Menu Close

Расход теплоносителя: Определение расхода теплоносителя для подбора циркуляционного насоса

Причины дефицита тепла и недостаточного расхода теплоносителя в гидравлической системе отопления | Архив С.О.К. | 2007

Задавая потребителю простой вопрос: «Непрерывно ли работает котел во время очень холодной погоды?», зачастую получают отрицательный ответ. Какой можно сделать вывод из такого ответа? Вероятное объяснение достаточно простое. Достигнув полной мощности, котел отключается, т.к. он генерирует тепло быстрее, чем способна рассеять остальная часть системы. Другими словами, где-то в системе между источником тепла и его потребителями находится узел, мешающий свободной передаче тепловой энергии.

В гидравлической системе такой дефицит проявляется в форме недостаточного расхода теплоносителя и низкого коэффициента теплопередачи. Оба этих фактора могут стать причиной недостаточной теплопроизводительности системы. В этой статье рассматрим некоторые факторы, вызывающие проблемы, и способы их предотвращения.

Проверка коэффициента сопротивления СV

В качестве примера рассмотрим дом с восемью распределительными узлами (каждый из которых обслуживает несколько контуров напольного отопления), подключенными к термостатическому смесительному клапану диаметром

3/4˝(рис. 1). При таком построении гидравлической схемы слово «дефицит» едва ли в полной мере описывает данную ситуацию.

Трехходовой термостатический смешивающий клапан диаметром 3/4˝ имеет значение CV, равное 3,0 (CV показывает расход воды в галлонах в минуту, что обеспечивает падение давления на клапане, равное 1 psi). Использование такого клапана даже для обслуживания одного коллектора достаточно спорно вследствие сравнительно ограниченного расхода. Помножив данную ситуацию на восемь, можно спокойно говорить не о потоке, а струйке теплоносителя, циркулирующего в системе.

Естественно что в таких домах испытывают проблемы с отоплением. В таких условиях падение температуры теплоносителя в контурах напольного отопления может достигать 50 °С. Принимая во внимание значительную длину магистрали напольного отопительного контура, такое значительное падение зачастую указывает на неадекватный поток теплоносителя в системе отопления. К счастью, исправить ситуацию не представляет особой сложности.

Все что нужно, это заменить трехходовой клапан на скоростной инжекционный узел (рис. 2). Другим примером подобной ситуации является подсоединение котла малой мощности к коллектору с большим количеством зональных клапанов (рис. 3). При включении котлов малого водосодержания необходимо создавать достаточный поток теплоносителя, даже если работает только один зональный контур. На рис. 3 показана такая схема подключения магистральных контуров, где при уменьшении количества активных зональных контуров происходит снижение расхода теплоносителя через котел. Может сложиться ситуация, при которой расход теплоносителя через теплообменник котла окажется критически низким, что способно привести к закипанию и перегреву последнего. Также малый расход вызывает дополнительную тепловую нагрузку на составляющие котла.

Выходом из этой ситуации является подключение маломощного котла как вторичного (независимого) контура (рис. 4). При использовании данной гидравлической схемы, в каком бы режиме не работала система отопления, расход теплоносителя через котел остается постоянным и не зависит от количества активных зональных контуров. Также можно установить коллектор низкого давления между котельным контуром и распределительной системой.

Ограниченность системы ГВС

Использование непрямых водонагревателей для удовлетворения высоких нагрузок по горячему водоснабжению может послужить причиной дефицита доставляемого тепла и напора в гидравлической системе. Использование насоса недостаточной мощности, который устанавливается между котельной и теплообменником емкостного бойлера, а также заниженные диаметры трубопроводных магистралей могут послужить причиной малого расхода теплоносителя в системе.

Рассмотрим следующий пример. Чтобы обеспечить передачу тепла питьевой водой на уровне 500 кВт при двадцатиградусном падении температуры теплоносителя на теплообменнике, необходимо поддерживать расход теплоносителя в гидравлической системе на уровне 6 л/с. Это значительно выше пропускающей способности трубы диаметром 3/4˝ при достаточно высоких скоростях потока.

Однако все же на рынке представлены производители, предлагающие емкостные бойлеры косвенного нагрева мощностью 500 кВт с диаметром патрубков теплообменника

3/4˝. Неудивительно, что эти бойлеры часто подключаются в систему с помощью трубы диаметром 3/4˝ в сочетании с маломощным циркуляционным насосом. В такой ситуации следует использовать трубу диаметром от 11/4˝. Далее следует рассчитать потери напора в контуре ГВС, и для полученного напора теплообменного контура системы ГВС выбирается циркуляционный насос с расходом не менее 6 л/с.

Также причиной недостаточной производительности емкостного бойлера косвенного нагрева может послужить высокий уровень рассеивания тепла внутреннего теплообменника водонагревателя. Например, мощный бойлер косвенного нагрева объемом 500 л может быть оснащен теплообменником производительностью 25 кВт, при температуре подающейся воды 87,7–82,2 °С и ее расходом 3 м

3/ч. На рис. 5 показана схема подключения такого водонагревателя к котлам, подключенным каскадом, суммарной теплопроизводительностью 100 кВт.

Рассмотрим, как будет работать система в ответ на запрос по ГВС. Приведем вероятную последовательность событий. Каскадный (ступенчатый) контроллер котла примет запрос на ГВС и моментально установит задание на температуру подающейся воды на уровне 87,7 °С. Затем он включит оба котла на максимальную мощность с целью более быстрого нагрева подающейся воды до заданного значения.

Это особенно подтвердится в случае, если котлы были выключены на время и их температура значительно ниже установленного значения. Но поскольку теплообменник емкостного бойлера не способен также быстро передать тепло воде, как котел, температура теплоносителя в котле будет повышаться очень быстро. Следует помнить, что согласно законам термодинамики система старается достичь равновесия между теплопроизводительностью и уровнем рассеивания тепла путем повышения или снижения температуры теплоносителя.

Вскоре после достижения заданной температуры воды ступенчатый контроллер отключит один или оба котла в целях предотвращения перегрева. Ступенчатый контроллер не способен определить «дефицит» тепла, передаваемого теплообменником. А даже если бы смог, он никаким образом не повлиял бы на ситуацию. Очевидно, что даже на пару минут выключенный котел не генерирует тепло для обеспечения нагрузки по ГВС. Скорость обеспечения нагрузки по ГВС зависит не от мощности котла, а от теплообменника водонагревателя.

Для предотвращения такой ситуации можно установить внешний пластинчатый теплообменник, который способен поглотить все тепло, генерируемое котельной, и передать его накопительному резервуару (рис. 6). Также можно установить дополнительный бак-накопитель, тем самым увеличивая площадь теплообмена. Однако такое решение не самое оптимальное с точки зрения экономических затрат. Два непрямых водонагревателя стоят не меньше внешнего теплообменника, насоса с бронзовым корпусом и обычного бака-накопителя, вместе взятых.

Также для установки двух бойлеров косвенного нагрева потребуется больше места в техническом помещении. Более важным является то, что установка второго бака значительно увеличивает площадь поверхности, что приводит к дополнительным теплопотерям в окружающую среду.

Дополнительные потери тепла негативно скажутся на эксплуатационных расходах системы, особенно если задуматься, как это отразится на нагрузке по охлаждению помещения котельной в летний период.

Согласно закону термодинамики, система стремится прежде всего сохранить энергию высшего уровня (например, топливо), а не превращать ее в более низшую (тепло), до тех пор, пока это тепло не будет запрошено. Это является основным преимуществом проточных водонагревателей. На рис. 6 представлена система, являющаяся гибридом проточного водонагревателя и бака накопителя. Мощность «полного дожигания» системы позволяет без труда обеспечивать как высокие нагрузки по ГВС, так и малые, не обязательно прибегая к включению котла.

Напольное отоплениe

Системы «теплого пола» также зачастую не способны обеспечить необходимый уровень комфорта в помещении. Это происходит вследствие того, что скорость теплоотдачи поверхности пола превышает скорость теплопередачи этого тепла подпольным трубным контура. При таких условиях, согласно первому закону термодинамики, падение температуры в помещении является результатом установления баланса между минимальным уровнем тепловыделения пола и теплопотерями помещения.

Так, вода из напольного контура возвращается в котел с минимальными теплопотерями, а это значит, что тепло, вырабатываемое котлами, практически не было отдано потребителям и вернулось обратно.

Измерения расхода теплоносителя — Измерения

Перестановка счетчиков местами непременно изменит ситуацию, только с точностью до наоборот (см. картинку).

Если сегодня из-за отрицательного рассогласования погрешностей вертушек (в среднем на -5,9%) мы имеем занижение учета разности масс на 59% (измерено Мгвс = 100 т, фактически Мгвсф = 243 т), то после перестановки отрицательное рассогласование сменится точно таким же положительным рассогласованием. И вместо требуемого водоразбора Мгвс = 243 т после перестановки получим Мгвс = 386 т, что больше требуемого на те же 59%.

Но главная проблема не в том, что после перестановки вертушек потребление горячей воды жильцами возрастёт почти в четыре раза. Проблема в том, что наличие рассогласования в +/-5,9% — это в два раза больше допускаемого рассогласования для данной пары счетчиков. С целью минимизации погрешности приборов (доведения её до уровня менее +/-1,4%) необходима регулировка обоих счетчиков на эталонной расходомерной установке с последующей поверкой. Однако даже при исправных счетчиках рассчитывать на сколь-нибудь точные измерения разности масс не приходится — допускаемая и фактическая погрешность таких измерений будет весьма и весьма значительна.

Эффективное решение проблемы — это перемена местами счетчиков два раза в месяц (например, 1-го и 16-го числа). В таком случае в первую половину месяца мы будем иметь, например, занижение учета Мгвс на 100 т, но после перестановки за то же время получим заышение учета на те же 100 т. А по итогам месяца эти равные по модулю, но разнознаковые погрешности почти полностью скомпенсируют друг друга.

К сожалению, на практике по известным причинам не всегда возможно переставлять местами расходомеры (счетчики) вручную. Поэтому мы на своих ТЭЦ применяем расходомеры с автоматической переменой местами дифманометров (как правило, с частотой два раза в час), что снижает «классическую» погрешность измерения разности расходов (подпитки) на тепломагистралях практически до нуля. Но такой высокоточный метод измерений расходов и разности расходов вряд ли найдет применение в ЖКХ и у прочих потребителей с небольшой тепловой нагрузкой.

Расчетные весовые нагрузки (расход теплоносителя)

4. Отопление

4.1. Расчетный расход теплоносителя (сетевой воды), т/ч, определяется по формуле:

Go max = go maxQo max, (3. 17)

где go max — расчетный удельный расход теплоносителя на отопление, т/Гкал;

Qo max — расчетный тепловой поток на отопление, Гкал/ч.

В свою очередь, расчетный удельный расход теплоносителя на отопление определяется в зависимости от расчетного перепада (разности) температуры в подающем и обратном трубопроводах тепловой сети на тепловом пункте потребителя тепловой энергии по формуле:

, (3.18)

где 1 и 2 — значения температуры теплоносителя в подающем и обратном трубопроводах тепловой сети при расчетной температуре наружного воздуха для проектирования отопления, °С.

4.2. Значения расчетного удельного расхода теплоносителя на отопление при подсоединении системы отопления к трубопроводам тепловой сети по зависимой схеме можно принимать по таблице:

Расчетная разность температуры теплоносителя, °С

t1pt2p = tp

95-70=25

105-70=35

120-70=50

130-70=60

150-70=80

Удельный расход теплоносителя, т/Гкал

gот. р

40,0 (9,55)

28,57 (6,82)

20,0 (4,78)

16,67 (3,98)

12,5 (2,99)

4.3. При подсоединении систем отопления к тепловой сети по независимой схеме (при помощи теплообменника) расчетную температуру теплоносителя в обратном трубопроводе теплообменника (I контур) следует принимать на 5-10 °С выше расчетной температуры теплоносителя в обратном трубопроводе отопительных систем, присоединенных к тепловой сети по зависимой схеме, т.е. в этих случаях расчетный удельный расход теплоносителя соответственно увеличится: при расчетной разности to = 150-80=70 °С gот.р = 14,29 т/Гкал.

5. Приточная вентиляция

5.1. Расчетный расход теплоносителя на приточную вентиляцию можно с достаточной точностью определять по формуле:

, (3. 18a)

где Qv max — расчетная тепловая нагрузка приточной вентиляции, Гкал/ч;

1 и 2 — значения температуры теплоносителя в подающем и обратном трубопроводах тепловой сети по температурному графику регулирования тепловой нагрузки, принятому в системе теплоснабжения, при расчетной температуре наружного воздуха для проектирования вентиляции, °С.

6. Горячее водоснабжение

6.1. Системы теплопотребления с непосредственным водоразбором на горячее водоснабжение.

6.1.1. Расчетный расход теплоносителя (сетевой воды) на горячее водоснабжение, т/ч, для отопительного периода определяется по формуле:

, (3.18б)

где th и tc — температура горячей воды, поступающей на горячее водоснабжение, и холодной, °С; значение th принимается равным 60 °С, значение tc принимается для отопительного периода 5 °С, для неотопительного — равным 15 °С (при отсутствии достоверных сведений).

6.1.2. Расчетный расход теплоносителя на горячее водоснабжение, т/ч, для неотопительного периода определяется по формуле (3.18б) с введением коэффициента  (п.3.2).

6.2. Системы теплопотребления без непосредственного водоразбора на горячее водоснабжение

6.2.1. Параллельная схема подключения теплообменников горячего водоснабжения.

Расчетный расход теплоносителя (сетевой воды) на горячее водоснабжение, т/ч, для отопительного периода определяется по формуле:

, (3.19)

где и- температура теплоносителя в подающем трубопроводе тепловой сети и в обратном трубопроводе теплообменника в точке излома температурного графика регулирования тепловой нагрузки, °С; при отсутствии проекта допускается приниматьравной 30 °С.

6.2.2. Двухступенчатая схема подключения теплообменников горячего водоснабжения.

Расчетный расход теплоносителя на горячее водоснабжение, т/ч, для отопительного периода определяется по формуле:

, (3.20)

где — температура теплоносителя в обратном трубопроводе системы отопления в точке излома температурного графика регулирования тепловой нагрузки, °С;

f — недогрев водопроводной воды в I ступени водонагревательной установки до температуры теплоносителя в обратном трубопроводе системы отопления в точке излома температурного графика регулирования тепловой нагрузки, °С; можно принимать f = 10 °C — для полностью автоматизированного теплового пункта и f = 5 °С — для тепловых пунктов без регуляторов постоянства расхода теплоносителя на отопление.

Приложение 4

Теплоноситель для солнечного коллектора. Расход теплоносителя в солнечном коллекторе.

 

Теплоноситель для солнечного коллектора.

Теплоноситель для гелиосистемы выполняет очень важную роль. Он обеспечивает транспортировку тепловой энергии от солнечного коллектора в бак аккумулятор. В трубках абсорбера коллектора теплоноситель нагревается, а затем отдает тепло водонагревателю через теплообменник.

Наиболее подходящим теплоносителем для гелиосистем является вода. Она имеет высокую теплоемкость и общедоступность. Однако использование воды в чистом виде ограничено климатическими зонами, в которых не бывает отрицательных температур. В других же климатических условиях, в том числе и в наших, необходимо предусмотреть предотвращения замерзания воды, поскольку это может разгерметизировать гелиоконтур и привести к поломки солнечных коллекторов. Для этого воду смешивают с пропиленгликолем. В центральной Европе обычно используют 40%-ю концентрацию пропиленгликоля. Эта концентрация соответствует температуре -30 ˚ С как температура начала кристаллизации теплоносителя для гелиосистем.

Пропиленгликоль представляет собой трудновоспламеняемую, нетоксичную жидкость. Его безопасность свидетельствует применение пропиленгликоля в кондитерской и косметической промышленности. Температура кипения около 188˚ С, плотность – 1,04 г/см³. Пропиленгликоль – это органическая жидкость имеющая обычные свойства. Поэтому из-за воздействия высоких температур, которые возникают во время перегрева (стагнации), теплоноситель подвержен окислению. Это может вызвать появление коррозии на некоторых узлах гелиосистемы тем самым вывести ее из строя. Так же, если в жидкости содержится кислород, то это способствует разложению теплоносителя и образованию твердых отложений. Исследования показали, что в негерметичных системах с постоянным поступлением кислорода этот процесс возникает гораздо чаще, чем вследствие стагнации при высоких температурах.

Для увеличения срока службы теплоносителя, а как следствие всей гелиосистемы в жидкость добавляют специальные антиокислительные присадки. Это обеспечивает поддержание pH-среды в щелочном диапазоне (≥ 7,0). Это гарантирует длительную защиту от коррозии. Однако слишком большое количество добавок в теплоноситель гелиосистемы приводит к ухудшению теплоемкости, поэтому основной задачей производителей является достижения оптимального баланса физических свойств жидкости.



На изображении показан начальный вид теплоносителя с (pH 8,2) и после эксплуатации (pH 6,7), а так же твердые отложения. 

Теплоноситель для гелиосистем, подвергающийся незначительным термическим нагрузкам, может прослужить до 10 лет. В солнечных сплит системах с возможными длительными периодами стагнации (например, если гелиосистема спроектирована с возможностью поддержки отопления) теплоноситель может прослужить значительно меньше. Рекомендуется после первых двух-трех лет эксплуатации гелиосистемы проверять показатели кислотности теплоносителя каждый год.

Вывод: Очень важно использовать в гелиосистемах качественный теплоноситель, поскольку он продлит срок службы всей гелиоустановки.  

На российском рынке сейчас достаточно большое количество незамерзающих теплоносителей. Но, не все теплоносители одинаково полезны. Дело в том, что химический состав большинства теплоносителей очень вреден как для котлов, так и для резиновых прокладок в системе. Со временем уплотнения начинают разъедаться, и зарастают накипью. Чтобы таких проблем не было Производственная компания «АНДИ Групп» рекомендует использовать Теплоноситель Antifrogen SOL HT компания Clariant – мирового лидера в области специализированных химических реагентов.

Antifrogen SOL HT. Готовый к применению теплоноситель с антифризными и ингибирующими свойствами для солнечных систем отопления, работающих при повышенных тепловых нагрузках.

Расход теплоносителя в солнечном коллекторе.

В гелиосистемах с принудительной циркуляцией теплоносителя основополагающим фактором является удельный расход теплоносителя. Этот параметр измеряется в литрах/час на 1 м² площади абсорбера солнечных коллекторов. Гелиосистема может работать с различными значениями удельного расхода теплоносителя. Значение может зависеть как от конструкции гелиосистемы и солнечных коллекторов, так и географического места эксплуатации гелиосистемы.

 Рис. Циркуляция теплоносителя в солнечном коллекторе

Во время циркуляции, увеличение расхода теплоносителя при одинаковой производительности солнечного коллектора уменьшает разность температур в контуре гелиосистемы (разница между температурой подачи теплоносителя в солнечные коллектора и температурой выхода), а уменьшение расхода ведет к увеличению разности температур.

При высоком значении разницы температур (т.е. при уменьшении расхода) средняя температура солнечных коллекторов будет возрастать, соответственно КПД падает. Однако, в таком режиме циркуляции требуется меньшее электроэнергии при работе циркуляционного насоса и можно использовать магистральные трубы меньших диаметров. Значительное увеличение расхода (Снижение разницы температур) с целью повышения коэффициента полезного действия нецелесообразно, поскольку это повлечет за собой необходимость использования более мощного насоса с высокой производительностью, поэтому эти затраты не будут компенсированы. Так же потребуется использовать трубопроводы с более высокими диаметрами. Это повлечет за собой удорожание все системы и повышение значения тепловых потерь из-за увеличения площадей трубы.

Различают три основных режима циркуляции:

  1. режим с расходом до 30 л/(ч · м2).
  2. режим с расходом более 30 л/(ч · м2).
  3. режим с регулируемым расходом теплоносителя.


Оптимальный расход теплоносителя в солнечных коллекторах.

При проектировании гелиосистемы с принудительной циркуляцией теплоносителя очень важно добиться оптимального значения расхода. Удельный расход должен быть таким, чтобы была обеспечена надежная циркуляция по всему гелиоконтуру и наиболее эффективный теплосъем солнечной энергии. Различные производители указывают различные значения удельного расхода для своих солнечных коллекторов.

Оптимальным значением для гелиосистем с плоскими коллекторами считается значение 25 л/(ч · м²) при полной мощности насоса.

Для некоторых типов вакуумных трубчатых солнечных коллекторов (коллекторы с прямоточным каналом) значение 40 л/(ч · м²) считается оптимальным.

Для солнечных вакуумных коллекторов с тепловой трубкой «Heat pipe» значение такое же, как для плоских коллекторов 25 л/(ч · м²)

Что характерно, что с развитием гелиотехники оптимальное значение расхода теплоносителя изменялось, так, например, 5 лет назад для плоских коллекторов оптимальным считалось значение 40 л /(ч · м²).

Наиболее эффективными являются системы с регулируемым (переменным) расходом теплоносителя. Значение расхода устанавливается автоматически посредствам контроллера и зависит от температуры в баке аккумуляторе и уровня солнечного излучения. Контроллер меняет значение расхода от 100% (максимальное значение) до 20%, регулируя в реальном времени мощность, подаваемую на насос, тем самым ускоряя или замедляя циркуляцию теплоносителя.

Однако в системах с использованием трубчатых солнечных коллекторов с прямоточным каналом режим с регулируемым расходом не рекомендуется, поскольку это нарушает равномерную циркуляцию теплоносителя через солнечный коллектор. При сложной гидравлической схеме коллекторного поля с несколькими параллельно подключенными коллекторными группами режим с регулируемым расходом требует особо точного проектирования и настройки.

Принцип работы теплоносителя в гелиосистеме.

Гелиосистема (система солнечного горячего водоснабжения) включает в себя основные компоненты:

 1. солнечные коллекторы 2. насосный модуль с группой безопасности 3. контроллер 4. бак аккумулятор; 5. дублирующий источник энергии

В солнечных коллекторах циркулирует теплоноситель или вода (циркуляция в контуре гелиосистемы обеспечивается за счет насоса или за счет естественной циркуляции возникающей при разнице температуры). Нагреваясь в солнечном коллекторе, теплоноситель передает тепловую энергию баку аккумулятору по средствам теплообменника (теплообменник может быть встроен в бак в виде змеевика или может использоваться наружный теплообменник). Вода в баке накапливает тепловую энергию. Этот процесс происходит автоматически благодаря контроллеру, регулирующему работу насоса в гелиосистеме. В случае необходимости автоматика запускает дублирующий источник энергии.

Узнать больше:

Остались вопросы? Напишите нам: [email protected]

 

Онлайн-калькулятор расчета калорифера: мощность и расход теплоносителя

Автор Евгений Апрелев На чтение 5 мин Просмотров 60.3к. Обновлено

При конструировании системы воздушного отопления используются уже готовые калориферные установки.

Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.

[contents]

Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.

С помощью него вы сможете рассчитать:

  1. Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
  2. Температуру воздуха на выходе. В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
  3. Расход теплоносителя. Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.

Расчет мощности калорифера

Расчет расхода теплоносителя

Расчета калориферов, в качестве теплоносителя которых используется вода или пар, происходит по определенной методике. Здесь важной составляющей являются не только точные расчеты, но и определенная последовательность действий.

Добавление по теме

Обратите внимание!

Если вы не найдете ответ на свой вопрос в этой статье, то посмотрите вопросы наших читателей. Может быть кто-то уже задавал вопрос, похожий на ваш:

Расчет производительности для нагрева воздуха определенного объема

Определяем массовый расход нагреваемого воздуха

G (кг/ч) = L х р

где:

L — объемное количество нагреваемого воздуха, м.куб/час
p — плотность воздуха при средней температуре (сумму температуры воздуха на входе и выходе из калорифера разделить на два) — таблица показателей плотности представлена выше, кг/м.куб

Определяем расход теплоты для нагревания воздуха

Q (Вт) = G х c х (t кон — t нач)

где:

G — массовый расход воздуха, кг/час с — удельная теплоемкость воздуха, Дж/(кг•K), (показатель берется по температуре входящего воздуха из таблицы)
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Вычисление фронтального сечения устройства, требующегося для прохода воздушного потока

Определившись с необходимой тепловой мощностью для обогрева требуемого объема, находим фронтальное сечение для прохода воздуха.

Фронтальное сечение — рабочее внутреннее сечение с теплоотдающими трубками, через которое непосредственно проходят потоки нагнетаемого холодного воздуха.

f (м.кв) = G / v

где:

G — массовый расход воздуха, кг/час
v — массовая скорость воздуха — для оребренных калориферов принимается в диапазоне 3 — 5 (кг/м.кв•с). Допустимые значения — до 7 — 8 кг/м.кв•с

Вычисление значений массовой скорости

Находим действительную массовую скорость для калориферной установки

  V(кг/м.кв•с) = G / f

где:

G — массовый расход воздуха, кг/час
f — площадь действительного фронтального сечения, берущегося в расчет, м.кв

Расчет расхода теплоносителя в калориферной установке

Рассчитываем расход теплоносителя

Gw (кг/сек) = Q / ((cw х (t вх — t вых))

где:

Q — расход тепла для нагрева воздуха, Вт
cw — удельная теплоемкость воды Дж/(кг•K)
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С

Подсчет скорости движения воды в трубах калорифера

W (м/сек) = Gw / (pw х fw)

где:

Gw — расход теплоносителя, кг/сек
pw — плотность воды при средней температуре в воздухонагревателе (принимается по таблице внизу), кг/м. куб
fw — средняя площадь живого сечения одного хода теплообменника (принимается по таблице подбора калориферов КСк), м.кв

Определение коэффициента теплопередачи

Коэффициент теплотехнической эффективности рассчитывается по формуле

Квт/(м.куб х С) = А х Vn х Wm

где:

V – действительная массовая скорость кг/м.кв х с
W – скорость движения воды в трубах м/сек
A

Расчет тепловой производительности калориферной установки

Подсчет фактической тепловой мощности:

q (Вт) = K х F х ((t вх +t вых)/2 — (t нач +t кон)/2))

или, если подсчитан температурный напор, то:

q (Вт) = K х F х средний температурный напор

где:

K — коэффициент теплоотдачи, Вт/(м.кв•°C)
F — площадь поверхности нагрева выбранного калорифера (принимается по таблице подбора), м. кв
t вх — температура воды на входе в теплообменник, °С
t вых — температура воды на выходе из теплообменника, °С
t нач — температура воздуха на входе в теплообменник, °С
t кон — температура нагретого воздуха на выходе из теплообменника, °С

Определение запаса устройства по тепловой мощности

Определяем запас тепловой производительности:

((qQ) / Q) х 100

где:

q — фактическая тепловая мощность подобранных калориферов, Вт
Q — расчетная тепловая мощность, Вт

Расчет аэродинамического сопротивления

Расчет аэродинамического сопротивления. Величину потерь по воздуху можно рассчитать по формуле:

ΔРа (Па)=В х Vr

где:

v — действительная массовая скорость воздуха, кг/м.кв•с
B, r — значение модуля и степеней из таблицы

Помогла вам статья произвести расчет калорифера?

Помогла, мне все понятноНе помогла, нужно объяснить более подробно

Определение гидравлического сопротивления теплоносителя

Расчет гидравлического сопротивления калорифера вычисляется по следующей формуле:

ΔPw(кПа)= С х W2

где:

С — значение коэффициента гидравлического сопротивления заданной модели теплообменника (смотреть по таблице)
W — скорость движения воды в трубках воздухонагревателя, м/сек.

Расход теплоносителей, определение — Справочник химика 21

    Для определения безразмерных чисел Ке и Ре необходимо знать среднюю скорость движения теплоносителя. Скорость движения при заданном расходе его зависит от количества трубок подогревателя, через которые прокачивается теплоноситель. Определение же количества трубок является задачей расчета. [c.165]

    Порядок расчета рекуперативных теплообменных аппаратов. Целью расчета является определение расхода теплоносителей и величины необходимой теплообменной поверхности аппарата. Расход теплоносителей определяют из теплового баланса аппарата. При составлении теплового баланса конечные температуры теплоносителей либо бывают заданы, либо их принимают. [c.243]


    Тепловой баланс составляется по результатам материального баланса на единицу производимого продукта или на цикл работы аппарата. Данные теплового баланса используются для определения расхода теплоносителя и хладоагента, расчета поверхности греющих и охлаждающих элементов и подбора оптимального теплового режима процесса.[c.90]

    Задачей теплового расчета теплообменника является определение поверхности теплообмена совместным решением уравнений теплопередачи и теплового баланса при заданных расходах теплоносителей и температурных условиях. Вначале необходимо выбрать конструкцию аппарата и иметь сведения об основных размерах типовой аппаратуры, применяемых на практике скоростях теплоносителей и т. п. Тепловой расчет обычно включает  [c.145]

    Расход теплоносителей (О], Сг, О ) вычисляют по уравнениям (334) — (336). Эти выражения можно также использовать для определения конечной температуры одного из теплоносителей, если известны расходы обеих рабочих сред. [c.147]

    Определение тепловой нагрузки и расхода теплоносителей. Тепловую нагрузку находят по уравнениям теплового баланса по уравнению (УП,1) нли, в случае изменения агрегатного состояния одного или обоих теплоносителей, по урапнению ( Т ,2). [c.341]

    Если скорость в межтрубном пространстве оказывается выше верхнего предела, осуществляется переход к аппарату большего диаметра и повторяется определение скорости в трубах. Если при этом скорость в трубах будет меньше нижнего предела, дальнейший выбор аппарата не производится. Это означает, что заданные величины расходов теплоносителей таковы, что не позволяют выбрать из данного ГОСТа аппарат или группу аппаратов, работающих по предусмотренным схемам. [c.90]

    Такой подход к оценке изменяющихся свойств газов, если он вообще приемлем, часто сопряжен с определенными неудобствами, когда имеют дело с течением внутри каналов, например в теплообменнике. При течении в канале одним из параметров, о котором имеется более или менее четкое представление, является массовая скорость, или расход теплоносителя. Она является произведением средней скорости и [c.75]

    Приняв допущение о том, что изменение числа тарелок и флегмового числа в некоторых пределах практически не оказывает влияния на составы дистиллята и кубового остатка, можно использовать эти составы, определенные при оэ, для нахождения флегмового числа, числа тарелок, расходов теплоносителей и т. д. [c.138]

    Различают два вида теплотехнических расчетов теплообменников проектный и поверочный. Проектный расчет выполняется при проектировании теплообменного аппарата, когда расходы теплоносителей и их параметры заданы. Цель проектного расчета —определение площади поверхности теплообмена и конструктивных размеров выбранного аппарата. С помощью поверочного расчета выявляют возможность использования имеющихся теплообменников в условиях заданного процесса и определяют условия, обеспечивающие оптимальный режим работы аппарата. [c.63]


    Все промышленные химические процессы должны проводиться при строго определенных заданных температурных условиях и в большинстве случаев требуют подвода или отвода теплоты. Тепловой расчет сводится в основном к составлению теплового баланса процесса, определению количества подводимой или отводимой теплоты, определению расхода теплоносителей или хладагентов и вычислению площади поверхности теплообмена.[c.183]

    Минимальный расход теплоносителя и соответствующую ему чувствительность приборов контроля течи определяют с учетом критических размеров сквозной трещины. Такая последовательность анализа обладает преимуществом по следующим причинам требования к чувствительности средств контроля течи, определенные в соответствии с [49], более обоснованные, так как они вытекают из фактического уровня трещиностойкости конструкции и условий истечения теплоносителя  [c.54]

    Значения F, Ni, N2 и G выражаются через технологические и конструктивные параметры. С помощью приведенных выше уравнений F связывается с температурами и коэффициентом теплопередачи, который в свою очередь выражается через скорость жидкости. Последняя же является функцией расхода и конструктивных размеров (площади поперечного сечения, числа ходов). Мощность нагнетателей определяется гидравлическими сопротивлениями, которые с помощью известных формул выражаются через конструктивные размеры и расходы. Расход теплоносителя G связан с его температурами. Коэффициенты Пр, tii, щ, s, а также значения Тг и 3 находятся по прейскурантам, ценникам и на основании экономических расчетов. В результате получается система уравнений, в которой независимыми переменными являются конечная температура одной из жидкостей и конструктивные размеры, если рассматриваются теплообменники определенного типа. На основании анализа системы уравнений устанавливается сочетание параметров, обеспечивающих минимизацию функции П. Методы поиска оптимума рассматриваются в специальной литературе, посвященной оптимизации химико-технологических процессов. Если [c.351]

    Расчеты процессов и аппаратов обычно имеют следующие основные цели а) определение условий предельного, или равновесного, состояния системы б) вычисление расходов исходных материалов и количеств получаемых продуктов, а также количеств потребной энергии (тепла) и расхода теплоносителей в) определение оптимальных режимов работы и соответствующей им рабочей поверхности или рабочего объема аппаратов г) вычисление основных размеров аппаратов.[c.15]

    Действительно, если посмотреть соответствующие показатели газогенераторов до и после их реконструкции, приведенные в табл. 1, то из них следует, что между изменениями в производительности газогенераторов по сланцу и общим расходом воздуха определенной зависимости не наблюдается. Однако общей закономерностью для газогенераторов с центральным вводом теплоносителя является значительное снижение удельных расходов [c.136]

    Если фактически замеренная температура воздуха после калориферной установки окажется более чем на 2 °С выше величины определенной по формуле (4) или (5), необходимо уменьшить расход теплоносителя, поступающего в калориферную установку. [c.449]

    Задачей теплового расчета теплообменника является определение величины поверхности теплообмена на основе совместного решения уравнений теплопередачи и теплового баланса при заданных расходах теплоносителей и температурных условиях. Вначале расчета необ- [c. 151]

    Расходы теплоносителей Ог, 0 , Ог, Ог вычисляют по ур-ниям (6,80), (6,81), (6,82). Эти уравнения также могут быть использованы для определения конечной температуры одного из теплоносителей, когда известны расходы обеих рабочих сред. [c.153]

    ТЕПЛОМЕРЫ — приборы, производящие непрерывное определение количества тепла, отбираемого от протекающего потока теплоносителя (жпдкости, реже — газа). Принцип действия Т. основан па измерении мгновенных значений расхода теплоносителя и перепада его темп-р с последующим интегрированием во времени их произведения. [c.34]

    Расчет химической аппаратуры производится обычно в следующем порядке технологический расчет, определяющий обычно основные размеры аппарата тепловой — включающий в себя определение теплового режима, расчет поверхности теплообмена и определение расхода теплоносителей гидравлический, состоящий в определении потерь напора, мощности на перемешивание и т. д. В последнюю очередь обычно производят механический [c. 13]

    Определение площади решетки для сушильной зоны камеры. Необходимая площадь решетки определяется исходя из расхода теплоносителя и оптимальной скорости псевдоожижения. Необходимая площадь решетки равна [c.128]

    Иногда порядок расчета кожухогрубчатых теплообменников изменяют. В этом случае в интересах интенсификации процесса теплообмена сначала определяют размеры корпуса аппарата, а потом производят расчет трубчатки. Это предпринимается для того, чтобы, независимо ог числа трубок в трубном пучке, создать оптимальные условия теплоотдачи в межтрубном пространстве, задавшись необходимой для данного расхода теплоносителя площадью сечения межтрубного пространства. Скорость течения теплоносителя внутри трубок в этом случае (а следовательно, и значение коэффициента теплоотдачи в трубках) может корректироваться изменением числа ходов по трубному пространству аппарата. При этом увеличение числа ходов в теплообменном аппарате, имеющем определенное число трубок, приводит к у. меньшению числа трубок в одном ходе, а следовательно, к увеличению скорости течения теплоносителя в них. В многоходовых теплообменниках все количество жидкости, поступающее в трубное пространство, проходит сначала одну группу трубок, затем при помощи перегородок, отлитых или заваренных в крышках аппарата, поворачивается и поступает в другую группу трубок и т. д. (фиг. 108). [c.210]


    Конструкторский расчет производят при проектировании теплообменного аппарата, когда известны или заданы расходы теплоносителей и их параметры на входе и выходе из теплообмвн.ного аппарата. Целью конструкторского расчета является определение величины поверхности теплообмена выбранного типа теплообменного аппарата. [c.8]

    На впд подынтегральной функции влияют форма зависимости коэффициента теплопередачи и водяных эквивалентов от температур обоих пбтоков. Поскольку массовые расходы теплоносителей обычно являются постоянными, изменение водяных эквивалентов определяется только изменением теплоемкостей потоков от их температур. Таким образом, получаемые после интегрирования уравнения (1.11) зависимости для определения площади поверхности/ будут различны для разных случаев теплопередачи. Общеизвестно также, что особенности процесса теплопередачи влияют на значе- ния коэффициентов теплоотдачи а. Следовательно, в тепловом расчете аппарата имеются две проблемы  [c.9]

    Задачей теплавого расчета является определение поверхности теплообмена совместным решенией уравнений теплопередачи и тепло-во го баланса при заданных расходах теплоносителей и температурных условиях. [c.125]

    При расчетах теплообменыых аппаратов обычно задают тепловую нагрузку на теплообменник Q, т. е. количество тепла, которое требуется передать от «теплоносителя хладоагенту в единицу времени. Для определенного расхода теплоносителя, известной его теплоемкости и заданной входной температуры это по существу эквивалентно заданию необходимой выходной температуры теплоносителя, поскольку [c.66]

    При непрерывной работе выпарного аппарата (см. рис. 9.5) все параметры процесса остаются неизменными во времени. Раствор в аппарате кипит при конечной концентрации ах (температура кипения /О и отводится из него непрерывно с соблюдением баланса по расходам свежего раствора и вторичного пара. Такая работа аппарата возможна при подаче необходимого количества греющего пара (или другого теплоносителя) и наличии достаточной поверхносаи теплообмена, способной передавать тепловой поток от теплоносителя к раствору. Отсюда задача расчета процесса выпаривания сводится к определению необходимого теплового потока О (индекс вып в выпарных установках непрерывного действия опущен, так как здесь нет другой стадии) и расхода теплоносителя 0 , а также требуемой поверхности теплообмена Г. [c.693]

    Если теплоноситель — остывающая жидкость, то гидродинамический расчет сводится к определению величшш сопротивления при прохождении заданного расхода теплоносителя через аппарат. Расчет носит проверочный характер, вьшолняется после проведения теплового расчета и выбора конкретного аппарата. При проведении такого расчета используют известные формулы гидрав шки, которые обеспечивают вполне приемлемую точность. Наибольшую сложность представляет расчет сопротивления при прохождении теплоносителя через межтрубное пространство кожухотрубчатого испарителя, оснащенное сегментными перегородками. В основе расчета — формула, предложенная в [3]  [c.182]


Практические советы по настройке систем напольного отопления

Балансировка петель

Монтаж системы напольного отопления, бесспорно, ответственная операция, однако, то, насколько будет комфортно пользоваться готовой системой отопления, зависит чаще всего от грамотной наладки. Наладка напольной системы отопления не так сложна, как может показаться на первый взгляд.

По большому счёту, наладка системы отопления состоит из трех этапов. Это балансировка петель напольного отопления, настройка насосно-смесительного узла и настройка контроллера при его наличии.

В этой статье будет рассказано о методах, которые используются для балансировки петель напольного отопления. Прежде всего, стоит отметить основные заблуждения, которые имеют место при подобной балансировке.

  • Иногда можно услышать то, что правильно сбалансировать систему можно только расчётным способом, т.е., посчитав сопротивление всех петель, вычислив настроечное положение регулирующих клапанов, установить его на коллекторе. Конечно же, проект с грамотным гидравлическим расчётом ускоряет процесс наладки и защищает от ошибок в монтаже. Но, тем не менее, систему напольного отопления можно настроить и без теоретических расчётов, хотя это и займет больше времени.
  • Так же заблуждением считается и то, что расходы воды во всех петлях должны быть одинаковы. На самом деле, расход в первую очередь зависит от тепловой мощности, которую передаёт в помещение каждая конкретная петля.
  • Нередко можно услышать, что систему напольного отопления вообще не надо балансировать, а расходы воды сами выровняются за счёт работы термостатов, контроллеров и прочих элементов автоматики. Это утверждение так же не верно. Дело в том, что рано или поздно наступит момент, когда все петли теплого пола откроются на максимум, и распределение теплоносителя должно быть таким, чтобы вся вода не уходила в одну петлю, а равномерно распределялась по всему отапливаемому контуру.

Итак, система отопления заполнена и испытана, котел запущен, в руках лежит шестигранный ключ, отдавая приятной тяжестью, переходящей в зуд нетерпения. С чего же начать?

В первую очередь стоит определиться с целями и задачами балансировки.

Задача балансировки заключается не в установке требуемого расхода по каждой петле, а в установке соотношения расходов по петлям или баланса расходов. Окончательно расходы устанавливаются во время настройки насосно-смесительного узла. При этом, изменяя общий расход через коллектор, соотношение расходов через петли сохраняется.

Так же балансировка отличается в зависимости от того, имеет ли коллекторный блок расходомеры. Коллекторные блоки VTc. 596 (рис. 1), VTc.589 (рис. 2), VTc.586 (рис. 3) оснащены расходомерами, которые значительно ускоряют балансировку и позволяют её осуществить без включения котла, так как показывают в реальном времени расход воды по каждому направлению.


Распределение расходов необходимо выполнить таким образом, чтобы соотношение расходов по петлям и соотношение требуемых тепловых мощностей совпадали. Для этого желательно знать требуемые тепловые нагрузки на петли. Но даже, если требуемые нагрузки не известны, то можно выставлять расходы пропорционально длинам петель. Как правило, такой подход не даёт большой погрешности, так как петли с большими длинами имеют так же и большие мощности.

Балансировка начинается с того, что выбирается самая длинная петля (или петля с самой большой мощностью, если это известно). Регулирующий клапан на этой петле открывается в максимальное положение, и относительно него будут выставляться расходы всех остальных петель.

Для примера возьмем коллектор с четырьмя петлями. Допустим, что длины петель следующие: 100, 75, 75 и 50 м.

В этом случае настройка начинается с первой петли, имеющей длину 100 м. Она открывается на максимум. Предположим, что при полностью открытом клапане расход на этой петле установился на уровне 4 л/мин.

Расход воды на второй и третей петле должен быть: (75/100) · 4 = 3 л/мин.

Расход воды на четвертой петле должен быть: (50/100) · 4 = 2 л/мин (рис. 4).


Может получиться так, что при настройке третьей петли расход даже при полностью открытом клапане устанавливается на уровне 2,5 л/мин и не доходит до положенного уровня 3 л/мин. Это значит, что петля имеет большее гидравлическое сопротивление, чем вторая петля той же длины (большее количество отводов, калачей, подводящих участков). Балансировку в этом случае можно осуществить только с включенным котлом и хотя бы с минимальным теплосъёмом в помещении. Первая петля – на (100/75) · 2,5 = 3,3 л/мин, вторая петля – на 2,5 л/мин и четвертая петля на – (50/75) · 2,5 = 1,6 л/мин (рис. 5).


После того, как все расходы выставлены, балансировку петель можно считать оконченной и можно приступать к настройке насосно-смесительного узла.

Если настраивать коллекторные блоки без расходомеров, такие как VTc.588 (рис. 6) или VTc.594 (рис. 7), то о расходах в петлях можно судить только по косвенным признакам.


Балансировку в этом случае можно осуществить только с включенным котлом и хотя бы с минимальным теплосъёмом в помещении. Желательно, чтобы на улице была температура ниже +5 ºС. В помещениях не должно быть открытых окон и каких-либо значительных тепловыделений (работающего камина и пр.). Настройка, как и в предыдущем случае, начинается с того, что определяется самая длинная петля.

Затем систему необходимо оставить прогреваться на несколько часов, пока температура в петлях не стабилизируется, после чего необходимо выполнить оценку правильности выполненной настройки.

    Правильность настройки определяется одним из следующих способов:
  • по температуре воды в обратном трубопроводе;
  • по средней температуре пола.

Определение правильности настройки по температуре воды в обратном трубопроводе

Расход теплоносителя, мощность и разность температур между подающим и обратным трубопроводом взаимосвязаны. Если уменьшить расход теплоносителя в петле, то неизбежно вырастет разность температур. Именно по этой зависимости можно определить правильность настройки.

Если все петли будут иметь одинаковую разность температур между подающим и обратным трубопроводом, то это будет означать, что во всех петлях расход воды соответствует текущей мощности. А так как температура в подающем коллекторе для всех петель одинакова, то выравнивать температуры можно только перед обратным коллектором.

Оценку температуры удобнее всего делать при помощи специального термометра, такого как VT.4615 (рис. 8). Такой термометр вставляется между трубой и обратным коллектором через соединение «евроконус» (рис. 9).

Определяется эталонная температура на самой длинной петле, затем все остальные клапаны подстраиваются в зависимости от отклонений от этой температуры. Если температура на петле ниже, чем на эталонной, то это значит, что расход в этой петле тоже низкий, и клапан следует приоткрыть. Если расход, напротив, выше, то клапан следует закрыть. Затем через пол часа данную операцию следует повторить до тех пор, пока температуры воды перед обратным коллектором не будут равны у всех петель.

Определение правильности настройки по средней температуре пола

Предыдущий способ достаточно прост, но не учитывает финишное покрытие пола. Если в помещениях разное покрытие пола, то для того, чтобы температура поверхности пола в этих помещениях ощущалась как одинаковая, необходимо, чтобы расходы по петлям учитывали этот фактор.

Учесть финишное покрытие можно, замеряя температуру поверхности пола в разных помещениях и выравнивая расходы воды по разным направлениям так, чтобы средняя температура поверхности пола в разных помещениях была одинакова. Замерять температуру пола можно разными способами: и контактными термометрами, и пирометрами (рис. 10).

Настройка клапанов происходит так же, как и в предыдущем случае. Клапан, обслуживающий петлю, пол над которой имеет температуру выше, чем в остальных помещениях, прикрывается и наоборот – при низкой температуре пола клапан открывается.

Стоит отметить, что замерять температуру пола нужно, как минимум, в шести точках: над трубами, между ними, в начале петли, в середине и в конце петли, и взять среднее значение.

При достижении температуры поверхности пола во всех помещениях близких значений настройку можно считать оконченной.

Для того чтобы настройку клапанов защитить от несанкционированного вмешательства, на коллекторах VTc.594, VTc.588 имеется механизм фиксации настроенного положения. Для фиксации настройки необходимо закрутить фиксирующий винт до упора (рис. 11, 12). Винт находится внутри шестигранника. Этот винт ограничивает открытие клапана на текущем уровне и не позволяет ему открыться сильнее. Однако, он позволяет полностью закрыть клапан. Таким образом, после настройки можно закрутить все фиксирующие винты до упора, при этом в дальнейшей эксплуатации можно перекрывать отдельные петли этим же клапаном. Далее, для того чтобы вновь настроить эту петлю, следует просто открыть клапан до упора.

Как видно, настройка петель достаточно простая операция, особенно если использовать удобное оборудование для этого. Настройка насосно-смесительного узла (НСУ) у большинства монтажников также не вызывает вопросов. О некоторых особенностях настройки НСУ будет рассказано в отдельной статье.

Автор: Жигалов Д.В.

© Правообладатель ООО «Веста Регионы», 2010
Все авторские права защищены. При копировании статьи ссылка на правообладателя и/или на сайт www.valtec.ru обязательна.

Как это работает: охлаждение двигателя

Breadcrumb Trail Links

  1. Как это работает
  2. Feature Story

В худшем случае перегрев двигателя может разрушить автомобиль, если система охлаждения перестанет работать

Автор статьи:

Джил МакИнтош

Дата публикации:

10 мая 2017 г. • 7 февраля 2019 г. • 4 минуты чтения • Присоединяйтесь к разговору

Содержание статьи

Двигатели внутреннего сгорания выделяют тепло не только с помощью энергии, но и.Они на самом деле выделяют столько тепла, что, если его не отвести должным образом, это может потенциально повредить двигатель, не подлежащий ремонту. Чтобы решить эту проблему, у каждого двигателя есть система охлаждения.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

В то время как в автомобилях использовались двигатели с воздушным охлаждением — возможно, наиболее известный в оригинальном Volkswagen Beetle — практически каждый автомобиль сегодня использует жидкостное охлаждение для рассеивания тепла, возникающего при сгорании бензина и трения движущихся частей внутри.

Компоненты системы охлаждения включают радиатор, один или несколько вентиляторов, шланги, водяной насос и термостат, а также резервуар для перелива. Охлаждающая жидкость представляет собой смесь воды и антифриза, которая не только предотвращает замерзание жидкости, как следует из названия, но и содержит химические вещества, уменьшающие коррозию и образование накипи. Он токсичен, и разливы следует удалять как можно скорее, чтобы дети или животные не проглотили его, так как он может быть сладким. В некоторых юрисдикциях, например в Британской Колумбии, требуется, чтобы в их состав входила добавка, имеющая горький вкус, но это не универсально.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

  1. Дорожные поломки: вот когда нужно тянуть MacGyver

  2. Не позволяйте закону Мерфи саботировать вашу машину

Чтобы выполнить свою работу, охлаждающая жидкость движется в непрерывном цикле, проталкиваемом через двигатель водяным насосом. Двигатель содержит внутренние полые конструкции, называемые водяной рубашкой.Через них охлаждающая жидкость протекает внутри двигателя, поглощая тепло двигателя. Затем он по шлангам попадает в радиатор, где охлаждается. Оттуда он снова попадает в двигатель, где вытесняет горячую охлаждающую жидкость, чтобы повторить процесс.

Радиатор охлаждает горячую жидкость с помощью более холодного воздуха, поступающего через решетку радиатора автомобиля. Хладагент течет по узким трубкам внутри радиатора, обнажая большую площадь поверхности, поэтому тепло может рассеиваться как можно быстрее. Если через решетку не поступает достаточное количество воздуха, например, когда автомобиль работает на холостом ходу, вентилятор за радиатором втягивает воздух через нее.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание изделия

Некоторая часть горячей охлаждающей жидкости отводится непосредственно от двигателя к меньшим шлангам, которые подводят ее к сердечнику нагревателя. По сути, это миниатюрная версия радиатора. По мере прохождения через него охлаждающей жидкости это тепло отводится в кабину для системы климат-контроля.

Но хотя двигатель не должен быть слишком горячим, он также не может быть слишком холодным.Хотя диапазон варьируется в зависимости от двигателя, оптимальная температура обычно составляет от 85 ° C до 95 ° C. Ниже этого сгорания не так эффективно, что влияет на экономию топлива и увеличивает выбросы выхлопных газов. Чтобы повысить температуру как можно быстрее, термостат внутри системы закрывается, сохраняя охлаждающую жидкость внутри двигателя. Когда температура достаточно повышается, термостат открывается, и эта горячая охлаждающая жидкость перемещается в радиатор. Термостат непрерывно контролирует скорость потока охлаждающей жидкости по мере необходимости для поддержания температуры.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Проверить, достаточно ли охлаждающей жидкости в системе, просто. Найдите пластиковый резервуар в моторном отсеке и проверьте уровень жидкости по отметкам сбоку. На старых автомобилях вам приходилось снимать герметичную крышку сверху радиатора. Это могло быть очень опасно, если система была горячей, так как охлаждающая жидкость с температурой ожога могла вырваться наружу, как гейзер.Если вы видите герметичную крышку на радиаторе или шлангах, оставьте ее в покое и добавляйте охлаждающую жидкость в бачок только в том случае, если ее необходимо долить.

Соотношение воды и антифриза влияет на способность охлаждающей жидкости противостоять замерзанию — как ни странно, чистый антифриз замерзнет при температуре чуть ниже 0 ° C, а добавление воды снижает температуру замерзания полученной смеси. Проверьте этикетку на бутылке, чтобы узнать, нужно ли добавлять воду, так как охлаждающая жидкость поставляется заранее смешанной с ней.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание статьи

Ингибиторы ржавчины и смазочные материалы охлаждающей жидкости в конечном итоге выходят из строя, и вам следует промыть систему и залить свежую охлаждающую жидкость в соответствии с графиком технического обслуживания вашего автомобиля. Это особенно важно, потому что в некоторых автомобилях сердечник обогревателя расположен глубоко в приборной панели. Если он забивается и требует замены, трудозатраты на то, чтобы разобрать все, чтобы добраться до него, могут зашкалить.

Остальные периферийные устройства системы охлаждения следует периодически проверять, чтобы убедиться, что они в хорошем состоянии.Змеевиковый ремень, который вращает водяной насос, не должен иметь трещин или изнашиваться. Шланги нагревателя должны быть гибкими, не пористыми или хрупкими, а зажимы, удерживающие их на месте, должны быть тугими. Любые утечки следует устранять незамедлительно, поскольку в автомобиле, в котором заканчивается охлаждающая жидкость, может произойти перегрев.

Объявление

Это объявление еще не загружено, но ваша статья продолжается ниже.

Содержание

Охлаждающая жидкость также может протекать изнутри через прокладку головки двигателя.Вы можете увидеть белый дым из выхлопной трубы, когда двигатель теплый (белый выхлоп на холоде, как правило, безвредный выпадение конденсата), или почувствовать сладкий запах гари. Чтобы быть уверенным, проверьте уровень охлаждающей жидкости в бачке.

Если в вашем автомобиле есть датчик температуры — не все, а в некоторых есть только сигнальная лампа — это нормально, когда он немного поднимается при интенсивном использовании, например, при буксировке или движении по крутому склону в жаркую погоду. Но если он поднимается слишком высоко или загорается сигнальная лампа, остановитесь, выключите автомобиль и как можно скорее поднимите капот.Избыточное тепло быстро превращает дорогой двигатель в утиль.

Поделитесь этой статьей в своей социальной сети

Подпишитесь, чтобы получать информационный бюллетень Driving.ca Blind-Spot Monitor по средам и субботам

Нажимая на кнопку подписки, вы соглашаетесь на получение вышеуказанного информационного бюллетеня от Postmedia Network Inc. откажитесь от подписки в любое время, нажав на ссылку отказа от подписки внизу наших писем. Postmedia Network Inc. | 365 Bloor Street East, Торонто, Онтарио, M4W 3L4 | 416-383-2300

Спасибо за регистрацию!

Приветственное письмо уже готово. Если вы его не видите, проверьте папку нежелательной почты.

Следующий выпуск «Монитора слепых зон» Driving.ca скоро будет в вашем почтовом ящике.

Комментарии

Postmedia стремится поддерживать живой, но гражданский форум для обсуждения и поощрять всех читателей делиться своим мнением о наших статьях. На модерацию комментариев может потребоваться до часа, прежде чем они появятся на сайте. Мы просим вас, чтобы ваши комментарии были актуальными и уважительными.Мы включили уведомления по электронной почте — теперь вы получите электронное письмо, если получите ответ на свой комментарий, есть обновление в цепочке комментариев, на которую вы подписаны, или если пользователь, на которого вы подписаны, комментарии. Посетите наши Принципы сообщества для получения дополнительной информации и подробностей о том, как изменить настройки электронной почты.

Что лучше: высокая или медленная скорость потока охлаждающей жидкости двигателя

Скорость потока охлаждающей жидкости двигателя в двигателе должна быть достаточной для полной циркуляции и поглощения тепла, а в радиаторе — для эффективной передачи тепла без попадания в ламинарный поток

Если говорить о расходе охлаждающей жидкости двигателя, то быстрее — не лучше. Назначение радиатора — поддерживать теплопередачу, которая зависит от времени. Как объясняет Flex-a-Lite, для передачи тепла от одной среды к другой (от двигателя к охлаждающей жидкости и к радиатору в атмосферу) охлаждающая жидкость должна оставаться в контакте с поверхностью для передачи тепла. Слишком быстрое перемещение жидкости через область может привести к ламинарному потоку, при котором жидкость образует слои. Слой, ближайший к поверхности, движется медленнее, чем слои, расположенные дальше от поверхности. Когда это происходит, слои действуют как изоляторы, и способность передавать тепло уменьшается.

Просмотреть все 3 фотографии

Девяносто девять процентов нижних (впускных) шлангов радиатора меньше верхних (выпускных) шлангов.
Фото предоставлено Дэвидом Кеннеди

Для достижения правильного расхода охлаждающей жидкости в двигателе эксперты Griffin Radiator рекомендуют ограничения в двигателе и хороший поток в радиаторе. Создайте ограничения в двигателе, используя меньшие верхние шланги радиатора (как на более новых серийных автомобилях). Это ограничение повышает давление в блоке двигателя; более высокое давление помогает уменьшить кавитацию водяного насоса, а также заставляет охлаждающую жидкость двигателя полностью циркулировать внутри блока и головок цилиндров, помогая отводить тепло.Поток охлаждающей жидкости внутри радиатора регулируется количеством и длиной радиаторных трубок — чем больше и больше, тем лучше из-за большей площади внутренней поверхности для передачи тепла.

Просмотреть все 3 фотографии

Алюминиевый радиатор Flex-a-fit Flex-a-fit и электрический вентилятор Flex-a-lite, а также генератор Powermaster на 140 ампер значительно охладили El Camino Малкольма Данка 1965 года.

Расход охлаждающей жидкости в радиаторе двигателя

  • Для передачи тепла охлаждающая жидкость должна контактировать с поверхностью.
  • Слишком высокая скорость потока может привести к ламинарному потоку, который нарушит поверхностный теплообмен.
  • Наилучшая скорость потока охлаждающей жидкости двигателя достигается за счет создания ограничений в блоке двигателя за счет использования меньшего верхнего шланга.
  • Обеспечивает хорошую теплопередачу в радиаторе за счет увеличения количества и размера радиаторных трубок.

Flex-a-lite, a Legend Co., Файф, Вашингтон, (800)851-1510 (продажи) или (253)922-2700 (техническая поддержка и обслуживание клиентов), Flex-a-lite.com

Griffin Thermal Products, Пьемонт, Южная Каролина, (800)722-3723 или (864) 845-5000, GriffinRad.com

Просмотреть все 3 фотографии

Поток охлаждающей жидкости в двигателе

Типы систем

Охлаждающая жидкость течет через двигатель одним из следующих способов.

  • Система с параллельным потоком . В системе с параллельным потоком охлаждающая жидкость течет в блок под давлением, а затем проходит через прокладку головки к головке через основные каналы охлаждающей жидкости рядом с каждым цилиндром.
  • Поточная система серии . В системе с последовательным потоком охлаждающая жидкость обтекает все цилиндры каждого ряда.Вся охлаждающая жидкость течет к задней части блока, где большие основные проходы охлаждающей жидкости позволяют охлаждающей жидкости проходить через прокладку головки. Затем охлаждающая жидкость попадает в заднюю часть головок. В головках охлаждающая жидкость течет вперед к переходному каналу на выходе впускного коллектора в наивысшей точке охлаждающего канала двигателя. Обычно он находится в передней части двигателя. Выход находится либо на головках, либо во впускном коллекторе.
  • Последовательно-параллельная проточная система . Некоторые двигатели используют комбинацию этих двух систем потока охлаждающей жидкости и называют это системой последовательно-параллельного потока.Образующийся пар попадет прямо в верхнюю часть радиатора. В системах с последовательным потоком выпускные отверстия или прорези для пара в прокладке, блоке и головке выполняют функцию выпуска пара.

Блок Chevrolet V-8 с большими отверстиями для охлаждающей жидкости и меньшими отверстиями для выпуска газа или выпускными отверстиями, которые должны совпадать с прокладкой головки при сборке двигателя.

Поток охлаждающей жидкости и конструкция прокладки головки

В большинстве двигателей V-типа используются головки блока цилиндров, которые взаимозаменяемы из стороны в сторону, но не во всех двигателях.Поэтому, исходя из конструкции системы охлаждения и потока через двигатель, очень важно дважды проверить, соответствует ли головка цилиндра блоку и что прокладка головки установлена ​​правильно (конец за концом), чтобы все охлаждающие каналы открыты, чтобы обеспечить надлежащий поток охлаждающей жидкости через систему.

Вентиляторы охлаждения

Вентилятор охлаждения с электронным управлением

На многих двигателях используются два типа электрических вентиляторов охлаждения:

  • Один двухскоростной вентилятор охлаждения
  • Два вентилятора охлаждения (один для нормального охлаждения и один для сильного нагрева условий)

PCM подает команду на включение низкоскоростных вентиляторов при следующих условиях.

  • Температура охлаждающей жидкости двигателя (ECT) превышает примерно 223 ° F (106 ° C).
  • Давление хладагента кондиционера превышает 1310 кПа (190 фунтов на кв. Дюйм).
  • После выключения автомобиля температура охлаждающей жидкости двигателя при выключенном зажигании превышает 284 ° F (140 ° C), а напряжение в системе превышает 12 вольт. Вентилятор (ы) останется включенным примерно на три минуты.

PCM дает команду на включение высокоскоростного вентилятора при следующих условиях.

  • Температура охлаждающей жидкости двигателя (ECT) достигает 230 ° F (110 ° C).
  • Давление хладагента кондиционера превышает 1655 кПа (240 фунтов на кв. Дюйм).
  • Установлены определенные диагностические коды неисправностей (DTC).

Типичный узел электрического вентилятора охлаждения, показывающий радиатор и связанные с ним компоненты.

Чтобы предотвратить чрезмерное включение и выключение вентилятора на холостом ходу, вентилятор не должен выключаться до тех пор, пока ключ зажигания не будет переведен в положение выключения или пока скорость автомобиля не превысит примерно 10 миль в час (16 км / ч).

Многие автомобили с задним приводом и все поперечные двигатели приводят вентилятор в движение с помощью электродвигателя.

  • ПРИМЕЧАНИЕ. Большинство электрических охлаждающих вентиляторов управляются компьютером. В целях экономии энергии большинство охлаждающих вентиляторов отключаются, когда автомобиль движется со скоростью более 35 миль в час (55 км / ч). Набегающего воздуха, вызываемого скоростью автомобиля, достаточно для охлаждения радиатора. Конечно, если компьютер определяет, что температура все еще слишком высока, компьютер включит охлаждающий вентилятор, если возможно, на «высокий», чтобы попытаться охладить двигатель, чтобы избежать серьезного повреждения двигателя.

Предупреждение : Некоторые электрические вентиляторы системы охлаждения могут включиться после выключения двигателя без предупреждения.Всегда держите руки и пальцы подальше от лопастей охлаждающего вентилятора, если только электрический разъем не был отсоединен, чтобы предотвратить включение вентилятора. Всегда соблюдайте все предупреждения и предостережения.

Термостатические ребра

На некоторых автомобилях с задним приводом вентилятор охлаждения с термостатом приводится в движение ремнем от коленчатого вала. Он вращается быстрее, чем быстрее двигатель. Обычно от двигателя требуется больше мощности на более высоких скоростях. Следовательно, система охлаждения также будет передавать больше тепла.Повышенная скорость вращения вентилятора способствует необходимому охлаждению. Нагрев двигателя также становится критическим при низких оборотах двигателя в транспортном потоке, когда автомобиль движется медленно. Термостатический вентилятор спроектирован так, что он потребляет небольшую мощность при высоких оборотах двигателя и минимизирует шум. Два типа термостатических вентиляторов включают:

  • Силиконовая муфта. Привод вентилятора с силиконовой муфтой установлен между приводным шкивом и вентилятором. СОВЕТ: При диагностике проблемы перегрева внимательно посмотрите на охлаждающий вентилятор. Если силикон протекает, вентилятор может работать неправильно и его следует заменить.
  • Термостатическая пружина. Второй тип теплового вентилятора имеет термостатическую пружину, добавленную к приводу вентилятора с силиконовой муфтой. Термостатическая пружина управляет клапаном, который позволяет вентилятору вращаться свободно, когда радиатор холодный. Когда радиатор нагревается примерно до 150 ° F (65 ° C), воздух, попадающий на термостатическую пружину, заставляет пружину изменять свою форму. Новая форма пружины открывает клапан, который позволяет приводу работать как привод силиконовой муфты.Когда двигатель очень холодный, вентилятор может работать на высоких оборотах в течение короткого времени, пока приводная жидкость немного не нагреется. Силиконовая жидкость затем потечет в резервуар, чтобы скорость вентилятора упала до холостого хода.

Типичные ребра охлаждения термостатической пружины с приводом от двигателя.

Вентилятор предназначен для перемещения достаточного количества воздуха при самой низкой скорости вращения вентилятора для охлаждения двигателя, когда он достигает максимальной температуры охлаждающей жидкости. Кожух вентилятора используется для повышения эффективности системы охлаждения.

Технический совет: обязательно всегда используйте кожух вентилятора

Кожух вентилятора заставляет вентилятор втягивать воздух через радиатор.Если кожух вентилятора не используется, воздух будет забираться вокруг вентилятора и уменьшать поток воздуха через радиатор. Многие проблемы с перегревом возникают из-за того, что заводской кожух после ремонта двигателя или кузовных работ не заменен на переднюю часть автомобиля.

Следующие шаги к сертификации ASE

Теперь, когда вы знакомы с потоком охлаждающей жидкости в двигателе, попробуйте наши бесплатные тесты качества автомобильного обслуживания, чтобы узнать, что вы знаете!

Система охлаждения вашего двигателя · BlueStar Inspections

Типичный автомобиль с четырехцилиндровым двигателем, движущийся по шоссе со скоростью 55 миль в час, будет производить около 5000 контролируемых взрывов в минуту внутри двигателя, поскольку свечи зажигания воспламеняют смесь воздуха и топлива в каждом из цилиндров.Это то, что продвигает автомобиль по дороге. Эти взрывы выделяют огромное количество тепла и, если их не контролировать, за считанные минуты могут вывести из строя двигатель. Система охлаждения двигателя предназначена для контроля и регулирования этих высоких температур.

Современные системы охлаждения не сильно изменились по сравнению со старыми системами охлаждения, но они стали намного более эффективными и надежными при выполнении своей работы. Базовая система охлаждения по-прежнему состоит из жидкой охлаждающей жидкости, которая циркулирует через блок цилиндров и головку блока цилиндров (или головки в двигателе с V-образной конфигурацией), а затем вытесняется в радиатор для охлаждения потоком воздуха, проходящего через решетку в направлении перед автомобилем.

Система охлаждения должна поддерживать постоянную температуру двигателя, будь то температура наружного воздуха: 100 градусов по Фаренгейту или 30 градусов ниже нуля. Если температура двигателя слишком низкая, пострадает экономия топлива и увеличатся выбросы. Если температура двигателя будет слишком высокой в ​​течение длительного времени, двигатель будет поврежден. Диапазон рабочих температур двигателя для большинства автомобилей составляет от 195 до 220 градусов по Фаренгейту. Оптимальная температура составляет около 212 градусов по Фаренгейту.Более высокая разница температур между охлаждающей жидкостью двигателя и наружным воздухом делает теплопередачу более эффективной. Система охлаждения двигателя состоит из охлаждающей жидкости двигателя, каналов внутри блока цилиндров и головок (головок) цилиндров, водяного насоса для циркуляции охлаждающей жидкости и термостата. контроль температуры охлаждающей жидкости, радиатор для охлаждения охлаждающей жидкости, вентилятор для протяжки воздуха через радиатор, крышка радиатора для контроля давления в системе и соединительные шланги для передачи охлаждающей жидкости от двигателя к радиатору, а также для система отопления транспортного средства, в которой используется горячая охлаждающая жидкость для обогрева кабины транспортного средства.

Охлаждающая жидкость двигателя выполняет основную функцию конвективной теплопередачи в двигателях внутреннего сгорания. Охлаждающая жидкость представляет собой смесь воды, антифриза, ингибиторов коррозии и смазочных материалов. Хладагент был разработан, чтобы преодолеть недостатки воды как теплоносителя. Многие современные автомобили оснащены охлаждающей жидкостью с увеличенным или длительным сроком службы, рассчитанной на срок до пяти лет или 150 000 миль. Зеленой охлаждающей жидкости обычно хватает на два года или 30 000 миль. Правильная смесь и качество охлаждающей жидкости предотвратят замерзание зимой, предотвратят закипание летом, предотвратят ржавление и коррозию металлических деталей, станут хорошим проводником тепла и помогут предотвратить электролиз.

Система охлаждения работает за счет циркуляции жидкой охлаждающей жидкости через каналы в блоке цилиндров и головках цилиндров. По мере прохождения охлаждающей жидкости через эти каналы тепло передается от компонентов двигателя к охлаждающей жидкости. Затем нагретая охлаждающая жидкость попадает по резиновому шлангу в радиатор в передней части моторного отсека. Проходя через тонкие трубки в радиаторе, горячая жидкость охлаждается воздушным потоком, поступающим в моторный отсек через решетку перед автомобилем.После охлаждения жидкость возвращается в двигатель, чтобы поглотить больше тепла. Водяной насос поддерживает циркуляцию жидкости в системе при работающем двигателе.

Термостат устанавливается между двигателем и радиатором, чтобы поддерживать температуру охлаждающей жидкости выше определенной заданной температуры для обеспечения оптимальной работы двигателя. Если температура охлаждающей жидкости падает ниже этой температуры, термостат блокирует поток охлаждающей жидкости к радиатору, заставляя жидкость вместо этого через байпас непосредственно обратно в двигатель.Охлаждающая жидкость будет продолжать циркулировать таким образом до тех пор, пока не будет достигнута оптимальная рабочая температура, после чего термостат откроется и позволит охлаждающей жидкости вернуться через радиатор для охлаждения.

Система охлаждения должна находиться под давлением для предотвращения закипания охлаждающей жидкости. Однако слишком высокое давление приведет к разрыву и утечке шлангов и других компонентов, поэтому необходима система для сброса давления, если оно превышает определенный предел. Работа по поддержанию давления в системе охлаждения принадлежит радиатору или крышке бачка для утилизации охлаждающей жидкости под давлением.Колпачок обычно увеличивает давление в системе охлаждения на 14 или 15 фунтов на квадратный дюйм и поднимает температуру кипения примерно на 43 градуса по Фаренгейту. Колпачок выпускает охлаждающую жидкость под давлением в расширительный бачок охлаждающей жидкости. Затем эта жидкость возвращается в систему охлаждения после того, как двигатель остынет. Никогда не снимайте крышку радиатора сразу после остановки двигателя, так как охлаждающая жидкость под давлением сразу же начнет закипать, как только давление будет сброшено. Почти наверняка возникнут ожоги и серьезные травмы.

Охлаждающая жидкость проходит по пути от водяного насоса через каналы внутри блока цилиндров, где она собирает тепло, выделяемое цилиндрами.Затем он течет вверх к головкам цилиндров, где собирает больше тепла от камер сгорания. Затем он течет мимо термостата (если термостат открыт для прохождения жидкости) через верхний шланг радиатора в радиатор. Охлаждающая жидкость проходит через тонкие трубки, составляющие сердцевину радиатора, и охлаждается потоком воздуха, проходящего через радиатор. Оттуда он вытекает из радиатора через нижний шланг радиатора и обратно к водяному насосу. К этому времени охлаждающая жидкость остыла и готова собирать больше тепла от двигателя.

Есть несколько резиновых шлангов, соединяющих компоненты системы охлаждения. Основные шланги называются верхним и нижним шлангами радиатора. Эти два шланга направляют охлаждающую жидкость между двигателем и радиатором. Шланги отопителя подают горячую охлаждающую жидкость от двигателя к сердечнику отопителя. Один из этих шлангов может иметь регулирующий клапан нагревателя, установленный на линии, чтобы блокировать попадание горячей охлаждающей жидкости в сердечник нагревателя, когда кондиционер настроен на максимальное охлаждение. Другой шланг, называемый байпасным, используется для циркуляции охлаждающей жидкости через двигатель в обход радиатора, когда термостат закрыт.В некоторых двигателях не используется резиновый перепускной шланг. Вместо этого они могут использовать металлическую трубку или иметь встроенный проход в переднем корпусе двигателя.

На задней стороне радиатора со стороны, ближайшей к двигателю, установлен один или два электрических вентилятора охлаждения внутри корпуса, который предназначен для защиты пальцев и направления воздушного потока. Вентиляторы управляются компьютером автомобиля. Датчик контролирует температуру двигателя и отправляет информацию на компьютер. Компьютер определяет, следует ли включать вентилятор, и включает реле вентилятора, если требуется дополнительный поток воздуха через радиатор.Вентиляторы обеспечивают прохождение воздуха через радиатор, когда автомобиль движется медленно или останавливается при работающем двигателе. Если бы вентиляторы перестали работать, температура двигателя начинала бы расти каждый раз, когда автомобиль останавливался.

Если в автомобиле есть кондиционер, перед радиатором системы охлаждения двигателя устанавливается дополнительный радиатор, называемый конденсатором кондиционера. Конденсатор кондиционера также должен охлаждаться потоком воздуха, поступающим в моторный отсек.Если кондиционер включен, система будет поддерживать работу одного электрического вентилятора охлаждения, даже если двигатель не горячий. Если нет потока воздуха через конденсатор кондиционера, кондиционер не сможет охлаждать воздух, поступающий в кабину транспортного средства.

Двигатель, который перегревается, быстро самоуничтожится. Правильное обслуживание системы охлаждения жизненно важно для срока службы двигателя и бесперебойной работы системы охлаждения. Важно, чтобы сертифицированный специалист ASE ежегодно проводил проверку всех компонентов системы охлаждения.Во время осмотра техник должен проверить герметичность крышки радиатора, чтобы убедиться, что система охлаждения работает при надлежащем уровне давления, прогнать автомобиль до рабочей температуры, чтобы убедиться, что термостат двигателя правильно регулирует температуру двигателя, проверить уровень охлаждающей жидкости и произвести визуальный осмотр. на наличие любых признаков утечки охлаждающей жидкости проверьте защиту охлаждающей жидкости и уровни PH, чтобы определить, следует ли заменить охлаждающую жидкость, и визуально осмотрите шланги системы охлаждения. Всегда убедитесь, что вы используете охлаждающую жидкость того типа и смеси, которые рекомендованы производителем вашего автомобиля.

Необходимость ведущего регулятора расхода охлаждающей жидкости для автомобилей

Большинство современных автомобилей и грузовиков работают с водоохлаждаемыми электростанциями. По сути, охлаждающая жидкость на водной основе, или жидкость, циркулирует через двигатель, и поглощает избыточное тепло , которое затем выделяется в окружающую среду с помощью радиатора. При использовании в холодную погоду отработанное тепло двигателя используется для дополнительной цели обогрева салона; это достигается путем пропускания хладагента через альтернативный теплообменник, известный как сердечник нагревателя.Этот сердечник нагревателя нагревает воздух, циркулирующий внутри или втекающий в отсек для людей, тем самым повышая его температуру.

Чаще всего охлаждающая жидкость циркулирует насосом с приводом от двигателя. Поскольку скорость двигателя изменяется во время использования автомобиля, расход охлаждающей жидкости в контуре обогревателя также изменяется. Поскольку тепловая мощность теплообменника в основном определяется расходом охлаждающей жидкости и температурой через теплообменник, тепловая мощность сердечника нагревателя также зависит от частоты вращения двигателя.

Управление температурой — это способность контролировать температуру системы и ее подсистем; например, электронная машина, кабина, аккумулятор, двигатель и т. д. В этой системе требуется эффективный контроллер потока хладагента для перекрытия потока хладагента, регулирования потока хладагента и переключения контуров хладагента. Этот клапан управления потоком охлаждающей жидкости позволяет функциям уменьшать время нагрева двигателя за счет нулевого потока двигателя, обеспечивая более быстрый нагрев кабины за счет направления тепла к сердечнику теплообменника и уменьшения потока охлаждающей жидкости для достижения оптимальной температуры двигателя.

Proteus WeldSaver TM : Ведущий контроллер потока охлаждающей жидкости

Proteus WeldSaver TM — ведущий контроллер потока охлаждающей жидкости и детектор утечек для роботизированной сварки . Независимо от того, нужно ли вам контролировать поток охлаждающей жидкости во всем контуре охлаждения для сварочной ячейки или сварочных пистолетов, этот контроллер потока охлаждающей жидкости эффективно обнаруживает снижение непрерывности потока, вызванное разрывом шланга, потерей крышки или любым другим катастрофическим явлением.

Давайте посмотрим на особенности этого ведущего контроллера потока охлаждающей жидкости Proteus Industries:

  • Предотвращает воду менее чем за 1 секунду после разрыва шланга, потери крышки или любого другого катастрофического события
  • Отправляет аварийный сигнал на контроллер сварки менее чем за 0,4 секунды
  • Дает постоянный сигнал о фактическом расходе охлаждающей жидкости прямо в л / мин или галлонах / мин.
  • Запатентованный алгоритм потери крышки не зависит от измерения расхода
  • Лопаточное колесо или вихревой расходомер с резьбой NPT или метрическими соединениями
  • Выбираемые пользователем настройки сигнализации и рабочие параметры
  • Дистанционное управление состоянием клапана
  • Релейный интерфейс, опции EtherNet / IP и DeviceNet
  • Диапазон расхода от 1.От 0 до 50 л / мин или от 0,5 до 13,0 гал / мин

Ищете индивидуальное решение?

Proteus Industries — производитель и разработчик проточных устройств с многолетним опытом.

WeldSaver TM серия — лишь одно из многих инновационных устройств, которые мы предлагаем. Если вам нужен продукт, точно соответствующий вашим требованиям, вы можете связаться со службой поддержки приложений WeldSaver и позволить нашим профессионалам создать ваше индивидуальное решение.

Сообщение навигации

Расход охлаждающей жидкости двигателя (автомобиль)

Водяные рубашки представляют собой полости, залитые в головку блока цилиндров и блок.Эти полости окружают участки двигателя, подверженные воздействию тепла сгорания. Размер и форма этих полостей рассчитаны в зависимости от местоположения, так что в эту конкретную зону подается достаточно охлаждающей жидкости, чтобы отвести все тепло, поглощаемое во время каждого рабочего такта. Объем водяных рубашек и скорость охлаждающей жидкости через водяные рубашки вызывают повышение температуры охлаждающей жидкости
примерно на 6-11 К между входом водяного насоса и верхним выходом. Поток охлаждающей жидкости обычно направлен назад через водяные рубашки в блоке, вверх в головку, а затем вперед через головку к выпускному отверстию для охлаждающей жидкости в передней части головки.Во многих поперечно установленных двигателях охлаждающая жидкость входит в блок с одного конца и выходит из головки с другого конца. Двигатель V-8 или V-6 обычно имеет отдельный поток охлаждающей жидкости вдоль водяных рубашек в каждом ряду.
Охлаждающая жидкость проходит через двигатель одним из двух параллельных или последовательных путей. В устройстве с параллельным потоком охлаждающая жидкость втекает в блок под давлением, а затем проходит через прокладку к головке через отверстия, расположенные рядом с каждым цилиндром. Отверстия под прокладки показаны на рис. 12.4.При последовательном расположении охлаждающая жидкость обтекает все цилиндры на каждом ряду к задней части блока, где большие проходы позволяют охлаждающей жидкости проходить через прокладку к задней части головок. Отверстия прокладок последовательного потока показаны на рис. 12.5. Охлаждающая жидкость течет вперед через головки к выпускному отверстию в самой высокой точке охлаждающего канала двигателя, расположенному в передней части двигателя. В некоторых двигателях используется комбинация этих двух систем, которая называется последовательно-параллельным потоком охлаждающей жидкости.


ОСНОВНЫЕ ПАССАЖИ ОХЛАЖДАЮЩЕЙ ЖИДКОСТИ
Рис. 12.5. Последовательный поток теплоносителя.
Каналы охлаждения внутри двигателя выполнены таким образом, что вся система может быть опорожнена. Также он разработан, чтобы избежать образования карманов, в которых может образовываться пар. В системах с последовательным потоком это достигается за счет короткой циркуляции очень небольшого количества охлаждающей жидкости через выпускные отверстия или прорези для пара в прокладке, блоке и головке. Часто охлаждающая жидкость с короткой циркуляцией направляется на горячие участки в жару, такие как выхлопные клапаны, свечи зажигания и переход выхлопных газов.

Вопрос недели: Почему в системе охлаждения двигателя есть термостат, и влияет ли он на расход охлаждающей жидкости?

Вопрос месяца, представленный Биллом Маклелланом, Пасадена, Калифорния, на который ответила Мелани Хант, доцент кафедры машиностроения Калифорнийского технологического института.

Система охлаждения — важная часть автомобильного двигателя. Я определенно стал лучше осознавать этот факт после того, как моя машина перегрелась на шоссе Санта-Моника.

Система охлаждения выполняет три важные функции. Во-первых, отводит излишки тепла от двигателя; во-вторых, он поддерживает рабочую температуру двигателя там, где он работает наиболее эффективно; и, наконец, он максимально быстро доводит двигатель до нужной рабочей температуры.

Система охлаждения состоит из шести основных частей: двигателя, радиатора, водяного насоса, вентилятора охлаждения, шлангов и термостата. В процессе сгорания часть энергии топлива превращается в тепло.Это тепло передается охлаждающей жидкости, которая циркулирует в двигателе с помощью водяного насоса. Шланги несут горячую охлаждающую жидкость к радиатору, где тепло передается воздуху, который проходит мимо двигателя охлаждающим вентилятором. Затем охлаждающая жидкость возвращается к водяному насосу и рециркулирует.

Когда двигатель холодный, например, первым делом утром, двигатель работает немного иначе. Для максимальной эффективности двигатель разработан с возможностью быстрого прогрева. Как только двигатель достигает нужной рабочей температуры, он рассчитан на поддержание стабильной температуры, что и является целью термостата.Термостат похож на клапан, который открывается и закрывается в зависимости от его температуры. Термостат изолирует двигатель от радиатора до тех пор, пока он не достигнет определенной минимальной температуры. Без термостата двигатель всегда будет отдавать тепло радиатору, и ему потребуется больше времени для прогрева. Как только двигатель достиг желаемой рабочей температуры, термостат регулирует поток в радиатор для поддержания стабильной температуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *