемый воздух не требуется обрабатывать. При небольших объемах вентилируемого воздуха устанавливают естественную вытяжную вентиляцию, которая заметно дешевле механической.
Состав системы вентиляции зависит от ее типа. Приточные искусственные (механические) системы вентиляции являются наиболее сложными и часто используемыми. Такая система состоит из следующих компонентов (расположенных по направлению движения воздуха, от входа к выходу):
Наружный воздух поступает в систему вентиляции через воздухозаборную решетку. Такие решетки, как и все другие элементы вентиляционной системы, бывают круглой или прямоугольной формы. Они не только выполняют декоративные функции, но и защищают систему вентиляции от попадания внутрь посторонних предметов и капель дождя.
Воздушный клапан предотвращает попадание в помещение наружного воздуха при выключенной системе вентиляции. Он особенно необходим зимой, поскольку без него в помещение будет попадать холодный воздух и снег. Как правило, в приточных системах вентиляции устанавливаются воздушные клапана с электроприводом, что позволяет полностью автоматизировать управление системой — при включении вентилятора (и калорифера) клапан открывается, при выключении — закрывается.
Фильтр необходим для защиты как самой системы вентиляции, так и вентилируемых помещений от пыли, пуха, насекомых. Фильтр грубой очистки задерживает частицы величиной более 10 мкм. А если к чистоте воздуха предъявляются повышенные требования, то дополнительно могут быть установлены фильтры тонкой очистки, которые задерживают частицы до 1 мкм, и особо тонкой очистки – задерживают частицы до 0,1 мкм. Фильтрующим материалом в фильтре грубой очистки служит синтетическая ткань, например, из акрила. Фильтр необходимо периодически очищать от грязи и пыли, как правило, не реже 1 раза в месяц. При загрязнении разность давления воздуха на входе и выходе фильтра увеличивается – для контроля загрязнения фильтра можно установить дифференциальный датчик.
Калорифер или воздухонагреватель предназначен для подогрева подаваемого с улицы воздуха в зимний период. Он может быть водяным (подключается к системе центрального отопления) или электрическим. Для небольших приточных установок выгоднее использовать электрические калориферы – установка такой системы требует меньших затрат. Для офисов площадью более 100 кв.м. желательно использовать водяные нагреватели – в противном случае затраты на электроэнергию окажутся очень большими. Есть способ в несколько раз снизить затраты на подогрев поступающего воздуха. Для этого используется рекуператор — устройство, в котором холодный приточный воздух нагревается за счет теплообмена с удаляемым теплым воздухом. Разумеется, воздушные потоки при этом не должны смешиваться.
Вентилятор — основа любой системы искусственной вентиляции. Он подбирается с учетом его производительности, то есть количества подаваемого воздуха, и полного давления. По конструктивному исполнению вентиляторы бывают осевые (пример — бытовые вентиляторы «на ножке») и радиальные или центробежные («беличье колесо»). Осевые вентиляторы обеспечивают хорошую производительность, но характеризуются низким полным давлением, то есть, если на пути воздушного потока встречается препятствие (длинный воздуховод с поворотами, решетка и т.п.), то скорость потока существенно уменьшается. Поэтому в системах с разветвленной сетью воздуховодов применяют радиальные вентиляторы, которые отличаются высоким давлением созданного ими воздушного потока. Важными характеристиками вентиляторов являются также габариты и уровень шума, которые в большой степени зависят от марки оборудования.
Вентилятор — источник шума, поэтому после него обязательно надо устанавливать шумоглушитель, для того чтобы избежать распространения шума по воздуховодам. Турбулентные завихрения воздуха на лопастях вентилятора, то есть аэродинамические шумы являются основным источником шума. Для снижения этих шумов используется звукопоглощающий материал заданной толщины, который служит для облицовки одной или нескольких стенок шумоглушителя. В качестве такого материала обычно используются минеральная вата, стекловолокно и т. п.
Воздуховоды. После того, как обработанный воздушный поток выходит из шумоглушителя, он готов к распределению по помещениям. Для этого используется воздухопроводная сеть, которая состоит из фасонных изделий (тройников, поворотов, переходников) и воздуховодов. Основными характеристиками воздуховодов являются форма (круглая или прямоугольная), площадь сечения и жесткость (бывают гибкие, полугибкие и жесткие воздуховоды). Чтобы воздуховод не стал источником шума, скорость потока в воздуховоде не должна превышать определенного значения. Объем прокачиваемого воздуха определяется площадью сечения воздуховода, то есть размер воздуховодов подбирается исходя из максимально допустимой скорости воздуха и расчетного значения воздухообмена. Жесткие воздуховоды изготавливаются из оцинкованной жести и могут иметь прямоугольную или круглую форму. Гибкие и полугибкие воздуховоды изготавливаются из многослойной алюминиевой фольги и имеют круглую форму. Такую форму им придает каркас из стальной проволоки, свитой в спираль. Удобство этой конструкции заключается в том, что при транспортировке и монтаже воздуховоды можно складывать «гармошкой». Ее недостатком является высокое аэродинамическое сопротивление, которое возникает вследствие неровной внутренней поверхности, — поэтому их используют только на участках небольшой протяженности.
Распределители воздуха обеспечивают попадание воздуха из воздуховода в помещение. В качестве таких обычно используют диффузоры (плафоны) или решетки (прямоугольные или круглые, потолочные или настенные). Кроме декоративных функций, воздухораспределители служат для равномерного рассеивания воздушного потока по помещению, а также для индивидуальной регулировки воздушного потока, направляемого из воздухораспределительной сети в каждое помещение.
В первую очередь при выборе оборудования для системы вентиляции, необходимо рассчитать следующие параметры:
Производительность по воздуху (м3/ч).
Допустимый уровень шума (дБ).
Скорость потока воздуха в воздуховодах (м/с).
Рабочее давление (Па).
Мощность калорифера (кВт).
Начнем с расчета требуемой производительности по воздуху или «прокачки», измеряемой в м³/ч. Для этого необходим поэтажный план помещений с экспликацией (таблицей наименований каждого помещений с указанием его площади). Сначала определяют требуемую кратность воздухообмена для каждого помещения. Она показывает, сколько раз в течении одного часа происходит полная смена воздуха в помещении, например, для помещения площадью 50 м² с высотой потолков 3 м (объем 150 м³) двукратный воздухообмен соответствует 300 м³/ч. Кратность воздухообмена зависит от назначения помещения, количества людей, мощности тепловыделяющего оборудования и других показателей. Например, для большинства жилых помещений достаточно однократного воздухообмена, для офисных помещений требуется 2 – 3-х кратный воздухообмен.
Требуемую производительность по воздуху мы получим, просуммировав расчетные значения воздухообмена для всех помещений. Типичные значения производительности — 1000 – 10000 м³/ч для офисов, 1000 – 2000 м³/ч для коттеджей, 100 – 800 м³/ч для квартир.
К проектированию воздухораспределительной сети приступают после расчета производительности по воздуху. Сеть состоит из фасонных изделий (переходников, разветвителей, поворотов и т.п.), воздуховодов и распределителей воздуха. Сначала необходимо составить схемы воздуховодов. По этой схеме рассчитывают три взаимосвязанных параметра — скорость потока воздуха, уровень шума и рабочее давление.
Скорость потока воздуха зависит от диаметра воздуховодов. Обычно она ограничивается 3 – 5 м/с. При более высоких скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать большого диаметра «тихие» воздуховоды не всегда возможно, так как их бывает трудно разместить в межпотолочном пространстве. При проектировании систем вентиляции часто приходится искать компромисс между диаметром воздуховодов, уровнем шума и мощностью вентилятора.
Рабочее давление определяется мощностью вентилятора и рассчитывается исходя из типа распределителей воздуха, числа поворотов и переходов с одного диаметра на другой, диаметра и типа воздуховодов. Давление, создаваемое вентилятором, должно быть тем больше, чем длиннее трасса и чем больше на ней поворотов и переходов. Для подогрева наружного воздуха в холодное время года в приточной системе вентиляции используется калорифер. Его мощность рассчитывается исходя из минимальной температуры наружного воздуха, требуемой температуры воздуха на выходе и производительности системы вентиляции. Температура воздуха, поступающего в жилое помещение, должна быть не ниже 16°С. Минимальная температура наружного воздуха зависит от климатической зоны.
Система вентиляции необходима для работы практически любого предприятия. Она относится к числу оборудования, рабочее состояние которого должно поддерживаться постоянно. Промышленная вентиляция обеспечивает эффективное осуществление производственного процесса. Именно поэтому к системе промышленной вентиляции предъявляются высокие требования, которым она должна соответствовать.
В условиях работы предприятия осуществляется процесс производства продукции. Он всегда связан с определенными техническими издержками — выбросами в окружающую среду большого количества веществ: пыли, тепла, влаги и т.д. Очистка воздуха от вредных примесей осуществляется за счет работы специальных установок. Промышленная вентиляция представляет собой мощную систему трубопроводов большого диаметра. Благодаря современной комплектации, обеспечивается быстрое поступление чистого воздуха, очищенного от примесей, в производственные помещения.
Промышленная вентиляция отличается большими габаритами и весом. Для монтажа вентиляционного оборудования используется специализированная техника. Установка системы промышленной вентиляции осуществляется согласно ГОСТ, а также в соответствии с пожарными, строительными и санитарными нормами.
Промышленная вентиляция и очистка воздуха являются одним из самых важных условий для нормального функционирования предприятия и хороших условия работы его персонала.
Вентиляции производственных помещений
Вентиляцией называется совокупность мероприятий и устройств, используемых при организации циркуляции и очистки воздуха для обеспечения заданного состояния воздушной среды в помещениях и на рабочих местах в соответствии со Строительными Нормами и Правилами.
Системы вентиляции служат для удаления из помещения загрязненного и (или) нагретого воздуха и подачи в него чистого. Системы кондиционирования воздуха обеспечивают создание и автоматическое поддержание в помещении заданных параметров воздушной среды независимо от меняющихся метеоусловий.
Вентиляция производственных помещений осуществляется несколькими способами. Путем вытеснения отработанного воздуха, или путем постепенного его перемешивания с чистым воздухом. Существует также метод вентиляции путем замещения воздуха. Этот метод реализуется так: свежий воздух равномерно поступает с одной стороны здания через приточные клапаны, а отработанный воздух удаляют вытяжные осевые вентиляторы, которые находятся в другой части здания. Однако у этого способа есть ряд недостатков: конструкция существующих приточных клапанов и их аэродинамические характеристики не удовлетворяли теоретическим расчетам распространения и направления поступающего воздуха; количественное и качественное расположение вытяжных вентиляторов нуждается в дополнительных расчетах.
Вентиляция перемешиванием и растворения (принудительная вентиляция)
В вентиляции путем перемешивания необходим не только пассивный, но и активный приток воздуха, а также мощная вытяжка. В этом случае, поступающий свежий воздух распределяется и перемешивается по всему помещению, что снижает количественное содержание отработанного воздуха. Однако необходимо обратить внимание на проектирование системы вентиляции. Могут возникнуть ситуации, когда канальные вентиляторы не только улучшают вытяжку грязного воздуха, но и препятствуют притоку свежего.
Особенности вентиляции на производстве
Вентиляция на производстве должна создавать благоприятные рабочие условия персонала предприятия. Современные системы вентиляции варьируются в зависимости от назначения здания. Так, вентиляция цехов зачастую совмещена с воздушным отоплением. Кондиционирование воздуха используется лишь в случае, когда выполняются сложные технологические процессы. Вентиляция на производстве характеризуется не только своими размерами, но и присутствием специфических элементов. Во-первых, она оснащается мощной системой фильтров, поскольку на производстве часто вырабатываются вредные вещества, наносящие вред окружающей среде или здоровью людей. Во-вторых, вентиляция на производстве оснащается также противопожарной и аварийной вентиляцией.
Вентиляция на производстве зависит и от направления деятельности цеха. Например, на металлургическом производстве основная задача вентиляции – это удаление огромного количества тепла и пыли, и обычно именно такая вентиляция является самой мощной. При сборке космических кораблей и осуществлении подобной технологически сложной работы вентиляция должна не только удалять вредные выбросы, но и поддерживать постоянную температуру в цеху. В этом случае вентиляционная система проектируется на основе чиллера. В деревообрабатывающей промышленности задача вентиляции цеха — удаление от мест обработки древесины стружки, пыли и т.п.
Что касается воздушного отопления, то иногда оно выполняется на газовом или дизельном топливе. В таких случаях установка вентиляция цеха имеет не водяной нагреватель, а газовую или дизельную горелку.
Отдельно рассматривается вентилирование офисов или ресторанов Основная проблема данных помещений – это большое количество людей при ограниченной территории помещения. Довольно часто применяется воздушное отопление таких зданий, и огромное тепловыделение влечёт за собой необходимость грамотной вытяжной системы, с применением приточно-вытяжных зонтов.
Вентиляция цехов
Вентиляция производственных цехов требует учета многих специфических условий, главное из которых – учет типа производства. Если производство связано, например, с выделением большого количества пыли и тепла, то в этом случае устанавливаются мощные вентиляторы, задачей которых будет удаление выбросов из цеха и отвод излишнего теплового излучения. На предприятиях подобного типа обычно используются воздуховоды больших диаметров (до 6 метров). Кондиционирование в таких цехах экономически нецелесообразно и поэтому достаточно установки только вытяжной вентиляции.
Если же на предприятии используется высокоточное оборудование, или продукция не должна подвергаться перепадам температур, то в этом случае наилучшим вариантом станет установка вентиляционной системы на основе чиллера, которая способна поддерживать точно заданную температуру в цехе.
Некоторые системы вентиляции способны удалять твердые отходы с места производства (стружка, пыль). Данная система использует специальные устройства, которые отделяют отходы от воздуха и собирают в бункер.
В сборочных производствах выгодно использовать традиционную приточно-вытяжную вентиляционную систему.
Промышленная вентиляция в больших зданиях и помещениях
Вентиляция необходима в больших зданиях и помещениях, к которым относятся складские и промышленные объекты, а также сооружения непроизводственного характера, но большие по площади.
Вентиляцию больших зданий и помещений принято разделять на два вида – вентиляция промышленных, или производственных объектов, и вентиляцию зданий большой площади, где могут располагаться, в том числе, различные непроизводственные объекты.
К промышленным объектам относятся: комбинаты, заводы, фабрики, лаборатории, мастерские и цеха. Как правило, в производственных помещениях воздух содержит частички пыли, газа, всевозможные микрочастицы, дым или пар. Это создаёт в помещении свой микроклимат, оказывающий воздействие на находящихся в нём сотрудников.
Нормативная документация определяет предельно допустимое содержание (ПДК) газов, пыли, тех или иных микрочастиц.
Для объектов промышленности предусмотрена и естественная подача воздуха. Но, как правило, естественная подача затруднена или не возможна. В этих условиях требуется разработка системы промышленной вентиляции с принудительной проточной системой.
В помещениях, где работает большое количество сотрудников, по санитарным нормам и правилам (СанПиН) необходимо устанавливать системы вентиляции и кондиционирования. Этот вид промышленной вентиляции принято обозначать термином – «промышленное кондиционирование». Требования к промышленной вентиляции определяются нормативной документацией.
Промышленная вентиляция решает широкий круг вопросов, обеспечивая надлежащие санитарно-гигиенические условия для сотрудников предприятия. Промышленная вентиляция обеспечивает: поддержание параметров микроклимата, предусмотренных для данного производственного объекта (температура воздуха в помещении, его влажность и подвижность), обеспечивает поддержание допустимого уровня концентрации вредных веществ в помещении; обеспечивает пожарную безопасность на производстве.
Следовательно, промышленная вентиляция решает более широкий круг проблем, чем, просто, системам кондиционирования. При проектировании систем вентиляции на промышленных объектах учитывается значительное количество факторов. Поэтому, проектирование промышленных систем вентиляции существенно отличается от проектирования систем кондиционирования.
Промышленная вентиляция должна отвечать многим требованиям — строительным, санитарно-гигиеническим и нормативно-техническим требованиям. Грамотно спроектированная промышленная вентиляция улучшает технологический процесс на производстве.
Подбор вентиляционного оборудования.
Вентиляционное оборудование создаёт надлежащий воздухообмен в производственных помещениях, обеспечивая его принудительную, активную вентиляцию. Необходимо учитывать много факторов при подборе оборудования. Существует 5 основных факторов, влияющих на выбор вентиляционного оборудования:
Тип вентилятора (электродвигатель, корпус, рабочее колесо)
Производительность вентилятора (в зависимости от статического давления)
Энергоэффективность (надёжность работы, уровень шума)
Тип помещения, в котором используется вентилятор
Схема вентиляции помещения
Типы вентиляторов: центробежные, потолочные, радиальные и осевые. Они отличаются по своим техническим параметрам и области применения.
Центробежные вентиляторы создают меньше шума и обеспечивают большее давление, нежели осевые вентиляторы. В тоже время, осевые вентиляторы имеют большую производительность при одинаковых аэродинамических параметрах.
Установка радиальных вентиляторов (более сложных в изготовлении) стоит дороже, нежели осевых вентиляторов. Применение радиальных вентиляторов в системах канальной вентиляции, подразумевает дополнительные расходы на проектирование системы воздуховодов, ее закупку и монтаж, что ещё больше удорожает сам проект вентиляции в целом. Однако, качество в данном случае, обеспечиваемой вентиляции, значительно выше.
От правильного выбора схемы вентиляции, грамотного расчёта системы, её проектирования и монтажа, зависит правильный воздухообмен в помещении, жизнедеятельность людей и, в целом, эффективность работы предприятия.
Промышленная вентиляция, проектирование и монтаж.
Промышленная вентиляция подразделяется на общеобменную и технологическую. Общеобменная промышленная вентиляция компенсирует воздух, удаляемый вытяжками, создает правильный воздушный баланс в помещении. Технологическая вентиляция – это система вентиляции, необходимая для успешного функционирования различных технологических процессов на производстве.
Для устройства систем промышленной вентиляции на предприятиях требуется применение приточной системы: принудительный приток воздуха, необходимый при обработке поступающего воздуха для расчета температуры и обмена воздуха в системах вентиляции. При устройстве вентиляции на промышленных предприятиях отработанный воздух удаляется из помещений принудительно, а также и естественными методами. Для душевых, уборных, химчисток, медицинских объектов, сушильных помещений понадобится отдельная вытяжная вентиляция. В крупных промышленных зданиях необходима установка технологической промышленной вентиляции, учитывающей все особенности данного производства.
Для создания проекта промышленной вентиляции необходимо обращаться к специалистам по проектированию вентиляционных систем. Прежде, чем обращаться к проектировщикам, Вы должны составить на проект техническое задание, которое учитывает следующие параметры по объекту:
Цель и назначение объекта.
Строительные чертежи с размерами и отметками по высотам, и по сторонам, данные по конструкции (обязательно указать материалы перекрытий и стен, размер окон).
Предусмотренные площади снаружи здания для установки оборудования.
Противопожарные нормы безопасности.
Режим работы и план размещения, характеристики вредных источников (углекислый газ, тепло, влага,пыль).
Количество персонала и деятельность, режим работы.
Электрическое освещение помещений (тип, расположение светильников)
Электрическая мощность, имеющаяся тепловая мощность.
Запросы по внутренним параметрам воздуха (влажность, температура).
Уровень шума.
Главная / Вентиляция и аспирация
Вентиляция и аспирация
В отличие от кондиционеров, которые все же не являются предметами первой необходимости, системы вентиляции устанавливаются во всех жилых и офисных зданиях. Наличие вентиляционных систем настолько важно, что требования к их техническим характеристикам регулируются государством и прописаны в Строительных Нормах и Правилах (СНиП). Все это объясняется тем, что при отсутствии вентиляции в закрытых помещениях возрастает концентрация углекислого газа и других вредных веществ. Это негативно сказывается на самочувствии людей, вызывает головную боль, сонливость, потерю работоспособности. Частично проблему можно решить, периодически проветривая помещение, однако в этом случае вместе со свежим воздухом внутрь попадает пыль, разные запахи, уличный шум. К тому же приходится постоянно открывать и закрывать окно или форточку.
Для решения всех этих проблем и существуют системы вентиляции воздуха.
Типы систем вентиляции
При разработке системы вентиляции в первую очередь определяют ее тип.
Классификация типов вентиляционных систем производится на основе следующих основных признаков: -По способу перемещения воздуха: естественная или искусственная система вентиляции -По назначению: приточная или вытяжная система вентиляции -По зоне обслуживания: местная или общеобменная система вентиляции -По кострукции: наборная или моноблочная система вентиляции -Естественная и искусственная система вентиляции
Естественная вентиляция
Создается без применения электрооборудования (вентиляторов, электродвигателей) и происходит вследствие естественных факторов — разности температур воздуха, изменения давления в зависимости от высоты, ветрового давления. Достоинствами естественных системы вентиляции являются дешевизна, простота монтажа и надежность, вызванная отсутствием электрооборудования и движущихся частей. Благодаря этому, такие системы широко применяется при строительстве типового жилья и представляют собой вентиляционные короба, расположенные на кухне и санузлах. Обратной стороной дешевизны естественных систем вентиляции является сильная зависимость их эффективности от внешних факторов – температуры воздуха, направления и скорости ветра и т.д. Кроме этого, такие системы в принципе нерегулируемы и с их помощью не удается решить многие задачи в области вентиляции.
Искусственная или механическая вентиляция
Применяется там, где недостаточно естественной. В механических системах используются оборудования и приборы (вентиляторы, фильтры, воздухонагреватели и т.д.), позволяющие перемещать, очищать и нагревать воздух. Такие системы могут удалять или подавать воздух в вентилируемые помещения не зависимо от условий окружающей среды. На практике, в квартирах и офисах необходимо использовать именно искусственную систему вентиляции, поскольку только она может гарантировать создание комфортных условий.
Приточная и вытяжная система вентиляции
Приточная система вентиляции служит для подачи свежего воздуха в помещения. При необходимости, подаваемый воздух нагревается и очищается от пыли. Вытяжная вентиляция, напротив, удаляет из помещения загрязненный или нагретый воздух. Обычно в помещении устанавливается как приточная, так и вытяжная вентиляция. При этом их производительность должна быть сбалансирована, иначе в помещении будет образовываться недостаточное или избыточное давление, что приведет к неприятному эффекту «хлопающих дверей».
Местная и общеобменная система вентиляции
Местная вентиляция предназначена для подачи свежего воздуха на определенные места (местная приточная вентиляция) или для удаления загрязненного воздуха от мест образования вредных выделений (местная вытяжная вентиляция). Местную вытяжную вентиляцию применяют, когда места выделения вредностей локализованы и можно не допустить их распространения по всему помещению. В этих случаях местная вентиляция достаточно эффективна и сравнительно недорога. Местная вентиляция используется, преимущественно, на производстве. В бытовых же условиях применяется общеобменная вентиляция. Исключением являются кухонные вытяжки, которые представляют собой местную вытяжную вентиляцию. Общеобменная вентиляция, в отличии от местной, предназначена для осуществления вентиляции во всем помещении. Общеобменная вентиляция так же может быть приточной и вытяжной. Приточную общеобменную вентиляцию, как правило, необходимо выполнять с подогревом и фильтрацией приточного воздуха. Поэтому такая вентиляция должна быть механической (искусственной). Общеобменная вытяжная вентиляция может быть проще приточной и выполняться в виде вентилятора, установленного в окне или отверстие в стене, поскольку удаляемый воздух не требуется обрабатывать. При небольших объемах вентилируемого воздуха устанавливают естественную вытяжную вентиляцию, которая заметно дешевле механической.
Наборная и моноблочная система вентиляции
Наборная система вентиляции собирается из отдельных компонентов — вентилятора, глушителя, фильтра, системы автоматики и т.д. Такая система обычно размещается в отдельном помещении — венткамере или за подвесным потолком (при небольшой производительности). Достоинством наборных систем является возможность вентиляции любых помещений — от небольших квартир и офисов до торговых залов супермаркетов и целых зданий. Недостатком — необходимость профессионального расчета и проектирования, а также большие габариты.
В моноблочной системе вентиляции все компоненты размещаются в едином шумоизолированном корпусе. Моноблочные системы бывают приточные и приточно-вытяжные. Приточно-вытяжные моноблочные установки могут иметь встроенный рекуператор для экономии электроэнергии. Моноблочные системы вентиляции имеют ряд преимуществ перед наборными системами:
Поскольку все компоненты расположены в шумоизолированном корпусе, уровень шума моноблочных приточных установок заметно ниже, чем в наборных системах. Благодаря этому моноблочные системы небольшой производительности можно размещать в жилых помещениях, в то время, как наборные системы, как правило, требуется устанавливать в подсобных помещениях или в специально обустроенных вентиляционных камерах.
Функциональная законченность и сбалансированность. Все элементы приточной установки подбираются, тестируются и отлаживаются для совместной работы на этапе производства, поэтому моноблочные системы обладают максимально возможной эффективностью.
Небольшие габариты. Например, моноблочная приточная вентиляционная система производительностью до 500 куб. м в час выполняется в прямоугольном корпусе высотой всего 22 см.
Простой и недорогой монтаж. Установка моноблочной приточной системы занимает несколько часов и требует минимального количества расходных материалов.
Вентиляция кафе, вентиляция ресторана, вентиляция ночного клуба.
Вентиляция предприятий общественного питания состоит из нескольких частей:
1. вентиляция горячего цеха и помещений для приготовления холодных блюд
2. вентиляция зала кафе и бара с танцзалом
3. вентиляция бытовых и офисных помещений / душевые, санузлы, гардероб.
Для расчета систем вентиляции необходимы следующие данные: длина, ширина, высота всех помещений, наличие и размер оконных проемов, противопожарные стены, ориентация здания по странам света — обычно эти данные есть в архитектурно-строительных чертежах или в паспорте БТИ. А также чертежи помещений.
Зачем нужно устанавливать принудительную вентиляцию
Здесь становится особенно актуальным баланс воздуха в помещении: объем приточного воздуха равен объему воздуха, вытягивания из помещения. Абсолютное большинство зданий до последнего времени проветривались с помощью естественной вентиляции: приток свежего воздуха через окна, а вытяжка — через специальные каналы, проложенные в стене дома. Сейчас в окна устанавливаются стеклопакеты. Таким образом, возникает дисбаланс воздухообмена. Теперь воздух проникает в помещение через все щели в доме: через двери, вытяжки из санузлов, вытяжки от каминов и т.п.
В таких случаях, чтобы восстановить нормальную циркуляцию воздуха необходимо подать свежий воздух в помещение с помощью принудительной вентиляции. Некоторые наши клиенты, не понимая того, что у них не хватает притока воздуха, еще больше увеличивают дисбаланс, устанавливая дополнительные вытяжки, рассуждая так, что вытяжка дешевле, чем приток. Особенно актуально грамотно установить принудительную вентиляцию в помещениях кафе, ресторанов и подобных им организаций по ряду причин.
1. Для клиентов стремятся создать комфортную установку, чтобы в залах не было запахов кухни, чтобы сигаретный дым не застаивался в помещении, чтобы не было сквозняков. Сюда подается наибольший объем приточного воздуха, который надо подогреть. Вопрос: где взять энергию. Каждый наш клиент решает эту проблему по-разному, в зависимости от возможностей.
2. Как удалить воздух из кухни от плит и грилей. Мы нередко видим у своих клиентов на кухне, где требуется промышленный зонт, вытяжные зонты годные лишь на то, чтобы их поставить только в квартиру: неудачной конструкции, со слабыми вентиляторами, а иногда и без жироуловителей.
ВНИМАНИЕ! Если вы на вытяжной зонт не установите жироуловитель, наш опыт показал что:
— в такой ситуации вентилятор покроется копотью около 1см через две-три недели. Поэтому его рекомендуется чистить регулярно минимум каждые три недели. Загрязненный вентилятор быстро исчерпает свой ресурс и сгорит.
— воздуховоды на вытяжке без жироуловителя в течение года или полтора покрываются таким слоем сажи, что их обычно выкидывают, так как чистка воздуховодов обойдется примерно так же, как установка новых. Обычно на кухнях устанавливают вытяжные зонты с нержавеющими жироуловителями, которые можно регулярно мыть. Использованный воздух выбрасывается на уровень кровли согласно нормам СниП. Вытяжной зонт должен быть спроектирован так, чтобы он удалял пары от плит, но также не надо забывать, что это все же не аэродинамическая труба. Воздух на кухне обновляется не моментально, а через несколько минут.
При этом, чем мощнее вытяжной зонт, тем сильнее будет дисбаланс воздуха, который надо восстанавливать дополнительным притоком, а, следовательно, использовать дополнительную мощность на обогрев приточного воздуха.
Для устройства вентиляции в кафе или ресторане от Заказчика необходимы следующие данные:
А. План помещений с указанием размеров помещений
Б. Точное количество людей, постоянно находящихся в залах для посетителей.
В. При необходимости учитывается вытяжка из с/узлов и кухни.
Г. Выделяемая мощность на обогрев приточного воздуха.
Д. Наличие помещений для курения и количество курящих (ориентировочно).
Е. Толщина и структура наружных стен.
Ж. Указать предполагаемые места установки приточных и вытяжных установок.
З. Площади плит, грилей и т.п.
И. Теплоизбытки на кухне: потребляемая мощность плит, холодильников, грилей.
Вентиляция в бассейне.
Закрытое помещение бассейна отличается от обычных помещений тем, что от зеркала бассейна отделяется влага, которую необходимо удалить. Это производится вентиляцией и осушением. Вентиляция здесь требует особого внимания, так как влага и запахи выделяются особенно интенсивно.
Значительные средства, вложенные в строительство бассейна оправдываются только в том случае, если в нем поддерживается нужная температура, влажность и скорость воздуха, не говоря уже об удалении отработанного воздуха и вредных запахов. Испарение является решающим фактором при проектировании вентиляции, поэтому нужно стремиться к тому, чтобы оно было по возможности малым. Чем выше температура воды бассейна, тем больше испарение влаги, тем большую производительность должна иметь система вентиляции. Испарение можно уменьшить, избегая высокой температуры воды и поддерживая относительную влажность воздуха насколько это возможно большой. Поэтому контроль влажности имеет важнейшее значение. От переувлажнения страдают металлические материалы, разрушаются ограждающие и несущие конструкции. Превышение относительной влажности 60% приводит к конденсации влаги на поверхности помещения.
Отсутствие вентиляции ведет к увеличению влажности, снижению комфорта, выпадению конденсата, появлению застойных запахов и распространению их по соседним помещениям.
Все это надо учитывать при организации вентиляции в бассейне. Температура воды в бассейне должна поддерживаться в пределах 24-26°С, температура воздуха в бассейне 26-28°С.
При устройстве вентиляции в бассейне необходимо учитывать, что он должен обеспечиваться ОТДЕЛЬНЫМИ приточной и вытяжной системами, не связанными с общеобменными системами вентиляции здания, так как бассейн и основные помещения имеют разные назначения и резко отличающийся тепловлажностной режим. В помещении бассейна нужно держать слабое давление, на 5% ниже атмосферного, (что достигается превышением объёма вытяжки над притоком) для предотвращения распространения влажного воздуха по помещению.
Теплый приточный воздух направляется вдоль остекления, вдоль наружных ограждений, на места установки светильников. Теплый и сухой воздух препятствует конденсации сухого пара и высушивает брызги. Этот метод надеженый, но энергоемкий.
Для экономии энергии и для подстраховки можно в бассейн установить осушитель воздуха. При этом можно уменьшить производительность вентиляции. При правильно подобранном осушителе допустимо установить приточную вентиляцию из расчета 10 м. Куб на 1 кв. м зеркала воды. Этот метод позволит сэкономить на мощности теплоносителя. К тому же в летнее время одной вентиляции недостаточно для поддержания нужной влажности.
Для устройства вентиляции в бассейне от Заказчика необходимы следующие данные:
А. Площадь помещения бассейна
Б. Площадь зеркала воды
В. План помещений с указанием размеров помещений
Г. При необходимости учитывается вытяжка из с/узлов.
Д. Выделяемая мощность на обогрев приточного воздуха.
Е. Толщина и структура наружных стен.
Ж. Указать предполагаемые места установки приточных и вытяжных установок.
З. Температура воздуха бассейна и температура воды в бассейне.
К нам нередко обращаются владельцы частных бассейнов. Площадь зеркала таких бассейнов от 30 до 50 м. Кв
Пример запроса на расчет вентиляции.
А. Площадь помещения бассейна –100 м. Кв, высота потолка 4 м.
Б. Площадь зеркала воды -45 м.кв
В. План помещений с указанием размеров помещений — приложить
Г. При необходимости учитывается вытяжка из с/узлов. — нет
Д. Выделяемая мощность на обогрев приточного воздуха. – не более 25 кВт, (указать т-ру входящей воды, т.к чаще всего в коттедже в качестве источника энергии стоит котел)
Е. Толщина и структура наружных стен. — кирпич — 50см
Ж. Указать предполагаемые места установки приточных и вытяжных установок. А) чердак, Б) подвал, В) бройлерная, Г) другое
З. Температура воздуха бассейна и температура воды в бассейне: т-ра воды –26 град. С, т-ра возд 28 град. С
Вентиляция в коттедже (загородном доме).
При постройке коттеджа все чаще применяются пластиковые окна, которые не пропускают свежий воздух в помещение. Также в домах присутствует один или несколько каминов, кухня и санузлы.
Для топки камина и осуществления тяги необходимо предоставить определенный воздухообмен в камине, этого можно достичь двумя путями: забирать воздух из помещения или путем подачи воздуха непосредственно в камин.
Пример: Один из наших клиентов, у которого была только естественная вентиляция, жаловался, что не может разжечь камин, не открыв при этом дверь на улицу. Зато когда камин разгорался, через системы воздущных каналов дым от камина проникал в бассейн. Все эти пакости происходили из-за несбалансированности воздухообмена в доме).
Для обеспечения баланса вытяжки из кухни и санузлов, а также подачи свежего воздуха в жилые помещения можно воспользоваться системой приточно-вытяжной вентиляции.
Поскольку в загородных домах чаще всего используется автономная система водяного обогрева коттеджа, то для подогрева приточного воздуха зимой можно воспользоваться водяным калорифером. Использование водяного калорифера экономически выгодно в процессе эксплуатации, нежели электрический калорифер который потребляет в процессе работы определенное количество электроэнергии, хотя на этапе комплектации оборудования электрический калорифер, в плане цены, выглядит привлекательнее.
Любая приточная вентиляция комплектуется системой автоматики, которая управляет работой вентилятора, калорифера (устройство для подогрева уличного воздуха зимой), а так же информирует о степени загрязненности фильтрующих элементов. Не стоит забывать и о том, что при подаче воздуха в помещения используются воздуховоды, которые имеют свои расчетные размеры, для того чтобы их не было видно необходимо предусмотреть их декоративную облицовку.
Для устройства вентиляции в коттедже от Заказчика необходимы следующие данные:
А. Поэтажный архитектурный план и консультация с архитектором коттеджа (если он есть).
Б. Указать количество каминов
В. При необходимости учитывается вытяжка из с/узлов и кухни.
Г. Выделяемая мощность на обогрев приточного воздуха.
Д. Наличие помещений для курения.
Е. Толщина и структура наружных стен.
Ж. Указать или продумать совместно со специалистом предполагаемые места установки приточных и вытяжных установок.
И. Предоставить необходимые данные по бассейну (если он есть).
Создание в серверной постоянных параметров климата настолько важно, что в странах Европы сервер не ставят на гарантию, пока в серверной не установят прецизионный кондиционер.
Требования к работе климатического оборудования в серверной следующие:
— Помещения нуждаются в поддержании постоянной температуры и иногда влажности и чистоты воздуха.
— Определенный температурный режим должен поддерживаться круглосуточно и круглый год.
— Установка должна давать сигнал о возникновении неисправности или выходе температуры за рамки допустимого диапазона.
Кондиционирование с помощью прецизионного кондиционера — это наилучший с технической точки зрения – вариант, поскольку:
— поддерживают температуру с точностью до 0,1 град.С
— могут работать при температуре наружного воздуха (-50 ) град.С
— позволяют реализовать любые типы управления
— поддерживают стабильную влажность и чистоту воздуха
— срок службы оборудования превышает 10 лет.
Стоимость таких кондиционеров в 5-10 раз выше, чем бытовой сплит-системы.
Использование в серверной полупромышленного кондиционера является компромиссным вариантом, так как он не предназначен для использования в технологических помещениях. Он гораздо дешевле прецизионного, но имеет следующие минусы.
— поддерживают температуру с точностью до 2 град.С
— могут работать при температуре наружного воздуха не ниже (-25 ) град.С, при установке дополнительного устройства- всесезонного блока
— не могут поддержать влажность и чистоту воздуха
— срок службы обрудования около 4-5 лет.
— Сравнительно большая вероятность отказа, большие траты на ремонт-до 50% от стоимости оборудования.
Особенность серверных – 100%-ое резервирование. Один кондиционер поддерживает заданную температуру, а другой служит резервом на случай неисправности в первом. Логично при этом обеспечить одинаковую выработку ресурса на обоих кондиционерах.
Прецизионные кондиционеры
Прецизионные кондиционеры являются разновидностью колонных кондиционеров, шкафных кондиционеров и, по причине высокой стоимости, имеют довольно узкую область применения – компьютерные залы, телефонные станции и станции систем сотовой связи, высокоточные производства.
Особенности прецизионных кондиционеров
Отличительные черты прецизионных кондиционеров – высокая надежность, высокая точность поддержания требуемых параметров воздуха в помещении (температура +/-10С, влажность +/-2%), способность работы в широком диапазоне температур (нижняя граница до –350С). Подобно другим типам прецизионных кондиционеров, выпускаются в вариантах «только охлаждение» и «тепловой насос». Кроме систем работающих только на фреоне, существуют системы с охлаждаемыми водой теплообменниками а также различные комбинированные системы, в том числе использующие холодный наружный воздух непосредственно для охлаждения помещения (режим free cooling). Дополнительно, все эти кондиционеры могут оснащаться увлажнителями для поддержания требуемого уровня влажности в обслуживаемом помещении.
Монтаж прецизионных кондиционеров
Монтаж прецизионных кондиционеров мало чем отличается от монтажа обычных канальных или шкафных кондиционеров (за исключением монтажа и настройки увлажнителя), но предполагает большую ответственность монтажной организации за качество выполнения работ. Поэтому монтажные работы выполняются наиболее опытными монтажниками со строгим соблюдением технологии монтажа – пайка фреоновых трубопроводов в инертной среде, осушка контура, вакуумирование, дозаправка фреоном и т.д. Отказ кондиционера, предположим, в кафе приведет, в худшем случае, к временному дискомфорту для персонала и посетителей. Выход из строя серверной или телефонного узла, пусть даже временный, из-за отказа кондиционера, может иметь гораздо более серьезные последствия. Поэтому в обслуживаемом помещении обычно устанавливают два комплекта оборудования – рабочий и резервный. Подобная мера, кроме повышения надежности работы системы, позволяет проводить регулярное техническое обслуживание прецизионных кондиционеров, не ставя под угрозу работоспособность основного технологического оборудования.
Современное строительство торговых комплексов характеризуется созданием объемно-планировочных решений с применением многоуровневых пространственных элементов (пассажей, атриумов), с сочетанием различных функциональных зон.
В начальной стадии проектирования необходимо вместе с архитектором и представителем местных пожарных органов определить количество и площадь пожарных отсеков.
Для блокирования распространения продуктов горения при пожаре должны быть системы приточной противодымной вентиляции с механическим побуждением для подачи наружного воздуха и для создания избыточного давления в лестнично-лифтовых узлах, в коридорах и на объединенных выходах. Для ограничения распространения дыма на путях эвакуации применяются системы вытяжной противодымной вентиляции с естественным побуждением через дымовые клапаны (люки), которые размещаются на наклонной остекленной кровле, а также вытяжные системы с механическим побуждением (крышные вентиляторы).
Проектирование систем вентиляции и кондиционирования воздуха выполняется на основании технического задания на проектирование, содержащего исходные данные, требования по обеспечению микроклимата, указания по сроку службы систем, оборудования, а также действующих нормативных документов на проектирование.
Правильный выбор систем вентиляции и кондиционирования с учетом объема помещений и режима работы, интенсивности тепло – влагопоступлений обеспечивает повышение уровня комфорта для пользователя, сокращает эксплуатационные расходы. Вполне отвечают этим требованиям системы с вентиляторными доводчиками (фанкойлами) в комбинации с центральными системами кондиционирования, обеспечивающими подачу достаточного объема очищенного наружного воздуха, (регулирование температуры внутреннего воздуха по отдельным зонам, по рециркуляционному воздуху в доводчиках-фанкойлах).
Системы приточно-вытяжной вентиляции предусматриваются раздельными для групп помещений различного назначения с учетом размещения их в разных пожарных отсеках. Для обеспечения бесперебойной работы систем вентиляции и кондиционирования предусматривается резервирование электродвигателей насосов и вентиляторов для установок, обслуживающих работающие круглосуточно помещения.
Предусматриваются холодильные машины Чиллеры или центральные кондиционеры. Для управления системами вентиляции, кондиционирования, тепло- и холодоснабжения предусматривается автоматизированная система управления. Применение АСУ позволяет оптимизировать процессы управления и регулирования, проведения технологических процессов обработки воздуха по энергосберегающим схемам, заложенным в программе, улучшить надежность работы систем СКВ, обеспечить быстрое обнаружение аварии.
При установке кондиционеров в крупных торговых комплексах как правило протяженность межблочных коммуникаций большая. Здесь используют не просто кассетные или потолочные кондиционеры, а Мульти зональные системы, с внутренними кассетными или потолочными блоками.
В Гипермаркетах, например стоят центральные кондиционеры, руф-топы или чиллеры с фанкойлами.
При монтаже вышеперечисленного оборудования как правило требуется проект, привлекаются высококвалифицированные специалисты. В таких комплексах размещены помещения различного назначения, разный приток посетителей, т.е варьируются тепловые нагрузки. Также на верхних этажах размещают кафе и бары. В комплексе необходимо поддерживать круглогодично оптимальные параметры микроклимата.
Вентиляция в офисе
Основными вредными факторами, возникающими в процессе работы в офисе являются: курение и, иногда, большая заполненность рабочих помещений. В качестве борьбы с табачным дымом можно предложить несколько вариантов: самый радикальный из них – это полностью отказаться от курения на рабочих местах. Если это невозможно, то в помещениях, в которых находятся курильщики необходимо устроить приточно-вытяжную вентиляцию. Причем приток воздуха целесообразно подавать в помещения для не курящих, а вытяжку устраивать из помещений, в которых находятся курильщики.
Для помещений, в которых постоянно находится большое количество человек так же необходимо устроить приточно-вытяжную вентиляцию. Это избавит Вас, Ваших сотрудников и клиентов от нехватки кислорода, которая приводит к понижению работоспособности.
Любая система приточно-вытяжной вентиляции комплектуется системой автоматики, которая управляет работой вентилятора, калорифера (устройство для подогрева уличного воздуха зимой), а так же информирует о степени загрязненности фильтрующих элементов.
Зимой при подогреве приточного воздуха, калорифер потребляет электроэнергию из расчета от 3 кВт/ч, в зависимости от количества подаваемого в помещение воздуха и температуры наружного воздуха. Расчет ведется для температуры -25° С. Не стоит забывать и о том, что при подаче воздуха в помещения используются воздуховоды, которые имеют свои расчетные размеры, для того чтобы их не было видно необходимо предусмотреть их декоративную облицовку.
Для устройства вентиляции в офисе от Заказчика необходимы следующие данные:
А. План помещений с указанием размеров помещений
Б. Точное количество людей, постоянно находящихся в каждом помещении.
В. При необходимости учитывается вытяжка из с/узлов и кухни.
Г. Выделяемая мощность на обогрев приточного воздуха.
Д. Наличие помещений для курения.
Е. Толщина и структура наружных стен.
Ж. Указать предполагаемые места установки приточных и вытяжных установок.
Типичная приточно- вытяжная вентиляция в небольших офисах, это приток до 1000 м. Куб/час с подогревом от электрического нагревателя. Разводка чистого воздуха по помещениям через гибкие воздуховоды, спрятанные за подвесным потолком типа армстронг и подача его через потолочные диффузоры непосредственно в помещения. Для системы приточной и вытяжной вентиляции отводится специальное отдельное помещение. Там же устанавливается шкаф управления системами.
При проектировании системы вентиляции в первую определяют ее тип.
Классификация типов вентиляционных систем производится на основе следующих основных признаков: по способу перемещения воздуха: естественная или искусственная система вентиляции; по назначению: приточная или вытяжная система вентиляции; по зоне обслуживания: местная или общеобменная система вентиляции.
ЕСТЕСТВЕННАЯ ВЕНТИЛЯЦИЯ
Естественная вентиляция помещений обуславливается разностью температур наружного и комнатного воздуха и силой ветра. Ветровой напор воздуха оказывает на одну сторону здания давление, вгоняя воздух в помещение, а с подветренной стороны за счет разрежения отсасывает воздух из помещения. Воздухообмен зависит от вида строительного материала стен здания. Дерево и кирпич хорошо пропускают воздух. Бетонные стены (особенно окрашенные масляной краской) и цементная штукатурка значительно снижают воздухопроницаемость. В целях усиления естественной вентиляции прибегают к проветриванию помещений через окна, форточки, фрамуги.
С целью усиления естественной вентиляции в стенах жилых домов прокладывают вытяжные вентиляционные каналы. В жилых зданиях отверстия вытяжных каналов обычно находятся в кухне, в ванной и туалете. Канал заканчивается на крыше специальной насадкой — дефлектором, который усиливает отсасывание воздуха за счет силы ветра. В современных жилищах системы вентиляции с канальной вытяжкой не всегда обеспечивают удаление из квартиры воздуха. Летом нередко возникает неблагоприятное явление, называемое «опрокидыванием тяги». Под действием солнечных лучей крыша нагревается, нагревается и воздух на крыше. В результате изменяется направление движения воздушных масс и естественная вытяжная система превращается в естественнуб приточную систему. В этих случаях через вентиляционные каналы в помещения поступают посторонние запахи и пыль, что создает опасность распространения грязи и инфекций из одной квартиры в другие. Для предотвращения данного явления и улучшения воздухообмена в вытяжной канал можно вмонтировать электрический вентилятор для создания принудительного воздухообмена.
ВЕНТИЛЯЦИЯ С МЕХАНИЧЕСКИМ ПОБУЖДЕНИЕМ (ИСКУССТВЕННАЯ ВЕНТИЛЯЦИЯ)
Если в системах вентиляции используется оборудование (вентиляторы), позволяющее перемещать воздух по каналу на значительные расстояния, то такая система вентиляции называется вентиляцией с механическим побуждением. Такие системы могут подавать и удалять воздух из локальных зон помещения в требуемом количестве, независимо от изменяющихся условий окружающей воздушной среды. При необходимости воздух подвергают различным видам обработки (очистке, нагреванию, увлажнению и т.д.), что невозможно в системах естественной вентиляции. Система вентиляции с механическим побуждением требует затрат на электроэнергию и на объектах, имеющих большие площади, эти затраты являются довольно существенными.
Следует отметить, что в практике часто предусматривают так называемую смешанную вентиляцию, то есть одновременно и естественную вентиляцию и вентиляцию с побуждением. В каждом конкретном проекте определяется, какой тип вентиляции является наилучшим в санитарно-гигиеническом отношении, а также экономически и технически более рациональным.
ПРИТОЧНАЯ ВЕНТИЛЯЦИЯ
Приточные системы — один из видов вентиляции с механическим побуждением, служат для подачи в вентилируемые помещения свежего воздуха взамен удаляемого отработанного. Приточный воздух, как правило, подвергается специальной обработке (очистке, нагреванию, увлажнению и т.д.) с помощью соответствующего дополнительного оборудования.
ВЫТЯЖНАЯ ВЕНТИЛЯЦИЯ
Вытяжная вентиляция удаляет из помещения загрязненный, нагретый, отработанный воздух.
При проектировании в помещениях предусматривают как приточные, так и вытяжные системы вентиляции, при этом строго следят за балансом притока и вытяжки. Проектировщики учитывают возможность поступления воздуха от приточной системы в смежные помещения (которые она не обслуживает) или наоборот из смежных помещений. В помещениях может быть предусмотрена только вытяжная или только приточная система вентиляции. Недостаток (дисбаланс) притока или вытяжки восполняется естественным путем. Если в помещении имеется вытяжная система без притока, воздух поступает в данное помещение снаружи или из смежных помещений через специальные проемы, переточные решетки, неплотности в дверях и окнах. Если в помещении приточная система без вытяжки — ситуация обратная — воздух удаляется из данного помещения наружу или перетекает в смежные помещения теми же способами.
И приточная и вытяжная системы вентиляции могут обслуживать как отдельные рабочие места (местная вентиляция), так и все помещение в целом (общеобменная вентиляция).
МЕСТНАЯ (ЛОКАЛЬНАЯ) ВЕНТИЛЯЦИЯ
Система вентиляции называется местной в случае подачи воздуха в определенную (локальную) зону помещения или прямо к рабочим местам (местная приточная вентиляция) или удаления загрязненного воздуха непосредственно от мест образования вредных выделений (местная вытяжная вентиляция).
Местную вытяжную вентиляцию применяют, когда места выделения вредных веществ в помещении локализованы и стационарны (например неподвижный сварочный пост). Используя локальные вытяжки мы не допускаем распространении вредных веществ по всему помещению. Местная вытяжная вентиляция в производственных помещениях обеспечивает улавливание и отвод вредных выделений: газов, дыма, пыли и, частично, выделяющегося от оборудования тепла.
Для вытяжки на местах применяются местные отсосы с различными типами укрытий (укрытия в виде шкафов, бортовые, в виде кожухов у станков и др.)
Местные вытяжные системы вентиляции, как правило, весьма эффективны, так как позволяют удалять вредные вещества непосредственно от места их образования /выделения, не давая им распространиться по помещению. Благодаря отводу значительной концентрации вредных веществ (паров, газов, пыли), обычно удается достичь хорошего санитарно-гигиенического эффекта при небольшом объеме удаляемого воздуха.
ОБЩЕОБМЕННАЯ ВЕНТИЛЯЦИЯ
Общеобменные системы вентиляции — как приточные, так и вытяжные — предназначены для вентиляции в всего помещения вцелом или значительной его части. Общеобменные вытяжные системы относительно равномерно удаляют воздух из всего обслуживаемого помещения, а общеобменные приточные системы подают воздух и распределяют его по всему объему вентилируемого помещения
ОБЩЕОБМЕННАЯ ПРИТОЧНАЯ ВЕНТИЛЯЦИЯ
Общеобменная приточная вентиляция устраивается для ассимиляции избыточного тепла и влаги, разбавления вредных концентраций паров и газов, не удаленных местной вентиляцией и общеобменной вытяжной вентиляцией, а также для обеспечения расчетных норм и свободного дыхания человека в рабочей зоне.
При отрицательном тепловом балансе, то есть при недостатке тепла, общеобменную приточную вентиляцию устраивают с механическим побуждением и с подогревом всего объема приточного воздуха. Как правило, перед подачей воздух очищают от пыли.
ОБЩЕОБМЕННАЯ ВЫТЯЖНАЯ ВЕНТИЛЯЦИЯ
Простейшим типом общеобменной вытяжной вентиляции является отдельный вентилятор (обычно осевого типа) с электродвигателем на одной оси, расположенный в окне или в отверстии стены. Такая простейшая (аскетичная) система удаляет воздух из ближайшей к вентилятору зоны помещения, осуществляя лишь общий воздухообмен.
Вытяжная система может иметь протяженный вытяжной воздуховод. Если длина вытяжного воздуховода превышает 30-40 м. и соответственно потери давления в сети составляют более 30-40 кг/кв.м., то вместо осевого вентилятора устанавливается вентилятор центробежного типа. Когда вредными выделениями в цехе являются тяжелые газы или пыль и нет тепловыделения от оборудования, вытяжные воздуховоды прокладывают по полу цеха или выполняют в виде подпольных каналов.
В промышленных зданиях, где имеются разнородные вредные выделения (теплота, влага, газы, пары, пыль и т.п.), и их поступление в помещение происходит в различных условиях (сосредоточенно, рассредоточено, на различных уровнях и т.п.), часто невозможно обойтись локальной вытяжной системой. В таких помещениях для удаления вредных выделений, которые не могут быть локализованы и поступают в воздух помещения, применяют общеобменные вытяжные системы.
Местная и зональная система вентиляции. Заказать проектные работы систем вентиляции
Местная и зональная вентиляция и аспирация
Наша проектно-монтажная компания предлагает комплексное решение задач по проектированию инженерных систем любого уровня сложности, подбор оптимального оборудования для систем промышленной вентиляции в соответствии с техническим заданием и пожеланиями заказчика, а также монтаж «под ключ» и пуско-наладочные работы.
При обустройстве систем механической вентиляции на объекте наша компания, для снижения материальных затрат на монтаж и эксплуатацию, предлагает Вам зональную и местную систему вентиляции.
Зональная система вентиляции обеспечивает подачу и удаление воздуха с заданными параметрами расхода, температуры, влажности, чистоты и прочего в отдельные помещения здания или объекта, которые выделяют в зоны вентиляции по критериям Технического задания и пожеланий Заказчика.
Зональную систему вентиляции специалисты нашей компании проектируют для больших помещений (торговый центр, производственный цех и прочее). Наружный воздух подается в рабочее пространство помещения через эжекционные или центробежные воздухораспределители, которые создают допустимые скорости перемещения воздуха в помещении.
Рис.1. Секция воздуховода с эжекционными воздухораспределителями.
Местная система вентиляции обеспечивает подачу и удаление воздуха из определенной части помещения или от рабочего места. Устройства местной вытяжной вентиляции специалисты нашей компании проектируют в виде местных и бортовых отсосов, укрытий, вытяжных шкафов, защитно-обеспыливающих кожухов, всасывающих панелей и прочего оборудования.
Рис.2. Устройство местной вытяжной вентиляции ЕМК-1600, производства СовПлим.
Местная вытяжная вентиляция более экономична по сравнению с общеобменной вентиляцией, так как удаляется меньший и наиболее загрязненный объем воздуха из помещения. Местная вытяжная вентиляции должна полностью накрывать источник загрязнения и располагаться в непосредственной близости от него. Величина разряжения в приемном устройстве укрытия и скорость потока в вытяжном воздуховоде обеспечивают полное удаление загрязняющих веществ из рабочего пространства помещения.
Устройства местной приточной вентиляции специалисты нашей компании проектируют в виде воздушных душей, воздушно-тепловых завес, специальных камер и укрытий, оазисов чистого воздуха и прочего. Местная приточная вентиляция обеспечивает в рабочей зоне помещения требуемых метеорологических условий и является экономически выгодной.
Рис.3. Воздушно-тепловая завеса Olefini KEH-43.
Воздушно-тепловые завесы монтируются у ворот и входных дверей, которые не имеют тамбура и открываются более пяти раз в час. Мы предлагаем Вам воздушно-тепловые завесы производства 2VV (Чехия), DEFENDER (Польша), OLEFINI (Греция), NEOCLIMA и АОВ (Украина) и прочие.
Наша компания, имея многолетний опыт в проектировании, монтаже, пуско-наладке и сдаче в эксплуатации инженерных систем зданий и объектов (вентиляции, кондиционирования, отопления, аспирации, водоснабжения, водоотведения, электрификации и прочего) с готовностью поможет Вам в консультации, подборе оборудования, составлении Технического задания и выполнении проекта, чтобы на Вашем предприятии всегда был комфортный микроклимат, для полноценной и высококачественной работы людей и оборудования.
1. Проектирование зональной системы вентиляции.
При проектировании зональной системы вентиляции наши специалисты предоставляют Вам два варианта на рассмотрение:
Вариант 1. Выделенную зону помещений в здании или на объекте обслуживает обособленная приточно-вытяжная система вентиляции с рекуперацией тепла.
Для варианта №1 мы предлагаем Вам приточные, вытяжные, приточно-вытяжные модульные или наборные вентиляционные установки производства DAIKIN и HITACHI (Япония), BLAUBERG и FISCHBACH (Германия), HELIOS и RUCK (Германия), Ostberg и SYSTEMAIR (Швеция), VTS и DOSPEL (Польша), VENTS и ВЕЗА(Украина) и прочие. Данные установки имеют в своем комплекте следующие секции и агрегаты: входная и выходная секция, секция фильтрования, шумоглушитель, рекуператор пластинчатый или роторный, калорифер, охладитель, вентилятор. В соответствии с Техническим заданием и Вашими пожеланиями данные установки дополнительно комплектуются следующими секциями: секция рециркуляции, секциями увлажнения и осушения, автоматикой управления, безопасности и контроля, дополнительными нагревателями от вторичных источников тепла (тепловые насосы, солнечные коллектора, абсорбционные машины и прочие), секция особой фильтрации.
Наши специалисты осуществляют проект, сборку, монтаж, пуско-наладочные работы и передачу в эксплуатацию вентиляционной системы «под ключ» в соответствии с ГОСТами, нормами, инструкциями и правилами. А также проводят для Вас консультации и семинары, защищают Ваш проект в государственной экспертизе и разрешительных инстанциях, осуществляют гарантийный и послегарантийный ремонт и обслуживание Вашей вентиляционной системы.
Вариант-2. На обособленную ветку воздуховодов, которые обслуживают выделенную зону помещений, устанавливаются дополнительные фильтры, калориферы, воздухоохладители, доводчики и регуляторы расхода с автоматической регулировкой.
Для варианта №2 мы предлагаем Вам оборудование вышеперечисленных производителей, а также продукцию AEROSTAR (Украина), ASYS, LESSAR (Чехия), Soler Palau (Испания), SALDA (Литва), KOMFOVENT (завод UAB AMALVA Литва), BAHCIVAN (Турция) и прочих.
Рис.4. Поэтажная зональная система вентиляции здания с рекуперацией тепла.
2. Проектирование местной системы вентиляции.
Местную систему вентиляции наши специалисты проектируют для технического оборудования и технологических процессов, при работе которых выделяются вредные вещества, в соответствии со строительными и санитарными нормами.
Устройства местной системы вентиляции (местные отсосы) либо встраиваются в данное оборудование, либо максимально приближаются к зоне выделения вредных веществ. При удалении воздуха из помещений местной системой вентиляции, которые содержат вредные или неприятно пахнущие вещества, наши специалисты проектируют и монтируют специализированные фильтры очистки и аспирационные системы производства СовПлим (Украина), SYSTEMAIR (Швеция), HEPA (США), Remak (Чехия), Rosenberg (Германия) и прочих.
Рис. 5. Аспирационные установки СовПлим с электростатическими фильтрами.
Специализированные фильтры очистки и аспирационные системы являются наиболее эффективными по качеству и стоимости очистки удаляемого воздуха в процессе эксплуатации вентиляционной системы. Выделение пыли в Вашем помещении или здании – это часто встречающаяся и трудно локализуемая вредность. Пыль многообразна по составу и свойствам, условиям выделения и действию, оказываемому на человека. Классификация пыли может быть произведена по различным признакам.
Борьба с пылью при помощи общеобменной вентиляции почти не дает эффекта. Как правило, пыль должна улавливаться в месте ее образования при помощи местных отсосов. Поэтому наши специалисты проектируют аспирационные системы с учетом Ваших пожеланий и требований технологии и строительных нормативов.
Для систем вентиляции наша компания предлагает Вам новейшие разработки в области климатической техники, современные технологии производства и большой выбор высококачественного и эффективного оборудования от ведущих производителей вентиляционного оборудования.
Рис.6. Зонты местной вытяжной системы вентиляции на кухне ресторана.
Заказать проектные работы зональной или местной системы вентиляции по самым выгодным ценам
При проектировании систем вентиляции наши специалисты по максимуму автоматизируют систему с использованием датчиков температуры, влажности, загазованности и запыленности наружного и внутреннего воздуха, применяют многоканальные контроллеры, выбирают высокоэффективные комплектующие для щитов автоматики (реле, УЗО, пускатели, привода и прочее).
Для систем автоматизации мы предлагаем Вам продукцию DANFOSS (Дания), HONEYWELL (США), Schneider Electric (Франция), SYSTEMAIR (Швеция), OWEN и РАУТ (Украина), LARS (Польша) и прочих.
Специалисты нашей компании проектируют и монтируют для Вас инженерные системы здания или объекта, куда входят вентиляция, кондиционирование, отопление, осушение и увлажнение воздуха, водоснабжение, альтернативная энергетика, комплексная система пожарной безопасности и прочее.
Высокая квалификация и опыт наших специалистов в проектировании, монтаже и пуско-наладке позволяют Вам избежать ошибок, которые встречаются при обустройстве систем вентиляции. К таким ошибкам относятся: определение воздухообмена по одному критерию, занижению поперечного сечения воздуховодов, недостаточная тепло- и звукоизоляция воздуховодов и вентиляционного оборудования, некачественный монтаж воздуховодов, низкий уровень регулирования расхода воздуха на ветках и решетках, повышенная вибрация от вентиляторов и насосов, несбалансированность системы вентиляции и прочее.
Наша компания может предоставить Вам дополнительные услуги специалистов, в виде консультации, выезд специалиста на объект, защита проекта в органах государственной экспертизы, проведение паспортизации инженерной системы здания или объекта.
Наши приоритеты — это надежность, качество и эффективность, поэтому сотрудничая с нами, Вы имеете возможность по достоинству оценить все преимущества работы с профессионалами!
Местная вытяжная вентиляция (LEV) и рычаги захвата источников
Air Quality Engineering использует проверенные технологии и широкий спектр оборудования для контроля вредных промышленных загрязнителей, таких как туман охлаждающей жидкости, сварочный дым и шлифовальная пыль.
Плечи для захвата источника от Air Quality Engineering — это результат мнений наших клиентов и многих лет инженерных разработок. Мы понимаем, что одним из самых больших препятствий к использованию оружия для захвата источника является простота использования.Следовательно, наши новые руки проходят испытания на предмет простоты перемещения и устойчивости после установки. В то время как старые конструкции имели тенденцию «пружинить», новая конструкция параллельного рычага позволяет рычагу сохранять свое положение даже при полностью вытянутом состоянии. И это устранит отдачу, когда рукоять будет расположена ближе к ее креплению. Оружие спроектировано с минимальным внутренним ограничением, обеспечивающим максимальный воздушный поток. Конструкция рычага также включает компоненты с минимальным износом для обеспечения длительного срока службы.
Характеристики и преимущества:
- Гладкая внутренняя поверхность для минимальных потерь на трение и максимального воздушного потока
- Конструкция вытяжки, разработанная CFD для максимальной эффективности захвата
- Плечи диаметром 6 дюймов и 8 дюймов производятся длиной 13 футов в соответствии с вашими потребностями.
- Дополнительный кожух со светодиодной подсветкой для максимальной яркости при минимальном потреблении энергии
- Дополнительные элементы управления вентилятором, устанавливаемые на капоте, для удобства пользователя и удобства работы
- Конструкция с параллельными рычагами позволяет удерживать рычаг в нужном вам положении
- Простота установки — руку можно установить одной рукой
- Дополнительный запорный клапан для установки с несколькими рукавами
Коническая конструкция кожуха уловителя источника является результатом интенсивных усилий по моделированию и разработке наиболее эффективной и практичной конструкции кожуха с использованием передовых программ вычислительной гидродинамики.Эти программы используют численный анализ, чтобы эффективно и точно моделировать схему воздушного потока на входе в вытяжку и максимизировать скорость захвата как можно дальше от вытяжки. Это снижает вероятность ошибки пользователя и позволяет более гибко позиционировать вытяжку.
ПродукцияAQE2000 Воздухоочиститель для удаления сварочного дыма и других промышленных применений
Переносной картридж с системой очистки сжатым воздухом.
ПодробнееПолучить предложениеПортативный промышленный воздухоочиститель Porta Air
Переносной картридж без системы очистки сжатым воздухом.Сравните с AQE2000, но без импульсной системы.
ПодробнееПолучить предложениеСтруйный пылеуловитель AQE4000
Система очистки сжатым воздухом с верхним картриджем, подходящая для больших количеств сухой пыли.
ПодробнееПолучить предложениеПромышленные воздушные фильтры M32V
Небольшая промышленная портативная система улавливания источников. Идеально подходит для небольших сварочных работ.
ПодробнееПолучить предложениеM66V Media Air Filtration Systems
Крупная портативная система захвата промышленного источника.Крупнейшие носители, портативные устройства, которые мы можем предложить.
ПодробнееПолучить предложениеF33V Система фильтрации воздуха
Портативная небольшая промышленная электростатическая установка. Подходит для захвата источника.
ПодробнееПолучить предложениеM33V Система фильтрации воздуха
Небольшая промышленная портативная система улавливания источников. Немного выше, чем M32V, для размещения более длинных рукавных фильтров.
ПодробнееПолучить предложениеВоздухоочистители с фильтром HEPA: портативные очистители воздуха M68V
Портативный промышленный воздухоочиститель с HEPA-фильтром.Этот воздухоочиститель предназначен только для улавливания источника.
ПодробнееПолучить предложение
Получить предложение
(PDF) Применение локальной вытяжной системы вентиляции и интегрированных коллекторов для контроля за загрязнителями воздуха на горнодобывающей компании
F GHORBANI SHAHNA et al.
456
Industrial Health 2012, 50, 450–457
концентрация на выходе из циклонов до 150 мг / м3 для
почти полевого стандарта).Эта эффективность может быть легко обеспечена
с помощью трубки Вентури.
Абсорбция SO2 трубкой Вентури очень хорошая, как показано
на рис. 3. Хорошая растворимость SO2 в воде и относительно низкая скорость газа в горловине
были основными факторами для этой эффективности
. Более низкая скорость газа в горловине Вентури приводит к увеличению соответствующего времени пребывания
3, 12). Эффективность удаления
SO2 зависела от концентрации газа
и скорости газа.Исследование, проведенное Bowden et al.
показал, что эффективность удаления через трубку Вентури составляла 20–30%
для введенной концентрации SO2 5–10 ppm24), в то время как
средняя концентрация SO2 в нашем исследовании составляла
400–500 ppm. Исследование Noujoumi показало, что скруббер Вентури
имел эффективность удаления 23–98% 25).
Добавление щелочи в воду для регулирования промывочной жидкости при pH
из 8 может повысить эффективность удаления SO226).Поглощение SO2-
в трубку Вентури может быть полезным для удаления h3S в скруббере с набивным слоем
, поскольку щелочная промывочная жидкость потребляет
большей его части.
Изменение эффективности удаления h3S с помощью трубки Вентури связано с
введенной концентрацией h3S и присутствием других загрязнителей —
муравьев в пропущенном потоке. Этот результат аналогичен исследованию Bowden
24), в котором эффективность составляла 20–30%. Maree et al.
показали, что использование раствора Fe (III) в качестве абсорбирующей жидкости
в трубке Вентури может обеспечить эффективность удаления h3S около
30–75% 27).Как правило, трубка Вентури имеет эффективность удаления h3S от
от низкой до умеренной, что в основном связано с его низкой растворимостью
.
Эффективность скруббера с насадкой для удаления
h3S была доказана несколькими исследованиями28–32). Смеси щелочи
NaOH и NaOcl в качестве абсорбирующей жидкости имеют хорошую эффективность
для удаления h3S в скруббере с насадками4).
Наилучшая эффективность удаления h3S при pH 11–13 была перенесена Jian G.Lua et al.30) и Brettschneider et al.31).
Это исследование пришло к выводу, что комбинация циклонов
со скрубберами может обрабатывать различные загрязнители с допустимой эффективностью
. Средняя эффективность удаления частиц с помощью циклона
и скруббера Вентури составила 94,02% и 78,47%,
соответственно, в то время как 98,72% частиц были удалены с помощью их комбинации
. Эта комбинация снизила максимальную концентрацию пыли
м3 с 11 012 мг / м3 до
139.1 мг / м3 (после Вентури), содержание SO2 уменьшилось с 848 ppm до
4 ppm, а содержание h3S уменьшилось с 248,8 ppm до 4,6 ppm до
в дымовой трубе. Средняя эффективность удаления SO2 и h3S
была увеличена до 99,1% и 95,95% за счет комбинации
скрубберов Вентури и скрубберов с уплотненным слоем. Ожидаемая концентрация
для всех трех изученных загрязнителей в наихудших условиях выбросов
была снижена ниже экологических стандартов.
Результаты этого проекта показали, что интегрированные коллекторы
для этого процесса с особыми техническими, экономическими условиями и условиями окружающей среды
могут быть желательным вариантом, а
рекуперация и повторное использование собранной пыли — хороший подход
на компенсацию капитальных и эксплуатационных затрат.
Ссылки
1) Agarwal SK (2009) Загрязнение воздуха. APH Publishing, New
delhi.
2) Ван Л.К., Перейра, Северная Каролина, Хунг Ю.Т. (2004) Загрязнение воздуха
Инженерия управления. Human Press Totowa, Нью-Джерси.
3) Теодор Л. (2008) Оборудование для контроля загрязнения воздуха
расчет. Джон Вили и сыновья, Хобокен.
4) Chen L, Huang J, Yang CL (2001) Поглощение h3S в
водном растворе каустика NaOCl. Environ Prog 20, 175–81.
[CrossRef]
5) Черемисинов Н.П. (2002) Справочник по предотвращению и контролю загрязнения атмосферного воздуха
. Elsevier Science, Woburn:
Баттерворт-Хайнеманн.
6) Департамент здравоохранения и социальных служб, Общественное здравоохранение
Служба, Центры по контролю заболеваний, Национальный институт
Охрана труда (2003) Руководство NIOSH по
аналитическим методам. 4-е изд., Публикация DHHS (NIOSH)
№ 2003–154 (3-е приложение) Цинциннати.
7) Министерство труда, безопасности и гигиены труда США
Администрация (1996) Безопасность и гигиена труда
Руководство по угольной пыли (<5% SiO2). Вашингтон. DC
[цитировано 7 декабря 2011 г.]; Доступно по адресу: http: //www.osha.
gov / SLTC / healthguidelines / Coaldust-less5percentsio2 /
признание.html.
8) Clarke AG (1998) Мониторинг промышленного загрязнения воздуха
Выбросы газов и твердых частиц, 1-е изд., Chapman &
Hall.
9) Американская конференция правительственных промышленных предприятий
Гигиенистов (ACGIH) (2010) Промышленная вентиляция, A
Руководство по рекомендуемой практике. 27-е изд., ACGIH®
Signature Publication, Цинциннати.
10) Bahrami A, Ghorbani F, Mahjub H, Golbabei F, Aliabadi
M (2009) Применение традиционного циклона с распылительным скруббером
для удаления взвешенных в воздухе частиц кремнезема, выбрасываемых
камнедробильных фабрик.Ind Health 47, 436–42. [Medline]
[CrossRef]
11) Tsai CJ, Li SN, Wu ZX, Wang FC (2005) Эффективная система скруббера Вентури
для удаления субмикронных частиц из выхлопных газов
. J Air Waste Manag Assoc. 55, 319–25. [Medline]
[CrossRef]
12) Учебный институт по загрязнению воздуха, Агентство по охране окружающей среды США
(1998) Урок 3: Газовая фаза, контактирующая с скрубберами
. Учебный курс: обзор плана мокрого скруббера,
Курс APTI: SI-412C.http://yosemite.epa.gov/oaqps/
EOGtrain.nsf / fabbfcfe2fc93dac85256afe00483cc4 / 77c1b2
74ace3a6e685256b6b00731233 / $ FILE / si412c_lesson3.pdf.
13) Schnelle KB, Brown CA (2002) Контроль загрязнения воздуха
Решение для местной вентиляции для больших источников теплых выбросов | Анналы рабочих экспозиций и здоровья
Аннотация
В литейной линии загрязнения выбрасываются с большой площади. Пары от литья включают как летучие, так и твердые соединения.Летучая фракция содержит углеводороды, тогда как фракция твердых частиц в основном представляет собой смесь испаренных паров металлов. Пары от литья ухудшают качество воздуха в литейных цехах. Проектирование местной вентиляции литейного участка представляет собой сложную задачу из-за большой площади разливки и конвекционных шлейфов из теплых литейных форм. Решение для местной вентиляции в зоне литья в форму было разработано и рассчитано с помощью расчетов вычислительной гидродинамики (CFD). Согласно расчетам, наиболее эффективным решением была двухтактная система вентиляции.Прототип двухтактной системы был построен и испытан в реальной эксплуатации на литейном заводе. Выталкивающий поток создавался свободной плоской струей, которая проходила через разливочную площадку шириной 10 м в сторону вытяжного колпака на противоположной стороне линий разливки. Эффективность улавливания прототипа определялась методом индикаторного газа. Измеренная эффективность улавливания с толкающей струей варьировалась от 40 до 80%, в зависимости от расстояния между источником и выхлопом. С помощью проталкивающего потока средняя эффективность захвата была увеличена с 40 (без струи) до 60%.
ВВЕДЕНИЕ
В литейных цехах дым от литья, распространяемый конвекционными струями, включает как летучие, так и твердые соединения. При литье расплавленный чугун вызывает испарение и реакцию некоторых органических соединений из литейной формы. Могут образовываться токсичные соединения, такие как окись углерода (СО) и полициклические ароматические углеводороды (ПАУ). Эти токсичные соединения и испарения металлов, распространяемые конвекционными струями, представляют опасность для здоровья сотрудников.Пары могут вызывать раздражение верхних дыхательных путей и глаз, а также астму.
Чтобы уменьшить воздействие на рабочих, переносимые по воздуху загрязнители должны удаляться с помощью эффективной местной системы вентиляции. Однако загрязняющие вещества, обладающие плавучестью и выбрасываемые с большой территории, представляют собой проблему для системы вентиляции. Хорошо известно, что дистанция управления вытяжным колпаком очень ограничена. Использование простого подвесного кожуха также ограничено из-за требований доступа мостового крана.Одним из возможных решений для управления такими большими источниками является двухтактная система вентиляции, при которой струя воздуха выдувается с одной стороны области источника, а воздух всасывается кожухом с противоположной стороны. По пути прохождения воздуха струи загрязняющих веществ индуцируются воздушной струей и переносятся в вытяжной колпак. Основные расчетные значения для двухтактных систем вентиляции были даны Американской конференцией государственных специалистов по промышленной гигиене (ACGIH, 1995). Двухтактная система вентиляции предназначена для: литейного производства / сварки (Komine et al ., 1997), пары припоя в электронной промышленности (Cherrie et al ., 1997; Watson et al ., 2001) и открытые резервуары (Robinson and Ingham, 1995; Woods and McKarns, 1995; Marzal et al ). ., 2002а, б; 2003а, б). Робинсон и Ингхэм (1996) сравнили существующие инструкции по проектированию и вывели рекомендации для двухтактных систем, в которых приточный воздух образует двухмерную стенку.
Вычислительная гидродинамика (CFD) была применена к двухтактным системам вентиляции (Flynn et al ., 1995; Робинсон и Ингхэм, 1996; Рота и др. ., 2001). Решения CFD предоставляют хорошие возможности для сравнения различных вентиляционных решений. Можно исследовать производительность различных систем вентиляции в зависимости от различных геометрических конфигураций и рабочих параметров. Результаты таких исследований улучшают понимание различных систем вентиляции и позволяют получить расчетные значения расхода выталкивающей струи и выхлопных газов.
Хотя настоящие рекомендации полезны для настенных струйных систем, они могут быть неточными для ситуаций, когда подающая струя образует свободную струю.Кроме того, все предыдущие исследования имели дело с меньшими размерами. Более того, в литейных цехах источник загрязнения является плавучим, что усложняет ситуацию с потоком и определение размеров.
В этом исследовании CFD использовалась в предварительных исследованиях, чтобы помочь в выборе оптимального решения для локальной вытяжки для участка литья в литейном цехе. На основании результатов для апробации было выбрано двухтактное решение. Опытный образец системы, состоящей из выталкивающей воздушной форсунки и вытяжного колпака, был разработан и сконструирован для установки в литейном цехе.Затем разработанная модель была подтверждена экспериментальными измерениями.
МАТЕРИАЛЫ И МЕТОДЫ
Описание работы, участка литья и общей вентиляции
Исследование проводилось в литейном цехе с четырьмя линиями разливки длиной 28 м каждая. Ширина участка разливки составляла 10 м. При отливке формы заполнялись расплавленным металлом. После заполнения формы отливкам давали остыть на конвейерных линиях. Выбросы из литейных форм в воздух на рабочем месте происходили во время периода охлаждения в течение ∼4 часов.ПАУ могут образовываться в процессе неполного сгорания формовочного песка и связующих. Основными компонентами ПАУ в фазе частиц были флуорантен, фенантрен, пирен и антрацен, а в газовой фазе основными компонентами были нафталин, фенантрен, антрацен, флуорен и пирен. ПАУ считаются канцерогенными веществами, наиболее важными органами-мишенями которых являются легкие и кожа. Рабочие перемещались по разливочной площадке в основном во время заливки форм.
Время литья ∼15 мин.Рабочие оставались на участке литья только во время заполнения форм. Основные выбросы из литейных форм произошли в течение 4-часового периода охлаждения.
Вытяжная вентиляция литейного цеха была оборудована крышными вентиляторами и топочными вытяжками с общим расходом отработанных газов 76 м 3 с −1 . Зал имел высоту 10 м и позволял загрязнителям воздуха расслаиваться с поднимающимися конвекционными потоками в верхнюю часть зала, где воздух выпускался. Рядом с литейной площадкой находились две большие двери, которые открывались при перемещении сырья внутрь.Это вызвало попадание больших потоков холодного воздуха в зону литья во время периодов нагрева.
Решения для местной вентиляции
Чтобы сравнить возможные альтернативы, CFD-моделирование с использованием граничных условий, описанных в следующем разделе, было выполнено для изучения производительности различных решений. Мнения пользователей учитывались, чтобы решение работало и на практике, и чтобы оно как можно меньше мешало работе. Были смоделированы четыре решения местной вентиляции (рис.1): По расчетам CFD наиболее эффективной оказалась двухтактная система вентиляции. Эффективность захвата цели 90% была достигнута при минимальном расходе вытяжного воздуха (1,6 м 3 с −1 м −1 ) с помощью двухтактной системы вентиляции (рис. 2). Вторым по эффективности оказался нисходящий отсос между литейными линиями с расходом отработанного воздуха 1,8 м 3 с −1 м −1 . Используя вытяжку с усиленной струей (вытяжку Aaberg) на стене, можно было удалить только пары от двух ближайших литейных линий.Наибольший расход выхлопных газов (4,2 м 3 с −1 м −1 ) требовался для кожухов с вертикальными форсунками. После обсуждений рабочие согласились с двухтактной системой вентиляции, а пилотная двухтактная система была рассчитана и сконструирована для установки. Нисходящий отсасывающий раствор не соответствовал требованиям пожарной безопасности из-за летучих кусков расплавленного железа.
Рис. 1
Альтернативные решения для местной вентиляции.(A) Нисходящее всасывание между линиями разливки, (B) выхлоп с усиленной струей, (C) вытяжные кожухи с вертикальными форсунками и (D) горизонтальная двухтактная система.
Рис. 1
Альтернативные решения для местной вентиляции. (A) Нисходящее всасывание между линиями разливки, (B) выхлоп с усиленной струей, (C) вытяжные кожухи с вертикальными форсунками и (D) горизонтальная двухтактная система.
Рис. 2
Эффективность улавливания различных решений местной вентиляции в зависимости от скорости вытяжного потока.Расчетный расход выхлопных газов капюшонов с капюшоном для эффективной работы был примерно в два раза выше, чем у других решений.
Рис. 2
Эффективность улавливания различных решений местной вентиляции в зависимости от скорости вытяжного потока. Расчетный расход выхлопных газов капюшонов с капюшоном для эффективной работы был примерно в два раза выше, чем у других решений.
CFD моделирование
Численное моделирование использовалось для определения полей воздушного потока и оценки эффективности альтернативных решений.Численные исследования были выполнены с помощью кода FLUENT версии 4.5, предполагая трехмерное, установившееся и неизотермическое течение. Код CFD решает уравнения сохранения массы, количества движения, энергии и турбулентности, используя метод, основанный на контрольном объеме. Для турбулентности применялась стандартная k-модель.
Из-за ограничений вычислительных ресурсов только один участок линии разливки был смоделирован с использованием расчетной сетки 48 × 20 × 98 ячеек. Дальнейшее уточнение сетки оказалось невозможным, поэтому чувствительность результатов модели к размеру сетки была оценена путем сравнения доминирующих характеристик потока, таких как струйные и плавучие потоки, с аналитическими решениями.Расчетная область и граничные условия, использованные в моделировании, показаны на рис. 3. При моделировании локальных вытяжек и воздушных струй предполагалась постоянная скорость на выпускном и приточном отверстиях.
Рис. 3
Расчетная область CFD и граничные условия.
Рис. 3
Расчетная область CFD и граничные условия.
Моделирование конвекционного шлейфа
При моделировании конвекционных шлейфов предполагалась постоянная скорость конвективного тепловыделения от форм.Эта скорость тепловыделения была рассчитана по уравнению: где h — коэффициент конвективной теплопередачи, A — площадь поверхности формы, T s — температура поверхности формы и T a — температура окружающего воздуха. Коэффициент теплопередачи ( h ) был получен из измеренных средних температур поверхности и окружающей среды с использованием эмпирического выражения для вертикальной пластины (Черчилль и Чу, 1975):NuL¯ = {0.825 + 0,387RaL1 / 6 [1+ (0,492 / PR) 9/16] 8/27} 2,
(2) где Nu L — число Нуссельта, Ra L — число Рэлея Pr — число Прандтля. Эти числа и коэффициент объемного теплового расширения β определяются уравнениями (3) — (6): где L м — высота формы, k f — теплопроводность воздуха при температуре пленки. , г — ускорение свободного падения, ν — кинематическая вязкость и коэффициент температуропроводности воздуха α.На основе измеренных температур поверхности средняя скорость конвективного тепловыделения была оценена в 1,5 кВт для каждой формы. Расчеты плавучего потока были выполнены для охлаждающих форм с использованием расчетных скоростей конвективного тепловыделения. Эти значения являются приблизительными средними для пресс-форм разного размера, и они не принимают во внимание зависящее от времени поведение во время охлаждения. Однако, поскольку восходящая скорость всплывающего шлейфа пропорциональна ΦCONV1 / 3, было сделано предположение, что влияние ошибок в оценках скорости теплового потока на прогнозируемое поле потока не очень существенно для практических расчетов потока.Плавучий поток будет взаимодействовать со струйным потоком, создавая сложное трехмерное поле потока. Чтобы адекватно спрогнозировать результирующий поток, необходимо, чтобы плавучий поток моделировался удовлетворительно. Таким образом, способность модели k-предсказывать плавучие потоки изучалась путем отдельного расчета плавучих потоков и сравнения результатов с существующими данными. После этого вся ситуация была смоделирована с учетом всплывающих течений, струи и выхлопа.
Моделирование воздушной струи
В двухтактных системах подающая струя имеет решающее влияние на производительность решения.В пилотной двухтактной системе подающая струя выходила из узкой щели с большим удлинением, так что ее можно было аппроксимировать двумерной струей в свободной плоскости. Размеры такой системы несколько отличаются от размеров обычных двухтактных систем, в которых струя представляет собой пристенную струю, прикрепленную к поверхности.
Струя увлекает воздух, поскольку он выходит с относительно высокой скоростью из узкой щели. Когда струя выходит, с обеих сторон струи образуется слой сдвига, который имеет тенденцию замедлять скорость и увлекать окружающий воздух, увеличивая объемную скорость потока.Струя распространяется линейно с расстоянием вниз по потоку, а характерная ширина струи определяется как где y 0,5 обозначает место, где скорость струи составляет половину своего максимального (осевая линия) значения, а z — расстояние от отверстия струи (Рис . 4).Рис. 4
Прогнозируемый и экспериментальный спад средней скорости струи.
Рис. 4
Прогнозируемый и экспериментальный спад средней скорости струи.
Скорость струи уменьшается с расстоянием вниз по потоку. Среднюю осевую скорость W CL можно рассчитать по (Chen and Rodi, 1980): где I — количество движения струи на длину, определяемое формулой, где W 0 — скорость струи в струе. открытие. Требуемая скорость регулирования в источнике загрязнения зависит от характеристик источника загрязнения и возмущающих воздушных потоков. В случае больших источников управляющая скорость меняется, так как вблизи струи скорость больше, чем возле выхлопа.Основываясь на необходимых управляющих скоростях, Робинсон и Ингхэм (1996) рекомендуют, чтобы для мест с типичными поперечными осадками импульс подводящей струи составлялI / ρ = (0,14… 0,25) ⋅z,
(10), где z — расстояние между соплом и источником. Они соответствуют скоростям захвата 0,9–1,2 м с –1 . Струя пилотной системы была слишком узкой для детального моделирования, поскольку это привело бы к чрезмерному количеству вычислительных ячеек с нежелательно большими пропорциями.Поэтому струя была аппроксимирована более широкой струей с тем же импульсом, поскольку это самый важный параметр для струи (Robinson and Ingham, 1996). Таким образом, скорость на выходе струи W L была рассчитана по формуле: где b 0 — ширина сопла фактической струи (0,0034 м) и b 1 ширина струи в модели. . При моделировании струя моделировалась исходя из ширины струи 0,1 м. Расчетная средняя скорость струи сравнивается с экспериментальными значениями на рис.4. Видно, что, хотя расчетные скорости занижены вблизи выхода струи, согласие достаточно хорошее в областях, где расположены источники загрязнения. В результате увлеченного воздуха скорость потока струи увеличивается с расстоянием. Для ненарушенных условий расход струи в вытяжном кожухе можно рассчитать по (Жихов, 2001) (12) где L — расстояние между струйным соплом и вытяжным колпаком. Это поток, который должен быть выпущен вытяжным колпаком. Вставка значений, используемых в литейном производстве ( W 0 = 20 мс −1 , b 0 = 0.0034 м, расстояние L = 8,2 м) получаем расход воздуха от 1,43 до 1,77 м 3 с −1 на единицу ширины. Конечная скорость потока выхлопных газов была точно настроена путем расчета эффективности улавливания двухтактной системы с использованием различных значений скорости потока.На основе моделирования была спроектирована и построена пилотная двухтактная система вентиляции. Система состояла из подающей плоской струи шириной 5 м и высотой 3,4 мм, обдувающей площадку разливки в направлении ширины 6 м и 0.Вытяжной колпак высотой 8 м на противоположной стороне линий разливки. Для поддержания равномерной скорости на выходе воздух всасывался через перфорированную пластину с 10% открытой площади. Прогнозируемый расход выхлопных газов составлял 1,6 м 3 с -1 на единицу ширины для эффективной работы в условиях отсутствия помех. Это оценка расхода, которая использовалась для определения размеров и выбора вытяжного вентилятора.
Измерения и сбор данных
Измерения окружающей среды были выполнены перед применением решения для местной вентиляции и для проверки пилотного решения для местной вентиляции.Измерения загрязнителей воздуха, температуры и скорости воздуха были выполнены для характеристики области источника и окружающей среды для расчетов CFD. Движение воздуха визуализировалось дымом.
Температура воздуха измерялась в одной точке между разливочными линиями 2 и 3 на четырех высотах (0,4, 1,4, 2,4 и 3,4 м) с помощью системы реального времени. Кроме того, после установки местной системы вентиляции отслеживалась температура воздуха в приточной воздушной струе. Также регистрировали температуру поверхности форм.Скорость воздуха измеряли над формами с помощью анемометров (Kaijo Denki 3D ultrasound, Япония, анемометр с вращающейся лопастью Airflow Developments, Великобритания).
Работоспособность местной системы вентиляции исследовалась с использованием метода индикаторного газа. Индикаторный газ (гексафторид серы SF 6 ) был выпущен на горячие формы на четырех литейных линиях для имитации рассеивания загрязняющих веществ теплыми шлейфами. Концентрация индикатора измерялась газоанализаторами в реальном времени (Binos, США и Brüel & Kjaer 1302 + 1303, Дания) из местного вытяжного канала.Фоновую концентрацию контролировали вне зоны воздействия местной вентиляции. Индикаторный газ также был выпущен непосредственно в местный вытяжной канал для достижения эталонной концентрации. Контрольная концентрация соответствует концентрации в вытяжном канале со 100% эффективностью улавливания. Фоновая концентрация была вычтена из измеренных концентраций, как показано в уравнении (13),Ce = Ce * — (Ca1 + Ca2 + Ca3) / 3,
(13), где Ce * — измеренная концентрация в местной вытяжной системе, C a 1 и C a 2 — фоновые концентрации в выхлопных газах до и после выброса индикатора, а C a 3 — фоновые концентрации в зоне всасывания воздуха. струя.Контрольная концентрация ( C ref ) была рассчитана аналогично. Эффективность улавливания (η) рассчитывалась следующим образом:РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ
Результаты моделирования
Расчетные скорости чистого плюма показаны на рис. 5. Предыдущие исследования потока плюма показали, что для осесимметричного плюма в однородной среде средняя вертикальная центральная скорость U CL изменяется в области затухания как (15) где g — ускорение свободного падения, φ CONV, — скорость конвективного тепловыделения, а x — вертикальное расстояние над виртуальным источником ( x o ) шлейфа.Рис. 5
Сравнение рассчитанных и эмпирических средних осевых скоростей вдоль оси плюма.
Рис. 5
Сравнение рассчитанных и эмпирических средних осевых скоростей вдоль оси плюма.
Хотя существует консенсус относительно общей формы шлейфа, между результатами разных исследователей есть некоторые различия. Шаббир и Джордж (1994) получили значение К = 3.4 в их обширных измерениях шлейфа, и это использовалось в сравнениях. Кроме того, в случае расширенных источников есть вариации в местонахождении виртуального источника.
Видно, что над источником тепла жидкость сначала ускоряется, а затем начинает замедляться. В области распада предсказанная скорость несколько завышена с помощью стандартной k-модели, но общее поведение предсказывается довольно хорошо. В предыдущем исследовании (Welling, 2000) скорости, измеренные над протяженным источником (вертикальный цилиндр с диаметром 0.32 м), скорости при x / D = 1,6 уже были высокими, тогда как в прогнозах скорости на аналогичных расстояниях все еще увеличивались ( D форма = 0,5 м).
Прогнозируемая средняя скорость и контуры примесей для этого раствора показаны на рисунках 6 и 7. Из рисунка 6 видно, что около выхода из сопла первоначальный изотермический поток струи является горизонтальным. По мере того, как струя течет по горячим формам, увлеченный теплый воздух заставляет струю изгибаться вверх одновременно с уменьшением ее скорости вниз по потоку.У противоположной стены струя отводится вытяжным колпаком. Расчетные усредненные по времени поля концентрации на рис. 7 ясно показывают перенос загрязняющих веществ из форм в вытяжной шкаф. Из-за высоких скоростей вблизи струйного сопла поток загрязняющих веществ от двух самых дальних формовочных линий от вытяжного колпака резко изгибается в сторону вытяжного колпака. Загрязнения рассеиваются в струйном потоке за счет турбулентной диффузии. Процесс уноса и смешивания продолжается по направлению к выхлопу, как показано на рис.7.
Рис. 6
Расчетные контуры постоянной скорости в вертикальной плоскости симметрии. Скорости выражены в мс -1 . Также показано расположение точек измерения температуры.
Рис. 6
Расчетные контуры постоянной скорости в вертикальной плоскости симметрии. Скорости выражены в мс -1 . Также показано расположение точек измерения температуры.
Фиг.7
Прогнозируемые контуры загрязнения в вертикальной плоскости симметрии. Цифры показывают относительную концентрацию.
Рис. 7
Прогнозируемые контуры загрязняющих веществ в вертикальной плоскости симметрии. Цифры показывают относительную концентрацию.
Прогнозы описывают только поведение среднего потока и не решают очень сложные зависящие от времени вихревые токи в слоях сдвига как плавучего, так и струйного потока. Эти турбулентные водовороты могут быть причиной повышенного перемешивания загрязняющих веществ.
Визуализация дыма
Техника визуализации дыма помогла понять поведение толкающего потока (рис. 8). С помощью дыма было легко увидеть, не слишком ли сильно изгибается толкающий поток, вызывая утечку загрязняющих веществ из выхлопного кожуха. Дымовые испытания также показали, что общие скоростные характеристики аналогичны прогнозируемым.
Рис. 8
Дым был выпущен для выталкивания воздушной струи для изучения поведения выталкивающего потока.
Рис. 8
Дым был выпущен для выталкивания воздушной струи с целью изучения поведения выталкивающего потока.
Оптимизация воздушной форсунки
При оптимизации приточного воздуха расход местного выхлопа составил 8,0 м 3 с −1 . Эффективность улавливания определялась четырьмя расходами воздуха в воздушной струе (0,2, 0,3, 0,4 и 0,5 м 3 с -1 ) и выпуском индикаторного газа из литейной линии 3.Результаты (рис. 9) показали, что самая высокая средняя эффективность захвата всех линий была достигнута при расходе воздуха 0,35 м 3 с -1 .
Рис. 9
Оптимизация расхода выталкивающей воздушной струи.
Рис. 9
Оптимизация расхода выталкивающей воздушной струи.
Эффективность захвата
Прогнозируемая эффективность захвата была явно выше измеренной.Трудно сказать, связаны ли расхождения с недооценкой турбулентной дисперсии или с неучетом всех важных возмущений на границах набегающего потока. В действительности потоки окружающего воздуха в производственном цехе могут снизить эффективность.
Эффективность улавливания измерялась в двух разных случаях:
Эффективность улавливания увеличивалась в обоих случаях, когда точка выброса индикаторного газа была перемещена с самой дальней линии на ближайшую линию к местному выхлопу.Измеренная эффективность улавливания с толкающей струей варьировалась от 40 до 80%, в зависимости от расстояния между источником и выхлопом. Было показано, что на линиях 1–2 при использовании струи приточного воздуха достигается значительно лучшая эффективность улавливания, чем без нее. В среднем, проталкивающий поток увеличивал среднюю эффективность улавливания с 40 до 60%, показывая положительное влияние приточной струи на производительность системы вентиляции.
ВЫВОДЫ
Создание эффективной системы местной вентиляции для крупных источников загрязнения с плавучестью является сложной задачей.Моделирование CFD оказалось полезным инструментом для изучения различных альтернатив и для разработки решений местной вентиляции. Однако в действительности часто возникают сложные, неустойчивые схемы воздушного потока, которые очень трудно учесть при моделировании. Поскольку поле течения в сдвиговых слоях струйного течения очень сложное и заполнено вихревыми структурами, моделирование очень затруднено.
Согласно расчетам CFD, двухтактная система вентиляции была наиболее эффективной, и целевая эффективность улавливания 90% была достигнута при самом низком расходе вытяжного воздуха с помощью двухтактной системы вентиляции.Вторым эффектом было нисходящее всасывание между разливочными линиями. Используя вытяжку с усиленной струей (вытяжку Aaberg) на стене, можно было удалить выхлопные газы с двух ближайших литейных линий. Наибольший расход выхлопных газов требовался для капюшонов с вертикальными форсунками. На практике измеренная эффективность захвата оставалась ниже 90%.
Эти исследования показали, что эффективный диапазон регулирования может быть значительно увеличен за счет использования вспомогательных форсунок. Однако для оптимальной производительности должен быть правильный баланс между выталкивающей струей и выхлопом.Поток выталкивающей воздушной струи увеличил средний КПД улавливания с 40 до 60%. Наибольшее увеличение было измерено по линиям 1 и 2. Воздушный поток с толкающей струей создает зону, в которой движение воздуха контролируется, а скорости превышают скорости конвективных потоков и окружающих возмущений. Рабочие обычно беспокоились о том, что нагнетательная камера мешала работе во время заполнения форм. Чтобы сделать камеру нагнетания воздуха более удобной, ее следует разделить на интервалы длиной 2–3 м с расстоянием между ними 1 м.
Наибольшая эффективность улавливания была измерена на литейной линии 4, которая находилась ближе всего к выхлопу. Наиболее удобное расположение отливки — это максимально возможное сосредоточение отливок на линиях, ближайших к вытяжному кожуху. Хотя средняя эффективность захвата 60% может считаться удовлетворительной, принимая во внимание большой размер источника, она была меньше целевого значения 90%. Можно сделать вывод, что прогнозы недооценивают дисперсию загрязняющих веществ, возможно, из-за невозможности правильно смоделировать нестационарную турбулентную диффузию.Поскольку поле течения в сдвиговых слоях струйного течения очень сложное и заполнено вихревыми структурами, моделирование очень затруднено. Следовательно, результаты расчетов следует рассматривать с осторожностью, и для целей проектирования, возможно, следует использовать коэффициент безопасности.
Для исследуемого случая расчетное значение расхода выхлопных газов составило 1,6 м 3 с −1 м −1 вытяжного колпака. Для выхлопной трубы предлагается около 10% перфорированного материала. Расчетное значение расхода выталкивающего воздуха равнялось 0.07 м 3 с −1 м −1 паза. Правильная высота прорези составляла 3,4 мм, а скорость воздуха в прорези составляла 20 м с −1 .
Мы пришли к выводу, что когда выталкивающая воздушная струя и выхлоп объединены в правильно сбалансированном соотношении, контролируемое движение воздуха может быть достигнуто на гораздо больших расстояниях, чем это возможно в обычных системах.
Мы благодарны компании Sulzer Pumps Finland и промышленному гигиенисту Юхани Репонену из Ahlström Karhulan Palvelut за помощь в оценке различных решений, установке двухтактной системы вентиляции и предоставлении нам возможности собирать данные на их рабочем месте.Выражаем признательность за техническую помощь техническим специалистам Пертти Нэрхи и Тимо Нуркка и инженеру лаборатории Тимо Миело из Финского института гигиены труда. Работа финансировалась Финским фондом условий труда.
ПРИЛОЖЕНИЕ
Символы | ||||||
CFD | вычислительная гидродинамика | |||||
PAHs | полициклические ароматические углеводороды | |||||
A | 907 907 907 907 907 907 0ширина сопла фактической струи | |||||
b 1 | ширина сопла у вытяжного кожуха | |||||
C e | 11 фоновая концентрация | 11 C * e | измеренная концентрация в локальном выхлопе | |||
C a 1 и C a 2 | после выхлопных и фоновых концентраций трассирующий выпуск | |||||
C a 3 | фоновая концентрация в зоне всасывания воздушной струи | |||||
C ref | контрольная концентрация | |||||
c p | теплоемкость воздуха | |||||
D | диаметр формы | |||||
g | ускорение свободного падения | |||||
h | конвекционный коэффициент теплопередачи | 907 на длину | ||||
K | установленный параметр | |||||
k f | теплопроводность воздуха при температуре пленки | |||||
L | вытяжной колпак | |||||
L м | высота формы | |||||
Nu L | Номер Нуссельта | |||||
Pr | Номер Прандтля. | |||||
q JET | Расход струи в вытяжном шкафу | |||||
Ra L | Число Рэлея | |||||
a | температура окружающего воздуха | | ||||
T с | температура поверхности формы | |||||
W o | 7 W 907 907 скорость при открытии струи L | осевая скорость струи на расстоянии L | ||||
W CL | средняя осевая скорость струи | |||||
x | вертикальное расстояние от источника тепла | |||||
x o | высота виртуальное происхождение шлейфа | |||||
y 0.5 | место, где скорость струи составляет половину максимальной | |||||
z | — расстояние от отверстия струи | |||||
α | температуропроводность воздуха | |||||
β | коэффициент теплового расширения||||||
Φ CONV | скорость конвективного тепловыделения | |||||
ν | кинематическая вязкость воздуха | |||||
η | эффективность захвата | 7 плотность | ||||
Символы | ||||||
CFD | вычислительная гидродинамика | |||||
PAHs | полициклические ароматические углеводороды | 907 907 907 907 907 б 0 904 13 | ширина фактического сопла | |||
b 1 | ширина сопла на вытяжном кожухе | |||||
C e | фоновая концентрация | измеренная концентрация в локальном выхлопе | ||||
C a 1 и C a 2 | до и после фоновой концентрации в выхлопе выброс трассера | |||||
C a 3 | фоновая концентрация в зоне всасывания воздушной струи | |||||
C ref | контрольная концентрация | |||||
теплоемкость воздуха | ||||||
D 90 710 | диаметр пресс-формы | |||||
г | ускорение свободного падения | |||||
ч | коэффициент конвективной теплопередачи | |||||
I | импульс | K | установленный параметр | |||
k f | теплопроводность воздуха при температуре пленки | |||||
L | расстояние между соплом | 907 и вытяжным колпаком | L мвысота формы | |||
Nu L | Номер Нуссельта | |||||
Pr | Номер Прандтля. | |||||
q JET | Расход струи в вытяжном шкафу | |||||
Ra L | Число Рэлея | |||||
a | температура окружающего воздуха | | ||||
T с | температура поверхности формы | |||||
W o | 7 W 907 907 скорость при открытии струи L | осевая скорость струи на расстоянии L | ||||
W CL | средняя осевая скорость струи | |||||
x | вертикальное расстояние от источника тепла | |||||
x o | высота виртуальное происхождение шлейфа | |||||
y 0.5 | место, где скорость струи составляет половину максимальной | |||||
z | — расстояние от отверстия струи | |||||
α | температуропроводность воздуха | |||||
β | коэффициент теплового расширения||||||
Φ CONV | скорость конвективного тепловыделения | |||||
ν | кинематическая вязкость воздуха | |||||
η | эффективность захвата | 7 плотность | ||||
Символы | ||||||
CFD | вычислительная гидродинамика | |||||
PAHs | полициклические ароматические углеводороды | 907 907 907 907 907 б 0 904 13 | ширина фактического сопла | |||
b 1 | ширина сопла на вытяжном кожухе | |||||
C e | фоновая концентрация | измеренная концентрация в локальном выхлопе | ||||
C a 1 и C a 2 | до и после фоновой концентрации в выхлопе выброс трассера | |||||
C a 3 | фоновая концентрация в зоне всасывания воздушной струи | |||||
C ref | контрольная концентрация | |||||
теплоемкость воздуха | ||||||
D 90 710 | диаметр пресс-формы | |||||
г | ускорение свободного падения | |||||
ч | коэффициент конвективной теплопередачи | |||||
I | импульс | K | установленный параметр | |||
k f | теплопроводность воздуха при температуре пленки | |||||
L | расстояние между соплом | 907 и вытяжным колпаком | L мвысота формы | |||
Nu L | Номер Нуссельта | |||||
Pr | Номер Прандтля. | |||||
q JET | Расход струи в вытяжном шкафу | |||||
Ra L | Число Рэлея | |||||
a | температура окружающего воздуха | | ||||
T с | температура поверхности формы | |||||
W o | 7 W 907 907 скорость при открытии струи L | осевая скорость струи на расстоянии L | ||||
W CL | средняя осевая скорость струи | |||||
x | вертикальное расстояние от источника тепла | |||||
x o | высота виртуальное происхождение шлейфа | |||||
y 0.5 | место, где скорость струи составляет половину максимальной | |||||
z | — расстояние от отверстия струи | |||||
α | температуропроводность воздуха | |||||
β | коэффициент теплового расширения||||||
Φ CONV | скорость конвективного тепловыделения | |||||
ν | кинематическая вязкость воздуха | |||||
η | эффективность захвата | 7 плотность | ||||
Символы | ||||||
CFD | вычислительная гидродинамика | |||||
PAHs | полициклические ароматические углеводороды | 907 907 907 907 907 б 0 904 13 | ширина фактического сопла | |||
b 1 | ширина сопла на вытяжном кожухе | |||||
C e | фоновая концентрация | измеренная концентрация в локальном выхлопе | ||||
C a 1 и C a 2 | до и после фоновой концентрации в выхлопе выброс трассера | |||||
C a 3 | фоновая концентрация в зоне всасывания воздушной струи | |||||
C ref | контрольная концентрация | |||||
теплоемкость воздуха | ||||||
D 90 710 | диаметр пресс-формы | |||||
г | ускорение свободного падения | |||||
ч | коэффициент конвективной теплопередачи | |||||
I | импульс | K | установленный параметр | |||
k f | теплопроводность воздуха при температуре пленки | |||||
L | расстояние между соплом | 907 и вытяжным колпаком | L мвысота формы | |||
Nu L | Номер Нуссельта | |||||
Pr | Номер Прандтля. | |||||
q JET | Расход струи в вытяжном шкафу | |||||
Ra L | Число Рэлея | |||||
a | температура окружающего воздуха | | ||||
T с | температура поверхности формы | |||||
W o | 7 W 907 907 скорость при открытии струи L | осевая скорость струи на расстоянии L | ||||
W CL | средняя осевая скорость струи | |||||
x | вертикальное расстояние от источника тепла | |||||
x o | высота виртуальное происхождение шлейфа | |||||
y 0.5 | место, где скорость струи составляет половину максимальной | |||||
z | — расстояние от отверстия струи | |||||
α | температуропроводность воздуха | |||||
β | коэффициент теплового расширения||||||
Φ CONV | скорость конвективного тепловыделения | |||||
ν | кинематическая вязкость воздуха | |||||
η | эффективность захвата | 7 плотность | ||||
ССЫЛКИ
ACGIH
Промышленная вентиляция, руководство по рекомендуемой практике
,2001
24-е изданиеЦинциннати, Огайо
Американская конференция государственных промышленных гигиенистов
,.Вертикальные турбулентные плавучие струи — обзор экспериментальных данных
,1980
Oxford
Pergamon Press
,,.Двухтактная система вентиляции для ручной пайки
,1997
, vol.Т. 12
Proceedings of Ventilation 97 ‘
(стр.658
—65
),.Корреляционные уравнения ламинарной и турбулентной свободной конвекции от вертикальной пластины
,Int J Heat Mass Transfer
,1975
, vol.18
(стр.1323
—9
),,.Трехмерное конечно-элементное моделирование турбулентной двухтактной системы вентиляции
,Ann Occup Hyg
,1995
, vol.39
(стр.573
—89
),,.Применение вытяжной системы вентиляции для литейного производства / сварки
,1997
, vol.Т. 12
Proceedings of Ventilation 97 ‘
(стр.1121
—30
).Экспериментальная проверка моделей потенциального и турбулентного потока для двумерного вытяжного шкафа с усиленной струей
,Am Ind Hyg Assoc J
,2000
, vol.61
(стр.183
—91
),,, и др.Влияние геометрии толкающего элемента на эффективность захвата двухтактных систем вентиляции в резервуарах для обработки поверхности
,Ann Occup Hyg
,2002
, vol.46
(стр.383
—93
),,, и др.Определение и интерпретация общей и поперечной линейной эффективности в двухтактных системах вентиляции для открытых наземных резервуаров
,Ann Occup Hyg
,2002
, vol.46
(стр.629
—35
),,, и др.Методики определения эффективности улавливания в резервуарах для обработки поверхности
,Am Ind Hyg Assoc J
,2003
, vol.64
(стр.604
—8
),,, и др.Визуализация воздушных потоков в двухтактных системах вентиляции резервуаров для обработки поверхностей
,Am Ind Hyg Assoc J
,2003
, vol.64
(стр.455
—60
),.Рекомендации по проектированию двухтактных систем вентиляции для открытых наземных резервуаров
,Ann Occup Hyg
,1996
, vol.40
(стр.693
—704
),.Численное моделирование потоков, индуцированных системой двухтактной вентиляции
,Ann Occup Hyg
,1996
, vol.40
(стр.293
—310
),,.Рекомендации по проектированию двухтактных систем вентиляции посредством моделирования динамики жидкости
,Am Ind Hyg Assoc J
,2001
, vol.62
(стр.141
—8
),.Реактивная усиленная местная вытяжная вентиляция
,Ann Occup Hyg
,1993
, vol.37
(стр.15
—24
),.Эксперименты на круглом турбулентном плавучем факеле
,J Fluid Mech
,1994
, vol.275
(стр.1
—32
),,, и др.Разработка двухтактной системы вентиляции для контроля дыма припоя
,Ann Occup Hyg
,2001
, vol.45
(стр.669
—79
).Экспериментальное исследование факелов естественной конвекции от нагретой горизонтальной квадратной пластины и вертикального цилиндра
,Exp Heat Transfer
,2000
, vol.13
(стр.7
—19
),.Теоретические и численные прогнозы двумерных щелевых вытяжек Aaberg
,Ann Occup Hyg
,2000
, vol.44
(стр.375
—90
),.Оценка эффективности улавливания больших двухтактных систем вентиляции с использованием визуальных и индикаторных методов
,Am Ind Hyg Assoc J
,1995
, vol.56
(стр.1208
—14
). ,.Форсунки
,Промышленная вентиляция. руководство по дизайну
,2001
Лондон
Academic Press
(стр.446
—512
)© Автор 2006. Опубликовано Oxford University Press от имени Британского общества гигиены труда.
Использование местной вытяжной вентиляции для снижения воздействия на рабочих
Джон Сондерс , Лаборатория здоровья и безопасности, Великобритания
Введение
Многие промышленные процессы выбрасывают на рабочее место переносимые по воздуху загрязнители.Неадекватный контроль над ними может позволить им попасть в зону дыхания рабочих, что приведет к их ингаляционному воздействию. Одним из методов минимизации воздействия является применение экстракции в источнике образования загрязнителя, тем самым устраняя опасность до того, как она попадет в воздух на рабочем месте. Этот метод обычно называют местной вытяжной вентиляцией (ЛВВ).
В этой статье объясняется LEV, его связь с иерархией управления, различные типовые конструкции кожуха, включая примеры, используемые в промышленности, и шаги, которые необходимо предпринять для достижения успешного и надежного контроля.
Как LEV вписывается в иерархию средств управления
Если после оценки риска существует вероятность того, что здоровье рабочих может быть подвергнуто риску во время работы, то действия, которые необходимо предпринять, должны быть основаны на принципе приоритета. Это часто называют «Иерархией контроля», охватывающей технические средства контроля и меры контроля, как это предусмотрено Директивой Совета 98/24 / EC [1] . Это можно резюмировать следующим образом:
- Устранение вредных веществ
- Замена менее опасным веществом
- Использование технических средств контроля у источника, включая LEV
- Административный контроль e.грамм. порядок работы и организационные мероприятия
- Меры индивидуальной защиты, включая средства индивидуальной защиты (СИЗ)
Из вышеизложенного видно, что LEV следует рассматривать только на третьем этапе после рассмотрения возможности исключения и замены. Однако в действительности многие компании предполагают, что любая потенциальная ситуация, когда может иметь место образование переносимого по воздуху загрязнителя, требует автоматического применения LEV. Это демонстрирует непонимание важности иерархии контроля и упускает из виду важные соображения, такие как минимизация скорости выбросов и изменение процесса.
Что такое LEV и что входит в систему LEV?
Если в соответствии с иерархией контроля технические средства контроля были определены как подходящая мера для контроля риска вдыхания, передаваемого по воздуху, вероятно, что будет выбран LEV. LEV, вероятно, является наиболее часто применяемым инженерным средством контроля, и хорошо спроектированная, применяемая и обслуживаемая система LEV должна быть способна защитить от риска вдыхания рабочих. LEV можно определить как удаление загрязняющих веществ вблизи или в месте их происхождения с помощью вентиляции.За счет удаления переносимых по воздуху загрязняющих веществ вблизи источника количество необходимого воздуха значительно уменьшается по сравнению с разбавлением с помощью общей вентиляции.
Системы LEV состоят из многих частей, однако большинство систем LEV состоят из следующих основных элементов:
- Вытяжка — это место, где загрязненный воздух попадает в систему LEV. Конструкция вытяжки значительно варьируется от одной системы к другой. Это будет рассмотрено позже в этой статье.
- Воздуховод — воздуховод транспортирует загрязненный воздух от вытяжки к воздухоочистителю, вентилятору и, наконец, к месту разгрузки.
- Воздухоочиститель — фильтрует или очищает воздух.
- Воздуховод — обычно это вентилятор, который перемещает воздух по системе от вытяжки к точке нагнетания.
- Выпуск — отработанный воздух следует отводить в безопасное место. Самый распространенный метод — это вертикальный сброс наружу здания.
На рис. 1 показано, как соединяются перечисленные выше детали. Однако следует отметить, что не каждая система LEV будет иметь все компоненты, показанные на рисунке.Например, некоторые системы не имеют воздухоочистителей и полагаются на разбавление системы перед выпуском отработанного воздуха в атмосферу, тогда как другие системы очищают загрязненный воздух и возвращают его на рабочее место и, следовательно, не имеют выпускной трубы.
Следует помнить, что если система LEV выбрасывает воздух наружу, замещающий воздух должен поступать на рабочее место; это следует спланировать, чтобы избежать «голодания» системы LEV по воздуху и свести к минимуму сквозняки. Планирование замены воздуха — важный элемент системы LEV, который часто упускается из виду.
Рисунок 1: Типовой элемент местной вытяжной системы вентиляции
Рисунок 1: Типовой элемент местной вытяжной системы вентиляции
Источник: Saunders, 2013 г. Оригинальный рисунок
Одним из наиболее важных и наименее понятных элементов системы LEV является вытяжка. Если вытяжка плохо спроектирована или имеет неправильный тип, она не сможет улавливать или удерживать загрязненный воздух; в этой ситуации остальная часть системы LEV эффективно дублируется.Однако, учитывая критический характер вытяжки, слишком часто мало внимания уделяется конструкции вытяжки, и нет ничего необычного в том, чтобы найти дорогостоящие системы LEV с подключенными вытяжками, которые представляют собой не более чем вентилируемые боксы.
Реальность такова, что хорошая конструкция вытяжки LEV требует глубокого понимания процесса и природы контролируемого источника загрязнения.
Процессы, источники и свойства переносимых по воздуху загрязняющих веществ
Процессы и источники загрязнения
В этой статье «процесс» определяется как задача, создающая загрязнитель, т.е.грамм. распиливание бруска пилой; а «источник» определяется как точка генерации, например точка, в которой пильный диск разрезает древесину. Продолжая этот пример, образующийся загрязнитель будет представлять собой древесную пыль с большим диапазоном размеров частиц (в зависимости от грубости пильного полотна, типа древесины и т. Д.).
То, как загрязняющие вещества выделяются в процессе, имеет большое значение для применения LEV. Например, при распиловке дерева ручной пилой образуется относительно «тихое» облако пыли, которое не имеет сильного направления.Однако при распиловке древесины дисковой пилой образуется очень сильная направленная струя загрязненного воздуха. Следовательно, LEV, примененный к двум вышеупомянутым примерам, потребует разной конструкции кожуха и объемного расхода вытяжного воздуха.
Свойства переносимых по воздуху загрязнителей
Переносимые по воздуху загрязнители могут образовываться в виде аэрозолей, газов и паров. Аэрозоли (определяемые как жидкие или твердые частицы, взвешенные в газе — обычно в воздухе, например, пыль, дым и туман [2] ) могут образовываться в широком диапазоне размеров, но существуют диапазоны размеров, относящиеся к здоровью человека; (i) вдыхаемый, который, как следует из названия, может вдыхать и может иметь аэродинамический диаметр до 100 микрон, и (ii) вдыхаемый, то есть частицы, которые могут проникать в глубокие легкие и имеют диаметр примерно до 10 микрон.Крупные частицы, обычно более 100 микрон в диаметре, быстро осаждаются, часто вблизи источника загрязнения. Однако более мелкие (более мелкие) частицы, например частицы, пригодные для вдыхания, оседают так медленно, что вместо того, чтобы перемещаться по воздуху, эти частицы не имеют независимого движения и вместо этого перемещаются с воздухом, в котором они находятся во взвешенном состоянии. Следовательно, они могут распространяться по всему рабочему месту, если они не контролируются у источника. Дым попадает в эту категорию, поскольку это очень мелкие частицы (менее 1 микрона в диаметре), в то время как туман представляет собой жидкие частицы и попадает в представляющие интерес фракции того же размера, что и твердые частицы, при этом следует отметить, что распределение жидких частиц, взвешенных в воздухе, по размеру может измениться со временем из-за испарения.
Одна из основных проблем визуализации частиц в воздухе заключается в том, что при нормальных условиях освещения респирабельные частицы обычно невидимы невооруженным глазом. Точно так же вдыхаемые частицы видны только частично, и поэтому размер облака загрязняющих веществ, вероятно, неизвестен или, в лучшем случае, недооценен. Однако степень может быть выявлена путем преднамеренного выброса дыма в источнике загрязнения, что позволяет определить размер, форму и указание скорости облака загрязнения.В качестве альтернативы можно использовать мощную лампу, которая обеспечивает прямое рассеяние света, чтобы сделать видимыми мелкие частицы, часто называемую пылевой лампой [3] . Какой бы метод ни использовался для определения размера облака загрязняющих веществ, переносимых по воздуху, эта информация имеет важное значение для применения надлежащим образом разработанного LEV.
Газы и пары образуются при испарении летучей жидкости. Подобно частицам, газы и пары легко смешиваются с воздухом, но на молекулярном уровне, и, как частицы, они перемещаются вместе с воздухом, в котором они находятся во взвешенном состоянии.
Когда мы рассматриваем контроль переносимых по воздуху загрязнителей по причинам здоровья, в любом из вышеперечисленных состояний, плотность загрязняющего материала не является важным фактором, хотя это часто ошибочно. Исследования показали, что пыль от «тяжелых» (т. Е. Плотных) материалов не обязательно падает на землю и что мелкие частицы даже материала высокой плотности, такого как свинцовая пыль, могут оставаться взвешенными в воздухе [4] . Для частиц (пыли) критическим фактором является размер частиц, поскольку именно от него зависит, пригодны ли они для дыхания и могут ли они оставаться в легких при вдыхании.Для газов и паров влияние облака загрязняющих веществ определяется не весом самих молекул. Опять же, пары растворителя смешиваются с воздухом и остаются в нем, а не «падают» на землю. Поэтому низкоуровневый УЭУ, установленный для контроля «тяжелого пара», часто, но ошибочно, применяется для контроля воздействия, и по причинам, указанным выше, не работает. Важно отметить, что LEV следует применять для удержания и улавливания паровоздушных смесей до того, как они смешаются с воздухом помещения.
К вышесказанному необходимо добавить уточняющее заявление; если бы большие сосуды, содержащие растворители, испарялись бы быстро, образовалось бы большое количество пара, у которого не было бы возможности полностью смешаться с окружающим воздухом, и в этих сценариях необходимо уменьшить риск пожара и взрыва.
Система классификации вытяжек
Общие
Конструкции вытяжекLEV бывают всех форм и размеров, поэтому сложно понять, как работает каждая вытяжка и почему одни вытяжки работают лучше, чем другие. Поэтому принято группировать вытяжки в соответствии с ключевыми проектными параметрами [4] [5] [6] . Классификация вытяжек позволяет дизайнерам, обслуживающему персоналу, тестерам и рабочим понять, как они работают и каковы ограничения.Это также помогает при любой критической оценке производительности LEV. Однако, как это обычно бывает, не все конструкции вытяжек удобно вписываются в следующую классификацию, и некоторые вытяжки работают как смесь двух типов. Тем не менее, подавляющее большинство вытяжек относятся к одному из трех следующих типов вытяжек:
- Оболочка
- Captor
- Приемник
Кожух
Закрытые вытяжки — наиболее эффективная форма вытяжки LEV. Это потому, что источник находится внутри вытяжки.Закрытие вытяжек может быть полным или частичным; Примером полного ограждения является перчаточный ящик, в этом сценарии рабочий физически отделен от источника загрязнения, и воздействие следует исключить. Частичные ограждения более распространены, поскольку они обеспечивают доступ для рабочего и, следовательно, более практичны. Пример частичного ограждения — вытяжной шкаф. Вытяжные шкафы имеют регулируемую прозрачную створку, которая обеспечивает доступ к внутренней части вытяжного шкафа при проведении экспериментов и может быть частично закрыта, когда эксперименты проводятся внутри.Важно отметить, что створка может отделить зону дыхания рабочих от внутренней части корпуса.
Обычно эффективность закрывающих кожухов увеличивается по мере уменьшения площади отверстия, кроме того, уменьшение площади отверстий часто снижает требования к объемному расходу и, следовательно, эксплуатационные расходы. По своей конструкции закрывающие кожухи более устойчивы к сквознякам и менее уязвимы для неправильной работы. Частичное ограждение показано на рисунке 2 ниже.
Рисунок 2: Изображение небольшого частичного корпуса с установленным прозрачным экраном
Рисунок 2: Изображение небольшого частичного корпуса с установленным прозрачным экраном
Источник: Saunders, 2013 г. Оригинальный рисунок
Каптор каптора
ВытяжкиCaptor (также известные как «внешние» или «захватывающие» вытяжки), вероятно, являются наиболее распространенным типом вытяжек, встречающихся на рабочем месте, но в равной степени они наиболее часто неправильно используются и неправильно понимаются.Для всех улавливающих колпаков источник загрязнения расположен за пределами колпака, и поэтому колпак должен генерировать достаточный воздушный поток непосредственно вокруг источника загрязнения, чтобы втянуть его в колпак, эту зону можно назвать зоной улавливания или оболочкой. На рис. 3 показан капюшон захвата, включая зону захвата. Примером улавливающего кожуха, используемого в промышленности, является подвижный кожух, часто применяемый для контроля сварочного дыма в виде аэрозолей]]. Другой пример — меньшие колпаки, используемые для контроля дыма припоя.Иногда капторы встраиваются в ручной инструмент, например вытяжка на инструменте, применяемая для сварочных горелок и паяльников. В обоих этих примерах колпак небольшой и расположен на фиксированном расстоянии от источника (сварочная дуга и кончик паяльника) и, следовательно, не требует позиционирования при каждом перемещении ручного инструмента.
Рисунок 3: Изображение капота захвата
Рисунок 3: Изображение капота захвата
Источник: адаптировано из Burton, 1999, p.67 [5]
Ахиллесова пята капюшона захвата имеет ограниченный размер и охват зоны захвата. Внутри зоны улавливания переносимые по воздуху загрязнители будут улавливаться и удаляться кожухом. За пределами этой зоны эффективность захвата быстро падает до нуля. Размер зоны захвата зависит от ряда параметров и уменьшается по мере:
- источник становится более энергичным;
- падает скорость потока в системе LEV;
- увеличиваются тревожные сквозняки;
- размер капюшона уменьшается.
Из вышесказанного видно, что размер захвата зависит от процесса. По этим причинам вытяжные шкафы не подходят для источников энергии или там, где на рабочем месте есть значительные сквозняки, которые невозможно подавить.
Вытяжки Captor бывают двух типов: фиксированные и подвижные. При фиксированном кожухе заготовка подводится к кожуху, при подвижном кожухе кожух устанавливается оператором в желаемом месте. Подвижные колпаки для захвата — популярная конструкция, широко распространенная в промышленности.Это в значительной степени связано с тем, что относительно легко модернизировать процесс с помощью подвижного кожуха, однако они часто располагаются там, где пространство позволяет близко к процессу, а не в правильном положении для эффективного улавливания загрязнений. Очень важно, чтобы работник минимизировал свое воздействие, понимая ограниченное расстояние, на котором вытяжка может быть размещена от источника.
Приемный колпак
Как и в случае колпаков улавливателя, источник загрязнения расположен за пределами колпака.Однако, вместо того, чтобы улавливать загрязняющие вещества, экстракция зависит от попадания загрязняющих веществ в кожух либо за счет энергии процесса, либо за счет эффектов плавучести. Классическим примером приемного колпака является навес над горячим процессом (см. Рисунок 4). Поднимающийся шлейф воздуха задерживается колпаком, который затем должен опорожняться так же быстро, как и заполняться. Это последнее требование является одной из основных причин отказа приемных вытяжек; часто скорость вытяжного потока меньше, чем скорость загрязненного воздуха, попадающего в вытяжной шкаф, что приводит к утечке по периметру вытяжки.
Рисунок 4: Приемный (навесной) колпак, задерживающий поднимающийся шлейф загрязнения от горячего процесса
Рисунок 4: Приемный (навес) колпак, задерживающий поднимающийся шлейф загрязнителя от горячего процесса
Источник: Saunders, 2013 г. Оригинальный рисунок
Для эффективного контроля приемные колпаки должны быть:
- размещены как можно ближе к источнику;
- достаточно большой, чтобы перехватить весь шлейф загрязнения;
- защищен от сквозняков, особенно в случае медленно поднимающихся струй горячего воздуха, которые можно легко отклонить от сквозняков.
Следует помнить, что приемные колпаки следует применять только тогда, когда источник загрязнения имеет направленный поток (создаваемый либо энергией процесса, либо плавучестью) и шлейф не проходит через зону дыхания рабочих.
Другие ключевые элементы системы LEV
Фон
В этой статье основное внимание уделяется конструкции вытяжки LEV и принципам работы различных типов вытяжек. Эта информация важна не только потому, что она важна для проектировщика LEV, но также для компании, покупающей систему LEV, и работника, использующего ее.Это связано с тем, что вытяжка является компонентом системы LEV, с которой они, как правило, взаимодействуют изо дня в день. Тем не менее, есть и другие ключевые элементы системы LEV, как показано на рисунке 1, которые имеют решающее значение для обеспечения удаления загрязненного воздуха из вытяжки для очистки и слива.
Воздухоочиститель
Выбор воздухоочистителя зависит от ряда параметров, а именно:
- химическое вещество, которое необходимо отделить от воздушного потока;
- для воздуха, насыщенного аэрозолем, его гранулометрический состав;
- требуемая степень разделения (например, это может быть продиктовано экологическими нормами).
Доступен широкий спектр воздухоочистителей, и очень важно, чтобы работодатель посоветовался с компетентным проектировщиком LEV. Адекватное, регулярное обслуживание и очистка воздухоочистителя также имеют решающее значение для хорошего функционирования LEV.
Пневмопривод
Для системы LEV пневмодвигатель почти наверняка будет вентилятором. Как и в случае с воздухоочистителями, конструкции вентиляторов различаются, и их выбор зависит от количества перемещаемого воздуха и, что важно, от давления в системе.Как и в случае с воздухоочистителями, очень важно, чтобы работодатель прислушивался к совету разработчика LEV или производителя вентиляторов.
Воздуховод
Воздуховоды соединяют различные элементы системы LEV, соединяют вытяжки, воздухоочистители и фильтры, а также воздуховоды, а также вентиляцию к точке нагнетания. Конструкция системы воздуховодов может существенно повлиять на эффективность LEV. Конструкция воздуховода (материал, диаметр и т. Д.) Будет зависеть от природы удаляемого загрязнителя (например, для абразивной пыли потребуется более прочный воздуховод, чем для неабразивного материала).Опять же, здравый совет необходим для обеспечения эффективной и действенной системы LEV [4] .
Достижение эффективного и надежного управления LEV
Определение системы LEV
При покупке системы LEV рекомендуется сначала разработать спецификацию LEV [7] . В этом нет необходимости и не следует подробно описывать технические характеристики системы, например: объемный расход, скорость воздуха и давление в системе, так как это задача проектировщика LEV.Скорее, он должен указывать, что требуется от системы LEV, например, какое снижение уровней воздействия ожидается, и, следовательно, должен включать информацию о загрязнении, которое вы хотите контролировать (для поставляемых веществ см. Паспорт безопасности материала производителя) и степень требуется контроль.
Рекомендуется запросить «руководство пользователя», которое включает информацию о том, как управлять LEV, проверять и обслуживать его. Руководство пользователя также должно включать данные пусконаладочных испытаний (см. Раздел 6.2). Кроме того, рабочие должны быть обучены тому, как правильно использовать систему LEV, поскольку без этого может произойти непреднамеренное неправильное использование работниками, что приведет к неэффективному контролю загрязняющих веществ.
В зависимости от сложности и характера процесса работодателю может потребоваться помощь в разработке спецификации. Тем не менее, этот этап закупки LEV стоит завершить, поскольку ошибки на этапе спецификации потребуют больших затрат для исправления позже.
LEV ввод в эксплуатацию
После установки системы LEV ее необходимо ввести в эксплуатацию, чтобы продемонстрировать ее соответствие проектным спецификациям.Это потребует от установщика / комиссара выполнения ряда измерений, количество и тип будут зависеть от конструкции вытяжки (ей) и сложности системы LEV. Типичные измерения вентиляции будут включать объемный расход воздуха, измерения скорости на лицевой стороне вытяжек и, возможно, внутри воздуховода LEV, измерения статического давления в различных положениях по всей системе. Хотя эти данные имеют решающее значение, не менее важна информация, которая демонстрирует, что система успешно улавливает или сдерживает переносимые по воздуху загрязнители и, следовательно, достигает своей цели по защите здоровья рабочих.
Если LEV разработан в соответствии с принятым стандартом, то этот шаг относительно прост и фактически может зависеть от вышеупомянутых измерений воздушного потока. Однако обычно это не так, и потребуются дополнительные тесты, которые будут качественными и / или количественными по своей природе. Какие тесты будут проводиться, будет зависеть от системы и токсичности контролируемого загрязнителя. Обычно качественные тесты включают в себя дымовые испытания (с использованием дымовых труб или, если требуется большее количество дыма, дымовой машины), выполняемые во время процесса, чтобы визуализировать воздушный поток и гарантировать, что система LEV адекватно удаляет дым, предотвращая его попадание. зона дыхания рабочих.Дым также поможет определить:
- размер загрязняющего облака;
- , что локализация достигается в закрывающем кожухе;
- размер зоны захвата каптора капота;
- любые тревожные сквозняки на рабочем месте.
Если в процессе выделяются частицы, можно использовать пылевую лампу [2], ссылка на название = ”Vincent” ”> для достижения аналогичных результатов. Этот метод не требует суррогата для визуализации движения воздуха.
Помимо измерений воздушного потока, количественные тесты могут включать личный отбор проб для демонстрации того, что воздействие на рабочих находится под контролем.Тестирование локализации также может проводиться с использованием индикаторных газов, например, тестирование герметичности вытяжных шкафов [8] или шкафов микробиологической безопасности [9] [9] .
После того, как будет продемонстрирован хороший контроль, данные измерений вентиляции необходимо включить в руководство пользователя: эти данные становятся эталоном, с которым сравниваются будущие измерения, чтобы гарантировать достижение контроля; при условии, что рабочий процесс не изменится.
Проверка и обслуживание
Если системы LEV не проверяются или не обслуживаются, они неизбежно выходят из строя; вопрос лишь в том, когда, а не в том, если.В руководстве пользователя должно быть указано, какие проверки следует проводить и когда. Следует также указать, какое обслуживание требуется и его периодичность. Обученный сотрудник может выполнить все вышеперечисленное.
Периодические испытания
Периодически системы LEV следует проверять, чтобы убедиться, что они по-прежнему соответствуют техническим характеристикам вентиляции, установленным при вводе в эксплуатацию и подробно описанным в руководстве пользователя. Обычно нет необходимости повторять все пусковые испытания, скорее, испытания, которые устанавливают, что система все еще работает, как ожидалось, например, измерение объемного расхода, забойных скоростей и измерения статического давления плюс оценка того, что система LEV работает нормально. все еще улавливает / удерживает загрязнитель и, следовательно, защищает здоровье рабочего.Это может быть выполнено компетентным работодателем / сотрудником, но также может быть поручено независимой компании.
Сводка
Слишком часто LEV не защищает рабочих. Однако хорошо спроектированные, введенные в эксплуатацию и обслуживаемые системы могут предотвратить заражение рабочих целым рядом респираторных заболеваний. Но следует помнить, что иерархия мер контроля должна соблюдаться, и, кроме того, ни один отдельный инженерный контроль не обеспечит надежного и успешного контроля; контроль — это всегда сочетание оборудования и, что немаловажно, рабочих процедур.
Список литературы
- ↑ EC — Европейская комиссия, Директива Совета 98/24 / EC от 7 апреля 1998 г. о защите здоровья и безопасности рабочих от рисков, связанных с химическими агентами на рабочем месте (четырнадцатая индивидуальная директива по смыслу статьи 16 (1 ) Директивы 89/391 / EEC), OJ L 131/11, 5.5., 1998. Доступно по адресу: [1]
- ↑ Винсент, Дж. Х., Наука об аэрозолях для промышленных гигиенистов , 2005.
- ↑ HSE — Health and Safety Executive, Методы определения опасных веществ , The Dust Lamp, (MDHS 82), HSE Books, 1997.Доступно по адресу: [2]
- ↑ 4,0 4,1 4,2 HSE (2011) Контроль переносимых по воздуху загрязняющих веществ на рабочем месте: руководство по местной вытяжной вентиляции (LEV) http://www.hse.gov.uk/pUbns/priced/hsg258.pdf
- ↑ 5,0 5,1 Бертон Д. Дж., Hemeon’s Plant and Process Ventilation , 3-е изд., 1999.
- ↑ ACGIH, Промышленная вентиляция: Руководство по рекомендуемой практике проектирования , 27-е изд, 2013 г. Доступно в (Магазин продуктов): [3]
- ↑ Health and Safety Executive, Очистка воздуха: простое руководство по покупке и использованию местной вытяжной вентиляции (LEV) , INDG 408, HSE Books 2011., [4]
- ↑ BS EN 14175-3: 2003, Вытяжные шкафы — Часть 3: Методы типовых испытаний. , Британский институт стандартов
- ↑ BS EN 12469: 2000, Биотехнология — Критерии эффективности шкафов микробиологической безопасности. , Британский институт стандартов
Ссылки для дальнейшего чтения
Burton, D. J., Дополнительное учебное пособие по промышленной вентиляции: Практическое руководство по проектированию , (27-е изд.), ACGIH, 2010.
Goodfellow, H. & Tähti, E., Руководство по проектированию промышленной вентиляции , Academic Press, New York, 2001.
Промышленная вентиляция
Какой тип вентиляционной системы лучше всего подходит для моего рабочего места:
Все промышленные системы вентиляции при правильном проектировании должны обеспечивать долгосрочную защиту работников. В следующей таблице сравниваются два типа вентиляции, разбавляющая и местная вытяжка.
ограничения любой системы вентиляции:
Некоторые ограничения включают:
- Системы с годами изнашиваются из-за накопления загрязняющих веществ в системе, особенно в фильтрах.
- Требуется текущее обслуживание.
- Регулярное и плановое тестирование необходимо для раннего выявления проблем и принятия корректирующих мер.
- Только квалифицированный персонал должен вносить изменения в систему вентиляции, чтобы система продолжала работать эффективно.
Ниже приведен пример изменений, которые могут повлиять на работу системы:
Рисунок 7
Добавление ответвления воздуховода
К существующему воздуховоду добавляются вытяжка и отвод.Местная вытяжная вентиляция втягивает воздух в систему из нового места, что уменьшает поток воздуха из других мест, находящихся дальше от вытяжного вентилятора. Опять же, это повлияет на воздушный поток. В результате система будет закупориваться быстрее, и поток воздуха в других вытяжках может оказаться недостаточным для удаления загрязнений.
Меры по степени вентиляции с разбавлением:
Воздухообмен в минуту (ACM) [или воздухообмен в час (ACH)] обычно используется как способ измерения скорости вентиляции с разбавлением.Скорость воздухообмена означает замену всего объема воздуха в рабочем пространстве за одну минуту или один час. Для определения скорости воздухообмена можно использовать следующую формулу:
Например, если необходим расход воздуха в рабочем пространстве длиной 40 футов, шириной 40 футов и высотой 12 футов, объем рабочего пространства составляет 40 x 40 x 12 = 19 200 кубических футов.
Требуемый расход воздуха на ACH = 19 200/60 = 320 кубических футов в минуту
Или, требуемый расход воздуха на ACM = 19 200 куб. Футов в минуту
Или, если высота потолка составляет 20 футов, тогда объем помещения составляет 40 футов X 40 футов X 20 футов в высоту = 32000 кубических футов, а требуемый расход воздуха будет следующим:
Требуемый расход воздуха на ACH = 32000/60 = 533 кубических футов в минуту
Или, требуемый расход воздуха на ACM = 32000 кубических футов в минуту
Требуемая скорость воздухообмена иногда указывается в правилах вентиляции и стандартах проектирования вентиляции.Например, в помещении для хранения горючих материалов требуется шесть воздухообменов в час в соответствии с требованиями OSHA США. Канадский национальный строительный кодекс (NBC) требует, чтобы в жилых домах была система механической вентиляции, способная обеспечивать не менее половины (0,5) воздухообмена в час в течение отопительного сезона, чтобы избежать вытяжки дымохода.
Тем не менее, воздухообмен в час (или минуту) может не соответствовать критериям вентиляции при контроле определенных опасностей, тепла и / или запахов.Вентиляция должна определяться по количеству образующегося загрязнителя и токсичности этого загрязнителя (а не только по размеру комнаты).
Доступные стандарты проектирования:
Хотя конкретных государственных кодексов и постановлений не так много, существует множество рекомендуемых стандартов. Важные из них описаны ниже (в произвольном порядке):
Описание сокращений см. В документе «Ответы по охране труда» «Промышленная вентиляция — глоссарий общих терминов».
Закон Онтарио о безопасности и гигиене труда — Постановление 851 для промышленных предприятий (разделы 127 и 128) упоминает общие требования к соответствующей вентиляции и замене воздуха.
Регламент Британской Колумбии O.H.&S — Регламент BC 296/297, часть 5.60-5.71, содержит подробные требования к разбавляющей вентиляции, LEV, подпиточному воздуху, выпускаемому воздуху и рециркуляции выпускаемого воздуха.
OSHA — Это правительственное агентство США обнародовало несколько стандартов вентиляции, например.g., четыре стандарта в 29CFR1910.94, касающиеся местных выхлопных систем. Строительные стандарты OSHA в 29CFR1926 содержат стандарты вентиляции для сварки. Такие системы вентиляции являются «обязательными», но OSHA обычно не считает свои стандарты вентиляции нарушенными, если также не нарушаются стандарты воздействия.
NIOSH — Эта исследовательская организация правительства США опубликовала ряд полезных документов по вентиляции, в том числе публикации по вентиляции литейного производства, рециркуляции и вытяжным вытяжкам.
AMCA — Эта торговая ассоциация США разработала стандарты и процедуры тестирования для вентиляторов. В нем есть ряд полезных публикаций, связанных с выбором вентиляторов, тестированием, поиском неисправностей и сертификацией (например, AMCA 201).
ASHRAE — Это американское общество инженеров по отоплению и кондиционированию воздуха разработало ряд стандартов, касающихся качества воздуха в помещении (IAQ), характеристик фильтров и комфорта при испытаниях, а также систем отопления, вентиляции и кондиционирования воздуха.
ANSI — Эта организация, устанавливающая консенсусные стандарты в США, разработала несколько важных стандартов по вентиляции, включая кабины для распыления краски, шлифовальные вытяжные колпаки, вытяжки из открытых солнечных резервуаров и лабораторную вентиляцию.
ACGIH — Комитет по промышленной вентиляции ACGIH публикует руководство по рекомендуемой практике промышленной вентиляции. Пособие признано во всем мире полезным источником информации по всем аспектам ИВС.
SMACNA — Американская ассоциация подрядчиков и поставщиков листового металла устанавливает стандарты для воздуховодов и монтажа воздуховодов.
NFPA — Эта ассоциация противопожарной защиты, базирующаяся в США, разработала ряд рекомендаций (которые становятся требованиями при принятии местными пожарными агентствами), e.грамм. NFPA 45 перечисляет ряд требований к вентиляции для использования вытяжного шкафа в лаборатории.
СТРОИТЕЛЬНЫЕ КОДЫ — Строительные нормы и правила установлены или приняты почти в каждом городе, округе и муниципалитете. Все промышленные здания должны быть построены в соответствии с этими нормами, чтобы здание было принято. Тем не менее, большинство из них не имеют прямого отношения к промышленной вентиляции, но эти коды необходимо проверить.
Оценочный индекс влияния систем местной вентиляции на качество воздуха в помещениях промышленных зданий
Brown M (2006).Понимание болезней современности: здоровье и болезни в промышленной революции. Endeavour , 30: 108–112.
Артикул Google Scholar
Cao G, Sirén K, Kilpeläinen S (2014). Моделирование и экспериментальное исследование работы вентиляции охраняемых жилых зон. Энергетика и строительство , 68: 515–531.
Артикул Google Scholar
Цао С.Дж., Мейерс Дж. (2015).Быстрое прогнозирование рассеивания загрязняющих веществ внутри помещений на основе моделей вентиляции пониженного порядка. Моделирование здания , 8: 415–420.
Артикул Google Scholar
Чен Кью (1995). Сравнение различных моделей k – ε для расчета расхода воздуха в помещении. Числовая теплопередача, Часть B: Основы , 28: 353–369.
Артикул Google Scholar
Divine BJ, Хартман CM (2001).Когортное исследование смертности среди рабочих на предприятии по производству 1,3-бутадиена. Химико-биологические взаимодействия , 135–136: 535–553.
Артикул Google Scholar
Ко Д-Х, Ким Т-В, Юн И-Х, Шин К-С, Ю С-В (2011). Смертность и заболеваемость от лимфогематопоэтического рака у рабочих нефтеперерабатывающего / нефтехимического комплекса в Корее. Безопасность и здоровье на работе , 2: 26–33.
Артикул Google Scholar
Элленбекер MJ, Гемпель РФ, Берджесс Вашингтон (1983).Эффективность улавливания местных вытяжных систем вентиляции. Журнал Американской ассоциации промышленной гигиены , 44: 752–755.
Артикул Google Scholar
Хауэлл Р., Хаяси Т., Сибата М., Цудзи К. (1985). Промышленная вентиляция и кондиционирование. Бока-Ратон, Флорида, США: CRC Press.
Google Scholar
Кикучи С., Ито К., Кобаяши Н. (2003). Численный анализ эффективности вентиляции в обслуживаемой зоне для различных промышленных систем вентиляции.В: Материалы 7-го Международного симпозиума по вентиляции для контроля за загрязнением, Саппоро, Япония, стр. 103–108.
Google Scholar
Кикучи С., Ито К., Кобаяши Н. (2004). Исследование нормированной концентрации в занятой зоне офисного помещения. В: Материалы 9-й Международной конференции по воздухораспределению в помещениях, Коимбра, Португалия.
Google Scholar
Латеб М., Массон С., Статопулос Т., Бедар С. (2013).Сравнение различных типов моделей k – ε для выбросов загрязняющих веществ в конфигурации с двумя зданиями. Журнал ветроэнергетики и промышленной аэродинамики , 115: 9–21.
Артикул Google Scholar
Li Y, Nielsen PV (2011). В ознаменование 20-летия исследований CFD и вентиляции воздуха в помещениях. Внутренний воздух , 21: 442–453.
Артикул Google Scholar
Madsen U, Breum NO, Nielsen PV (1994).Местная вытяжная вентиляция — численное и экспериментальное исследование эффективности улавливания. Строительство и окружающая среда , 29: 319–323.
Артикул Google Scholar
Махоул А., Гали К., Гаддар Н. (2013). Настольные вентиляторы для управления конвекционным потоком вокруг людей с помощью индивидуальной вентиляции, устанавливаемой на потолке. Строительство и окружающая среда , 59: 336–348.
Артикул Google Scholar
Одзима Дж. (2002).Воздействие на рабочих из-за обратного потока при двухтактной вентиляции и разработки системы предотвращения обратного потока. Журнал Occupant Health , 44: 391–397.
Артикул Google Scholar
Робинсон М., Ингем Д. Б. (1996). Рекомендации по проектированию двухтактных систем вентиляции открытых резервуаров. Анналы гигиены труда , 40: 693–704.
Артикул Google Scholar
Сандберг М. (1981).Что такое эффективность вентиляции? Строительство и окружающая среда , 16: 123–135.
Артикул Google Scholar
Сандберг М. (1983). Эффективность вентиляции как ориентир при проектировании. ASHRAE Transactions , 89 (2): 455–479.
Google Scholar
Сандберг М., Шоберг М. (1983). Использование моментов для оценки качества воздуха в вентилируемых помещениях. Строительство и окружающая среда , 18: 181–197.
Артикул Google Scholar
Санделл Дж. (1996). Что мы знаем и не знаем о синдроме больного здания. ASHRAE Journal , 38 (6): 51–57.
Google Scholar
Варгоцкий П., Вайон Д.П., Байк Ю.К. (1999). Воспринимаемое качество воздуха, симптомы синдрома больного здания (SBS) и производительность в офисе с двумя различными уровнями загрязнения. Внутренний воздух , 9: 165–179.
Артикул Google Scholar
Вудс Дж. Э. (1989). Снижение затрат и продуктивность владения и эксплуатации зданий. Обзоры современного состояния в области медицины труда , 4: 753–770.
Google Scholar
Xing H, Hatton A, Awbi HB (2001). Исследование качества воздуха в зоне дыхания в помещении с вытяжной вентиляцией. Строительство и окружающая среда , 36: 809–820.
Артикул Google Scholar
Чжао Б., Ли Х, Ли Д., Ян Дж. (2003). Пересмотренная эффективность воздухообмена с учетом распределения людей в вентилируемом помещении. Журнал Ассоциации управления воздухом и отходами , 53: 759–763.
Артикул Google Scholar
Местные системы вентиляции | Строительные решения USI
Вентиляция — необходимый компонент любого дома, особенно с учетом того, сколько функций имеют современные системы отопления, вентиляции и кондиционирования воздуха.Хорошая система вентиляции сохранит
внутренняя среда вентилируется, нагревается, охлаждается и увлажняется в зависимости от предпочтений домовладельцев.
Системы вентиляции всего дома, в частности, могут влиять на качество воздуха в помещении в большем масштабе, чем местные системы вентиляции, что может быть не так выгодно для больших жилых помещений.
Как вентиляция всего дома помогает:
В системах вентиляции всего дома используются одна или несколько систем воздуховодов и подключенные к ним вентиляторы, чтобы избавиться от застоявшегося воздуха и обеспечить дом свежим воздухом.Весь воздух, циркулирующий в доме, проходит через фильтры, которые предназначены для улавливания нежелательных загрязнений и предотвращения их круговорота.
Вентиляция всего дома выгодна для больших зданий и сооружений, потому что вся система функционирует так, чтобы воздух в помещении оставался желательным в каждой комнате дома.