Menu Close

Расчет количества тепла на отопление здания: Расчет отопления дома: онлайн калькулятор определения теплопотерь

Теплотехнический расчет конструкции здания

Основой для определения тепловой нагрузки систем отопления является процедура проведения теплотехнического расчета конструкций здания с учетом всех конструктивных особенностей используемых строительных материалов и их теплоизоляционных свойств. В расчетах также учитывается ориентация здания по сторонам света, наличие естественной или механической систем вентиляции и многие другие факторы теплового баланса помещений.

Методы расчета тепловой нагрузки системы отопления

  1. Расчет потерь тепла по площади помещений.
  2. Определение величины теплопотерь исходя из наружного объема здания.
  3. Точный теплотехнический расчет всех конструкций жилого дома с учетом теплофизических коэффициентов материалов.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Теплопотери здания

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:

Q=S*100 Вт (150 Вт),

Q — требуемое количество тепла, необходимое для обогрева всего помещения, Вт

S — отапливаемая площадь помещения, м?

Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?.

При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Расчет тепловой мощности исходя из объема помещения

Этот метод определения тепловой нагрузки на системы отопления наименее универсален, чем первый, так как предназначен для расчетов помещений с высокими потолками, но при этом не учитывает, что воздух под потолком всегда теплее, чем в нижней части комнаты и, следовательно, количество потерь тепла будет различаться зонально.

Тепловая мощность системы отопления для здания или помещения с потолками выше стандартных рассчитывается исходя из следующего условия:

Q=V*41 Вт (34 Вт),

где V – наружный объем помещения в м?,

А 41 Вт – удельное количество тепла, необходимое для обогрева одного кубометра здания стандартной постройки (в панельном доме). Если строительство ведется с применением современных строительных материалов, то удельный показатель теплопотерь принято включать в расчеты со значением 34 Ватт.

При использовании первого или второго метода расчета теплопотерь здания укрупненным методом можно пользоваться поправочными коэффициентами, которые в некоторой степени отражают реальность и зависимость потерь тепла зданием в зависимости от различных факторов.

  1. Тип остекления:
  • тройной пакет 0,85,
  • двойной 1,0,
  • двойной переплет 1,27.
  1. Наличие окон и входных дверей увеличивает величину потерь тепла дома на 100 и 200 Ватт соответственно.
  2. Теплоизоляционные характеристики наружных стен и их воздухопроницаемость:
  • современные теплоизоляционные материалы 0,85
  • стандарт (два кирпича и утеплитель) 1,0,
  • низкие теплоизоляционные свойства или незначительная толщина стен 1,27-1,35.
  1. Процентное отношение площади окон к площади помещения: 10%-0,8, 20%—0,9, 30%—1,0, 40%—1,1, 50%—1,2.
  2. Расчет для индивидуального жилого дома должен производиться с поправочным коэффициентом порядка 1,5 в зависимости от типа и характеристик используемых конструкций пола и кровли.
  3. Расчетная температура наружного воздуха в зимний период (для каждого региона своя, определяется нормативами): -10 градусов 0,7, -15 градусов 0,9, -20 градусов 1,10, -25 градусов 1,30, -35 градусов 1,5.
  4. Тепловые потери так же растут в зависимости от увеличения количества наружных стен по следующей зависимости: одна стена – плюс 10% от тепловой мощности.

Но, тем не менее, определить какой метод даст точный и действительно верный результат тепловой мощности отопительного оборудования можно лишь после выполнения точного и полного теплотехнического расчета здания.

Теплотехнический расчет индивидуального жилого дома

Приведенные выше методики укрупненных расчетов больше всего ориентированы на продавцов или покупателей радиаторов систем отопления, устанавливаемых в типовых многоэтажных жилых домах. Но когда речь идет о подборе дорогостоящего котельного оборудования, о планировании системы отопления загородного дома, в котором кроме радиаторов будут установлены системы напольного отопления, горячего водоснабжения и вентиляции, пользоваться этими методиками крайне не рекомендуется.

Отопление в коттедже

Каждый владелец индивидуального жилого дома или коттеджа еще на стадии строительства достаточно скрупулезно подходит к разработке строительной документации, в которой учитываются все современные тенденции использования строительных материалов и конструкций дома. Они обязательно должны не быть типовыми или морально устаревшими, а изготовлены с учетом современных энергоэффективных технологий. Следовательно, и тепловая мощность системы отопления должна быть пропорционально ниже, а суммарные затраты на устройство системы обогрева дома значительно дешевле. Эти мероприятия позволяют в дальнейшем при использовании отопительного оборудования снижать затраты на потребление энергоресурсов.

Расчет теплопотерь выполняется в специализированных программах либо с использованием основных формул и коэффициентов теплопроводности конструкций, учитывается влияние инфильтрации воздуха, наличие или отсутствие систем вентиляции в здании. Расчет заглубленных цокольных помещений, а также крайних этажей производится по отличной от основных расчетов методике, которая учитывает неравномерность остывания горизонтальных конструкций, то есть потери тепла через крышу и пол. Выше приведенные методики этот показатель не учитывают.

Теплотехнический расчет выполняется, как правило, квалифицированными специалистами в составе проекта на систему отопления в результате которого производится дальнейший расчет количества и мощность приборов отопления, мощность отдельного оборудования, подбор насосов и другого сопутствующего оборудования.

В качестве наглядного примера выполним расчет теплопотерь в специализированной программе для трех домов, построенных по одной технологии, но с различной толщиной теплоизоляции наружных стен: 100 мм, 150 мм и 200 мм. Расчет ведется для угловой жилой комнаты с одним окном, площадью 8,12 м?. Регион строительства Московская область.

Исходные данные:

  • Помещение с обмером по наружным габаритам 3000х3000;
  • Окно размерами 1200х1000.

Целью расчета является определение удельной мощности системы отопления, необходимой для нагрева 1м?.

Результат:

  • Qуд при т/изоляции 100 мм составляет 103 Вт/м?
  • Qуд при т/изоляции 150 мм составляет 81 Вт/м?
  • Qуд при т/изоляции 200 мм составляет 70 Вт/м?

Как видно из расчета, наибольшие потери тепла составляют для жилого дома с наименьшей толщиной изоляции, следовательно, мощность котельного оборудования и радиаторов будет выше на 47% чем при строительстве дома с теплоизоляцией в 200 мм.

Инфильтрация воздуха или вентиляция зданий

Все здания в особенности жилые имеют свойство «дышать», то есть проветриваться различными способами. Это обусловлено созданием разряженного воздуха в помещениях за счет устройства вытяжных каналов в конструкциях дома либо дымоходов. Как известно, вентиляционные каналы создаются в зонах с повышенными выделениями загрязнений, таких как, кухни, ванные комнаты и санузлы.

Таким образом, при работе системы вентиляции или при проветривании соблюдается главное правило создания благоприятной среды воздуха в жилых зданиях: направление движения свежего воздуха должно быть организовано из помещений с постоянным пребыванием людей в направлении помещений с максимальным уровнем загрязнения.

То есть при правильном воздухообмене приточный воздух поступает в помещение через окно, вентиляционный клапан или приточную решетку и удаляется в кухнях и санузлах.

Инфильтрация

При расчете теплопотерь знания имеет принципиальное значение, какой способ вентиляции жилых помещений будет выбран:

  • Устройство механической вентиляции с подогревом приточного воздуха.
  • Инфильтрация — неорганизованный воздухообмен через неплотности в стенах, при открывании окон или при использовании заранее установленных воздушных клапанов в конструкции стен или оконных стеклопакетах.

В случае применения в жилом здании сбалансированной системы вентиляции (когда объем приточного воздуха больше или равен вытяжному, то есть исключаются любые прорывания холодного воздуха в жилые помещения) воздух, поступающий в жилые помещения, предварительно прогревается в вентиляционной установке. При этом мощность, необходимая для нагрева вентиляции, учитывается в расчете мощности котельного оборудования.

Расчет вентиляционной тепловой нагрузки производится по формуле:

Qвент= c*p*L*(t1-t2)

где, Q – количество тепла, необходимое для нагрева приточного воздуха, Вт;

с – теплоемкость воздуха, Дж/кг*град

p - плотность воздуха, кг/м3

L – расход приточного воздуха, м3/час

t1 и t2 – начальная и конечная температуры воздуха, град.

Если в жилых помещениях отсутствует организованный воздухообмен, то при расчете теплопотерь здания производится учет тепла, затрачиваемого системой отопления на нагрев инфильтрационного воздуха. При этом обогрев воздуха, поступающего в помещения осуществляется радиаторами систем отопления, то есть учитывается в их тепловой нагрузке.

Если в помещениях установлены герметичные стеклопакеты без встроенных воздушных клапанов, то потери тепла на нагрев воздуха, тем не менее учитываются. Это обусловлено тем, что в случае кратковременного проветривания, поступивший холодный воздух все равно требуется нагревать.

Стеновой клапан

Для более комфортной вентиляции встраивается приточный стеновой клапан.

 

Учет количества инфильтрационной тепловой энергии производится по нескольким методикам, а в тепловом балансе здания в расчет принимается наибольшее из значений.

Например, количество тепла на нагрев воздуха, проникающего в помещения для компенсации естественной вытяжки, определяется по формуле:

Qинф=0,28*L*p*c*(tнар-tпом),

где, с – теплоемкость воздуха, Дж/кг*град

p - плотность воздуха, кг/м?

tнар – температура наружного воздуха, град,

tпом – расчетная температура помещения, град,

L – количество инфильтрационного воздуха, м?/час.

Количество воздуха, поступающего в зимний период в жилые помещения, как правило, обусловлено работой естественных вытяжных систем, поэтому в одном случае принимается равным объему вытягиваемого воздуха.

Количество вытяжки в жилых помещениях определяется согласно СНиП 41-01-2003 по нормативным показателям удаления воздуха от плит и санитарных приборов.

  • От кухонной плиты – электрической 60 м?/час или газовой 90 м?/час;
  • Из ванны и санузлов по 25 м?/час

Во втором случае данный показатель инфильтрации определяется исходя из санитарной нормы свежего наружного воздуха, который должен поступать в помещение для обеспечения оптимального и качественного состава воздушной среды в жилых помещениях. Этот показатель определяется по удельной характеристике: 3 м?/час на 1м? жилой площади.

За расчетное значение принимается наибольший расход воздуха и соответственно большее количество теплопотерь на инфильтрацию.

Пример: Так как здание, рассматриваемое в примере, построено по каркасному типу с установкой окон в деревянных переплетах, то при создании вытяжной вентиляции на кухне и в санузлах объем инфильтрации будет достаточно высок. Дома такого типа, как правило, являются наиболее «дышащими».

Инфильтрационная составляющая определяется согласно выше приведенным методикам. Расчет производится для всего жилого дома при условии, что на кухне установлена электроплита, на первом этаже находится санузел и ванная.

То есть объем вытяжного воздуха по первой методике составляет Lвыт=60+25+25=110 м?/ч,

а по второй методике санитарная норма приточного воздуха Lприт=3м?/ч*62м?(жилая площадь)=186 м3/час.

К расчету принимаем максимальное количество воздуха.

Qинф=0,28*186*1,2*1,005*(22+28)=3 140 Вт, что составляет 44Вт/м?.

Расчет отопления по объему здания

Монтаж отопления включает терморегуляторы, увеличивающие давление насосы, бак для расширения, крепежи, систему соединения, развоздушки котел, коллекторы, трубы, батареи. Монтаж обогрева дома насчитывает определенные устройства. Каждый фактор важную роль. Поэтому соответствие каждой части конструкции важно планировать технически обдуманно. На этой вкладке сайта мы попытаемся подобрать для вашей квартиры определенные узлы отопления.

Теплотехнический расчет зданий весьма сложен. Его может сделать только проектная организация, имеющая соответствующую лицензию. И стоимость такого расчета будет немаленькой.

В подавляющем большинстве случаев домовладельцы обходятся без подобных расчетов и подбирают отопительный котел по мощности «на глазок».

Но подобрать котел можно используя и простейшие расчеты.

Необходимая мощность котла будет зависеть от отапливаемой площади и от тепловых потерь здания.

Для хорошо утепленных зданий существует рекомендация по подбору мощности отопительного оборудования. Она очень проста: на каждые 10 м кв. площади необходим 1кВт мощности. Следовательно, для утепленного дома площадью 100 м кв. потребуется котел с мощностью в 10кВт. Под утеплением понимается наличие двойных дверей, двухкамерных стеклопакетов, и теплоизоляция стен, потолка, полов слоем утеплителя 10 см.

Современные настенные газовые котлы прощают некоторую погрешность в подборе мощности, так как их можно настраивать. Например, для утепленного здания 150 м кв. требуется котел с минимальной мощностью 15 кВт. Для нагрева воды на бытовые нужды понадобится еще как минимум 25% мощности. Тогда, необходима мощность уже 18,75 кВТ. Поэтому стоит рассмотреть более мощную модель с двумя контурами нагрева (для отопления и горячей воды). С учетом запаса, подойдет котел мощностью 22 – 24 кВт. При установке специалисты настроят горелки на необходимую мощность.

Но если здание не утеплено, то подбор котла можно провести согласно следующему «домашнему» расчету.

Необходимая мощность котла определяется: W = Q * K,

где

Q – теплопотери здания, кВт;

К – коээфициент запаса, К=1,2.

Теплопотери здания определяются: Q =V*T*n / 860,

где

V – объем помещения, м куб.;

T – разница температур на улице и внутри помещения, град. С;

860 – переводной коэффициент;

n – коэффициент рассеивания, для различных типов зданий принимает следующие значения:

— для не утепленных зданий, (дощатые сараи, металлические ларьки…), n = 3,0 – 4,0;

— для плохо утепленных зданий, (со стенами в один кирпич), n = 2,0 – 2,9;

— для средне утепленных зданий (стены двойной кирпич, стандартная кровля…), n = 1,0 – 1,9;

— для хорошо утепленных зданий (10 см утеплителя, стеклопакеты…), n = 0,6 – 0,9;

Например, подберем котел по мощности для дома площадью 150 м кв. с высотой потолка 2,5 м, средне-утепленного – со стенами из двойной кирпичной кладки, с обычной площадью остекления однокамерными стеклопакетами, без утепления кровли и полов. Дом расположен в Европейской части на средней широте.

Тогда принимаем:

Коэффициент рассеивания n = 1,6.

Объем здания V = 150*2,5= 375 м куб.

Разница температур Т = 35 град С.

Теплопотери здания: Q = 375*35*1,6/860 = 24,4 кВт

Необходимая мощность котла: W = 29,7*1,2= 29,3 кВт

Как видим, простейший расчет показал, что для средне-утепленного дома понадобится уже котел в два раза мощнее, чем для хорошо-утепленного.

Слишком мощный котел выбирать не стоит. Для того что бы прогреть здание, он будет работать короткими сеансами. В результате дымоход и выпускное оборудование не будет прогреваться, и там будет скапливаться конденсат с кислотой. Это очень вредно для котла.

Слабомощный котел будет работать на пределе, и не сможет прогреть здание до нужной температуры.

Оптимально, если котел работает средними по длительности сеансами, на настроенной мощности, которая ниже максимальной. При этом он меньше тратит энергии на собственный прогрев, а конденсат быстро испаряется при прогреве коллектора. Специалисты рекомендуют выбирать котлы с небольшим запасом по мощности, но не более 20%.

Источник: http://stroy-block.com.ua/otoplenie/390-raschet-moschnosti-kotla.html

Автор Тема: Расчет нормативного тепло потребления объектов (Прочитано 6560 раз)

« : 10 Мая 2012, 12:38:11 »

Здравствуйте!

Подскажите самый верный расчет нормативного тепло потребления?

Как будет правиьнее из каких нормативных документов брать данные для расчета (температура внутр. помещ. коэффициент инфильтрации и т.п.).

Здравствуйте Сергей.

В действующих нормативных документах (СНиП, ГОСТ, СП, РД, Постановления Правительства РФ и т.д.) «самого верного расчета нормативного теплопотребления» не существует. Такого, чтобы расчет нормативного теплопотребления наверняка был самым верным из верных.

Кстати, что Вы имеете в виду под словами «нормативное теплопотребление»:

— потребление тепловой энергии только для отопления зданий ?

— потребление тепловой энергии для отопления и горячего водоснабжения зданий ?

— потребление тепловой энергии для отопления, горячего водоснабжения и принудительной приточной вентиляции зданий ?

— и т.д. и т.п.

В действующих нормативных документах потребление тепловой энергии зданиями (отопление, принудительная приточная вентиляция, горячее водоснабжение) определяется:

а) Или по методике составления теплового баланса здания (с расчетом всех составляющих теплового баланса: трансмиссионных тепловых потерь через ограждающие конструкции; расхода теплоты на нагрев инфильтрирующегося холодного наружного воздуха; с учетом внешних и внутренних тепловыделений в самом здании). И тут Вам в помощь следующие нормативные документы:

1. СНиП 23-02-2003 «Тепловая защита зданий» — М. Госстрой России, 2004. (Приложение Г – «Расчет удельного расхода тепловой энергии на отопление жилых и общественных зданий за отопительный период»).

2. СП 23-101-2004 «Проектирование тепловой защиты зданий» — М. Госстрой России, 2005.

3. Руководство АВОК-8-2007 «Руководство по расчету теплопотребления эксплуатируемых жилых зданий».

б) Или через общую площадь всех жилых и нежилых помещений здания (укрупненный показатель). И здесь Вам в помощь следующие нормативные документы:

4. Постановление Правительства Российской Федерации № 306 от 23.05.2006 г. «Правила установления и определения нормативов потребления коммунальных услуг».

5. Постановление Правительства Российской Федерации № 258 от 28.03.2012 г. «Правила установления и определения нормативов потребления коммунальных услуг».

в) Или через наружный строительный объем здания (укрупненный показатель).

И здесь Вам в помощь следующие нормативные документы:

6. МДС 41-4.2000 «Методика определения количеств тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения (практическое пособие к Рекомендациям по организации учета тепловой энергии на предприятиях, в учреждениях и организациях жилищно-коммунального хозяйства и бюджетной сферы)» — М. Госстрой России, РАО «Роскоммунэнерго», 2000. (Приложение 1 — «Определение расчетных тепловых нагрузок отопления, приточной вентиляции и горячего водоснабжения»).

7. «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения» — М. Госстрой России, ЗАО «Роскоммунэнерго», 2005. (Раздел 3 — «Определение количества тепловой энергии, необходимой на планируемый период»).

И все эти методики расчета нормативного потребления тепловой энергии (отопление, горячее водоснабжение, принудительная приточная вентиляция), которые приведены в действующих нормативных документах [1…3], [4…5], [6…7] являются верными.

И у каждой из этих методик имеются свои преимущества (т.е. плюсы) и свои недостатки (т.е. минусы).

И Вы, как специалист, просто должны принять определенное решение, какую-именно методику будете использовать для своих расчетов.

Источник: http://www.rosteplo.ru/forum/4/5361/

Расчет потерь теплоты зданиями по укрупненным показателям

По укрупненным показателям можно определить теплопотери для здания в целом, а также ориентировочную мощность котельной или ЦТП на группу t в и tн — зданий, что удобно на ранних стадиях проектирования (т.э.о. получение технических условий на проектирование).

Для выполнения рабочих чертежей отопления жилых зданий пользоваться укрупненными показателями недопустимо.

Источник: http://teplodoma.com.ua/1/rashet_tepl_zaves/h3str_97.html

Отопление

Потребленное количество Гкал рассчитываем по формуле [1] плюс теплопотери в тепловых сетях Потребителя.

Потери в тепловых сетях, при расчетном методе, берем на участке тепловых сетей от точки подключения к сетям теплоснабжающей организации до фундамента отапливаемого здания.

Если сети до фундамента здания на балансе теплоснабжающей компании, то теплопотери не начисляются.

Qпотр. = Qр.час. * (tвн.зд. — tср.мес. ) / (tвн.зд. — tнар.воз. ) * 24 * n * 0,000001 [1]

где,

Qпотр. — потребленное количество Гкал в расчетном периоде, Гкал

Qр.час — расчетная часовая нагрузка отопления здания, Гкал/час

Должна указываться в договоре на теплоснабжение. Берется из проекта на отапливаемое здание. Если проектной нагрузки нет, то рассчитывается теплоснабжающей организацией укрупнено. Здесь я не привожу расчет часовой нагрузки, чтобы не запутать Вас.

tвн.зд. — расчетная температура воздуха внутри отапливаемого здания, °С

В районах с температурой наиболее холодной пятидневки -31°С (обеспеченностью 0,92) и ниже, +20°С и +22°С соответственно.

Температуру воздуха наиболее холодной пятидневки в конкретном регионе можно посмотреть в СНиП 23-01-99 «Строительная климатология» таблица 1, столбец 5.

Если в таблице нет Вашего города (населенного пункта), то выбираете тот, который максимально близко расположен к вашему городу.

В помещениях внутри жилых помещений (гардеробная, душевая, кладовая, лифты и т.п.) tвн. можно посмотреть в ГОСТ Р 51617-2000. таблица 3.

Для других помещений, таких как например гаражи, послеродовые палаты, бани, школы, лаборатории и т.д. нормативную температуру воздуха внутри отапливаемого помещения можно посмотреть в СНиП 31-06-2009 «Общественные здания и сооружения» (Раздел 7, таблицы 7.2 — 7.5).

Климатические зоны смотрим в СНиП 23-01-99 «Строительная климатология», приложение А, таблица А.1

tср. мес. — среднемесячная температура наружного воздуха в конкретном регионе, °С

Для расчета планируемого потребления Гкал среднемесячная температура берется из СНиП 23-01-99 «Строительная климатология», таблица 3.

При расчете фактически потребленных Гкал, температура берется по данным гидрометеостанции. Должен быть официальный документ.

Это и будет корректировка на фактическую температуру наружного воздуха.

tнар.воз. — расчетная температура наиболее холодной пятидневки обеспеченностью 0,92, °С

Берется из СНиП 23-01-99 «Строительная климатология», таблица 1, столбец 5. Если в таблице нет Вашего города (населенного пункта), то выбираете тот, который максимально близко расположен к вашему городу.

24 — количество часов в сутках, час

n — количество дней в расчетном месяце.

Ставим 30, 31 или 28 (29) дней соответственно. Посмотрим сколько дней ставить в мае и сентябре.

Для планов: смотрим продолжительность отопительного периода в днях по конкретному региону в соответствии со СНиП 23-01-99 «Строительная климатология», таблица 1, столбец 11. Из этой цифры вычитаем количество дней с октября по апрель, оставшиеся дни делим на сентябрь и май примерно поровну.

По факту: как правило, начало или конец отопительного периода в конкретном городе (населенном пункте) объявляется Постановлением главы этого населенного пункта. Исходя из такого Постановления и расчет дней.

В соответствии с Правилами технической эксплуатации тепловых энергоустановок. п.11.7. отопительный период начинается, если в течение пяти суток средняя суточная температура наружного воздуха составляет +8°С и ниже, и заканчивается, если в течение пяти суток средняя суточная температура наружного воздуха составляет +8°С и выше.

* 0,000001 — переводим из ккал в Гкал.

Горячее водоснабжение.

Источник: http://teplorf.ru/teplouchet/nachislenie_gkal_raschetnim_metodom.htm

Смотрите также:
19 августа 2020 года

расчет часовых и годовых показателей

Содержание статьи:

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

Зачем нужно знать этот параметр

Распределение тепловых потерь в доме

Распределение тепловых потерь в доме

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Санитарно-эпидемиологические требования для жилых домов

Санитарно-эпидемиологические требования для жилых домов

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Таблица поправочных коэффициентов для различных климатических зон России

Таблица поправочных коэффициентов для различных климатических зон России

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

9

Где – удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше,  – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Таблица удельных тепловых характеристик зданий

Таблица удельных тепловых характеристик зданий

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи – R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон – 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Тепловой расчет системы отопления — определяем нагрузку на систему и расход тепла

Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

Тепловой расчёт системы отопления большинству представляется легким и не требующим особого внимания занятием. Огромное количество людей считают, что те же радиаторы нужно выбирать исходя из только площади помещения: 100 Вт на 1 м.кв. Всё просто. Но это и есть самое большое заблуждение. Нельзя ограничиваться такой формулой. Значение имеет толщина стен, их высота, материал и многое другое. Конечно, нужно выделить час-другой, чтобы получить нужные цифры, но это по силам каждому желающему.

Исходные данные для проектирования системы отопления

Чтобы произвести расчет расхода тепла на отопление, нужен, во-первых, проект дома.

План дома для расчёта можно начертить приблизительно на листе

План дома позволяет получить практически все исходные данные, которые нужны для определения теплопотерь и нагрузки на отопительную систему

Он должен содержать внутренние и наружные размеры каждого помещения, окон, наружных дверных проёмов. Внутренние двери остаются без внимания, поскольку на тепловые потери они не оказывают никакого влияния.

Во-вторых, понадобятся данные о расположении дома по отношению к сторонам света и районе строительства – климатические условия в каждом регионе свои, и то, что подходит для Сочи, не может быть применено к Анадырю.

В-третьих, собираем информацию о составе и высоте наружных стен и материалах, из которых изготовлены пол (от помещения до земли) и потолок (от комнат и наружу).

После сбора всех данных можно приступать к работе. Расчет тепла на отопление можно выполнить по формулам за один-два часа. Можно, конечно, воспользоваться специальной программой от компании Valtec.

Специальное программное обеспечение позволяет быстро рассчитать все показатели и для маленького коттеджа, и для промышленного предприятия

Для расчёта теплопотерь отапливаемых помещений, нагрузки на систему отопления и теплоотдачи от отопительных приборов в программу достаточно внести только исходные данные. Огромное количество функций делают её незаменимым помощником и прораба, и частного застройщика

Она значительно всё упрощает и позволяет получить все данные по тепловым потерям и гидравлическому расчету системы отопления.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

Мк=1,2* Тп, где:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Тепло уходит из дома не только через окна, но и через плохо утеплённые стены, пол и потолок

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления. При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах.  В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Соотношение площади окон к площади пола Значение коэффициента
10% 0,8
10-19% 0,9
20% 1,0
21-29% 1,1
30% 1,2
31-39% 1,3
40% 1,4
50% 1,5

Температура за окном тоже вносит свои коррективы. При низких показателях теплопотери возрастают:

  • До -10С – 0,7;
  • -10С – 0,8;
  • -15C — 0,90;
  • -20C — 1,00;
  • -25C — 1,10;
  • -30C — 1,20;
  • -35C — 1,30.

Теплопотери находятся в зависимости и от того, сколько внешних стен у дома:

  • четыре стены – 1,33;%
  • три стены – 1,22;
  • две стены – 1,2;
  • одна стена – 1.

Хорошо, если к нему пристроен гараж, баня или что-то ещё.  А вот если его со всех сторон обдувают ветра, то придётся покупать котёл помощнее.

Количество этажей или тип помещения, которые находится над комнатой определяют коэффициент К6 следующим образом: если над дом имеет два и более этажей, то для расчётов берём значение 0,82, а вот если чердак, то для теплого – 0,91 и 1 для холодного.

Что касается высоты стен, то значения будут такими:

  • 4,5 м – 1,2;
  • 4,0 м – 1,15;
  • 3,5 м – 1,1;
  • 3,0 м – 1,05;
  • 2,5 м – 1.

Помимо перечисленных коэффициентов также учитываются площадь помещения (Пл) и удельная величина теплопотерь (УДтп).

Итоговая формула для расчёта коэффициента тепловых потерь:

Тп = УДтп * Пл * К1 * К2 * К3 * К4 * К5 * К6 * К7.

Коэффициент УДтп равен 100 Ватт/м2.

Разбор расчетов на конкретном примере

Дом, для которого будем определять нагрузку на систему отопления, имеет двойные стеклопакеты (К1 =1), пенобетонные стены с повышенной теплоизоляцией (К2= 1), три из которых выходят наружу (К5=1,22). Площадь окон составляет 23% от площади пола (К3=1,1), на улице около 15С мороза (К4=0,9). Чердак дома холодный (К6=1), высота помещений 3 метра (К7=1,05). Общая площадь составляет 135м2.

Исходные данные известны, значит дальше всё как в школе: подставляет в формулу цифры и получаем ответ:

Пт = 135*100*1*1*1,1*0,9*1,22*1*1,05=17120,565 (Ватт) или Пт=17,1206 кВт

Теперь можно рассчитать мощность отопительной системы:

Мк=1,2*17,1206=20,54472 (кВт).

Расчёт нагрузки и теплопотерь можно выполнить самостоятельно и достаточно быстро. Нужно всего потратить пару часов на приведение в порядок исходных данных, а потом просто подставить значения в формулы. Цифры, которые вы в результате получите помогут определиться с выбором котла и радиаторов.

Оцените статью: Поделитесь с друзьями!

Страница не найдена | MIT

Перейти к содержанию ↓
  • образование
  • Исследовательская работа
  • новаторство
  • Прием + помощь
  • Студенческая жизнь
  • Новости
  • Alumni
  • О MIT
  • Подробнее ↓
    • Прием + помощь
    • Студенческая жизнь
    • Новости
    • Alumni
    • О MIT
Меню ↓ Поиск Меню Ой, похоже, мы не смогли найти то, что вы искали!
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов

Предложения или отзывы?

,

Итерационный расчет коэффициента теплоотдачи

Естественная конвекция. Сила плавучести

Natural Convection. Buoyancy force Естественная конвекция При естественной конвекции движение жидкости происходит за счет естественных средств, таких как плавучесть. Поскольку скорость жидкости, связанная с естественной конвекцией, относительно мала, коэффициент теплопередачи

Дополнительная информация

Теплообмен и энергия

Heat Transfer and Energy Что такое тепло? Теплообмен и энергия Тепло — это энергия в пути.Вспомните Первый закон из термодинамики. U = Q — W Что мы подразумевали под всеми терминами? Что такое U? Что такое Q? Что такое W? Что такое теплопередача?

Дополнительная информация

Указания по применению AN-1057

Application Note AN-1057 Замечания по применению AN-1057 Характеристики радиатора Содержание Страница Введение … 1 Максимизация управления температурой … 1 Основы теплопередачи … 1 Термины и определения … 2 Режимы теплопередачи … 2

Дополнительная информация

Лекция 9, Тепловые заметки, 3.054

Lecture 9, Thermal Notes, 3.054 Лекция 9, Тепловые заметки, 3.054 Тепловые свойства пен Пенопласты с закрытыми ячейками, широко используемые для теплоизоляции Аэрогели (как правило, хрупкие и слабые) и вакуумные

только материалами с более низкой проводимостью Дополнительная информация

Вязкость жидкостей

The Viscosity of Fluids Эксперимент № 11 «Вязкость жидкостей» Литература: 1. Ваш первый учебник по физике.2. Табор Д. Газы, жидкости и твердые тела: и другие состояния вещества (Cambridge Press, 1991). 3. J.R. Van Wazer et al.,

Дополнительная информация

Тепловые и массовые корреляции

Heat and Mass Correlations Корреляции тепла и массы Александр Раттнер, Джонатан Борен 13 ноября 2008 г. Содержание 1 Безразмерные параметры Граничные аналогии — требуется геометрическое подобие 3 Внешний поток 3 3.1 Внешний

Дополнительная информация

Строительство и окружающая среда

Building and Environment Строительство и окружающая среда xxx (21) 1e9 Списки содержания доступны на домашней странице журнала ScienceDirect по зданиям и окружающей среде: www.elsevier.com/locate/buildenv Плавательные бассейны как радиаторы для кондиционеров:

Дополнительная информация

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (THERM)

THERMAL RADIATION (THERM) УНИВЕРСИТЕТ СЮРРЕИ ОТДЕЛЕНИЕ ФИЗИКИ Уровень 2 Классический лабораторный эксперимент ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (THERM) Цели В этом эксперименте вы исследуете основные характеристики теплового излучения,

Дополнительная информация

Вязкость жидкостей

The Viscosity of Fluids Эксперимент №11. Вязкость жидкостей. Ссылки: 1.Твой учебник физики за первый год. 2. Табор Д. Газы, жидкости и твердые тела: и другие состояния вещества (Cambridge Press, 1991). 3. J.R. Van Wazer et al.,

Дополнительная информация

1. Теоретические основы

1. Theoretical background 1. Теоретические основы. Мы рассматриваем энергетический баланс на поверхности почвы (уравнение 1). Компоненты потока энергии, поглощаемые или испускаемые поверхностью почвы: чистая радиация, скрытый тепловой поток, явное тепло

Дополнительная информация

Экспериментальные неопределенности (ошибки)

Experimental Uncertainties (Errors) Экспериментальные погрешности (ошибки) Источники экспериментальных погрешностей (экспериментальные ошибки): Все измерения подвержены некоторой погрешности, так как широкий спектр ошибок и неточностей может иметь место и происходит.

Дополнительная информация

ИНИЦИАТИВА ПО ИССЛЕДОВАНИЯМ ЯДЕРНОЙ ЭНЕРГИИ

NUCLEAR ENERGY RESEARCH INITIATIVE ИНИЦИАТИВА ИНИЦИАТИВЫ ИССЛЕДОВАНИЙ В ЯДЕРНОЙ ЭНЕРГИИ Экспериментальный анализ и CFD-анализ усовершенствованных систем конвективного охлаждения Генеральный директор: Виктор М. Угаз и Ясин А. Хассан, Техасская экспериментальная экспериментальная станция Сотрудники: нет

Дополнительная информация

8. Испарители * / А. Введение.

8. Evaporators */ A. Introduction ГЛАВА 8.ИСПАРИТЕЛИ 8. Испарители * / A. Введение 8.01 Испаритель является одним из четырех основных и необходимых аппаратных компонентов системы охлаждения. (Хладагент можно рассматривать как

Дополнительная информация

ИК-излучатель Edixeon. 1 Вт Edixeon

IR Edixeon Emitter. 1W Edixeon Светодиод высокой мощности Edixeon IR Edixeon Emitter 1 Вт Дата: 2006/06/01 Версия: 2.0 Номер устройства: 3-RD-01-E0009 Believe SRL Via Lago di Trasimeno, 21 — Schio (VI) — Италия TEL: +39/0445 / 579035 ФАКС: +39/0445/575708

Дополнительная информация

Первый закон термодинамики

The First Law of Thermodynamics Первые aw термодинамики Q и W зависят от процесса (пути).(Q W) = E int не зависит от процесса. E int = E int, f E int, i = Q W (первый закон) Q: + тепло в систему; потеря тепла от

Дополнительная информация

ТЕРМИЧЕСКИЙ АНАЛИЗ. обзор

THERMAL ANALYSIS. Overview ТЕРМИЧЕСКИЙ АНАЛИЗ Обзор В этом информационном документе мы определяем, а затем обрисовываем концепцию термического анализа в том, что касается дизайна продукта. Обсуждаем принципы проводимости, конвекции,

Дополнительная информация

ТЕПЛО- И МАССООБМЕН

HEAT AND MASS TRANSFER MEL242 ТЕПЛО И МАССОПЕРЕДАЧА Прабал Талукдар Доцент кафедры машиностроения г ИИТ Дели prabal @ mech.iitd.ac.in MECH / IITD Координатор курса: доктор Прабал Талукдар Номер комнаты: III,

Дополнительная информация ,Удельная теплоемкость

— Calculator.org

Что такое удельная теплоемкость?

liquid nitrogen

Удельная теплоемкость вещества, химического соединения или молекулы — это мера количества тепловой энергии, необходимой для повышения температуры единицы количества этого вещества в заданном интервале температур. Вода, например, имеет удельную теплоемкость 4,186 джоулей / грамм ° C. Другими словами, чтобы повысить температуру одного грамма жидкой воды на один градус Цельсия, вам нужно будет добавить 4.186 джоулей тепловой энергии в систему. Символ удельной теплоемкости обозначается как c или иногда C, в зависимости от того, как измеряется вещество. В системе СИ для удельной теплоемкости используются Дж / (кг · К).

Уравнение, связывающее удельную теплоемкость с тепловой энергией и температурой, можно записать следующим образом:

Q = mcΔT

Здесь Q — это тепловая энергия, вложенная в определенное количество вещества с массой m, c — удельная теплоемкость вещества, а ΔT — изменение температуры.Преобразуя это уравнение для c, получаем:

c = Q / (м.ΔT)

, в котором единицы теплоемкости пересчитываются как количество энергии, деленное на массу и изменение температуры.

Многие люди не понимают, что такое фазовые переходы и удельная теплоемкость. Предположим, у нас есть литр воды комнатной температуры, которую мы хотим преобразовать в пар, и мы хотим знать изменение энтальпии, которое потребуется для того, чтобы поднять температуру воды до точки кипения, а затем изменить ее состояние на водяной пар.Вопреки тому, что можно было бы подумать, изменение энтальпии не является непрерывным между фазами, так что изменение энтальпии, необходимое для перевода воды из жидкого состояния в газовое состояние при температуре кипения, такое же, как изменение энтальпии, необходимое для нагрева воды и дополнительный градус C. Теплотворная способность воды различается в зависимости от состояния воды. Также необходимо добавить изменение энтальпии парообразования между фазовыми переходами жидкой воды в водяной пар, чтобы иметь точную картину полного изменения энтальпии, необходимого между фазами.

Большинство значений удельной теплоемкости почти постоянны для данного диапазона температур и состояния, за исключением очень низких температур. В таких случаях законы квантовой механики становятся все более важными, и удельная теплоемкость перестает быть классической. Однако модель удельной теплоемкости Эйнштейна-Дебая предсказывает значения теплоемкости при таких низких температурах.

Еще одним важным фактором, влияющим на удельную теплоемкость, являются различные степени свободы движения, доступные во многих различных химических соединениях.Определенные, более сложные молекулы имеют много степеней свободы, и это влияет на количество энергии, которое может храниться в соединении. В некоторых случаях изменение температуры может повлиять на изменение доступных степеней свободы, что может вызвать изменение удельной теплоемкости рассматриваемого вещества. Азот — один из таких примеров. При комнатной температуре азот имеет пять степеней свободы, но при более высоких температурах азот получает еще две степени внутренней свободы. С открытием этих дополнительных степеней свободы газообразный азот может накапливать больше энергии, тем самым увеличивая его удельную теплоемкость.

Добавьте эту страницу в закладки в своем браузере, используя Ctrl и d или используя одну из следующих служб: (открывается в новом окне) ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *