Menu Close

Теплообменник для системы отопления: Теплообменники для систем отопления: устройство и принцип работы

Для чего нужен теплообменник в системе отопления

Теплообменник устройство, передающее тепло от одного источника теплоты другому, исключая при этом непосредственный контакт теплоносителей. Поэтому теоретически теплообменник можно установить в любой системе отопления, главное чтобы от этого была польза, поскольку стоимость самой системы отопления при этом возрастает прямо пропорционально нагрузке, или попросту стоимости самого устанавливаемого теплообменника с регулирующей измерительной и контрольной аппаратурой.

Главная область применения теплообменников в системе отопления это независимая система теплоснабжения. Чтобы понять, зачем нам это нужно необходимо совершить небольшой экскурс в природу имеющихся у нас в стране тепловых сетей.

Зависимая система теплоснабжения, работающая без теплообменника.

Индивидуальный тепловой пункт, спроектированный для работы в зависимой системе теплоснабжения без теплообменника

Существуют две схемы отопления или как правильно говорить теплоснабжения.

Зависимая система отопления, с которой мы все хорошее знакомы, это когда котел, нагревая воду, подает ее по трубопроводам прямо в отопительные приборы – батареи отопления в квартире, минуя теплообменник. Конечно, в такой схеме есть тепловой пункт, регулирующие и измерительные приборы, иногда устанавливается погодозависимая автоматика. Только без теплообменника влиять на температуру в батареях, а значит, в целом в квартирах мы можем только в сторону уменьшения температуры.

Для котлов в котельной такая схема тоже не удобная, она требует больших насосов, котлы и трубы тепловой сети работают как гармошка, от того рвутся постоянно, а об утечках тепла и потерянных при этом потерях тепла лучше и не вспоминать. Зато на первичном этапе без установки теплообменника в системе отопления получается довольно дешево, но не эффективно, котельная не знает, сколько тепла нужно каждому, а потребитель не в силах влиять на выработку тепла для отопления,

отсюда перетоп и низкая энергетическая эффективность такой системы отопления без разделительного теплообменника.

Независимая система теплоснабжения с теплообменником.

Индивидуальный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения с теплообменником

Теплообменник в такой системе отопления главный прибор позволяющий экономить. Конечно, экономит не он, он только отделяет среды друг от друга, экономит автоматика. Как экономит? Вот пример независимой системы отопления – современная централизованная отопительная система, в ней имеется один главный тепловой пункт, распределяющий тепло и дополнительные теплообменники для каждого потребителя установленные уже в ИТП жилых домов.

От котельной к центральному тепловому пункту, где установлен главный теплообменник, тепло подается в жестком, фиксированном тепловом режиме – например 95 градусов на подаче и теоретически 70 градусов на обратке. В котельной не нужна автоматика и операторы, мощность насосов и диаметр труб тепловой сети могут быть гораздо меньше, утечек в контуре котлов нет по своей природе.

Иногда теплообменник большой мощности устанавливают непосредственно в системе отопления котельной, тогда контур получается двойным и в котлах, из-за малого объема теплоносителя во внутреннем контуре, отсутствует накипь, котлы служат вечно.

Блочный тепловой пункт, спроектированный для работы в независимой системе теплоснабжения и горячего водоснабжения с теплообменниками

Установив теплообменник в системе отопления, потребитель получает возможность влиять на температуру в квартире, сколько нужно каждому столько и возьмет, конечно, если в квартире на батареях тоже установлены регулирующие приборы. Выгода для всех налицо.

Как подключить теплый пол к системе отопления через теплообменник.

Нужен теплообменник и для теплого пола. Если вы, например, захотите сделать теплый пол, врезав его в систему отопления без теплообменника вы оставите весь дом без тепла, тепла на полы пойдет немного, но вот вода – теплоноситель будет циркулировать только через ваш пол и не пойдет к соседям, она «лентяй» и идет по самому короткому пути.

Недостаток установки теплообменника в систему отопления только один, увеличение затрат на первоначальном этапе монтажа, но он с лихвой перекрывается всеми ее достоинствами.

Зависимую систему отопления легко модернизировать в независимую систему, путем установки дополнительного теплообменника с регулирующей аппаратурой. Правда, делать это придется одновременно во всем районе, подключенном к вашей котельной. Зато так вы сможете сэкономить до 40 процентов на оплату тепла, по сравнению с вашими сегодняшними затратами без установки такого нужного теплообменника в системе отопления.

водонагреватели и бойлер электрический, что такое и как использовать

К числу ключевых элементов отопительной системы можно отнести такие агрегаты, как теплообменники для отопления, а также бойлер или водонагреватель. Бойлер – это емкость достаточно большого объема, под или в которой располагается источник тепла. Для нагревания воды может использоваться либо водяной, либо паровой теплообменник.

Этот прибор оборудован специальным отопительным котлом, задача которого заключается в нагреве воды, циркулирующей в замкнутом пространстве. Такие устройства получили название водонагревателей (бойлеров) косвенного нагрева.

Типы теплообменников

Функции теплообменников для котлов достаточно многочисленны и важны, поскольку именно от данного прибора во многом зависит назначение и конструкция самого используемого котла. Кроме этого с помощью теплообменника холодный теплоноситель получает необходимый объем тепла от уже нагретого. Еще одна важная функция: устройство осуществляет передачу энергии тепла от теплоносителя к санитарной воде, а также от сгораемого газа непосредственно к теплоносителю.

В зависимости от способа передачи тепла жидкостям выделяют следующие виды теплообменников:

  1. Первичный – передача энергии осуществляется от газа к теплоносителю;
  2. Вторичный (водоводяной) – передача энергии осуществляется от жидкости к теплоносителю;
  3. Битермический (совмещенный), особенностью которых является двойной обмен тепла от теплоносителя к воде и от газа к теплоносителю.

Первичный

Первичный теплообменник – это достаточно большая медная труба, которая изогнута в одной плоскости в виде змеевика. В этой же плоскости располагаются пластины различного размера, выполненные из меди. Для предотвращения появления ржавчины поверхность данного агрегата покрыта специальной защитной краской. Мощность первичного теплообменника для отопления в первую очередь зависит от количества ребер и длины трубы.

В большинстве случаев такие приборы обладают примерно одинаковым конструктивным решением, различия же заключаются в способе подключения трубы, в размерах самого теплообменника, а также его мощности. Стоит отметить, что процесс обмена теплом между теплоносителями может быть существенно затруднен в случае загрязнения копотью и грязью.

Не меньшее отрицательное влияние оказывают и отложения солей внутри самого агрегата, препятствующие прохождению воды через бойлер. Это является следствием нарушения циркуляции теплоносителя, а также уменьшения теплопроводности стен прибора. По этой причине необходимо в профилактических целях заниматься своевременным обслуживанием теплообменника для отопления дома, а также выполнять его промывку и очистку.

Специалисты рекомендуют вместе с теплообменником покупать также и фильтры, которые помогут справиться с лишними отложениями и увеличить срок их полезного использования.

Вторичные

Вторичные теплообменники (они также получили название теплообменники горячего водоснабжения – ГВС), отличаются специальными пластинами, которые соединены друг с другом. Данные пластины производятся из нержавеющей стали. Подобные приборы чаще всего устанавливаются в котлах Linea (Bongioanni), Mini kW, Major kW (Immergas), а также Micra 2 (Hermann).

Водоводяной прибор позволяет рассчитывать на необходимый теплообмен благодаря высокому уровню теплопроводности пластин, а также большой площади теплообмена. Таких показателей удается достичь даже несмотря на тот факт, что скорость потока носителя тепла достаточно велика.

Однако благодаря большой скорости практически полностью исключена вероятность появления солей и отложений на стенках.

Благодаря некоторым особенностям конструкции, водоводяной теплообменник отличается особыми качествами. К примеру, от количества пластин напрямую зависит мощность и площадь теплообмена. Кроме этого, в остальных разновидностях теплообменников холодная вода и теплоноситель двигаются навстречу, тогда как здесь направление их движения полностью совпадает.

Битермические

Конструктивной особенностью данной группы приборов является наличие сразу двух контуров: горячего водоснабжения и отопления. Такие агрегаты используются в котлах Linea Isy (Bongioanni), Immergas Star kW (Immergas) и Hermann Habitat 2 (Hermann). Если говорить непосредственно о строении модели, то отметим, что она представлена так называемой «трубой в трубе» (коаксиальной). Кроме этого, присутствуют медные пластины, которые расположены на поверхности прибора.

Отличия

Наружная труба предназначена для циркуляции теплоносителя в системе отопления, тогда как внутренняя – для движения санитарной воды. В отопительном режиме функционирования сгораемые газы выделяют тепло, которое доставляется прямо к теплоносителю. Если же теплообменник функционирует в режиме горячего водоснабжения, то тепло сначала передается теплоносителю, после чего оно достается контуру.

Если используется битермический теплообменник для отопления дома, то отпадает необходимость в установке таких гидравлических отопительных агрегатах, как вторичный теплообменник и трехходовой клапан.

Это самым положительным образом сказывается на цене котла, к тому же существенно увеличивается надежность функционирования устройства.

Недостатки

Однако без некоторых недостатков также не обошлось. К примеру, несколько ограничена передача тепловой энергии в режиме ГСВ, что, соответственно, ведет к уменьшению объемов приготовляемой нагретой воды, если сравнивать с остальными разновидностями теплообменников для отопления. Еще одно ограничение – специалисты не советуют эксплуатировать данное устройство в тех регионах, где вода отличается повышенным содержанием жестких солей в своем составе. Причиной является более интенсивное и ускоренное отложение солей из-за достаточно чувствительного перепада температур в режиме горячего водоснабжения и отопления.

Также стоит отметить, что некоторые теплообменники отличаются увеличенной емкостью. Установка таких котлов ведется в отопительных котлах самого высокого класса — Eura (Hermann). Своим внешним видом они больше всего напоминают 6-8-литровый бойлер для отопления, который оборудован специальным медным змеевиком, расположенным по всему объему агрегата. Такие теплообменники получили название мини-бойлеров. По змеевику проходит контур теплоносителя, а через стенки – контур горячего водоснабжения.

Бойлеры косвенного нагрева

Если же говорить непосредственно о водонагревателях и электрических бойлерах, то стоит отметить, что наибольшей популярностью пользуются бойлеры косвенного нагрева. Может быть несколько основных источников нагрева теплоносителя – нагревательная газовая горелка, которая находится под бойлером, трубчатый электронагреватель внутри него, а также тепло системы отопления. Емкость, в которой осуществляется непосредственно процесс нагревания, с внешней стороны защищена специальным кожухом, а также слоем теплоизоляции, чтобы через водонагреватель не происходило дополнительных теплопотерь.

Нагревательный прибор соединен с пультом управления, который обязательно оснащен специальным датчиком для проверки температуры. В качестве такого датчика зачастую выступает биметаллический термостат. Если датчик сигнализирует о том, что температуры ниже нормы, то автоматически начинается нагрев жидкости.

Бойлеры закрытого типа

Выделяют две разновидности водонагревателей для отопления – открытые и закрытые. Закрытые бойлеры нашли свое применение в централизованной системе водоснабжения. В таких устройствах используются различные металлы (медь, нержавеющая сталь, эмалированная сталь) для изготовления бойлеров для отопления.

Стоит отметить, что подобные водонагреватели отличаются повышенным давлением, причиной которого является расширение жидкости во время нагревания.

Во избежание поломок агрегата и выхода его из строя используется специальный расширительный бак, который предназначен для излишков воды. К тому же такой бак может быть дополнительно оборудован термосмесителем, манометром, а также редуктором давления.

Открытые бойлеры

Открытые водонагреватели для отопления отличаются в первую очередь тем, что они могут снабжать горячей водой лишь одну водоразборную точку, для чего используется специальное оборудование под названием спецсмеситель. При включении спецсмесителя подключение теплообменника к магистральной трубе перекрывается. Давление сетевой воды достаточно велико именно на входе в нагреватель, а не на выходе из него. В результате этого компании-производители имеют возможность использовать не самые прочные и дорогие материалы для создания нагревательной емкости, поскольку давление на стенки емкости не самое высокое.

Кроме этого, данная арматура призвана исполнить роль группы безопасности и расширительного бака, сливая лишнюю воду в раковину при ее расширении. Закрытые бойлеры также могут быть оборудованы подобным спецсмесителем, однако открытые бойлеры для отопления дома без данного агрегата функционировать не смогут.

Нюансы подачи холодной воды

Напоследок отметим, что не нагретая вода должна подаваться под очень высоким давлением в емкость, чтобы уже нагретая жидкость начала выливаться из бойлера – лишь в этом случае можно утверждать, что водоразбор успешно завершился. Ведь если давление воды на входе очень маленькое, то горячая вода не сможет покинуть бак, поскольку трубка для выхода нагретой жидкости находится в самой высшей точке нагревателя. Холодная вода заливается с нижней части, причем благодаря специальному приспособлению – штуцеру – эта жидкость стелется на дне бойлера.

Таким образом, имеется несколько видов водонагревательных элементов, которые предназначены для нагрева воды и ее подачи. Каждая из этих разновидностей отличается собственными достоинствами и недостатками, и лишь потребитель решает, какой из бойлеров является оптимальным именно для его системы.

Самостоятельное изготовление теплообменника

Теплообменник вполне доступен для самостоятельного изготовления, что неоднократно использовалось многими домашними умельцами для создания этого агрегата отопления с минимальными финансовыми затратами. Если рассматривать основные типы теплообменников, изготовленные своими силами, можно выделить следующие их разновидности: выполненные собственными руками бойлеры открытого типа и расположенные вблизи источника тепла змеевики.

Вариант первый

В первом случае используется любая открытая емкость, имеющая достаточную прочность для накопления воды под нормальным давлением. Нагрев в таком изготовленном своими руками агрегате осуществляется с помощью погружения в емкость источника передачи тепла. Такие конструкции популярны для получения горячей воды в небольших загородных домах и других постройках для временного использования.

Вариант второй

Второй тип доступных для изготовления своими руками теплообменников представляет собой изогнутую трубу (змеевик), которую пропускают в непосредственной близости от котла отопления, домовой печи либо другого источника высокой температуры. Вода в трубе нагревается косвенным путем и поступает потребителю.

что это такое, виды и системы отопления дома и квартиры

Для уюта и комфорта в частном доме необходимо чтобы в помещении было тепло в любое время года и из под крана текла не только холодная вода. Горячее водоснабжение и качественное отопление для комфортной жизни просто необходимо. Чтобы обеспечить всеми этими удобствами частный дом понадобится теплообменник.

Компания «Комплексное снабжение» является одним из крупнейших дилеров теплообменного оборудования на территории России и Казахстана. В нашем каталоге вы найдёте всё чтобы благоустроить ваш частный дом. Оставьте заявку на нашем сайте или позвоните нам по указанному номеру, а наши специалисты помогут подобрать оборудование, которое устроит вас по цене и техническим параметрам.

Виды теплообменников для отопления частного дома

В частных домах для отопления устанавливаются теплообменники двух видов:

  • Пластинчатые разборные
  • Пластинчатые паяные

Главное различие данных теплообменников в их конструкции. Разборные теплообменные аппарата, как уже понятно из названия вида, имеют разборную конструкцию и собирается из пластин устанавливаемых поочерёдно. В паяных теплообменных аппаратах гофрированные пластины припаяны между собой медью или никелем.

И какой же теплообменник больше всего подходит для отопления частного дома? Решите для себя это сами, просмотрев преимущества каждого типа:

Разборные пластинчатые теплообменники
  1. Разборная конструкция. Благодаря своей конструкции вы можете легко разобрать свой теплообменный аппарат для технического обслуживания.
  2. Регулировка мощности. Вы можете увеличить производительность вашего теплообменного аппарата путем добавления дополнительных пластин.
  3. Высокий коэффициент теплопередачи. Благодаря использованию качественных материалов, достигается высокая производительность
  4. Самоочистка. Благодаря турбулентности потоков, теплообменник практически не требует промывок
Паяные пластинчатые теплообменники
  1. Никаких протечек. Благодаря тому что в конструкции отсутствуют уплотнения риск протечки сводится к нулю.
  2. Компактность. Паяные теплообменники обладают малым весом и удобными габаритами.
  3. Большой срок эксплуатации. При правильной эксплуатации, аппарат может прослужить около 15 лет.
  4. Низкая стоимость. Так как вес и размер паяных теплообменников намного меньше чем у разборных, то и цена соответственно ниже.

Заказать теплообменник для
вашего дома
Расчет и подбор за 15 минут


Пример цены на разборные и паяные теплообменники





Где ещё применимы теплообменники в частном доме?


Не знаете какое именно оборудование Вам необходимо? Знаете параметры, но запутались с выбором? Есть много предложений и как определиться с верным? Не майтесь… Просто позвоните нам…
Звоните на бесплатный номер по России 8 (804) 333-71-04 и наш инженер-консультант бесплатно Вас проконсультирует по вопросам теплообменного оборудования. По вашим потребностям подберете лучший вариант по соотношению «Цена-Качество». Оставляйте заявки через форму ниже или на электронную почту [email protected] .

Что такое теплообменник в системе отопления

Мне очень часто приходиться слышать вопрос от клиентов — что такое теплообменник в системе отопления? Вопрос простой, на первый взгляд нелепый и все же справедливый. Ведь, казалось бы, любая система отопления прекрасно обходиться без теплообменника даже при производстве горячей воды.

Вопрос о непосредственном отборе горячей воды из системы отопления сложен, поэтому давайте разберем его немного позже, в другой статье. А сейчас разберемся с вопросом, зачем в системе отопления стоит теплообменник?

В каждой ли системе отопления есть теплообменник.

Скажу сразу, теплообменник стоит не в каждой системе отопления, и даже более, в нашей стране это редкость. А вот в остальном мире повсеместно. Там все устроено по-другому, котельные работают без персонала, температура на выходе одна, максимально необходимая для обеспечения теплом в самые лютые, по их меркам морозы. Каждый потребитель берет тепла столько, сколько считает нужным, то количество тепла за которое он готов или в состоянии оплатить.

В отопительном контуре в качестве теплоносителя может использоваться не только вода (хотя чаще всего все-таки умягченная с помощью комплексонов и омагниченная вода), это может быть антифриз, масло или другая жидкость, но даже если вода ни кто и не подумает брать воду прямо из системы отопления, эту ему обойдется очень дорого. Вот здесь и приходит на выручку теплообменник, который устанавливается в систему отопления и разделяет ее на две части, систему отопления от поставщика к потребителю и систему отопления самого потребителя.

После теплообменника установленного в системе отопления потребитель ставит множество регуляторов, некоторое подобие нашей системы погодного регулирования, которые следят за температурой в различных комнатах, в системе подачи горячей воды, теплого пола, рекуперации и т.д.


Схема ИТП при независимом присоединении к тепловой сети через теплообменник.

У нас в стране такая система отопления называется независимой, на ней построено большинство блочных тепловых пунктов и основное ее назначение несколько другое, кроме погодного регулирования теплообменник в системе отопления предотвращает выход из строя современных пластиковых труб, которые повсеместно успешно внедряются в современных отопительных системах.

Такие трубы выдерживают максимальную температуру до 90 градусов С, при этом максимальный срок труб из PPRS материалов (а правильно их называют именно так) при такой температуре составляет не более 5 месяцев. Как видите не много, хорошо, что и сильные морозы у нас так долго не держатся.

Надеюсь теперь Вам понятно, что такое теплообменник в системе отопления.

Теперь для любознательных, какой теплообменник чаще всего применяется в независимой системе отопления и как он выглядит.

Чаще всего в блочных тепловых пунктах, построенных по схемам независимого отопления, применяются пластинчатые теплообменники. Устройство теплообменников очень хорошо описано на этом сайте, а вкратце смотрите на рисунке ниже.

Устройство пластинчатого разборного теплообменника.

В основе любого пластинчатого теплообменника лежит набор пластин, перфорированных особым способом штамповкой, для увеличения площади теплообмена и формирования каналов по которым движется вода. Пластины собраны в пакет, на торцевой неподвижной плите имеются патрубки для ввода и вывода теплоносителя греющей и нагреваемой среды, в которые и выведены каналы из пластин.

Где устанавливать такой теплообменник в системе отопления или горячего водоснабжения роли не имеет, отличаются только сами схемы блочных тепловых пунктов и мощность, на которую рассчитаны пластинчатые теплообменники. А подобрать и изготовить пластинчатый теплообменник очень легко, как и потом увеличить или уменьшить его мощность, если конечно ваш теплообменник разборный, а не паяный.

Если кому недостаточно сведений об устройстве пластинчатого теплообменника или блочного теплового пункта, есть необходимость в его подборе или расчете, проектировании рекомендую очень толковый сайт http://ridan-ug. ru/ поставщика теплообменного оборудования Ридан.

А тему сегодняшней статьи — что такое теплообменник в системе отопления можно считать исчерпанной. Есть у Вас есть вопросы по работе теплообменного оборудования задавайте, с удовольствием отвечу, Юрий Олегович Парамонов, ООО Энергостром, 2016 год.

Читать далее — Причины сдерживающее использование блочных тепловых пунктов

Что еще почитать по теме:

Теплообменник для отопления и горячей воды

Теплообменник для отопления дачного дома или коттеджа, в которых присутствует котел и автономная система водяного обогрева, стремительно набирает популярность и становится неотъемлимым атрибутом комфорта. Задача теплообменника – передать тепло, выделяющееся при сгорании топлива, теплоносителю, который обогревает стены дома и воздух внутри него.

Способы автономного обогрева дома.

Схема обогрева дома реализуется двумя путями. В первом случае теплообмен происходит непосредственно в зоне сгорания топлива. Через топку проходит водяной контур (или несколько контуров), в нем теплоноситель разогревается до температуры, близкой к точке кипения или превращается в пар. Он устремляется по контуру и сам непосредственно обогревает дом и прилегающие хозяйственные постройки. В зоне топки может быть устроено несколько теплообменников. В зависимости от близости к очагу максимальной температуры они поставляют теплоносители для разных нужд:

  • отопления;
  • горячего водоснабжения;
  • наполнения бассейна;
  • автоматического полива и т.д.

Другой способ предполагает наличие дополнительного звена – теплообменника вода вода для отопления и горячего водоснабжения. В этом случае замкнутый контур, проходящий через котел, не выходит за пределы котельной, а передает тепловую энергию контуру «второго порядка». В этом случае в трубах отопления циркулирует уже не раскаленный пар, а просто горячая вода и непредвиденный прорыв контура будет неприятным, но не приведет к фатальным последствиям.

С точки зрения технического устройства существует много видов таких вторичных теплообменников, однако чаще всего в коттеджах устанавливают экономичные и недорогие пластинчатые теплообменники для отопления. Они не только считаются самыми эффективными и простыми в обслуживании, но и имеют самую давнюю историю. По свидетельствам античных авторов, примитивные пластинчатые теплообменники из полых щитов и доспехов использовали еще воины Древнего Рима, когда в зимних походах им нужна была теплая вода для мытья. Позднее это изобретение взяли на вооружение устроители римских терм. Вода в ваннах для омовения подогревалась с помощью полых металлических пластин, по которым пропускался кипяток.

Как устроен пластинчатый теплообменник?

Пластина в теплообменнике имеет форму узкого параллелепипеда. Ее поверхность покрыта бороздками, что дополнительно увеличивает площадь теплообмена. Существуют также оребренные пластины, цель та же – максимально увеличить площадь соприкосновение холодной среды с теплонесущей металлической перемычкой.

Из чего делают теплообменники?

Материал большинства теплообменников – медь, латунь, титан и различные сплавы с высоким показателем теплопроводности. Нержавеющая сталь проводит тепло в несколько раз хуже меди, однако ее плюсом является коррозионная стойкость. Впрочем, чисто стальные устройства встречаются довольно редко.

Самые высокую теплопроводность в мире имеет кристаллический углерод – графит, алмаз, графен. Эти природные и синтетические материалы в 5 – 10 раз лучше проводят тепло, чем серебро и медь. И если алмазные теплообменники для коттеджа представить сложно, то трубы и пластины из искусственных углеродистых материалов – вполне реальное будущее.

Дополнительную эффективность пластинчатых теплообменников для отопления обеспечивает то, что пластины плотно сжаты между собой специальными боковыми плитами. Щель между пластинами составляет лишь несколько миллиметров. В итоге практически вся масса холодной волы проходит в непосредственной близости от пластин и быстро нагревается. Комплекс пластин называется регистром или в просторечии батареей. В одной батарее обычно 7 – 10 элементов, но их может быть гораздо больше. Регистр полностью перекрывает собой контур с холодной жидкостью, образуя частую решетку из параллельных элементов.

Как бороться с накипью?

Внутренние каналы, по которым циркулирует горячая вода, имеют извилистую форму, полученную методом холодной штамповки. Это сделано для того, чтобы в процессе циркуляции в массе рабочего теплоносителя все время возникала турбулентность (разнонаправленные завихрения). Благодаря им в пластинчатых системах на стенках оседает гораздо меньше накипи, нежели, например, в простых полых трубках.

Количество накипи зависит во многом от качества водоподготовки. Если в системе отопления используется вода из скважины (а так бывает в абсолютном большинстве случаев), то при выборе теплообменника надо обязательно учитывать ее pH свойства. Даже если среда щелочная (“мягкая”, мылкая на ощупь), накипь будет образовываться в любом случае и систему нужно будет периодически чистить.

Пластинчатые теплообменники могут быть разборными, паяными и литыми. Первый вариант наиболее удобен с точки зрения обслуживания и чистки каналов от накипи. Для чистки применяются механические средства, абразивные материалы и минеральные кислоты (соляная или серная). При использовании едких жидкостей необходимо убедиться, что они не повредят металлический корпус и внутренние каналы.

Как подобрать теплообменник?

Перед тем, как купить и смонтировать теплообменник для отопления типа вода – вода, нужно произвести профессиональные теплотехнические расчеты и выяснить, достаточно ли будет получаемой энергии для эффективного обогрева здания. Вполне возможно, параллельно установке системы отопления нужно будет повысить энергосберегающие свойства дома – поменять окна, дополнительно утеплить стены, потолки и кровлю. Необходимо также обеспечить минимизацию теплопотерь в самой зоне теплообмена, надежно изолировав контуры с теплоносителями.
Основной недостаток теплообменника для горячей воды от отопления – места соединения пластин между собой. Соединение производится с помощью уплотнений из натуральной или искусственной резины. Абсолютной надежности такая конструкция обеспечить не может и имеет ограничения по предельно допустимой температуре среды (+180°C) и давлению (25кгс/см²). Это значит, что такие системы оптимальны для применения в сравнительно небольших по площади домах, в которых установлены котлы ограниченной мощности.

Теплообменники для отопления дома своими руками: подключение, водяные, воздушные

На чтение 9 мин Просмотров 691 Опубликовано Обновлено

Теплообменник из медной трубы с припаянными пластинами — важнейший элемент современных отопительных котлов

Главным элементом любой из систем отопления служит особое устройство — теплообменник для отопления дома, в котором происходит передача тепла от генератора тепла к теплоносителю. На современном рынке представлено большое количество различных отопительных котлов, но все их разнообразие не ограничивает фантазию домашних умельцев по части самостоятельного изготовления подобных устройств. В нашей статье читателям будет предложено узнать, для чего нужен теплообменник в системе отопления, как его сделать своими руками и каким способом подключить.

Функция теплообменника в системе отопления

В домашних отопительных системах воздух наиболее часто используются поверхностные теплообменники системы отопления, где тепловая энергия передается через поверхности металлических стенок данного устройства.

Принцип отопления через теплообменник наиболее полно реализован в конструкции газовых, твердотопливных или электрических котлов. Вода циркулирует по изогнутым в виде змеевика трубам, установленным внутри отопительного агрегата, и нагревается от температуры горящего топлива. Нагревшийся теплоноситель уходит в трубопровод отопительной системы, а ему на смену в теплообменник поступает остывшая вода из радиаторов.

До сих пор во многих индивидуальных домах традиционным источником тепла остается печь. Она хороша для обогрева небольшой избы, однако в условиях многокомнатного коттеджа ее тепловая мощность недостаточна. Поэтому в частном доме теплообменник в системе отопления нужен для того, чтобы превратить печку в полноценный водонагревательный котел. Размер и форма самодельного теплообменника для отопления должна вписываться в габариты топливной камеры печи. К этому устройству можно подключить трубопроводы и радиаторы, и тогда отопление дома станет более эффективным.

Виды теплообменников

Если вмонтировать в печь водяной теплообменник для отопления, во всем доме станет гораздо теплее

Более практичны водяные теплообменники для отопления. Это обусловлено тем, что вода намного лучше передает тепловую энергию, чем воздух. Вместе с тем, воздушный теплообменник для отопления также находит применение. Кроме водяного и воздушного, применяется также и теплообменник на дымоход для отопления, который устанавливают не внутрь, а снаружи.

Все выпускаемые промышленностью отопительные устройства оснащены теплообменниками, конструкция которых максимально приспособлена для эффективного нагрева воды.

В заводских условиях теплообменные устройства изготавливают из меди.  Труба представляет собой змеевик, поперек изгибов которого расположено множество пластин, обеспечивающих большую площадь теплообмена.

Соорудить у себя дома самодельный теплообменник для отопления, чтобы он был точно как заводской, практически нереально. Поэтому придется выбрать вариант попроще.

Устройство системы

Несложный по конструкции самодельный теплообменник послужит для отопления дома

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.
Схема кирпичной печи с теплообменником

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Для присоединения самодельного теплообменника для отопления используют 2 штуцера: один снизу (вход холодной воды), другой сверху (выход горячей). При монтаже теплообменника нужно обеспечить необходимый уклон труб, как требуется по схеме.

Преимущества отопления с теплообменником

Принцип подключения теплообменника к системе отопления

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. Комбинированное отопление. Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Как изготовить самодельный теплообменник

Регистр из нескольких труб

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант — регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Пример использования чугунных радиаторов в качестве теплообменника в кирпичной печи

Задача водяных теплообменников для отопления — обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Если предполагается топить печь углём, лучше установить теплообменник из чугуна. Этот металл более крепкий, и стенки устройства долго не будут прогорать.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Можно взять для примера какую-либо известную модель котла и в соответствии с его параметрами изготовить свой самодельный теплообменник.

Особенности конструкции

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Особенности монтажа

Теплообменник устанавливают внутрь печи в процессе ее кладки

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления. Обратим внимание и на другие сферы их применения.

Воздушное отопление

Если охарактеризовать воздушную систему отопления, можно сказать, что у нее больше минусов, чем плюсов. Воздушные теплообменники для отопления мало распространены в частном жилом секторе, они пока еще не стали привычными.

Преимуществом этой системы называют возможность совмещать обогрев с принудительной вентиляцией. Однако возможные ошибки при ее проектировании и монтаже могут свести преимущества к минимуму. В воздуховодах бывает слышен шум вентилятора, а в помещениях ощущается температурный дисбаланс.

Теплообменники для воздушного отопления существуют прямого нагрева, а также косвенного. В первых из них газовое или дизельное топливо сгорает непосредственно в самом теплообменнике. В других моделях используется промежуточный теплоноситель.

Теплообменник на дымоход

Смонтированный на дымоход теплообменник использует вылетающую в трубу тепловую энергию

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Отдавая свою температуру теплообменнику, выходящие из печи продукты сгорания быстро остывают. Из-за этого уменьшается тяга в дымоходе и несколько замедляется горение топлива.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

Пластинчатые и кожухотрубные теплообменники для отопления и ГВС

Теплообменник является одним из главных элементов отопительной системы. Он особенно необходим в частных домах с автономным отоплением. Эти агрегаты разделяют тепловую сеть и внутренний контур отопительной системы. С одной стороны к прибору подключают труба с горячим теплоносителем, поступающим от котла/центральной котельной. А с другой присоединяется контур внутренней системы. Подключение теплообменника может осуществляться как напрямую, так и параллельно.

1

В теплообменниках, предназначенных для отопления осуществляется обогрев внешней среды . Поэтому они являются неотъемлемой частью практически любой отопительной системы. Важная составляющая уюта в доме —  комфортная температура воздуха. Для её поддержания необходимо обеспечить дом качественным котлом и добротными теплообменниками.

Теплообменник для отопления — это агрегат, предназначенный для обмена теплом между двумя средами: тёплой и холодной. Такие приборы находят широкое применение в энергетике, ЖКХ, промышленности. На бытовом уровне они часто применяются в системах отопления, где служат для передачи тепла от основного источника энергии теплоносителю.

Виды теплообменников

По принципу работы:

  • Смесительные (две жидкости разной температуры смешиваются друг с другом).
  • Поверхностные (горячая и холодная среда напрямую не смешиваются, теплообмен происходит через стенку аппарата).

Поверхностные приборы делятся еще на два типа:

  • Рекуперативные. Теплоносители в них движутся по отдельным каналам, а теплообмен происходит через стенку. При этом в каждой точке этой стенки направление теплового потока всё время остается неизменным.
  • Регенеративные. Тепло передается от одной и той же поверхности, с которой попеременно контактируют два потока, меняющие свое направление.

Рекуперативный тип — самый часто встречающийся. Он включает следующие виды теплообменников:

  • Кожухотрубные теплообменники
  • Погружные теплообменные аппараты.
  • Спиральные агрегаты.
  • Пластинчатые ТО.

Первый Теплообменный предлагает своим клиентам теплообменники для систем отопления и ГВС по выгодной цене, с возможностью бесплатной доставки до объекта по России и СНГ.

Наши специалисты помогут подобрать необходимое теплообменное оборудование, отталкиваясь от требований клиента. На сайте [website_name] представлен широкий выбор теплообменников для различных сфер применения. Больше информации можно получить по телефону +7 495 775-66-93 .

Описание теплообменников

HVAC — Инженерное мышление

Описание теплообменников

HVAC. В этой статье мы собираемся обсудить различные типы теплообменников, используемых в системах отопления, вентиляции и кондиционирования, а также в системах обслуживания зданий как для жилой, так и для коммерческой недвижимости. Мы также рассмотрим, как они применяются к компонентам системы для кондиционирования построенной среды, охватывая принцип работы обычных теплообменников HVAC с анимацией.
Прокрутите вниз, чтобы просмотреть видеоинструкцию с подробными анимациями для каждого теплообменника!

🏆 Ознакомьтесь с широким спектром реальных теплообменников Danfoss нажмите здесь

Теплообменники Danfoss повышают эффективность, уменьшают заправку хладагента и экономят место в вашей системе отопления, вентиляции и кондиционирования воздуха.Вы можете найти весь ассортимент и узнать больше о каждом на веб-сайте Данфосс. Узнайте больше о теплообменниках Danfoss: ссылка здесь

Что такое теплообменник?

Теплообменник — это именно то, что следует из названия, устройство, используемое для передачи (обмена) тепла или тепловой энергии. В теплообменники подается горячая жидкость для нагрева или холодная жидкость для охлаждения.

  • Жидкость может быть жидкостью или газом
  • Тепло всегда течет от горячего к холодному
  • Для того, чтобы тепло текло, должна быть разница температур

Как происходит теплообмен?

Тепловая энергия передается тремя способами.

  • Проводимость
  • Конвекция
  • Излучение

В большинстве теплообменников для систем отопления, вентиляции и кондиционирования воздуха используются конвекция и теплопроводность. Радиационная теплопередача действительно происходит, но составляет лишь небольшой процент.

Кондуктивная теплопередача

Тепловое изображение теплопроводностью

Проводимость возникает, когда два материала с разной температурой физически соприкасаются. Например, мы ставим чашку горячего кофе на стол на несколько минут, а затем снимаем чашку, так как стол проводит часть этой тепловой энергии.

Конвекционная теплопередача

Конвекционная теплопередача

Конвекция возникает, когда жидкости движутся и уносят тепловую энергию. Это может произойти естественным путем или под действием механической силы, например, при использовании вентилятора. Например, вы подуете на горячую ложку супа. Вы дуйте ложкой, чтобы остудить суп, и воздух уносит это тепло.

Радиационная теплопередача

Радиационная теплопередача

Излучение возникает, когда поверхность излучает электромагнитные волны. Все, включая вас, излучает некоторое тепловое излучение.Чем горячее поверхность, тем больше теплового излучения она излучает. Примером этого может быть солнце. Солнечное тепло распространяется в пространстве в виде электромагнитных волн и достигает нас, не имея ничего промежуточного.

Используемые жидкости

Жидкости, используемые в системе HVAC, обычно включают воду, пар, воздух, хладагент или масло в качестве среды передачи. Теплообменники HVAC обычно выполняют одно из двух: они либо нагревают, либо охлаждают воздух или воду. Некоторые из них используются для охлаждения или нагрева оборудования по соображениям производительности, но большинство используются для кондиционирования воздуха или воды.

Виды теплообменников.

Большинство теплообменников имеют одну из двух конструкций. Либо катушечный, либо пластинчатый. Давайте взглянем на основы того, как работают оба эти средства, а затем посмотрим, как они применяются к обычным теплообменникам в системах.

Змеевиковый теплообменник — упрощенный

Базовый змеевиковый теплообменник Змеевиковые теплообменники

в своей простейшей форме используют одну или несколько труб, которые проходят несколько раз вперед и назад. Трубка разделяет две жидкости. Одна жидкость течет внутри трубки, а другая — снаружи.Давайте посмотрим на пример отопления. Тепло передается от горячей внутренней жидкости к стенке трубы посредством конвекции, затем оно проходит через стенку трубы на другую сторону, а внешняя жидкость уносит его также посредством конвекции.

Пластинчатые теплообменники — упрощенные

Базовый пластинчатый теплообменник В пластинчатых теплообменниках

используются тонкие металлические пластины для разделения двух жидкостей. Жидкости обычно текут в противоположных направлениях для улучшения теплопередачи. Тепло самой горячей жидкости передается на стенку пластины и затем передается на другую сторону.Другая жидкость, которая поступает с более низкой температурой, уносит ее за счет конвекции.

Давайте более подробно рассмотрим, как эти типы теплообменников применяются в системах отопления, вентиляции и кондиционирования воздуха.

Змеевик из оребренных труб (жидкость)

Теплообменник с ребристыми трубками

Ребристые трубы часто называют просто змеевиком, например, нагревательным или охлаждающим змеевиком. Это очень часто. Вы найдете их в установках кондиционирования воздуха, фанкойлах, системах воздуховодов, испарителях и конденсаторах систем кондиционирования воздуха, в задней части холодильников, в внутрипольных обогревателях, список можно продолжить.

В этих теплообменниках вода, хладагент или пар обычно проходят внутри, а воздух — снаружи.

Например, при использовании нагретой воды для нагрева воздуха горячая вода течет внутри трубы и передает свою тепловую энергию посредством конвекции на стенку трубы, существует разница температур между горячей водой и воздухом, поэтому тепло передается. через стенку трубы. Воздух, проходящий снаружи, уносит это за счет конвекции.

Ребра обычно соединяются между всеми трубами, они находятся прямо на пути потока воздуха и помогают отводить тепло из трубы и переносить его в воздух, поскольку это действует как расширение поверхности трубы.Большая площадь поверхности = больше места для передачи тепла.

Канальный пластинчатый теплообменник

Канальный пластинчатый теплообменник

Канальные пластинчатые теплообменники используются в приточно-вытяжных установках для обмена тепловой энергией между потоками всасываемого и вытяжного воздуха без передачи влаги и смешивания потоков воздуха. Теплообменник изготовлен из тонких листов металла, обычно алюминия, с двумя жидкостями разной температуры, текущими в противоположных диагональных направлениях. Обычно в обоих используется воздух, но также могут использоваться выхлопные газы от чего-то вроде двигателя ТЭЦ.

Тепло от одного потока передается на тонкие листы металла, которые разделяют потоки, затем проходит через металл и уносится принудительной конвекцией в другой поток.

Внутрипольный конвектор

Внутрипольный обогреватель

Внутрипольные обогреватели устанавливаются по периметру здания, обычно под окном или стеклянной стеной, и очень распространены в новых коммерческих зданиях. Канальные обогреватели устанавливаются в пол и предназначены для уменьшения потерь тепла через стекло, а также предотвращения образования конденсата.

Они делают это, создавая стену конвективных воздушных потоков. В канальных обогревателях обычно используется горячая вода или электрические нагревательные элементы для нагрева воздуха. Их расположение на уровне пола означает, что у них есть доступ к самому холодному воздуху в комнате. Теплообменник передает тепло через ребристую трубу, в результате чего холодный воздух нагревается и поднимается к потолку. По мере того, как теплый воздух поднимается вверх, на его место устремляется более холодный воздух в комнате. Это создает конвективный поток и тепловую границу между стеклом и комнатой.

Канальный электронагреватель — открытый змеевик

Канальный электронагреватель

Нагревательные элементы с открытым змеевиком используются в основном в воздуховодах, печах и иногда в фанкойлах. Они работают с использованием открытых катушек под напряжением из металла с высоким сопротивлением для генерации тепла. Эти теплообменники помещаются непосредственно в поток воздуха, и когда воздух проходит через змеевики, тепловая энергия передается посредством конвекции. Они обеспечивают равномерное нагревание воздушного потока, хотя используются только там, где это безопасно, и к ним нелегко получить доступ.

Теплообменники MicroChannel

Микроканальный теплообменник

Микроканальные теплообменники — это усовершенствование змеевика из оребренных труб, обеспечивающее превосходный теплообмен, хотя они используются только в системах охлаждения и кондиционирования воздуха. Вы можете найти этот тип теплообменников в чиллерах с воздушным охлаждением, конденсаторных агрегатах, бытовых кондиционерах, осушителях воздуха, холодильных шкафах, крышных агрегатах и ​​т. Д.

Теплообменники этого типа также работают с конвекцией в качестве основного метода передачи тепла.Микроканальный теплообменник имеет простую конструкцию. С каждой стороны расположен коллектор, между каждым коллектором проходят несколько плоских труб с ребрами между ними. Воздух проходит через щели в ребрах и уносит тепловую энергию.

Хладагент входит через коллектор, а затем проходит по плоским трубкам, пока не достигнет другого коллектора. Коллекторы содержат перегородки, которые контролируют направление потока хладагента и используются для многократного прохождения хладагента по трубкам, чтобы увеличить время, проведенное внутри, и, таким образом, увеличить возможность передачи тепловой энергии.

Внутри каждой плоской трубки есть несколько небольших отверстий, известных как микроканалы, которые проходят по всей длине каждой плоской трубки. Эти микроканалы значительно увеличивают площадь поверхности теплообменника, что позволяет большему количеству тепловой энергии уходить из хладагента в металлический корпус теплообменника. Разница температур между хладагентом и воздухом заставляет тепло проходить через кожух плоской трубы к ребрам. Когда воздух проходит через зазоры, он уносит эту тепловую энергию за счет конвекции.

Змеевик испарителя печи

Змеевик испарителя печи

Печные испарители обычно используются в больших домах и небольших коммерческих помещениях с небольшими системами воздуховодов. Вы можете приобрести змеевики большего размера, которые работают по аналогичным принципам, но для более крупных систем, в основном, для кондиционеров в средних и крупных коммерческих зданиях. Змеевик внутри испарителя печи работает так же, как теплообменник из оребренных труб, и использует хладагент внутри и воздуховод снаружи. Воздух, проходящий через трубы, передает свое тепло посредством принудительной конвекции, затем оно передается через стенку трубы посредством теплопроводности, хладагент внутри уносит это тепло посредством принудительной конвекции, хладагент кипит и испаряется в компрессор.

Радиаторы

Радиаторы

Они очень распространены, особенно в Европе и Северной Америке, в домах и старых коммерческих зданиях. Они крепятся к стенам, как правило, под окном, для обогрева помещения. Их функция очень проста, они обычно подключаются к трубопроводу горячей воды, по которому подается горячая вода от бойлера.

Вода поступает по трубе небольшого диаметра и попадает внутрь радиатора. Внутренняя поверхность радиатора больше, чем труба, что снижает скорость воды, чтобы дать больше времени для передачи тепла.

Тепло воды передается металлическим стенкам радиатора посредством теплопроводности. С внешней стороны радиатора находится воздух помещения. Когда этот воздух соприкасается с горячей поверхностью радиатора, тепло переходит в воздух, и это заставляет воздух расширяться и подниматься. Затем более холодный воздух поступает, чтобы заменить этот воздух, вызывая непрерывный цикл движущегося воздуха, который нагревает комнату, поэтому этот движущийся воздух является конвекционным теплопереносом. Радиатор обычно имеет несколько ребер, соединенных сзади или между панелями, особенно на новых, они предназначены только для увеличения площади поверхности радиатора, чтобы предоставить больше возможностей для передачи тепла в воздух.Радиаторы названы неправильно, так как они передаются в основном за счет конвекции.

Иногда вы встретите специально разработанные радиаторы, подключенные к паровым системам, но это становится все реже, раньше тоже использовалось масло, но сейчас это довольно редко.

Водяной нагревательный элемент

Водяной нагревательный элемент

Водяной нагревательный элемент обычно используется в калориферах и водонагревателях, а также иногда используется в бассейнах открытых градирен для предотвращения замерзания воды зимой.Они используют металлическую катушку вдоль трубки, которая имеет высокое значение сопротивления. Это сопротивление генерирует тепло. Катушка изолирована, чтобы сдерживать ток, но пропускать тепловую энергию. Нагревательный элемент погружен в резервуар с водой, и тепло отводится от элемента в воду. Вода, которая контактирует с нагревательным элементом, поэтому нагревается, и это заставляет ее подниматься в резервуаре, затем течет более холодная вода, чтобы заменить эту нагретую воду, где этот цикл будет продолжаться.

Поворотное колесо

Роторный теплообменник

Теплообменники этого типа обычно находятся в блоке обработки воздуха между потоками приточного и вытяжного воздуха. Они работают с помощью небольшого электрического двигателя, подключенного к шкивному ремню, чтобы медленно вращать диск теплообменника, который находится непосредственно в воздушном потоке между выпускным и свежим воздухом. Воздух проходит прямо через диск, но при этом контактирует с материалом колеса.Материал диска теплообменника поглощает тепловую энергию от одного потока воздуха и, когда он вращается, входит во второй поток воздуха, где он выделяет эту поглощенную тепловую энергию. Этот тип теплообменника приведет к небольшому смешиванию жидкости между потоком всасываемого и отработанного воздуха из-за небольших зазоров в местах вращения колеса, поэтому его нельзя использовать там, где используются сильные запахи или токсичные пары.

Эти теплообменники могут использоваться в зимние месяцы для рекуперации тепла из выхлопного потока здания. Это тепло улавливается тепловым колесом и передается в поток забираемого свежего воздуха, который будет намного холоднее, чем воздух внутри здания.
Эти теплообменники также можно использовать в летние месяцы для рекуперации холодного воздуха из выхлопных газов зданий и использования его для охлаждения забираемого свежего воздуха.

Водогрейный котел

Как работает котел

Такие большие котлы можно встретить в основном в средних и крупных коммерческих зданиях в более прохладном климате. Дома и небольшие здания будут использовать гораздо меньшие версии, обычно настенные. У обоих есть много вариаций, но этот тип очень распространен.

Топливо сгорает в камере сгорания (обычно газ или масло), а горячие выхлопные газы проходят через ряд труб, пока не достигнут дымохода и не выбрасываются в атмосферу.Трубки и камера сгорания окружены водой. Тепло передается к стенкам трубы и затем проходит в воду, которая затем уносится конвекцией. В зависимости от конструкции системы вода выходит в виде нагретой воды или пара. Эта вода нагнетается насосом, скорость насоса, а также количество сжигаемого топлива можно изменять, чтобы изменять температуру и скорость потока.

Тепловая трубка

Тепловая труба

Вы найдете их в солнечных водонагревателях и некоторых теплообменниках AHU с рекуперацией тепла.Если мы посмотрим на применение солнечного тепла, у нас есть трубка, сделанная из специального стекла, из которого откачивается весь воздух для создания вакуума, а затем герметизируется. Внутренний слой трубки имеет специальное покрытие. Покрытие и вакуум работают вместе, чтобы тепло не могло уйти, когда оно попадает в трубку, а затем помогает переместить его к тепловой трубке в центре.

Тепловая трубка имеет ребра с каждой стороны, соединенные с покрытием трубки для улавливания тепловой энергии.

Тепловая трубка представляет собой герметичную длинную полую медную трубку, которая проходит по всей длине стеклянной трубки и имеет выступающую втулку наверху.Колба соединяется с коллектором, и холодная вода проходит через коллектор и проходит через головку колбы.

Внутри тепловой трубки находится водная смесь, находящаяся под очень низким давлением. Это низкое давление позволяет воде испаряться в пар с небольшим добавлением тепла. Затем пар поднимается в колбу, где отдает тепло воде, протекающей через коллектор. Когда пар отдает свое тепло, он конденсируется и снова падает, чтобы повторить цикл. Трубка поглощает тепловое излучение, которое затем направляется в трубку.Вода внутри конвектирует его до колбы, тепло проходит через стенку трубы и уносится конвекцией в поток воды.

Балка охлаждающая

Теплообменники ОВКВ с охлаждающими балками

Используются два типа охлаждающих балок: пассивные и активные. Оба используются в основном в коммерческих зданиях.

Активная охлаждающая балка работает за счет пропускания холодной жидкости, обычно воды, через оребренный теплообменник. Затем воздух направляется в охлаждающую балку и выходит через специально расположенные сопла.Этот воздух движется по ребристой трубе и вдувает холодный воздух в комнату. Поэтому используется принудительная конвекция.

В пассивных охлаждающих балках также будет использоваться теплообменник из оребренных труб, но к ним не будет подключен воздуховод. Вместо этого они создают поток естественной конвекции, охлаждая теплый воздух на уровне потолка. Затем этот охлажденный воздух опускается и заменяется более теплым воздухом, где цикл повторяется.

Печной обогреватель

Печные обогреватели распространены в домах с системой кондиционирования воздуха.Они очень распространены в Северной Америке. В печных обогревателях используется теплообменник, помещенный непосредственно в проходящий воздух пар. Топливо сгорает, и горячий газ направляется через теплообменник, тепло от него передается в стенки теплообменника, более холодный воздуховод проходит через другую сторону, вызывая разницу температур, поэтому тепло газа проходит через стена и будет унесена конвекцией.

Пластинчатый теплообменник

Существует два основных типа пластинчатых теплообменников: с прокладкой и с паяной пластиной.Оба они очень эффективны при передаче тепловой энергии, а для еще большей эффективности и компактной конструкции вы можете использовать микропластинчатые теплообменники для многих приложений. Ранее мы подробно рассмотрели все эти теплообменники.

Основное, что нужно знать об этих двух типах теплообменников, это то, что тип прокладки может быть демонтирован, его нагревательная или охлаждающая способность может быть увеличена или уменьшена простым добавлением или удалением пластин теплопередачи. Вы обнаружите, что они используются, в частности, в высотных коммерческих зданиях для косвенного подключения чиллеров, котлов и градирен к контурам отопления и охлаждения, а также для подключения зданий к сетям централизованного энергоснабжения.

Паяный пластинчатый теплообменник

Паяные пластинчатые теплообменники — это герметичные агрегаты, которые нельзя демонтировать, их мощность нагрева или охлаждения является фиксированной. Они используются для таких приложений, как тепловые насосы, комбинированные котлы, блоки интерфейса тепла, косвенное подключение калориферов и т. Д.

Оба работают, пропуская жидкости, обычно в противоположных направлениях, в соседних каналах. Жидкости обычно представляют собой воду или хладагент. Тепловая энергия передается на пластину, затем проходит через пластину, а жидкость на другой стороне уносит ее за счет конвекции.

Тепловые насосы

Тепловые насосы используются в основном в домах, но иногда и в коммерческой недвижимости. Существует два основных типа тепловых насосов с воздушным источником и наземным источником. Источник воздуха обычно используется для обогрева воздуха в помещении, тогда как наземный источник чаще используется для нагрева воды.

Источник воздуха работает как система переменного тока, но наоборот, вместо того, чтобы отводить тепло из комнаты, он добавляет его. Хладагент проходит от компрессора к внутреннему блоку, который содержит теплообменник из оребренных труб.Хладагент посредством конвекции передает тепло стенкам трубы, а затем отводится на другую сторону. С другой стороны — холодный воздух помещения, который с помощью небольшого вентилятора нагнетается через теплообменник, а затем уносит тепло за счет конвекции. Затем хладагент течет к расширительному клапану, а затем к наружному блоку, который также является теплообменником из оребренных труб или микроканальным теплообменником.

Когда воздух проходит через этот теплообменник, окружающий воздух вызывает кипение хладагента и забирает тепло.Затем это тепло проходит через компрессор во внутренний блок, чтобы повторить цикл.

Наземный источник работает немного иначе. Смесь воды и незамерзающей жидкости прокачивается по трубам в земле для сбора тепла. Затем он передается в небольшой цикл охлаждения через паяный пластинчатый теплообменник. Хладагент переносит его во второй паяный пластинчатый теплообменник, который подключен к другому водяному контуру, на этот раз передавая тепло в резервуар с горячей водой, обычно через спиральную трубу без ребер.

Кожух и трубка

Кожухотрубный теплообменник

Кожухотрубные теплообменники обычно используются в чиллерах на испарителе и / или конденсаторе, иногда также в качестве охладителя смазочного масла.
Возможно, это упрощенная конструкция теплообменника. У них есть внешний контейнер, известный как оболочка. Внутри оболочки находится ряд труб, известных как трубки. Трубки содержат одну жидкость, а оболочка — другую жидкость. Две жидкости всегда разделены стенками трубки, они никогда не встречаются и не смешиваются.Жидкости будут иметь разные температуры, что приведет к передаче тепловой энергии между жидкостями, и эта тепловая энергия будет проходить через стенки трубы. При использовании в испарителе или конденсаторе двумя жидкостями будут вода и хладагент. В зависимости от конструкции вода может находиться в кожухе или трубке, а хладагент — в другом.

Чиллер

Теплообменники чиллера

В чиллере используется кожухотрубный теплообменник, пластинчатый теплообменник или теплообменник с оребрением.Многие чиллеры фактически используют комбинацию всего вышеперечисленного. Например, чиллер с воздушным охлаждением может использовать кожухотрубный теплообменник для испарителя, ребристый трубчатый или микроканальный теплообменник для конденсатора, паяный пластинчатый теплообменник для охлаждения масляной смазки компрессора и пластинчатый теплообменник с прокладкой для косвенного соединения. чиллер к центральному контуру охлаждения.

Что такое теплообменник в вашей системе HVAC

Для многих домов система HVAC жизненно важна для комфорта.Он сохраняет тепло зимой и прохладу летом, но вы можете не знать, что оборудование HVAC на самом деле не производит холодный воздух. Вместо этого он использует передачу тепла или тепловой энергии для перемещения горячего воздуха из одного места в другое. Тепло течет из областей с более высокой температурой в области с более низкой температурой. Это второй закон термодинамики, и ваша система отопления, вентиляции и кондиционирования воздуха обязана обратить этот естественный поток вспять. Теплообменник в вашей системе HVAC является жизненно важным компонентом в процессе удаления горячего воздуха из вашего дома и доставки внутрь зданий в холодную погоду.Итак, здесь мы узнаем немного больше о теплообменниках и о том, почему они так важны для вашей системы отопления, вентиляции и кондиционирования воздуха.

Основные сведения о теплообменнике

Проще говоря, теплообменник в вашей системе HVAC — это устройство для передачи тепловой энергии от одной среды к другой. Теплообменник можно использовать не только для обогрева или охлаждения дома или здания, но он также может помочь двигателям и машинам работать более эффективно. Как работает теплообменник, будет зависеть от конкретного оборудования.Существует ряд вариантов теплообменных устройств в климатическом оборудовании, от тепловых насосов до печей и кондиционеров. Здесь мы рассмотрим два наиболее распространенных варианта, чтобы вы могли понять, как теплообменники работают в различных сценариях и типах оборудования.

Как теплообменники используются кондиционерами

Кондиционер — одна из наиболее распространенных частей оборудования HVAC, в которой используется теплообменник. Он отводит тепло из дома или здания и передает его наружу.Для завершения этого процесса кондиционер использует хладагент. Это химическое вещество хранится в закрытой системе внутри вашей системы кондиционирования воздуха, чтобы обеспечить эффективный процесс теплопередачи.

Хладагент поглощает, переносит и выделяет тепло при переходе из газообразного состояния в жидкое и обратно в течение всего процесса охлаждения. Хладагент проходит через различные компоненты, неся тепло по пути.

Весь процесс охлаждения начинается с хладагента в змеевиках испарителя в виде жидкости под низким давлением.Вентилятор используется для продувки теплым воздухом через змеевики, вытянутые из помещения или помещения. По мере того как тепло поглощается из воздуха, хладагент превращается в газовый пар для охлаждения помещения.

Теперь газовый хладагент низкого давления поступает в компрессор внутри наружного блока, где он превращается в горячий газ высокого давления. Теперь хладагент перемещается к наружному конденсатору, и когда воздух проходит над конденсатором, тепло от хладагента уносится. В результате хладагент превращается в холодную жидкость под высоким давлением.

Теперь хладагент дополнительно охлаждается в расширительном клапане, прежде чем он будет перемещен в испаритель, чтобы снова начать процесс.

Хотя вся система кондиционирования воздуха может рассматриваться как теплообменник, частью, отвечающей за передачу тепла изнутри наружу, является конденсатор, а хладагент — это среда, используемая для этого процесса.

Как теплообменник используется в газовой печи

Другой распространенной частью оборудования HVAC, в котором используется теплообменник, является газовая печь.Газовые печи десятилетиями были популярны для отопления домов. Газовые печи обеспечивают постоянный, надежный и эффективный обогрев даже в самые холодные зимы, используя теплообменники для перемещения теплого воздуха по желаемой области. Обычно в газовых печах используется теплообменник для повышения температуры воздуха перед его подачей по всему зданию с использованием регистров и каналов. В газовых печах теплообменник представляет собой герметичный сосуд. У него есть отверстие внизу и вверху, называемое дымоходом.

Процесс теплообмена в газовой печи начинается, когда горелки вырабатывают газы сгорания, чтобы доставить их к первому отверстию теплообменника. Когда это происходит, вентилятор перемещает воздух в помещении за пределы теплообменника. Теплообменник нагревает воздух с помощью дымовых газов. Этот нагретый воздух затем распределяется по воздуховодам для повышения температуры в разных помещениях здания. Выхлопные газы, образующиеся в процессе сгорания, выводятся за пределы здания через дымоход.

Теплообменник в газовых печах выполняет две роли. Это необходимо для обмена теплом с воздухом в процессе сгорания, а также для отделения токсичных газов от процесса сгорания от нагретого воздуха.

Обслуживание теплообменников HVAC

Теплообменники выполняют тяжелую работу по обогреву или охлаждению здания, чтобы нам было комфортно летом или зимой. Эти компоненты предназначены для использования меньшего количества энергии в процессе нагрева и охлаждения для более энергоэффективной системы.

Являясь таким жизненно важным компонентом вашей системы HVAC, важно обеспечить, чтобы ваши теплообменники продолжали работать эффективно. Без теплообменника в печи или кондиционере система не сможет работать. Например, если в вашем кондиционере протекает хладагент и конденсатор наматывает лед, вся система перестанет подавать охлажденный воздух в ваш дом. К счастью, регулярное обслуживание и ремонт могут помочь предотвратить проблемы с вашими теплообменниками.Опытный специалист по HVAC может оценить вашу систему и выполнить любое необходимое профилактическое обслуживание. Это включает в себя проверку компонентов, показывающих признаки износа, и их замену до того, как они начнут деградировать и выйти из строя. Это не только снизит ваши затраты на ремонт, но и снизит риск поломки, ставящей под угрозу ваш комфорт, когда вам больше всего нужна система HVAC. Регулярное обслуживание также повысит эффективность, так что вы сможете наслаждаться оптимальным уровнем комфорта без значительного увеличения ваших счетов за электроэнергию.

Если у вас есть проблемы с теплообменниками или любыми другими компонентами HVAC, обязательно обратитесь к опытному специалисту по ремонту HVAC. Профессиональный техник может оценить вашу систему и проверить наличие любых основных проблем, которые могут снизить производительность или эффективность.

Система теплообменника | | Теплый пол своими руками

Введение

В этой системе используется эффективный теплообменник для отделения питьевой воды от замораживания пола.Используется только один источник тепла, и можно полностью использовать преимущества защиты от замерзания.

Один из многих творческих способов использования теплообменника.
Очень красивый пример 4-х зонной системы теплообменника, установленной владельцем дома.
Еще один пример теплообменной системы, установленной заказчиком.

Схема теплообмена со стандартным водонагревателем

Однако всегда спрашивайте себя: «Действительно ли мне нужен теплообменник?»

Чаще всего для защиты от замерзания используются теплообменники, но другим применением может быть излучающая система с одним источником тепла, который по той или иной причине должен быть отделен от бытового водоснабжения.Это редко. Даже потребность в защите от замерзания часто переоценивается, потому что излучающая система хранит так много тепла в массе дома.

Пример дизайна Radiant и плинтуса / фанкойла.

Система теплообменника с использованием антифриза может защитить систему лучистого отопления до минус 60 градусов. Но компромисс — эффективность. Передача тепла от одной среды к другой (в данном случае от питьевой воды к антифризу через теплообменник) стоит британских тепловых единиц. Сам теплообменник нагревается и излучается в окружающий воздух, хотя иногда это тепло помогает согреть жилое пространство … даже если это всего лишь подсобное помещение.Довольно часто теплообменник изолирован, чтобы минимизировать этот эффект. Тем не менее, любое тепло, излучаемое теплообменником, представляет собой тепловую энергию, которая могла бы уйти на ваши полы.

Кроме того, антифриз как теплоноситель уступает простой воде. В целом система теплообменника на 10-20% менее эффективна, чем открытая система .

Конечно, вода имеет неприятную привычку замерзать при температуре ниже 32 градусов, и в некоторых ситуациях эта реальность намного перевешивает недостатки использования теплообменника.Обогрев второго дома в удаленном месте, подверженном перебоям в подаче электроэнергии, было бы идеальным профилем для системы теплообменника. В этом случае вы можете слить воду из бытовой системы водоснабжения, если уезжаете зимой на несколько недель, а антифриз защищает систему отопления.

Другим примером может быть отопление удаленного здания. Если вы отправляете воду по заглубленной изолированной трубе над линией замерзания, незаменим антифриз.

В солнечных коллекторах почти всегда используется антифриз, поэтому здесь также необходим теплообменник.

Важно понимать, что в большинстве случаев теплообменники не являются необходимыми в излучающих системах.

КАЖДЫЙ нагревательный элемент, который рекомендует и предлагает компания Radiant Floor, «РАЗРАБОТАН И НАЗНАЧЕН ДЛЯ ОТОПЛЕНИЯ ПОМЕЩЕНИЙ»! Эти устройства не являются вашими «типичными» водонагревателями, так что пусть вас не вводит в заблуждение компактный размер! Все наши нагревательные элементы производятся в соответствии с отраслевыми стандартами качества и надежности.

Эти высокоэффективные обогреватели созданы для лучистого отопления.Мы предлагаем устройства, которые будут нагревать как вашу лучистую (отопление), так и горячую воду.

Независимо от того, какую систему лучистого отопления вы выберете, будь то открытая, закрытая или теплообменник, или тип необходимого вам источника топлива, пропан, природный газ, электрическая или масляная … Компания Radiant Floor позаботится о вас !!!

Система теплообменника с водонагревателем емкостного типа

Комплект теплообменника с водонагревателем Polaris

Высокоэффективный водонагреватель / обогреватель Polaris стандартно поставляется с двумя парами входных и выходных отверстий для горячей и холодной воды.Это делает его идеальным для использования с теплообменником.

Использование водонагревателя по запросу с системой теплообменника

Многозонная система теплообмена с использованием водонагревателя по запросу
Однозонная система теплообмена с водонагревателем по запросу
Многозонная система теплообменника, работающая на жидком топливе, обогревает радиант с комбинированной системой плинтуса, а также горячее водоснабжение, разделенное посредством теплообменника.

С этим предварительно смонтированным сантехническим комплектом теплообменника (фото вверху, схематическое изображение внизу) водонагреватель по запросу может обеспечивать как обогрев помещения (с использованием незамерзания), так и горячую воду (питьевую).

Система теплообменников с несколькими зонами

Разрежьте плоский пластинчатый теплообменник пополам, и вы увидите стопки пластин из нержавеющей стали. Две разные жидкости (обычно вода с одной стороны, антифриз с другой) текут между чередующимися пластинами.Сами жидкости никогда не смешиваются, но тепло легко передается от более горячей жидкости к более холодной.

Теплообменник в разрезе
Сантехника теплообменника

Монтаж и подключение теплообменника

Теплообменник установленный и подключенный

Важно установить теплообменник «противотоком», а не «параллельно». Противоток означает, что самая горячая жидкость, поступающая на сторону A теплообменника, течет в направлении , самая холодная жидкость, поступающая со стороны B на противоположном конце теплообменника (см. Иллюстрацию выше).Это максимизирует теплопередачу, заставляя самую холодную жидкость непрерывно течь к самой горячей части теплообменника.

Параллельный водопровод приведет к тому, что Сторона A «горячая» и Сторона B «холодная» попадут в один и тот же конец теплообменника, и обе стороны будут течь параллельно по длине теплообменника. Конечно, такая неэффективная водопроводная система все равно будет передавать некоторое количество тепла от более горячей жидкости к более холодной, но при этом теряется целых 40% мощности теплообменника.

Внутренние и внешние теплообменники

Иногда теплообменник вообще не является пластинчатым, а располагается ВНУТРИ резервуара для хранения.Неудивительно, что их называют «внутренними теплообменниками». Преимущества внутреннего стиля — простота и эффективность. Просто потому, что для перемещения тепла необходим только один насос, и эффективен, потому что, хотя внешний теплообменник ОЧЕНЬ быстро передает тепло от одной среды к другой, он также излучает тепло в окружающий воздух.

Внутренние теплообменники не так быстро передают тепло, но теплу некуда идти, кроме окружающей воды (которая, можно утверждать, также передает тепло в окружающую комнату — да ладно, ничто не является эффективным на 100%).

Итак, все сводится к применению, то есть к тому, какой тип теплообменника лучше всего подходит для данной системы отопления. В некоторых системах используются оба типа, как показано ниже.

Это схема водопровода, которую мы составили для клиента, который хотел, чтобы дровяной котел обогревал резервуар с водой, который, в свою очередь, обеспечивал как домашнее горячее водоснабжение, так и лучистое тепло пола. Да, и в лучистом полу должен быть антифриз, то есть он должен быть «закрыт».

Как видите, это очень сложная система отопления.Большинство излучающих систем намного проще. Но, как пример того, как видение может стать реальностью, смотрите фото готовой инсталляции ниже.

Накопительный бак с внутренним теплообменником находится за рамкой этой фотографии, но это часть этого выдающегося примера мастерства, сделанного своими руками. Наш клиент, Робин Эллинс, доказывает, что гордость за владение и внимание к деталям, наряду с предварительно собранными сантехническими пакетами компании Radiant Floor, может привести к созданию системы отопления, которая может конкурировать даже с самой сложной профессиональной установкой.

Подключение EPK к зонному коллектору

На следующем рисунке показаны медные фитинги, необходимые для подсоединения комплектов расширения и продувки различных размеров к коллектору зоны . Эти фитинги и печатная копия этого чертежа включены в каждую систему Closed и Heat Exchanger .

Комплекты расширения и продувки

ЗАПОЛНЕНИЕ И ПРОДУВКА БЫТОВОГО (водонагревателя) СТОРОНА ВАШЕЙ СИСТЕМЫ ТЕПЛООБМЕННИКА:
При недавно установленной системе лучистого отопления первый запуск является наиболее важным, а удаление воздуха из вашей системы является обязательным.Воздух в вашей системе — НАИБОЛЬШЕЕ, что может случиться с любой (гидронной) системой лучистого отопления. Перейдите по этой ссылке https://www.radiantcompany.com/system/opensystem/#Filling_the_Open_System Для получения сведений о хранении и очистке открытой системы, а также сведений об очистке / удалении фильтра водонагревателя по запросу. Выключите или отключите электропитание водонагревателя, чтобы не тратить горячую воду во время этого процесса .

Помните, что простое открытие приспособления для горячего водоснабжения в любом месте дома приведет к вытеснению воды через зону.Однако открытие сливного клапана котла вправо / над смесительным клапаном / термометром является наиболее удобным и обеспечивает лучший поток.

Для наших систем лучистого отопления не требуется много технического обслуживания, кроме очистки фильтра в водонагревателе и поддержания давления в системе. Перейдите по этой ссылке https://www.radiantcompany.com/details/fill/ и прокрутите вниз половину страницы, чтобы получить информацию о чистке фильтра и сетчатого фильтра для вашей закрытой системы лучистого отопления.

ЗАКРЫТАЯ (отопление / зона) СТОРОНА СИСТЕМЫ:
Заполнение и продувка системы лучистого отопления — критический процесс! Когда воздух покидает систему, давление падает.Когда ваша система лучистого отопления нагревается, давление возрастает, но когда она остывает, давление падает … Мы рекомендуем поддерживать давление не менее 15 фунтов на квадратный дюйм, когда система холодная. Когда давление в нагретой системе приближается к 0,… а затем охлаждается,… создается ОТРИЦАТЕЛЬНОЕ давление… Таким образом, создавая ВАКУУМ, он засасывает воздух в систему!

Ваш расширительный бак предварительно заправлен и не требует давления. Если ваше давление падает ниже 15 фунтов на квадратный дюйм, это означает, что в вашей системе все еще остается воздух,…Воздух — это ХУДШЕЕ, что может случиться с любой (гидронной) системой лучистого отопления. Перейдите по этой ссылке https://www.radiantcompany.com/details/fill/ для получения информации о заполнении и продувке вашей закрытой водяной системы отопления.

Если у вас три зоны, например, закройте шаровые краны под насосами для зон 2 и 3 и направьте поток воды на зону №1.

Если зона № 1 имеет несколько контуров трубопровода, каждый контур будет иметь шаровой клапан на стороне подачи петлевого коллектора, закрыть все контура зоны № 1, кроме первого, и направить воду в этот первый контур. .Когда контур №1 зоны №1 был очищен, закройте контур №1 и разомкните контур №2. Повторите этот процесс для каждого контура в каждой зоне .

Если вы не используете давление в помещении (из шланга и т. Д.), Вы можете использовать перекачивающий насос для перекачки жидкости в вашу систему.

Мы рекомендуем антифриз на основе пропиленгликоля (не автомобильный, этиленгликоль).

Определите, сколько антифриза требуется вашей системе, добавив общее количество жидкости в трубку (2.7 галлонов на 100 футов 7/8 ″ Pex… 1,9 галлона на 100 футов 3/4 ″ Pex… 1,3 галлона на 100 футов 1/2 ″ Pex) плюс объем воды в источнике тепла (водонагреватель или бойлер) .

Определите, какое процентное соотношение незамерзающей смеси к воде рекомендуется производителем источника тепла. Соотношения могут быть разными. Некоторые производители рекомендуют от 20% до 30% антифриза, другие — 50%. На правильное смешивание также влияет степень низкой температуры, от которой вы хотите защититься. Некоторые антифризы поставляются «предварительно разведенными». Обязательно проверьте перед покупкой.

«ВСЕГДА ПРЕДВАРИТЕЛЬНО РАЗМЕШАЙТЕ АНТИФРИЗ ПЕРЕД ЗАКАЧИВАНИЕМ ЕГО В СИСТЕМУ»!

Перекачивающий насос — Отстойник НЕ должен использоваться при обратной промывке агрегата, а также при заполнении и продувке замкнутой системы, использующей смесь антифриза. Мы рекомендуем мощный универсальный насос, такой как Wayne EC-50, или Wayne PC-4, или эквивалентный насос, такой как Utilitech .5 HP Cast Iron Transfer Pump , каждый из которых может генерировать до 45- psi.По следующей ссылке https://www.waynepumps.com/solution-center/utility-pumps-transfer/pc4 приведены технические характеристики насоса (модель № PC4).

Общие сведения о теплообменниках — типы, конструкции, применение и руководство по выбору

Крупным планом часть теплообменника вода-воздух.

Изображение предоставлено: Alaettin YILDIRIM / Shutterstock.com

Теплообменники — это устройства, предназначенные для передачи тепла между двумя или более жидкостями, то есть жидкостями, парами или газами, с разными температурами.В зависимости от типа используемого теплообменника процесс теплопередачи может быть газ-газ, жидкость-газ или жидкость-жидкость и происходить через твердый сепаратор, который предотвращает смешивание текучих сред, или прямой поток жидкости. контакт. Другие конструктивные характеристики, включая конструкционные материалы и компоненты, механизмы теплопередачи и конфигурации потока, также помогают классифицировать и классифицировать типы доступных теплообменников. Эти теплообменные устройства находят применение в самых разных отраслях промышленности, они разработаны и изготовлены для использования как в процессах нагрева, так и охлаждения.

Эта статья посвящена теплообменникам, исследует их различные конструкции и типы и объясняет их соответствующие функции и механизмы. Кроме того, в этой статье приводятся рекомендации по выбору и общие области применения для каждого типа теплообменного устройства.

Термодинамика теплообменника

Конструкция теплообменника — это упражнение в термодинамике, науке, изучающей поток тепловой энергии, температуру и взаимосвязь с другими формами энергии.Чтобы понять термодинамику теплообменника, хорошей отправной точкой является изучение трех способов передачи тепла — теплопроводности, конвекции и излучения. В следующих разделах представлен обзор каждого из этих режимов теплопередачи.

Проводимость

Проводимость — это передача тепловой энергии между материалами, находящимися в контакте друг с другом. Температура — это мера средней кинетической энергии молекул в материале — более теплые объекты (которые имеют более высокую температуру) демонстрируют большее молекулярное движение.Когда более теплый объект соприкасается с более холодным объектом (тем, который имеет более низкую температуру), происходит передача тепловой энергии между двумя материалами, при этом более холодный объект получает больше энергии, а более теплый объект становится менее энергичным. Этот процесс будет продолжаться до тех пор, пока не будет достигнуто тепловое равновесие.

Скорость, с которой тепловая энергия передается в материале за счет теплопроводности, определяется следующим выражением:

В этом выражении Q представляет количество тепла, передаваемого через материал во времени t , ΔT — это разница температур между одной стороной материала и другой (температурный градиент), A — это площадь поперечного сечения материала, а d — толщина материала.Константа k известна как теплопроводность материала и является функцией внутренних свойств материала и его структуры. Воздух и другие газы обычно имеют низкую теплопроводность, в то время как неметаллические твердые вещества показывают более высокие значения, а металлические твердые тела обычно показывают самые высокие значения.

Конвекция

Конвекция — это передача тепловой энергии от поверхности за счет движения нагретой жидкости, такой как воздух или вода.Большинство жидкостей расширяются при нагревании и, следовательно, становятся менее плотными и поднимаются по сравнению с другими более холодными частями жидкости. Таким образом, когда воздух в комнате нагревается, он поднимается к потолку, потому что он теплее и менее плотный, и передает тепловую энергию, когда сталкивается с более холодным воздухом в комнате, затем становится более плотным и снова падает на пол. Этот процесс создает поток естественной или свободной конвекции. Конвекция также может происходить за счет так называемой принудительной или вспомогательной конвекции, например, когда нагретая вода перекачивается по трубе, например, в системе водяного отопления.

Для свободной конвекции скорость передачи тепла выражается законом охлаждения Ньютона:

Где Q-точка — это скорость теплопередачи, h c — коэффициент конвективной теплопередачи, A — площадь поверхности, на которой происходит процесс конвекции, а ΔT — разница температур между поверхность и жидкость. Коэффициент конвективной теплопередачи h c является функцией свойств жидкости, подобной теплопроводности материала, упомянутого ранее в отношении проводимости.

Радиация

Тепловое излучение — это механизм передачи тепловой энергии, который включает в себя излучение электромагнитных волн от нагретой поверхности или объекта. В отличие от теплопроводности и конвекции, тепловому излучению не требуется промежуточная среда для переноса энергии волны. Все объекты, температура которых выше абсолютного нуля (-273,15 o C), излучают тепловое излучение в обычно широком спектральном диапазоне.

Чистая скорость радиационных потерь тепла может быть выражена с помощью закона Стефана-Больцмана следующим образом:

, где Q — теплопередача в единицу времени, T ч — температура горячего объекта (в абсолютных единицах, o K), T c — температура более холодной окружающей среды. (также в абсолютных единицах, o K), σ — постоянная Стефана-Больцмана (значение которой равно 5.6703 x 10 -8 Вт / м 2 K 4 ). Термин, представленный как ε , является коэффициентом излучения материала и может иметь значение от 0 до 1, в зависимости от характеристик материала и его способности отражать, поглощать или передавать излучение. Это также функция температуры материала.

Основные принципы, лежащие в основе теплообменников

Независимо от типа и конструкции, все теплообменники работают в соответствии с одними и теми же фундаментальными принципами, а именно нулевым, первым и вторым законами термодинамики, которые описывают и диктуют перенос или «обмен» тепла от одной жидкости к другой.

  • Нулевой закон термодинамики утверждает, что термодинамические системы, находящиеся в тепловом равновесии, имеют одинаковую температуру. Кроме того, если каждая из двух систем находится в тепловом равновесии с третьей системой, то две первые системы должны быть в равновесии друг с другом; таким образом, все три системы имеют одинаковую температуру. Этот закон, предшествующий трем другим законам термодинамики по порядку, но не в развитии, не только выражает тепловое равновесие как переходное свойство, но также определяет понятие температуры и устанавливает ее как измеримое свойство термодинамических систем.
  • Первый закон термодинамики основан на нулевом законе, устанавливая внутреннюю энергию ( U ) как еще одно свойство термодинамических систем и указывая влияние тепла и работы на внутреннюю энергию системы и энергию окружающей среды. Кроме того, первый закон, также называемый законом обмена энергией, по сути, гласит, что энергия не может быть создана или уничтожена, а только передана другой термодинамической системе или преобразована в другую форму (например,г., обогревать или работать).

    Например, если тепло поступает в систему из окружающей среды, происходит соответствующее увеличение внутренней энергии системы и уменьшение энергии окружающей среды. Этот принцип можно проиллюстрировать следующим уравнением, где ΔU система представляет внутреннюю энергию системы, а ΔU окружающей среды представляет внутреннюю энергию окружающей среды:

  • Второй закон термодинамики устанавливает энтропию ( S ) как дополнительное свойство термодинамических систем и описывает естественную и неизменную тенденцию Вселенной и любой другой замкнутой термодинамической системы к увеличению энтропии с течением времени.Этот принцип можно проиллюстрировать следующим уравнением, где ΔS представляет собой изменение энтропии, ΔQ представляет собой изменение тепла, добавляемого к системе, а T представляет собой абсолютную температуру:

    Он также используется для объяснения тенденции двух изолированных систем — когда они могут взаимодействовать и свободны от всех других влияний — двигаться к термодинамическому равновесию. Как установлено вторым законом, энтропия может только увеличиваться, но не уменьшаться; следовательно, каждая система по мере увеличения энтропии неизменно движется к наивысшему значению, достижимому для указанной системы.При этом значении система достигает состояния равновесия, при котором энтропия больше не может увеличиваться (поскольку она максимальна) или уменьшаться, поскольку это действие нарушит Второй закон. Следовательно, единственные возможные системные изменения — это те, в которых энтропия не претерпевает изменений (то есть отношение тепла, добавленного или отведенного к системе, к абсолютной температуре остается постоянным).

В целом эти принципы определяют основные механизмы и операции теплообменников; Нулевой закон устанавливает температуру как измеримое свойство термодинамических систем, Первый закон описывает обратную зависимость между внутренней энергией системы (и ее преобразованными формами) и энергией окружающей среды, а Второй закон выражает тенденцию двух взаимодействующих систем к двигаться к тепловому равновесию.Таким образом, теплообменники функционируют, позволяя жидкости с более высокой температурой ( F 1 ) взаимодействовать — прямо или косвенно — с жидкостью более низкой температуры ( F 2 ), что позволяет тепло для передачи от F 1 к F 2 для движения к равновесию. Эта передача тепла приводит к снижению температуры для F 1 и увеличению температуры для F 2 .В зависимости от того, нацелено ли приложение на нагрев или охлаждение жидкости, этот процесс (и устройства, которые его используют) можно использовать для направления тепла к системе или от нее, соответственно.

Расчетные характеристики теплообменника

Как указано выше, все теплообменники работают по одним и тем же основным принципам. Однако эти устройства можно классифицировать и классифицировать по-разному в зависимости от их конструктивных характеристик. К основным характеристикам, по которым можно отнести теплообменники, относятся:

  • Конфигурация потока
  • Способ строительства
  • Механизм теплопередачи

Конфигурация потока

Конфигурация потока, также называемая устройством потока, теплообменника относится к направлению движения текучих сред внутри теплообменника по отношению друг к другу.В теплообменниках используются четыре основные конфигурации потока:

  • Попутный поток
  • Противоток
  • Поперечный поток
  • Гибридный поток
Попутный поток

Теплообменники с прямоточным потоком , также называемые теплообменниками с параллельным потоком, представляют собой теплообменные устройства, в которых жидкости движутся параллельно друг другу и в одном направлении. Хотя такая конфигурация обычно приводит к более низкой эффективности, чем устройство противотока, она также обеспечивает максимальную тепловую однородность по стенкам теплообменника.

Противоток

Противоточные теплообменники , также известные как противоточные теплообменники, спроектированы таким образом, что жидкости движутся антипараллельно (т. Е. Параллельно, но в противоположных направлениях) друг другу внутри теплообменника. Наиболее часто используемая из конфигураций потока, устройство противотока обычно демонстрирует наивысший КПД, поскольку оно обеспечивает наибольшую теплопередачу между жидкостями и, следовательно, наибольшее изменение температуры.

Поперечный поток

В теплообменниках перекрестного тока жидкости текут перпендикулярно друг другу. Эффективность теплообменников, в которых используется такая конфигурация потока, находится между противоточными и прямоточными теплообменниками.

Гибридный поток

Теплообменники с гибридным потоком демонстрируют некоторую комбинацию характеристик ранее упомянутых конфигураций потока. Например, конструкции теплообменников могут использовать несколько потоков и устройств (например,g., устройства как противотока, так и с поперечным потоком) в одном теплообменнике. Эти типы теплообменников обычно используются с учетом ограничений приложения, таких как пространство, бюджетные затраты или требования к температуре и давлению.

На рисунке 1 ниже показаны различные доступные конфигурации потока, включая конфигурацию с перекрестным / противотоком, которая является примером конфигурации гибридного потока.

Рисунок 1 — Конфигурации потока теплообменника

Метод строительства

Если в предыдущем разделе теплообменники были классифицированы на основе типа используемой конфигурации потока, в этом разделе они классифицируются на основе их конструкции.Конструктивные характеристики, по которым можно классифицировать эти устройства, включают:

  • Рекуперативная в сравнении с регенеративной
  • Прямое и косвенное
  • Статическая и динамическая
  • Типы используемых компонентов и материалов
Рекуперативная и регенеративная

Теплообменники можно разделить на рекуперативные теплообменники и рекуперативные теплообменники.

Разница между рекуперативными и регенеративными системами теплообменников заключается в том, что в рекуперативных теплообменниках (обычно называемых рекуператорами) каждая жидкость одновременно протекает через свой собственный канал внутри теплообменника.С другой стороны, регенеративные теплообменники , также называемые емкостными теплообменниками или регенераторами, поочередно позволяют более теплым и более холодным жидкостям проходить через один и тот же канал. И рекуператоры, и регенераторы могут быть далее разделены на различные категории теплообменников, такие как прямые или косвенные, статические или динамические, соответственно. Из двух указанных типов рекуперативные теплообменники чаще используются в промышленности.

Прямое и косвенное

Рекуперативные теплообменники используют процессы прямой или косвенной контактной передачи для обмена теплом между жидкостями.

В теплообменниках прямого контакта жидкости не разделяются внутри устройства, а тепло передается от одной жидкости к другой посредством прямого контакта. С другой стороны, в косвенных теплообменниках жидкости остаются отделенными друг от друга теплопроводными компонентами, такими как трубы или пластины, на протяжении всего процесса теплопередачи. Компоненты сначала получают тепло от более теплой жидкости, когда она протекает через теплообменник, а затем передают тепло более холодной жидкости, когда она течет через теплообменник.Некоторые из устройств, в которых используются процессы прямого контактного переноса, включают градирни и паровые инжекторы, в то время как устройства, в которых используются процессы косвенного контактного переноса, включают трубчатые или пластинчатые теплообменники.

Статическая и динамическая

Существует два основных типа регенеративных теплообменников — статические теплообменники и динамические теплообменники. В статических регенераторах (также известных как регенераторы с неподвижным слоем) материал и компоненты теплообменника остаются неподвижными при прохождении жидкости через устройство, в то время как в динамических регенераторах материал и компоненты перемещаются на протяжении всего процесса теплопередачи.Оба типа подвержены риску перекрестного загрязнения между потоками текучей среды, что требует тщательного проектирования во время производства.

В одном примере статического типа более теплая жидкость проходит через один канал, тогда как более холодная жидкость проходит через другой в течение фиксированного периода времени, в конце которого с помощью быстродействующих клапанов происходит реверсирование потока, так что два жидкости переключают каналы. В примере динамического типа обычно используется вращающийся теплопроводный компонент (например,g., барабан), через который непрерывно протекают более теплые и более холодные жидкости, хотя и отдельными, изолированными секциями. По мере вращения компонента любая заданная секция поочередно проходит через потоки более теплого пара и более холодного пара, позволяя компоненту поглощать тепло от более теплой жидкости и передавать тепло более холодной жидкости при прохождении через нее. На рисунке 2 ниже изображен процесс теплопередачи в регенераторе роторного типа с противоточной конфигурацией.

Рисунок 2 — Теплообмен в регенераторе роторного типа

Компоненты и материалы теплообменника

Есть несколько типов компонентов, которые могут использоваться в теплообменниках, а также широкий спектр материалов, используемых для их изготовления.Используемые компоненты и материалы зависят от типа теплообменника и его предполагаемого применения.

Некоторые из наиболее распространенных компонентов, используемых для создания теплообменников, включают кожухи, трубки, спиральные трубки (змеевики), пластины, ребра и адиабатические колеса. Более подробная информация о том, как эти компоненты работают в теплообменнике, будет предоставлена ​​в следующем разделе (см. Типы теплообменников).

В то время как металлы очень подходят — и широко используются — для изготовления теплообменников из-за их высокой теплопроводности, как в случае теплообменников из меди, титана и нержавеющей стали, другие материалы, такие как графит, керамика, композиты или пластмассы , может дать большие преимущества в зависимости от требований приложения теплопередачи.

Рисунок 3 — Классификация теплообменников по конструкции Примечания: * Теплообменные устройства, перечисленные под строительной классификацией, являются лишь небольшой частью из имеющихся.
** Представленная классификация соответствует информации, опубликованной на сайте Thermopedia.com.

Механизм теплопередачи

В теплообменниках используются два типа механизмов теплопередачи — однофазный или двухфазный.

В однофазных теплообменниках жидкости не претерпевают никаких фазовых превращений в процессе теплопередачи, что означает, что как более теплые, так и более холодные жидкости остаются в том же состоянии вещества, в котором они попали в теплообменник.Например, в приложениях теплопередачи вода-вода более теплая вода теряет тепло, которое затем передается более холодной воде и не превращается в газ или твердое вещество.

С другой стороны, в двухфазных теплообменниках жидкости действительно испытывают фазовый переход во время процесса теплопередачи. Фазовый переход может происходить в одной или обеих участвующих текучих средах, приводя к переходу из жидкости в газ или из газа в жидкость. Обычно устройства, в которых используется двухфазный механизм теплопередачи, требуют более сложных конструктивных решений, чем устройства, в которых используется однофазный механизм теплопередачи.Некоторые из доступных типов двухфазных теплообменников включают бойлеры, конденсаторы и испарители.

Типы теплообменников

Исходя из указанных выше конструктивных характеристик, доступно несколько различных вариантов теплообменников. Некоторые из наиболее распространенных вариантов, используемых в промышленности, включают:

  • Кожухотрубные теплообменники
  • Двухтрубный теплообменник
  • Пластинчатые теплообменники
  • Конденсаторы, испарители и котлы

Кожухотрубные теплообменники

Наиболее распространенный тип теплообменников, кожухотрубных теплообменников состоит из одной трубы или ряда параллельных трубок (т.е. пучок труб), заключенный в герметичный цилиндрический сосуд высокого давления (т.е. оболочку). Конструкция этих устройств такова, что одна жидкость протекает через меньшую трубку (и), а другая жидкость течет вокруг ее / их внешней (их) стороны и между ними / ими внутри герметичной оболочки. Другие конструктивные характеристики, доступные для этого типа теплообменника, включают ребристые трубы, одно- или двухфазную теплопередачу, противоток, прямоточный или перекрестный поток, а также однопроходные, двух- или многопроходные конфигурации.

Некоторые из доступных типов кожухотрубных теплообменников включают спиральные змеевики и двухтрубные теплообменники, а некоторые из применений включают предварительный нагрев, охлаждение масла и производство пара.

Трубчатый пучок трубчатого теплообменника крупным планом.

Изображение предоставлено: Антон Москвитин / Shutterstock.com

Двухтрубные теплообменники

Кожухотрубный теплообменник, двухтрубные теплообменники используют простейшую конструкцию и конфигурацию теплообменника, которая состоит из двух или более концентрических цилиндрических труб или трубок (одна большая труба и одна или несколько меньших труб).В соответствии с конструкцией кожухотрубного теплообменника одна жидкость протекает через меньшую трубу (и), а другая жидкость течет вокруг меньшей (ых) трубы (ов) внутри большей трубы.

Требования к конструкции двухтрубных теплообменников включают характеристики рекуперативного и косвенного типов, упомянутых ранее, поскольку жидкости остаются разделенными и текут по своим каналам на протяжении всего процесса теплопередачи. Однако существует некоторая гибкость в конструкции двухтрубных теплообменников, поскольку они могут быть спроектированы с прямоточным или противоточным потоком и использоваться модульно в последовательной, параллельной или последовательно-параллельной конфигурации внутри системы.Например, на рисунке 4 ниже показан перенос тепла в изолированном двухтрубном теплообменнике с прямоточной конфигурацией.

Рисунок 4 — Теплообмен в двухтрубном теплообменнике

Пластинчатые теплообменники

Пластинчатые теплообменники, также называемые пластинчатыми теплообменниками, состоят из нескольких тонких гофрированных пластин, связанных вместе. Каждая пара пластин создает канал, по которому может течь одна жидкость, и пары уложены друг на друга и прикреплены посредством болтов, пайки или сварки, так что между парами создается второй канал, через который может течь другая жидкость.

Стандартная пластинчатая конструкция также доступна с некоторыми вариациями, например пластинчато-ребристыми или пластинчатыми теплообменниками. Пластинчато-ребристые теплообменники используют ребра или распорки между пластинами и позволяют использовать несколько конфигураций потока и более двух потоков жидкости, проходящих через устройство. Пластинчатые теплообменники с подушками оказывают давление на пластины, чтобы повысить эффективность теплопередачи по поверхности пластины. Некоторые из других доступных типов включают пластинчатые и рамные, пластинчатые и кожуховые и спирально-пластинчатые теплообменники.

Пластинчатый теплообменник крупным планом.

Кредит изображения: withGod / Shutterstock.com

Конденсаторы, испарители и котлы

Котлы, конденсаторы и испарители — это теплообменники, в которых используется двухфазный механизм теплопередачи. Как упоминалось ранее, в двухфазных теплообменниках одна или несколько текучих сред претерпевают фазовое изменение во время процесса теплопередачи, переходя либо из жидкости в газ, либо из газа в жидкость.

Конденсаторы — это теплообменные устройства, которые забирают нагретый газ или пар и охлаждают его до точки конденсации, превращая газ или пар в жидкость.С другой стороны, в испарителях и котлах процесс теплопередачи переводит жидкости из жидкой формы в газообразную или парообразную.

Другие варианты теплообменников

Теплообменники используются во множестве областей применения в самых разных отраслях промышленности. Следовательно, существует несколько вариантов теплообменников, каждый из которых соответствует требованиям и спецификациям конкретного применения. Помимо упомянутых выше вариантов, доступны другие типы, включая теплообменники с воздушным охлаждением, теплообменники с вентиляторным охлаждением и теплообменники с адиабатическим колесом.

Рекомендации по выбору теплообменника

Несмотря на то, что существует широкий спектр теплообменников, пригодность каждого типа (и его конструкции) для передачи тепла между жидкостями зависит от технических характеристик и требований приложения. Эти факторы в значительной степени определяют оптимальную конструкцию желаемого теплообменника и влияют на соответствующие расчеты номинальных характеристик и размеров.

Некоторые из факторов, которые профессионалы отрасли должны учитывать при проектировании и выборе теплообменника, включают:

  • Тип жидкостей, поток жидкости и их свойства
  • Требуемая тепловая мощность
  • Ограничения по размеру
  • Стоимость

Тип жидкости, поток и свойства

Конкретный тип жидкостей — e.г., воздух, вода, масло и т. д. — задействованные, а также их физические, химические и термические свойства — например, фаза, температура, кислотность или щелочность, давление и скорость потока и т. д. — помогают определить конфигурацию потока и наиболее подходящую конструкцию. для этого конкретного приложения теплопередачи.

Например, если речь идет о коррозионных жидкостях, жидкостях с высокой температурой или под высоким давлением, конструкция теплообменника должна выдерживать высокие нагрузки в процессе нагрева или охлаждения. Одним из методов выполнения этих требований является выбор конструкционных материалов, обладающих желаемыми свойствами: графитовые теплообменники демонстрируют высокую теплопроводность и коррозионную стойкость, керамические теплообменники могут выдерживать температуры, превышающие точки плавления многих обычно используемых металлов, а пластиковые теплообменники обеспечивают высокую теплопроводность и устойчивость к коррозии. недорогая альтернатива, которая сохраняет умеренную степень коррозионной стойкости и теплопроводности.

Керамический теплообменник

Изображение предоставлено: CG Thermal

Другой метод заключается в выборе конструкции, подходящей для свойств жидкости: пластинчатые теплообменники могут работать с жидкостями от низкого до среднего давления, но с более высокими расходами, чем другие типы теплообменников, а двухфазные теплообменники необходимы при работе с жидкостями, которые требуют фазового перехода в процессе теплопередачи. Другие свойства текучей среды и потока текучей среды, которые специалисты отрасли могут учитывать при выборе теплообменника, включают вязкость текучей среды, характеристики загрязнения, содержание твердых частиц и присутствие водорастворимых соединений.

Тепловые выходы

Тепловая мощность теплообменника относится к количеству тепла, передаваемому между жидкостями, и соответствующему изменению температуры в конце процесса теплопередачи. Передача тепла внутри теплообменника приводит к изменению температуры в обеих жидкостях, понижая температуру одной жидкости при отводе тепла и повышая температуру другой жидкости при добавлении тепла. Желаемая тепловая мощность и скорость теплопередачи помогают определить оптимальный тип и конструкцию теплообменника, поскольку некоторые конструкции теплообменников предлагают более высокие скорости теплопередачи через нагреватель и могут выдерживать более высокие температуры, чем другие конструкции, хотя и с более высокой стоимостью.

Ограничения по размеру

После выбора оптимального типа и конструкции теплообменника распространенной ошибкой является покупка слишком большого для данного физического пространства. Часто более разумно приобрести теплообменное устройство такого размера, которое оставляет место для дальнейшего расширения или добавления, чем выбирать устройство, которое полностью охватывает пространство. Для применений с ограниченным пространством, например, в самолетах или автомобилях, компактные теплообменники обеспечивают высокую эффективность теплопередачи в меньших и более легких решениях.Эти теплообменные устройства характеризуются высоким отношением площади поверхности теплообмена к объему, поэтому доступны несколько вариантов этих теплообменных устройств, в том числе компактные пластинчатые теплообменники. Как правило, эти устройства имеют отношение ≥700 м 2 / м 3 для газо-газовых приложений и ≥400 м 2 / м 3 для жидкости-к- газовые приложения.

Затраты

Стоимость теплообменника включает не только начальную цену оборудования, но также затраты на установку, эксплуатацию и техническое обслуживание в течение всего срока службы устройства.Несмотря на то, что необходимо выбрать теплообменник, который эффективно удовлетворяет требованиям приложений, также важно учитывать общие затраты на выбранный теплообменник, чтобы лучше определить, стоит ли оно вложенных средств. Например, изначально дорогой, но более прочный теплообменник может привести к снижению затрат на техническое обслуживание и, следовательно, к меньшим общим расходам в течение нескольких лет, в то время как более дешевый теплообменник может быть изначально менее дорогим, но потребует нескольких ремонтов и замен. в те же сроки.

Оптимизация дизайна

Проектирование оптимального теплообменника для конкретного применения (с конкретными спецификациями и требованиями, указанными выше) включает определение изменения температуры жидкостей, коэффициента теплопередачи и конструкции теплообменника и их соотнесение со скоростью теплопередачи. . Две основные проблемы, которые возникают при достижении этой цели, — это расчет номинальных характеристик и размеров устройства.

Рейтинг относится к расчету тепловой эффективности (т.е. эффективность) теплообменника заданной конструкции и размера, включая скорость теплопередачи, количество тепла, передаваемого между жидкостями и соответствующее изменение температуры, а также общий перепад давления на устройстве. Определение размеров относится к расчету требуемых общих размеров теплообменника (т. Е. Площади поверхности, доступной для использования в процессе теплопередачи), включая длину, ширину, высоту, толщину, количество компонентов, геометрию и расположение компонентов, и т.п., для приложения с заданными техническими характеристиками и требованиями. Конструктивные характеристики теплообменника — например, конфигурация потока, материал, компоненты конструкции, геометрия и т. Д. — влияют как на номинальные характеристики, так и на расчет размеров. В идеале, оптимальная конструкция теплообменника для конкретного применения находит баланс (с факторами, оптимизированными в соответствии с указаниями разработчика) между номинальными характеристиками и размерами, которые удовлетворяют технологическим спецификациям и требованиям при минимально необходимых затратах.

Применение теплообменников

Теплообменники — это устройства, используемые в промышленности как для нагрева, так и для охлаждения.Доступны несколько вариантов теплообменников, которые находят применение в самых разных отраслях промышленности, в том числе:

В таблице 1 ниже указаны некоторые из общих отраслей промышленности и применения ранее упомянутых типов теплообменников.

Таблица 1 — Отрасли и области применения теплообменников по типам

Тип теплообменника

Общие отрасли промышленности и приложения

Кожух и трубка

  • Нефтепереработка
  • Предварительный нагрев
  • Масляное охлаждение
  • Производство пара
  • Утилизация тепла продувкой котла
  • Системы улавливания паров
  • Промышленные системы окраски

Двойная труба

  • Промышленные процессы охлаждения
  • Требования к малой площади теплообмена

Пластина

  • Криогенный
  • Пищевая промышленность
  • Химическая обработка
  • Печи
  • Замкнутый контур водяного охлаждения открытого контура

Конденсаторы

  • Процессы дистилляции и очистки
  • Электростанции
  • Холодильное оборудование
  • ОВК
  • Химическая обработка

Испарители / Котлы

  • Процессы дистилляции и очистки
  • Паровозы
  • Холодильное оборудование
  • ОВК

с воздушным охлаждением / вентиляторным охлаждением

  • Ограниченный доступ к охлаждающей воде
  • Химические заводы и нефтеперерабатывающие заводы
  • Двигатели
  • Электростанции

Адиабатическое колесо

  • Химическая и нефтехимическая переработка
  • Нефтеперерабатывающие заводы
  • Пищевая промышленность и пастеризация
  • Производство электроэнергии
  • Криогеника
  • ОВК
  • Аэрокосмическая промышленность

Компактный

  • Ограниченное пространство (e.г., самолеты и автомобили)
  • Масляное охлаждение
  • Автомобильная промышленность
  • Криогеника
  • Охлаждение электроники

Сводка

Это руководство дает общее представление о теплообменниках, доступных конструкциях и типах, их применениях и особенностях использования. Дополнительная информация о покупке теплообменников доступна в Руководстве по покупке теплообменников Thomas.

Для получения дополнительной информации о сопутствующих продуктах обратитесь к другим руководствам и официальным документам Thomas или посетите платформу Thomas Supplier Discovery Platform, где вы найдете информацию о более чем 500 000 коммерческих и промышленных поставщиков.

Источники
  1. https://www.engr.mun.ca/~yuri/Courses/MechanicalSystems/HeatExchangers.pdf
  2. http://sky.kiau.ac.ir
  3. http://web.mit.edu/16.unified/www/SPRING/propulsion/notes/node131.html
  4. http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node30.html
  5. https://www.thomasnet.com/knowledge/white-paper/speciality-heat-exchangers-101
  6. https://www.livescience.com/50833-zeroth-law-thermodynamics.html
  7. https: // курсы.lumenlearning.com/introchem/chapter/the-three-laws-of-thermodynamics/
  8. https://chem.libretexts.org
  9. http://physicalworld.org
  10. https://link.springer.com
  11. https://thefreeanswer.com/question/regenerative-heat-exchanger-static-type-regenerative-heat-exchanger-differ-dynamic-type/
  12. http://hedhme.com
  13. https://www.kau.edu.sa/Files/0052880/Subjects/GuideLinesAndPracticeForThermalDesignOfHeatExchangersN2.pdf
  14. https: // www.scribd.com/doc/132

    /Boilers-Evaporators-Condensers-Kakac

Прочие изделия из теплообменников

Больше из Process Equipment

Часто задаваемые вопросы о

HVAC: что такое теплообменник?

В мире отопления и охлаждения легко запутаться. При таком большом количестве различных типов систем, компонентов и назначений у большинства домовладельцев возникают похожие вопросы. KS Services здесь, чтобы ответить на ваши часто задаваемые вопросы по HVAC и пролить свет на эти элементы. Ниже наши сертифицированные NATE специалисты по HVAC ответят на некоторые часто задаваемые вопросы о теплообменниках.

Что такое теплообменник?

В печи теплообменник представляет собой элемент, который выглядит как набор змеевиков или металлических труб. Они подключаются к узлу горелки печи одним концом, а к вентиляционному или дымоходному трубопроводу — другим. Теплообменник разделяет воздух и газ в процессе сгорания.

Что делает теплообменник?

Проще говоря, теплообменник передает тепло от одного типа среды к другому. В печи теплообменник нагревает воздух.Сгорание вашего отопительного топлива происходит в теплообменнике.

Его поверхность нагревается за счет сгорания, затем двигатель нагнетателя проталкивает воздух через теплообменник, вызывая повышение температуры. Проще говоря, без теплообменника не было бы тепла!

Какие проблемы могут возникнуть с моим теплообменником?

Как и любой другой компонент печи, теплообменник может выйти из строя. Проблемы с теплообменником приводят к снижению производительности печи.

Из-за их участия в процессе горения неисправный теплообменник может создать серьезную опасность для здоровья и безопасности домохозяйства.

Треснувший теплообменник — серьезная проблема. Трещины теплообменника — срочный вопрос ремонта. Поскольку теплообменник предназначен для предотвращения смешивания побочных продуктов сгорания с воздухом, трещины могут выпустить эти опасные загрязнители наружу.

Окись углерода — один из таких побочных продуктов, при нормальных обстоятельствах его можно безопасно удалить из дома.К сожалению, с треснувшим теплообменником он смешивается с нагретым воздухом и попадает в ваш дом.

Как бесцветный газ без запаха, это чрезвычайно опасно. Воздействие угарного газа может вызвать у людей заболевание, а в крайних случаях — смерть.

Признаки проблем с теплообменником

Признаки треснувшего теплообменника включают:

  • Видимые трещины на теплообменнике
  • Сажа внутри печи
  • Ржавчина на теплообменнике
  • Пламя горелки, которое движется или мерцает
  • Вода у основания печи
  • Запах формальдегида возле печи
  • Симптомы отравления угарным газом

Защита теплообменника

Поддерживайте работу теплообменника в отличном состоянии и повышайте безопасность с помощью надлежащих уход.Мы рекомендуем ежегодно проводить настройку печи с нашими техническими специалистами, имеющими сертификат NATE.

Во время настройки печи для профилактического обслуживания наши специалисты проверяют теплообменник на наличие трещин и других повреждений. Они могут безопасно устранить мелкие трещины, в то время как большие повреждения часто требуют замены.

Во время настройки наши специалисты также решают другие системные проблемы и потенциальные проблемы для вашего теплообменника в будущем.

Препятствия для воздушного потока в теплообменнике, например, заблокированные вентиляционные отверстия или загрязненный воздушный фильтр, вызывают перегрев и, возможно, трещину.Устранение препятствий воздушному потоку может продлить срок службы и повысить безопасность теплообменника.

Услуги KS для всех часто задаваемых вопросов, связанных с HVAC

В мире отопления и охлаждения полно вопросов и ответов по HVAC. KS Services с радостью ответит на ваши часто задаваемые вопросы по HVAC о теплообменниках и других системах или компонентах. Мы доступны для ремонта, обслуживания и установки систем отопления, вентиляции и кондиционирования воздуха.

Позвоните нам для бесплатной оценки. Мы заботимся о вашем здоровье, а также о вашей безопасности и комфорте. Обеспокоены расходами на новое оборудование? Нет — мы предлагаем варианты финансирования для вашего удобства.Итак, для получения дополнительной информации свяжитесь с нами сегодня.

Что такое теплообменник?

Содержание
20AB61D7-9EA0-43FC-96C4-F789EC9363FBCОбработано с помощью sketchtool.

оглавление icon

Настали более холодные температуры — если вы еще не запустили свою систему отопления, скоро будет! Печь состоит из множества важных компонентов, одним из которых является теплообменник. Без него у вас не было бы тепла — узнайте, как работает теплообменник, как он работает, в каких проблемах и как его обслуживать!

Что такое теплообменник?

Теплообменник — это элемент печи, который нагревает воздух.Это набор металлических трубок или змеевиков, которые соединяются с узлом горелки и заканчиваются на вентиляционной или дымовой трубе. Воздух и газ разделяются внутри теплообменника для предотвращения смешивания и воздействия вредных побочных продуктов сгорания, таких как окись углерода.

Ваше отопительное топливо (обычно природный газ, нефть или пропан, хотя электрические печи используют электричество для нагрева теплообменника) сгорает внутри теплообменника, создавая тепло, которое нагревает его поверхность. Электродвигатель вентилятора печи нагнетает воздух через теплообменник, в результате чего температура воздуха повышается.Как только воздух нагревается, он циркулирует по воздуховодам в ваш дом.

Общие проблемы с теплообменниками

Если теплообменник неисправен, ваш дом может не достичь желаемой температуры. Проблема не только в производительности печи, но и неисправности теплообменника могут представлять серьезную опасность для здоровья и возгорание.

Трещины теплообменника — серьезная проблема ремонта печи. Если теплообменник треснул, побочные продукты процесса сгорания, происходящего внутри компонента, могут вылиться наружу.Треснувшие теплообменники создают риск отравления оксидом углерода — оксид углерода образуется при сгорании, но обычно его безопасно выводят из печи из дома, но если теплообменник треснул, оксид углерода может просочиться в дом.

Признаки того, что ваш теплообменник может иметь трещины или повреждения, включают:

  • Сажа в вашей печи
  • Ржавчина на теплообменнике
  • Видимые трещины
  • Мерцающее или движущееся пламя горелки
  • Вода, окружающая основание печи
  • Запахи напоминает формальдегид
  • Симптомы воздействия окиси углерода, включая дезориентацию, тошноту и раздражение носа или глаз

Трещины и повреждения теплообменника могут быть диагностированы специалистом по ОВК при визуальном осмотре или диагностическом осмотре с помощью камеры.Ваш специалист по HVAC заменит теплообменник, чтобы ваша печь работала безопасно. Типичный срок службы теплообменников составляет от 10 до 20 лет — в зависимости от срока службы печи и других факторов вы можете принять решение о замене всей печи, если теплообменник требует замены. Замена теплообменника обходится в среднем от 600 до 1200 долларов.

Уход за теплообменниками

Эффективность и долговечность вашего теплообменника может быть улучшена путем ежегодного технического обслуживания печи, выполняемого квалифицированным специалистом по ОВК.Во время технического обслуживания теплообменник проверяется на наличие трещин — при обнаружении незначительных трещин ваш технический специалист может их отремонтировать, чтобы предотвратить дальнейшие повреждения и угрозы безопасности.

Во время ежегодного технического обслуживания ваш технический специалист также проверит наличие других проблем, которые могут привести к повреждению теплообменника в будущем. Хотя нормальный износ может привести к повреждению теплообменника, проблемы с воздушным потоком часто становятся причиной трещин и повреждений компонента. Закрытые или заблокированные вентиляционные отверстия внутри дома и грязные воздушные фильтры препятствуют ограничению воздушного потока в теплообменнике, что приводит к перегреву компонента и возникновению трещин.Выявление заблокированных вентиляционных отверстий и других препятствий, мешающих воздушному потоку через систему воздуховодов, может быть устранено во время технического обслуживания, а загрязненные воздушные фильтры заменены, чтобы обеспечить надлежащий поток воздуха через вашу печь.

  • Защитите теплообменник, сохранив воздушный фильтр. Замените воздушный фильтр в соответствии со спецификациями производителя. Срок службы большинства воздушных фильтров составляет от 3 до 6 месяцев, хотя фильтры с низким рейтингом MERV обычно требуют замены примерно раз в месяц. Возможно, вам придется чаще менять фильтр печи в течение зимы, когда система отопления используется постоянно.
  • Всегда держите вентиляционные отверстия в доме открытыми. Не допускайте попадания в отверстия подачи и возврата мебели, ковров и других предметов. Не закрывайте вентиляционные отверстия в попытке сэкономить на счетах за отопление — это может вызвать проблемы с воздушным потоком, что приведет к дорогостоящему повреждению теплообменника и других компонентов системы.

Новый подход может сделать теплообменники HVAC в пять раз более эффективными

Предоставлено: Брауновский университет.

Исследователи из Университета Цинхуа и Университета Брауна обнаружили простой способ значительно ускорить турбулентный теплообмен — метод переноса тепла, широко используемый в системах отопления, вентиляции и кондиционирования воздуха (HVAC).

В статье, опубликованной в Nature Communications , исследователи показывают, что добавление легкодоступного органического растворителя к обычным системам турбулентного теплообмена на водной основе может повысить их способность отводить тепло на 500%. По словам исследователей, это намного лучше, чем другие методы, направленные на увеличение теплопередачи.

«Другие методы увеличения теплового потока — добавки наночастиц или другие методы — достигли в лучшем случае 50% улучшения», — сказал Варгез Матхай, научный сотрудник Brown и соавтор исследования, который работал с Chao Sun, профессор Цинхуа, придумавший эту идею.«Мы достигаем здесь в 10 раз больше улучшений, чем другие методы, и это действительно очень интересно».

Турбулентные теплообменники — это довольно простые устройства, которые используют естественные движения жидкости для перемещения тепла. Они состоят из горячей поверхности, холодной поверхности и промежуточного резервуара с жидкостью. Вблизи горячей поверхности жидкость нагревается, становится менее плотной и образует теплые шлейфы, поднимающиеся к холодной стороне. Там жидкость теряет тепло, становится более плотной и образует холодные шлейфы, которые опускаются обратно к горячей стороне.Круговорот воды служит для регулирования температуры каждой поверхности. По словам исследователей, этот тип теплообмена является основным продуктом современных систем отопления, вентиляции и кондиционирования воздуха, широко используемых в домашних обогревателях и кондиционерах.

В 2015 году у Sun возникла идея использовать органический компонент, известный как гидрофторэфир или HFE, для ускорения круговорота тепла внутри такого теплообменника. HFE иногда используется в качестве единственной жидкости в теплообменниках, но Sun подозревает, что он может обладать более интересными свойствами в качестве добавки в системах на водной основе.Работая с одним из первых авторов исследования Зики Ван, Матхай и Сан экспериментировали с добавлением небольших количеств HFE и после трех лет работы смогли максимизировать его эффективность в ускорении теплообмена. Команда показала, что концентрация около 1% HFE приводит к резкому увеличению теплового потока до 500%.

Используя методы высокоскоростной визуализации и лазерной диагностики, исследователи смогли показать, как работает усиление HFE. Находясь рядом с горячей стороной теплообменника, глобулы HFE быстро закипают, образуя двухфазные пузырьки пара и жидкости, которые быстро поднимаются к холодной пластине наверху.На холодной пластине пузырьки теряют тепло и опускаются в жидком виде. Исследователи показали, что пузырьки влияют на общий тепловой поток двумя способами. Сами пузырьки уносят значительное количество тепла от горячей стороны, но они также увеличивают скорость подъема и опускания окружающих водяных шлейфов.

«Это в основном возбуждает систему и заставляет шлейфы двигаться быстрее», — сказал Сан.«В сочетании с теплом, которое переносят сами пузырьки, мы получаем резкое улучшение теплопередачи».

Исследователи считают, что это возбуждающее действие может иметь и другие применения. Это может быть полезно в системах, предназначенных для смешивания двух или более жидкостей. Дополнительное перемешивание способствует более быстрому и полному перемешиванию.

Исследователи отметили, что конкретная добавка, которую они использовали, — HFE7000 — не вызывает коррозии, не воспламеняется и не наносит вреда озону.Одним из ограничений является то, что этот подход работает только с вертикальными системами теплообмена — системами, которые перемещают тепло от нижней пластины к верхней. В настоящее время он не работает в системах с поперечным захватом, хотя исследователи рассматривают способы адаптации этого метода. Тем не менее, вертикальные теплообменники широко используются, и это исследование показало простой способ их радикального улучшения.

«Этот двухфазный подход приводит к очень большому увеличению теплового потока с минимальными модификациями существующих систем отопления и охлаждения», — сказал Матхай.«Мы считаем, что это обещает революцию в теплообмене в системах отопления, вентиляции и кондиционирования воздуха и других крупномасштабных приложениях».


Тепловые насосы, созданные на основе искусственного интеллекта, потребляют меньше энергии
Дополнительная информация: Зики Ван и др., Автономная двухфазная каталитическая турбулентность частиц, Nature Communications (2019).DOI: 10.1038 / s41467-019-11221-w Предоставлено Брауновский университет

Ссылка : Новый подход может сделать теплообменники HVAC в пять раз более эффективными (2019, 1 августа) получено 23 сентября 2021 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *