Menu Close

Таблица коэффициент теплопроводности: Таблица Теплопроводности строительных материалов

Таблица Теплопроводности строительных материалов

Вид строительного материалаКоэффициент теплопроводности материалов,
Вт/(м·°C)
Строительный материал в сухом состоянии

Условия А
для материала
(«обычные»)

Условия Б
для материала («влажные»)
Теплопроводность Шерстяного войлока0,045
Теплопроводность Цементно-песчаного раствора 0,580,760,93
Теплопроводность Известково-песчаного раствора0,470,70,81
Теплопроводность обычной Гипсовой штукатурки0,25
Теплопроводность Ваты Минеральной, каменной.
При плотности — 180 кг/куб.м.
0,0380,0450,048
Теплопроводность Ваты Минеральной, каменной.
При плотности — 140-175 куб.м.
0,0370,0430,046
Теплопроводность Ваты Минеральной, каменной. 
При плотности 80-125 куб.м.
0,0360,0420,045
Теплопроводность Ваты Минеральной, каменной.
При плотности — 40-60 куб.м.
0,0350,0410,044
Теплопроводность Ваты Минеральной, каменной.
При плотности — 25-50 куб.м.
0,0360,0420,045
Теплопроводность Ваты Минеральной, каменной.
При плотности — 85 куб. м.
0,0440,0460,05
Теплопроводность Ваты Минеральной, каменной.
При плотности — 75 куб.м.
0,040,0420,047
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 60 куб.м.
0,0380,040,045
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 45 куб.м.
0,0390,0410,045
Теплопроводность Ваты Минеральной, стеклянной. 
При плотности — 35 куб.м.
0,0390,0410,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 30 куб.м.
0,040,0420,046
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 20 куб.м.
0,040,0430,048
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 17 куб.м.
0,0440,0470,053
Теплопроводность Ваты Минеральной, стеклянной.
При плотности — 15 куб.м.
0,046
0,0490,055
Газобетон и пенобетон на цементном вяжущем портландцементе. При плотности — 1000 куб.м.0,290,380,43
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 800 куб.м.
0,210,330,37
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 600 куб. м.
0,140,220,26
Газобетон и пенобетон на цементном вяжущем портландцементе.
При плотности — 400 куб.м.
0,110,140,15
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 1000 куб.м.
0,310,480,55
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 800 куб.м.
0,230,390,45
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 600 куб.м.
0,150,280,34
Газобетон и пенобетон на известняковом вяжущем портландцементе.
При плотности — 400 куб.м.
0,130,220,28
Теплопроводность Сосны и ели (волокна поперек).0,090,140,18
Теплопроводность Сосны и ели (волокна вдоль).0,180,290,35
Теплопроводность Дуба (волокна поперек).0,100,180,23
Теплопроводность Дуба (волокна вдоль).0,230,350,41
Теплопроводность Меди382 — 390
Теплопроводность Алюминия202 — 236
Теплопроводность Латуни97 — 111
Теплопроводность Железа92
Теплопроводность Олова67
Теплопроводность Стали47
Теплопроводность Стекла оконного0,76
Теплопроводность Аргона0,0177
 Теплопроводность Ксенона
0,0057
Теплопроводность Арболита0,07 — 0,17
Теплопроводность Пробкового дерева0,035
Теплопроводность Железобетона.
При плотности — 2500 куб.м.
1,691,922,04
Теплопроводность Бетона на щебне илигравии.
При плотности — 2400 куб.м.
1,51
1,74
1,86
Теплопроводность Керамзитобетона.
При плотности — 1800 куб.м.
0,660,800,92
Теплопроводность Керамзитобетона. 
При плотности — 1600 куб.м.
0,580,670,79
Теплопроводность Керамзитобетона. 
При плотности — 1400 куб.м.
0,470,560,65
Теплопроводность Керамзитобетона. 
При плотности — 1200 куб.м.
0,360,44
0,52
Теплопроводность Керамзитобетона.  
При плотности — 1000 куб.м.
0,270,330,41
Теплопроводность Керамзитобетона. 
При плотности — 800 куб.м.
0,210,240,31
Теплопроводность Керамзитобетона. 
При плотности — 600 куб.м.
0,160,20,26
Теплопроводность Керамзитобетона. 
При плотности — 500 куб.м.
0,140,170,23
Теплопроводность Кирпича керамический полнотелого. При кладке на цементно-песчанный раствор.0,560,70,81

Теплопроводность Кирпича силикатного. При кладке на цементно-песчанный раствор.

0,700,760,87
Теплопроводность Кирпича керамического пустотелого (плотность 1400 куб. м. с учетом пустот). При кладке на цементно-песчанный раствор.0,470,580,64
Теплопроводность Кирпича керамического пустотелого. При плотности- 1300 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор.0,410,520,58
Теплопроводность Кирпича керамического пустотелого. При плотности- 1000 куб.м. с учетом пустот. При кладке на цементно-песчанный раствор.0,350,470,52
Теплопроводность Кирпича силикатного, 11 пустот (плотность 1500 куб.м.). При кладке на цементно-песчанный раствор.0,640,70,81
Теплопроводность Кирпича силикатного, 14 пустот. Плотность 1400 куб.м.. При кладке на цементно-песчанный раствор.0,520,640,76
Теплопроводность Гранита3,493,493,49
 Теплопроводность Мрамора2,912,912,91
Теплопроводность Известняка.
При плотности — 2000 куб.м.
0,931,161,28
Теплопроводность Известняка.
При плотности — 1800 куб.м.
0,70,931,05

Теплопроводность Известняка.
При плотности — 1600 куб.м.

0,580,730,81
Теплопроводность Известняка. При плотности — 1400 куб.м.0,490,560,58
Теплопроводность Туфа.
При плотности — 2000 куб.м.
0,760,931,05
Теплопроводность Туфа.
При плотности — 1800 куб.м.
0,560,70,81
Теплопроводность Туфа.
При плотности — 1600 куб.м.
0,410,520,64
Теплопроводность Туфа.
При плотности — 1400 куб.м.
0,330,430,52
Теплопроводность Туфа.
При плотности — 1200 куб.м.
0,270,350,41
Теплопроводность Туфа.
При плотности — 1000 куб.м.
0,210,240,29
Теплопроводность Песок строительного (сухого, в соответствии с ГОСТ 8736-77). При плотности — 1600 куб.м.0,35
Теплопроводность — Фанера клееная0,120,150,18
Теплопроводность ДСП, ДВП.
При плотности — 1000 куб.м.
0,150,230,29
Теплопроводность ДСП, ДВП.
При плотности — 800 куб.м.
0,130,190,23
Теплопроводность ДСП, ДВП.
При плотности — 600 куб.м.
0,110,130,16
Теплопроводность ДСП, ДВП.
При плотности — 400 куб.м.
0,080,110,13
Теплопроводность ДСП, ДВП.
При плотности — 200 куб. м.
0,060,070,08
Теплопроводность Пакли0,050,060,07
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности — 1050 куб.м.0,150,340,36
Теплопроводность Гипсокартона. Листы гипсовые обшивочные. При плотности — 800 куб.м.0,150,190,21

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе. 
При плотности — 1800 куб.м.

0,380,380,38
Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности — 1600 куб.м.
0,330,330,33

Теплопроводность Линолеума из ПВХ на тканевой основе.  При плотности — 1800 куб.м.

0,350,350,35
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1600 куб.м.0,290,290,29
Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1400 куб.м.0,20,230,23
Теплопроводность, Эковата0,037 — 0,042
Телопропводность Гравия и Керамзита.
При плотности — 250 куб.м.
0,099 — 0,10,110,12
Телопроводность Гравия и Керамзита.
При плотности — 300 куб.м.
0,1080,120,13
Телопроводность Гравия и Керамзита.
При плотности — 350 куб.м.
0,115 — 0,120,1250,14
Телопроводность Гравия и Керамзита.
При плотности — 400 куб.м.
0,120,130,145
Телопроводность Гравия и Керамзита.
При плотности — 450 куб.м.
0,130,140,155
Телопроводность Гравия и Керамзита.
При плотности — 500 куб.м.
0,140,150,165
Телопроводность Гравия и Керамзита.
При плотности — 600 куб.м.
0,140,170,19
Телопроводность Гравия и Керамзита.
При плотности — 800 куб.м.
0,18
Теплопроводность Гипсоплита.
При плотности — 1350 куб.м..
0,350,500,56
Теплопроводность Гипсоплита.
При плотности — 1100 куб.м.
0,230,350,41

Коэффициент теплопроводности металлов (Таблица)

Теплопроводность многих металлов следует соотношению k = 2,5·10-8σT, где Т обозначает температуру в °К, а σ — электропроводность в единицах (ом·см)-1. Это соотно­шение, которое лучше всего оправдывается для хороших проводников электричества и при высоких температурах, можно применять и для определения коэффициентов тепло­проводности.

Соотношение kpcp=const, где р обозначает плотность, а ср — удельную теплоем­кость при постоянном давлении, было предложено Стормом для того, чтобы объяснить температурные изменения этих величин для некоторых металлов и сплавов.

Таблица коэффициент теплопроводности металлов

Элементы с металлической электропроводностью (числа, набранные курсивом, относятся к жидкой фазе)

Металл

Коэффициент теплопроводности металлов при температура, °С

— 100

0

100

300

700

Алюминий

2,45

2,38

2,30

2,26

0,9

Бериллий

4,1

2,3

1,7

1,25

0,9

Ванадий

0,31

0,34

Висмут

0,11

0,08

0,07

0,11

0,15

Вольфрам

2,05

1,90

1,65

1,45

1,2

Гафний

 —

0,22

0,21

Железо

0,94

0,76

0,69

0,55

0,34

Золото

3,3

3,1

3,1

Индий

0,25

Иридий

1,51

1,48

1,43

Кадмий

0,96

0,92

0,90

0,95

0,44 (400°)

Калий

0,99

0,42

0,34

Кальций

0,98

Кобальт

0,69

Литий

0,71

0,73

Магний

1,6

1,5

1,5

1,45

 Медь

4,05

3,85

3,82

3,76

3,50

Молибден

1,4

1,43

 —

1,04 (1000°)

Натрий

1,35

1,35

0,85

0,76

0,60

Никель

0,97

0,91

0,83

0,64

0,66

Ниобий

0,49

0,49

0,51

0,56

Олово

0,74

0,64

0,60

0,33

Палладий

0,69

0,67

0,74

Платина

0,68

0,69

0,72

0,76

0,84

Рений

0,71

Родий

1,54

1,52

1,47

Ртуть

0,33

0,09

0.1

0,115

Свинец

0,37

0,35

0,335

0,315

0,19

Серебро

4,22

4,18

4,17

3,62

Сурьма

0,23

0,18

0,17

0,17

0,21

Таллий

 

0,41

0,43

0,49

0,25 (400 0)

Тантал

0,54

0,54

Титан

0,16

0,15

Торий

0,41

0,39

0,40

0,45

Уран

0,24

0,26

0,31

0,40

Хром

0,86

0,85

0,80

0,63

Цинк

1,14

1,13

1,09

1,00

0,56

Цирконий

0,21

0,20

0,19

Таблица коэффициент теплопроводности полупроводники и изоляторы

Вещество

Коэффициент теплопроводности при температура, °С

— 100

0

100

500

700

Германий

1,05

0,63

Графит

0,5—4,0

0,5—3,0

0,4-1,7

0,4-0,9

Йод

0,004

Углерод

0,016

0,017

0,019

0,023

Селен

0,0024

Кремний

0,84

Сера

0,0029

0,0023

Теллур

0,015



Коэффициент теплопроводности материалов таблица, формулы

Термин «теплопроводность» применяется к свойствам материалов пропускать тепловую энергию от горячих участков к холодным. Теплопроводность основана на движении частиц внутри веществ и материалов. Способность передавать энергию тепла в количественном измерении – это коэффициент теплопроводности. Круговорот тепловой энергопередачи, или тепловой обмен, может проходить в любых веществах с неравнозначным размещением разных температурных участков, но коэффициент теплопроводности зависим от давления и температуры в самом материале, а также от его состояния – газообразного, жидкого или твердого. Эквивалентная теплопроводимость строительных материалов и утеплителей

 

Физически теплопроводность материалов равняется количеству тепла, которое перетекает через однородный предмет установленных габаритов и площади за определенный временной отрезок при установленной температурной разнице (1 К). В системе СИ единичный показатель, который имеет коэффициент теплопроводности, принято измерять в Вт/(м•К).

Как рассчитать теплопроводность по закону Фурье

В заданном тепловом режиме плотность потока при передаче тепла прямо пропорциональна вектору максимального увеличения температуры, параметры которой изменяются от одного участка к другим, и по модулю с одинаковой скоростью увеличения температуры по направлению вектора:

q = − ϰ х grad х (T), где:

  • q – направление плотности предмета, передающего тепло, или объем теплового потока, который протекает по участку за заданную временную единицу через определенную площадь, перпендикулярный всем осям;
  • ϰ – удельный коэффициент теплопроводности материала;
  • T – температура материала.
Перенос тепла в неравновесной термодинамической системе

 

Знак «-» в формуле перед «ϰ» указывает, что тепло движется в противоположном направлении от вектора grad х (T)/ – в направлении уменьшения температуры предмета. Эта формула отражает закон Фурье. В интегральном выражении коэффициент теплопередачи согласно закону Фурье будет выглядеть как формула:

  • P = − ϰ х S х ΔT / l, выражается в (Вт/(м•К) х (м2•К) / м = Вт/(м•К) х (м•К) = Вт), где:
  • P ­– общая мощность потерь теплоотдачи;
  • S – сечение предмета;
  • ΔT – разница температуры по стыкам сторон предмета;
  • l – расстояние между стыками сторон предмета – длина фигуры.
Связь коэффициента теплопроводимости с электропроводностью материалов

 

Электропроводность и коэффициент теплопередачи

Собственно, коэффициент теплопроводности металлов «ϰ» связан с их удельной электропроводимостью «σ» согласно закону Видемана-Франца, в соответствии с которым коэффициент теплопроводности металлов зависит от удельной электропроводимости прямо пропорционально температуре:

Κ / σ = π2 / 3 х (К / e)2 х T, где:

  • К – постоянный коэффициент Больцмана, устанавливающий закономерность между тепловой энергией тела и его температурой;
  • e – заряд электрона;
  • T – термодинамическая температура предмета.

Коэффициент теплопроводности газовой среды

В газовой среде коэффициент теплопроводности воздуха может рассчитываться по приблизительной формуле:

ϰ ~ 1/3 х p х cv х Λλ х v, где:

  • pv – плотность газовой среды;
  • cv – удельная емкость тепловой энергии при одном и том же объеме тела;
  • Λλ – расстояние свободного перемещения молекул в газовой среде;
  • v – скорость передачи тепла.
Что такое теплопроводимость

 

Или:

ϰ = I x К / 3 x π3/3 x d2 √ RT / μ, где:

  • i – результат суммирования уровней свободы прямого движения и вращения молекул в газовой среде (для 2-атомных газов i=5, для 1-атомных i=3;
  • К – коэффициент Больцмана;
  • μ – отношение массы газа к количеству молей газа;
  • T – термодинамическая температура;
  • d – ⌀ молекул газа;
  • R – универсальный коэффициент для газовой среды.

Согласно формуле минимальная теплопроводность материалов существует у тяжелых инертных газов, максимально эффективная теплопроводность строительных материалов – у легких.

Теплопроводимость в газовой разреженной среде

Газовая среда и теплопроводность

 

Результат по выкладкам выше, по которым делают расчет теплопроводности для газовой среды, от давления не зависит. Но в очень разреженной газовой среде расстояние свободного перемещения молекул зависит не от столкновений частиц, а от препятствий в виде стен резервуара. При этом ограничение перемещения молекул в соответствующих единицах измерения называют высоковакуумной средой, при которой степень теплообмена уменьшается в зависимости от плотности материала и прямо пропорциональна значению давления в резервуаре:

ϰ ~ 1/3 х p х cv х l х v, где:

i – объем резервуара;

Р – уровень давления в резервуаре.

Согласно этой формуле теплопроводность в вакуумной среде стремится к нулевой отметке при глубоком вакууме. Это объясняется тем, что в вакууме частицы, которые передают тепловую энергию, имеют низкую плотность на единицу площади. Но тепловая энергия в вакуумной среде перетекает посредством излучения. В качестве примера можно привести обычный термос, в котором для уменьшения потерь тепловой энергии стенки должны быть двойными и посеребренными, без воздуха между ними. Что такое тепловое излучение

 

При применении закона Фурье не принимают во внимание инерционность перетекания тепловой энергии, а это значит, что имеется в виду мгновенная передача тепла из любой точки на любое расстояние. Поэтому формулу нельзя использовать для расчетов передачи тепла при протекании процессов, имеющих высокую частоту повторения. Это ультразвуковое излучение, передача тепловой энергии волнами ударного или импульсного типа и т.д. Существует решение по закону Фурье с релаксационным членом:

τ х ∂q / ∂t = − (q + ϰ х ∇T) .

Если ре­лак­са­ция τ мгновенная, то формула превращается в закон Фурье.

Ориентировочная таблица теплопроводности материалов:

ОсноваЗначение теплопроводности, Вт/(м•К)
Жесткий графен4840 +/ 440 – 5300 +/ 480
Алмаз1001-2600
Графит278,4-2435
Бора арсенид200-2000
SiC490
Ag430
Cu401
BeO370
Au320
Al202-236
AlN200
BN180
Si150
Cu3Zn297-111
Cr107
Fe92
Pt70
Sn67
ZnO54
 Черная сталь47-58
Pb35,3
НержавейкаТеплопроводность стали – 15
SiO28
Высококачественные термостойкие пасты5-12
Гранит

(состоит из SiO2 68-73 %; Al2O3 12,0-15,5 %; Na2O 3,0-6,0 %; CaO 1,5-4,0 %; FeO 0,5-3,0 %; Fe2O3 0,5-2,5 %; К2О 0,5-3,0 %; MgO 0,1-1,5 %; TiO2 0,1-0,6 %)

2,4
Бетонный раствор без заполнителей1,75
Бетонный раствор со щебнем или с гравием1,51
Базальт

(состоит из SiO2 – 47-52%, TiO2 – 1-2,5%, Al2O3 – 14-18%, Fe2O3 – 2-5%, FeO – 6-10%, MnO – 0,1-0,2%, MgO – 5-7%, CaO – 6-12%, Na2O – 1,5-3%, K2O – 0,1-1,5%, P2O5 – 0,2-0,5 %)

1,3
Стекло

(состоит из SiO2, B2O3, P2O5, TeO2, GeO2, AlF3 и т.д.)

1-1,15
Термостойкая паста КПТ-80,7
Бетонный раствор с наполнителем из песка, без щебня или гравия0,7
Вода чистая0,6
Силикатный

или красный кирпич

0,2-0,7
Масла

на основе силикона

0,16
Пенобетон0,05-0,3
Газобетон0,1-0,3
ДеревоТеплопроводность дерева – 0,15
Масла

на основе нефти

0,125
Снег0,10-0,15
ПП с группой горючести Г10,039-0,051
ЭППУ с группой горючести Г3, Г40,03-0,033
Стеклянная вата0,032-0,041
Вата каменная0,035-0,04
Воздушная атмосфера (300 К, 100 кПа)0,022
Гель

на основе воздуха

0,017
Аргон (Ar)0,017
Вакуумная среда0

Приведенная таблица теплопроводности учитывает теплопередачу посредством теплового излучения и теплообмена частиц. Так как вакуум не передает тепло, то оно перетекает при помощи солнечного излучения или другого типа генерации тепла.  В газовой или жидкой среде слои с разной температурой смешиваются искусственно или естественным способом.

Таблица теплопроводимости стройматериалов

 

Проводя расчет теплопроводности стены, необходимо принимать во внимание, что теплопередача сквозь стеновые поверхности меняется от того, что температура в здании и на улице всегда разная, и зависит от площади всех поверхностей дома и от теплопроводности стройматериалов.

Чтобы количественно оценить теплопроводность, ввели такое значение, как коэффициент теплопроводности материалов. Он показывает, как тот или иной материал способен передавать тепло. Чем выше это значение, например, коэффициент теплопроводности стали, тем эффективнее сталь будет проводить тепло.

  • При утеплении дома из древесины рекомендуется выбирать стройматериалы с низким коэффициентом.
  • Если стена кирпичная, то при значении коэффициента 0,67 Вт/(м2•К) и толщине стены 1 м при ее площади 1 м2 при разнице наружной и внутридомовой температуры 10С кирпич будет пропускать 0,67 Вт энергии. При разнице температур 100С кирпич будет пропускать 6,7 Вт и т.д.

Стандартное значение коэффициента теплопроводимости теплоизоляции и других строительных материалов верно для толщины стены 1 м. Чтобы провести расчет теплопроводности поверхности другой толщины, следует коэффициент поделить на выбранное значение толщины стены (метры). Ориентировочные показатели коэффициентов теплопроводимости

 

В СНиП и при проведении расчетов фигурирует термин «тепловое сопротивление материала», он означает обратную теплопроводность. То есть при теплопроводности листа пенопласта 10 см и его теплопроводности 0,35 Вт/(м2•К) тепловое сопротивление листа – 1 / 0,35 Вт/(м2•К) = 2,85 (м2•К)/Вт.

Ниже – таблица теплопроводности для востребованных строительных материалов и теплоизоляторов:

СтройматериалыКоэффициент теплопроводимости, Вт/(м2•К)
Плиты из алебастра0,47
Al230
Шифер асбоцементный0,35
Асбест (волокно, ткань)0,15
Асбоцемент1,76
Асбоцементные изделия0,35
Асфальт0,73
Асфальт для напольного покрытия0,84
Бакелит0,24
Бетон с заполнителем щебнем1,3
Бетон с заполнителем песком0,7
Пористый бетон – пено- и газобетон1,4
Сплошной бетон1,75
Термоизоляционный бетон0,18
Битумная масса0,47
Бумажные материалы0,14
Рыхлая минвата0,046
Тяжелая минвата0,05
Вата – теплоизолятор на основе хлопка0,05
Вермикулит в плитах или листах0,1
Войлок0,046
Гипс0,35
Глиноземы2,33
Гравийный заполнитель0,93
Гранитный или базальтовый заполнитель3,5
Влажный грунт, 10%1,75
Влажный грунт, 20%2,1
Песчаники1,16
Сухая почва0,4
Уплотненный грунт1,05
Гудроновая масса0,3
Доска строительная0,15
Фанерные листы0,15
Твердые породы дерева0,2
ДСП0,2
Дюралюминиевые изделия160
Железобетонные изделия1,72
Зола0,15
Известняковые блоки1,71
Раствор на песке и извести0,87
Смола вспененная0,037
Природный камень1,4
Картонные листы из нескольких слоев0,14
Каучук пористый0,035
Каучук0,042
Каучук с фтором0,053
Керамзитобетонные блоки0,22
Красный кирпич0,13
Пустотелый кирпич0,44
Полнотелый кирпич0,81
Сплошной кирпич0,67
Шлакокирпич0,58
Плиты на основе кремнезема0,07
Латунные изделия110
Лед при температуре 00С2,21
Лед при температуре -200С2,44
Лиственное дерево при влажности 15%0,15
Медные изделия380
Мипора0,086
Опилки для засыпки0,096
Сухие опилки0,064
ПВХ0,19
Пенобетон0,3
Пенопласт марки ПС-10,036
Пенопласт марки ПС-40,04
Пенопласт марки ПХВ-10,05
Пенопласт марки ФРП0,044
ППУ марки ПС-Б0,04
ППУ марки ПС-БС0,04
Лист из пенополиуретана0,034
Панель из пенополиуретана0,024
Облегченное пеностекло0,06
Тяжелое вспененное стекло0,08
Пергаминовые изделия0,16
Перлитовые изделия0,051
Плиты на цементе и перлите0,085
Влажный песок 0%0,33
Влажный песок 0%0,97
Влажный песок 20%1,33
Обожженный камень1,52
Керамическая плитка1,03
Плитка марки ПМТБ-20,035
Полистирол0,081
Поролон0,04
Раствор на основе цемента без песка0,47
Плита из натуральной пробки0,042
Легкие листы из натуральной пробки0,034
Тяжелые листы из натуральной пробки0,05
Резиновые изделия0,15
Рубероид0,17
Сланец2,100
Снег1,5
Хвойная древесина влажностью 15%0,15
Хвойная смолистая древесина влажностью 15%0,23
Стальные изделия52
Стеклянные изделия1,15
Утеплитель стекловата0,05
Стекловолоконные утеплители0,034
Стеклотекстолитовые изделия0,31
Стружка0,13
Тефлоновое покрытие0,26
Толь0,24
Плита на основе цементного раствора1,93
Цементно-песчаный раствор1,24
Чугунные изделия57
Шлак в гранулах0,14
Шлак зольный0,3
Шлакобетонные блоки0,65
Сухие штукатурные смеси0,22
Штукатурный раствор на основе цемента0,95
Эбонитовые изделия0,15
Влажность и теплопроводимость – зависимость

 

Кроме того, необходимо учитывать теплопроводность утеплителей из-за их струйных тепловых потоков. В плотной среде возможно «переливание» квазичастиц из одного нагретого стройматериала в другой, более холодный или более теплый, через поры субмикронных размеров, что помогает распространять звук и тепло, даже если в этих порах  будет абсолютный вакуум.

Коэффициент теплопроводности строительных материалов таблица

Первый вопрос, который возникает, у того, кто решил построить собственный дом, – какой использовать для этого материал. От этого зависит выбор фундамента, в свою очередь, а также теплопроводность стен. На это влияет наличие пор, плотность и прочие характеристики стройматериала. Главнейшим из них является теплопроводность. Коэффициенты теплопроводности строительных материалов, конечно, неодинаковы. И выбирать нужно материал наиболее подходящий для постройки дома в данной местности.

Узнать значение коэффициента теплопроводности можно из документации производителя на этот материал. Коэффициент теплопроводности строительных материалов, таблица тоже поможет выяснить интересующую величину. К примеру, теплопроводность дерева лучше, чем у кирпича. Поэтому, кирпичные стены в доме должны быть втрое толще стен из сосновых бревен, чтобы было также тепло.

Определение понятия

Коэффициентом теплопроводности называется физическая величина, показывающая количество тепла, проходящего за час через метровую толщину материала. Температура на той поверхности, через которую тепло выходит, должна быть на 1°С меньше, чем с другой стороны.

Коэффициенты теплопроводности строительных материалов учитываются во многих случаях. Важно их знать, например, при выборе теплоизоляционного материала для стен здания. В этом случае очень важен правильный расчет. Из-за ошибки сместится точка росы, на стенах, в результате, появится влага, в доме будет холодно и сыро.

Поэтому, коэффициент теплопроводности строительных материалов, таблица обязательно должна быть внимательно изучена во избежание промашек.

Комбинация материалов

Качество производимых утеплителей, благодаря современным технологиям, очень высокое, и строительная индустрия получает весьма широкие возможности. В холодных регионах не нужно возводить дома с большой шириной стен. Надо лишь правильно скомбинировать строительный и теплоизоляционный материалы. Если вам нужно узнать коэффициент теплопроводности строительных материалов, таблица поможет в этом.

Поскольку теплопроводность кирпича небольшая, компенсировать это можно путем использования пенополистирола, к примеру, имеющего коэффициент теплопроводности 0,03 Вт/м град. Вместо кирпича выгодно использовать ячеистый бетон с такими же параметрами, как у дерева. Даже в лютые морозы в доме, построенном из этого материала, сохраняется тепло.

Благодаря таким приемам, стоимость постройки зданий сократилась. Также на возведение сооружения требуется меньше времени. Огромный плюс в том, что нет необходимости в массивном основании, что отдельно дает немалую экономию. Иногда нужен просто легкий столбчатый или ленточный фундамент.

Теплопроводность и каркасное строительство

Все вышесказанное особенно актуально при постройке каркасных домов. Использование материалов низкой теплопроводности привело к тому, что сейчас с применением каркасной технологии строится большое количество коттеджей, складов, магазинов и других сооружений. А возводить каркасные здания можно в зонах с любым климатом.

Теплоизоляционный материал в случае с каркасно-щитовыми зданиями помещается между листами фанеры и плитами OSB. Каким именно должен быть утеплитель в данных климатических условиях, определить можно, используя «коэффициент теплопроводности строительных материалов таблица» на нашем сайте. Будет это пенополиуретан или минеральная вата, толщина утеплителя выбирается в зависимости от величины коэффициента теплопроводности теплоизоляционного материала.

Наподобие того, как утраивается комбинация стен и утеплителя, делается и кровля строения. Применение этой технологии позволяет построить здание в короткий срок, а денежные затраты при этом минимальны.

Минеральная вата и пенополистирол являются лидерами среди материалов-утеплителей для фасадов. Насчет минеральной ваты однозначного мнения нет. Одни специалисты утверждают, что этот материал накапливает конденсат, и использоваться может только вместе с паронепроницаемой мембраной. Но в этом случае стены не «дышат», поэтому целесообразность использования этих материалов остается под вопросом.

По мнению других, устранить эту проблему можно путем устройства вентилируемых фасадов.

Пенополистирол помимо того, что хорошо пропускает воздух, имеет невысокую теплопроводность. Этот показатель зависит от плотности материала. Еще одной важной характеристикой является паропроницаемость. Проветривать помещение в этом случае не нужно.

Высокий уровень паронепроницаемости и низкая теплопроводность стен дома обеспечат отличные условия проживания.

Таблица теплопроводности строительных материалов, рекомендации

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Чем ниже теплопроводность строительных материалов, тем теплее в доме

Содержание статьи

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

ИСТ-1 – прибор для определения теплопроводности

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

  1. Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

    Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

  2. Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

    Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  3. Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

Таблица проводимости тепла воздушных прослоек

Калькулятор расчёта толщины стены по теплопроводности

На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

Окно расчёта калькулятора

В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

Расчёт проводимости тепла всех прослоек стен

Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

 

Предыдущая

Строительные материалыИз чего делают цемент: от теории к практике

Следующая

Строительные материалыКрепкий пол в каждый дом: ламинат или линолеум — что лучше

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещенияОтносительная влажность внутреннего воздуха при температуре:
до 12°Сот 13 до 24°С 25°С и выше
Сухойдо 60%до 50%до 40%
Нормальныйот 61 до 75%от 51 до 60%от 41 до 50%
Влажный 76% и болееот 61 до 75%от 51 до 60%
Мокрый76% и более61% и более

Кстати, о влажности!..

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице)Зоны влажности (в соотвествии с картой-схемой)
3 — сухая2 — нормальная1 — влажная
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрахВ и Г ▲Г▼
tв > 0 ℃tв > 0 ℃
0.010.130.150.140.15
0.020.140.150.150.19
0.030.140.160.160.21
0.050.140.170.170.22
0.10.150.180.180.23
0.150.150.180.190.24
0,2-0,30.150.190.190.24
Примечания:
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ — положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов
Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материалаρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе18000,560,700,81
Стандартный керамический на цементно-шлаковом растворе17000,520,640,76
Стандартный керамический на цементно-перлитовом растворе16000,470,580,70
Силикатный на цементно-песчаном кладочном растворе18000,700,760,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе12000,350,470,52
— то же, но с плотностью10000,290,410,47
Шлаковый, на цементно-песчаном кладочном растворе15000,520,640,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе16000,470,580,64
— то же, но с плотностью кирпича 1300 кг/м³14000,410,520,58
— то же, но с плотностью кирпича 1000 кг/м³12000,350,470,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе15000,640,700,81
— то же, четырнадцатипустотный14000,520,640,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт28003,493,493,49
Мрамор28002,912,912,91
Туф20000,760,931,05
— то же, но с плотностью18000,560,700,81
— то же, но с плотностью16000,410,520,64
— то же, но с плотностью14000,330,430,52
— то же, но с плотностью12000,270,350,41
— то же, но с плотностью10000,210,240,29
Известняк20000,931,161,28
— то же, но с плотностью18000,700,931,05
— то же, но с плотностью16000,580,730,81
— то же, но с плотностью14000,490,560,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон25001.691.922.04
Бетон на натуральном гравии или щебне24001.511.741.86
Бетоны на натуральных пористых заполнителях
Пемзобетон16000.520.60.68
— то же, но с плотностью14000.420.490.54
— то же, но с плотностью12000.340.40.43
— то же, но с плотностью10000.260.30.34
— то же, но с плотностью8000.190.220.26
Туфобетон18000.640.870.99
— то же, но с плотностью16000.520.70.81
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.290.410.47
Бетон на вулканическом шлаке16000.520.640.7
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.330.410.47
— то же, но с плотностью10000.240.290.35
— то же, но с плотностью800200.230.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией12000.410.520.58
— то же, но с плотностью10000.330.410.47
— то же, но с плотностью8000.230.290.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон1800660.80.92
— то же, но с плотностью16000.580.670.79
— то же, но с плотностью14000.470.560.65
— то же, но с плотностью12000.360.440.52
— то же, но с плотностью10000.270.330.41
— то же, но с плотностью8000.210.240.31
— то же, но с плотностью6000.160.20.26
— то же, но с плотностью5000.140.170.23
Керамзитобетон на перлитовом песке10000.280.350.41
— то же, но с плотностью8000.220.290.35
Перлитобетон12000.290.440.5
— то же, но с плотностью10000.220.330.38
— то же, но с плотностью8000.160.270.33
— то же, но с плотностью6000.120.190.23
Шлакопемзобетон18000.520.630.76
— то же, но с плотностью16000.410.520.63
— то же, но с плотностью14000.350.440.52
— то же, но с плотностью12000.290.370.44
— то же, но с плотностью10000.230.310.37
Шлакопемзопено и шлакопемзогазобетон16000.470.630.7
— то же, но с плотностью14000.350.520.58
— то же, но с плотностью12000.290.410.47
— то же, но с плотностью10000.230.350.41
— то же, но с плотностью8000.170.290.35
Вермикулетобетон8000.210.230.26
— то же, но с плотностью6000.140.160.17
— то же, но с плотностью4000.090.110.13
— то же, но с плотностью3000.080.090.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат10000.290.410.47
— то же, но с плотностью8000.210.330.37
— то же, но с плотностью6000.140.220.26
— то же, но с плотностью4000.110.140.15
— то же, но с плотностью3000.080.110.13
Газозолобетон, пенозолобетон12000.290.520.58
— то же, но с плотностью10000.230.440.59
— то же, но с плотностью8000.170.350.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор18000.580.760.93
Сложный раствор из цемента, песка, извести17000.520.70.87
Цементно-шлаковый раствор14000.410.520.64
Цементно-перлитовый раствор10000.210.260.3
— то же, но с плотностью8000.160.210.26
Известково-песчаный раствор16000.470.70.81
— то же, но с плотностью12000.350.470.58
Гипсово-перлитовый раствор6000.140.190.23
Гипсово-перлитовый поризованный раствор5000.120.150.19
— то же, но с плотностью4000.090.130.15
Гипсовые плиты литые конструкционные12000.350.410.47
— то же, но с плотностью10000.230.290.35
Листы гипсокартона (сухая штукатурка)8000.150.190.21
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Хвойная древесина (сосна иди ель) поперек волокон5000,090,140,18
— они же — вдоль волокон5000,180,290,35
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон7000,10,180,23
— они же — вдоль волокон7000,230,350,41
Клееная фанера6000,120,150,18
Облицовочный картон10000,180,210,23
Картон строительный многослойный6500,130,150,18
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП)10000,150,230,29
— то же, но для плотности8000,130,190,23
— то же, но для плотности6000,110,130,16
— то же, но для плотности4000,080,110,13
— то же, но для плотности2000,060,070,08
Плиты фибролитовые, арболит на основе портландцемента8000,160,240,3
— то же, но для плотности6000,120,180,23
— то же, но для плотности4000,080,130,16
— то же, но для плотности3000,070,110,14
Плиты камышитовые3000,070,090,14
— то же, но для плотности2000,060,070,09
Плиты торфяные термоизоляционные3000,0640,070,08
— то же, но для плотности2000,0520,060,064
Пакля строительная1500,050,060,07
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Минеральная вата, стекловата
Маты минеральной ваты прошивные или на синтетическом связующем1250.0560.0640.07
— то же, но для плотности750.0520.060.064
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие3500.0910.090.11
— то же, но для плотности3000.0840.0870.09
— то же, но для плотности2000.070.0760.08
— то же, но для плотности1000.0560.060.07
— то же, но для плотности500.0480.0520.06
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости2000.0640.070.076
Плиты из стеклянного штапельного волокна на синтетическом связующем500.0560.060.064
Маты и полосы из стеклянного волокна прошивные1500.0610.0640.07
Синтетические утеплители
Пенополистирол1500.050.0520.06
— то же, но для плотности1000.0410.0410.052
— то же, но для плотности400.0380.0410.05
Пенопласт ПХВ-1 и ПВ-11250.0520.060.064
— то же, но для плотности100 и менее0.0410.050.052
Пенополиуретан плитный800.0410.050.05
— то же, но для плотности600.0350.0410.041
— то же, но для плотности400.0290.040.04
Пенополиуретан напылением350.0270.0330.035
Плиты из резольноформальдегидного пенопласта1000.0470.0520.076
— то же, но для плотности750.0430.050.07
— то же, но для плотности500.0410.050.064
— то же, но для плотности400.0380.0410.06
Пенополиэтилен300.030.0320.035
Плиты из полиизоцианурата (PIR)350.0240.0280.031
Перлитопласт-бетон2000.0410.0520.06
— то же, но для плотности1000.0350.0410.05
Перлитофосфогелевые изделия3000.0760.080.12
— то же, но для плотности2000.0640.070.09
Каучук вспененный850.0350.040.045
Утеплители на натуральной основе
Эковата600.0410.0540.062
— то же, но для плотности450.0380.050.055
— то же, но для плотности350.0350.0420.045
Пробка техническая500.0370.0430.048
Листы пробковые2200.0350.0410.045
Плиты льнокостричные термоизоляционные2500.0540.0620.071
Войлок строительный шерстяной3000.0570.0650.072
— то же, но для плотности1500.0450.0510.059
Древесные опилки4000.0921.051.12
— то же, но для плотности2000.0710.0780.085
Засыпки минеральные
Керамзит — гравий8000.180.210.23
— то же, но для плотности6000.140.170.2
— то же, но для плотности4000.120.130.14
— то же, но для плотности3000.1080.120.13
— то же, но для плотности2000.0990.110.12
Шунгизит — гравий8000.160.20.23
— то же, но для плотности6000.130.160.2
— то же, но для плотности4000.110.130.14
Щебень из доменного шлака, шлаковой пемзы и аглоперита8000.180.210.26
— то же, но для плотности6000.150.180.21
— то же, но для плотности4001.1220.140.16
Щебень и песок из вспученного перлита6000.110.1110.12
— то же, но для плотности4000.0760.0870.09
— то же, но для плотности2000.0640.0760.08
Вермикулит вспученный2000.0760.090.11
— то же, но для плотности1000.0640.0760.08
Песок строительный сухой16000.350.470.58
Пеностекло или газостекло
Пеностекло или газо-стекло4000.110.120.14
— то же, но для плотности3000.090.110.12
— то же, но для плотности2000.070.080.09
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Асбестоцементные
Листы асбестоцементные плоские («плоский шифер»)18000.350.470.52
— то же, но для плотности16000.230.350.41
На битумной основе
Битумы нефтяные строительные и кровельные14000.270.270.27
— то же, но для плотности12000.220.220.22
— то же, но для плотности10000.170.170.17
Асфальтобетон21001.051.051.05
Изделия из вспученного перлита на битумном связующем4000.1110.120.13
— то же, но для плотности3000.0670.090.099
Рубероид, пергамин, толь, гибкая черепица6000.170.170.17
Линолеумы и наливные полимерные полы
Линолеум поливинилхлоридный многослойный18000.380.380.38
— то же, но для плотности16000.330.330.33
Линолеум поливинилхлоридный на тканевой подоснове18000.350.350.35
— то же, но для плотности16000.290.290.29
— то же, но для плотности14000.230.230.23
Пол наливной полиуретановый15000.320.320.32
Пол наливной эпоксидный14500.0290.0290.029
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Сталь, в том числе — арматурная стержневая7850585858
Чугун7200505050
Алюминий2600221221221
Медь8500407407407
Бронза7500÷930025÷10525÷10525÷105
Латунь8100÷880070÷12070÷12070÷120
Стекло кварцевое оконное25000.760.760.76

Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.

Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.

Сравнение теплопроводности PIR-плит и других материалов

Так, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.

В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.

PIR-плита ТЕХНОНИКОЛЬ

Во время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.

Видео: Утепление каркасного дома PIR плитами

Для чего используются такие расчеты в практическом приложении?

Оценка эффективности имеющейся термоизоляции

А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?

Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.

Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.

Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.

Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.

Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.

Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.

Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.

Определение уровня тепловых потерь

Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

R = Δt / q

Δt — разница температур по обе стороны конструкции, ℃.

q — удельное количество теряемого тепла, Вт.

То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

Q = S × Δt/R

Q — теплопотери через ограждающую конструкцию, Вт.

S — площадь этой конструкции, м².

Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)

Материал и схема запонения проемаПриведенное термическое Ro, м ² × °С/Вт
Д и ПВХА
Двойное остекление в спаренных переплетах0.4
Двойное остекление в раздельных переплетах0.440,34*
Тройное остекление в раздельно-спаренных переплетах0.550.46
Однокамерный стеклопакет:
— из обычного стекла0.380.34
— из стекла с твердым селективным покрытием0.510.43
— из стекла с мягким селективным покрытием0.560.47
Двухкамерный стеклопакет:
— из обычного стекла (с межстекольным расстоянием 6 мм)0.510.43
— из обычного стекла (с межстекольным расстоянием 12 мм)0.540.45
— из стекла с твердым селективным покрытием0.580.48
— из стекла с мягким селективным покрытием0.680.52
— из стекла с твердым селективным покрытием и заполнением аргоном0.650.53
Обычное стекло и однокамерный стеклопакет в раздельных переплетах:
— из обычного стекла0.56
— из стекла с твердым селективным покрытием0.65
— из стекла с мягким селективным покрытием0.72
— из стекла с твердым селективным покрытием и заполнением аргоном0.69
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:
— из обычного стекла0.68
— из стекла с твердым селективным покрытием0.74
— из стекла с мягким селективным покрытием0.81
— из стекла с твердым селективным покрытием и заполнением аргоном0.82
Два однокамерных стеклопакета в спаренных переплетах0.7
Два однокамерных стеклопакета в раздельных переплетах0.74
Четырехслойное остекление в двух спаренных переплетах0.8
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером:
-200×200 ×100 мм0,31 (без переплета)
-250×250 ×100 мм0,33 (без переплета)
Примечания:
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида)
А — переплеты из алюмииия
* — перепеты из стали
все указанные значения даны для площади остекления 75% от площади светового проема

Понятно, что тепловые потери будут считаться,  исходя из площади остекления и разницы температур.

Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.

Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:

Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен

Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.

Калькулятор расчета термического сопротивления ограждающей конструкции

Перейти к расчётам

Пояснения по работе с калькулятором

Программа несложна, но все же требует некоторых пояснений.

Предлагаемый алгоритм расчета позволяет провести вычисления сопротивления теплопередаче для любой ограждающей конструкции, включающей от одного до пяти различных слоев.

  • Первый слой пусть будет считаться по умолчанию основным. Для него указывается:

— его толщина в миллиметрах (так сделано для удобства, а перевод в метры программа выполнит самостоятельно).

— коэффициент теплопроводности материала, из которого создан этот слой. Значение берется из таблиц, с учетом режима эксплуатации А или Б. При вводе значения в калькулятор вместо запятой в качестве десятичного разделителя используется точка.

  • Вторым слоем предлагается указать имеющуюся (если есть) или планируемую термоизоляцию. Здесь уже на выбор – если оставить по умолчанию «нет», то программа проигнорирует этот слой. Если согласиться – появятся поля ввода данных, те же толщина и коэффициент теплопроводности.
  • Аналогично по выбору пользователя вводятся или игнорируются еще три произвольных слоя. Это, кстати, могут быть внешняя и внутренняя отделка, если она выполнена из значимых для теплопроводности материалов, многослойная кладка стены и т.п.
  • Если задача стоит только в определении сопротивления теплопередаче, то можно сразу переходить к клавише «РАССЧИТАТЬ…».
  • Ну а если есть желание еще и найти величину тепловых потерь через рассчитываемую ограждающую конструкцию, то ставится отметка «да, включить дополнительный расчёт». В этом случае появятся еще три поля ввода данных – площадь ограждающей конструкции, температура в помещении и температура на улице.

Уличную температуру для расчетов, как правило, берут минимальную, свойственную самой холодной декаде зимы в регионе проживания. Так задается необходимый запас мощности отопительного оборудования и эффективности системы утепления. Домашнюю температуру обычно считают в пределах 20÷24 ℃ для жилых помещений. Для нежилых (подъезды, коридоры, кладовые и т.п.) можно ограничиться +15 ℃. Для ванных, душевых, бань – порядка 35 ℃.

Рассчитанное термическое сопротивление показывается первой строкой появляющегося результата. Если был выбран вариант с вычислением тепловых потерь, то их значение (в ваттах) будет указано во второй строке.

что это такое + таблица значений

Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.

Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.

Содержание статьи:

Что такое КТП строительного материала?

Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

Влияние факторов на уровень теплопроводности

Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

Основой этого являются:

  • размерность кристаллов структуры;
  • фазовое состояние вещества;
  • степень кристаллизации;
  • анизотропия теплопроводности кристаллов;
  • объем пористости и структуры;
  • направление теплового потока.

Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

Стройматериалы с минимальным КТП

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

Значение теплопроводности может быть рассчитано по формуле:

λ = Q / S *(T1-T2)*t,

Где:

  • Q – количество тепла;
  • S – толщина материала;
  • T1, T2 – температура с двух сторон материала;
  • t – время.

Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:

λ = 1,16 √ 0,0196+0,22d2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Влияние влаги на теплопроводность стройматериала

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Методы определения коэффициента

Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

  1. Режим стационарных измерений.
  2. Режим нестационарных измерений.

Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.

Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата

Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.

Таблица теплопроводности стройматериалов

Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:

Материал (стройматериал)Плотность, м3КТП сухая, Вт/мºC% влажн._1% влажн._2КТП при влажн._1, Вт/мºCКТП при влажн._2, Вт/мºC
Битум кровельный14000,27000,270,27
Битум кровельный10000,17000,170,17
Шифер кровельный18000,35230,470,52
Шифер кровельный16000,23230,350,41
Битум кровельный12000,22000,220,22
Лист асбоцементный18000,35230,470,52
Лист асбестоцементный16000,23230,350,41
Асфальтобетон21001,05001,051,05
Толь строительная6000,17000,170,17
Бетон (на гравийной подушке)16000,46460,460,55
Бетон (на шлаковой подушке)18000,46460,560,67
Бетон (на щебенке)24001,51231,741,86
Бетон (на песчаной подушке)10000,289130,350,41
Бетон (пористая структура)10000,2910150,410,47
Бетон (сплошная структура)25001,89231,922,04
Пемзобетон16000,52460,620,68
Битум строительный14000,27000,270,27
Битум строительный12000,22000,220,22
Минеральная вата облегченная500,048250,0520,06
Минеральная вата тяжелая1250,056250,0640,07
Минеральная вата750,052250,060,064
Лист вермикулитовый2000,065130,080,095
Лист вермикулитовый1500,060130,0740,098
Газо-пено-золо бетон8000,1715220,350,41
Газо-пено-золо бетон10000,2315220,440,50
Газо-пено-золо бетон12000,2915220,520,58
Газо-пено-бетон (пенно-силикат)3000,088120,110,13
Газо-пено-бетон (пенно-силикат)4000,118120,140,15
Газо-пено-бетон (пенно-силикат)6000,148120,220,26
Газо-пено-бетон (пенно-силикат)8000,2110150,330,37
Газо-пено-бетон (пенно-силикат)10000,2910150,410,47
Строительный гипс плита12000,35460,410,46
Гравий керамзитовый6002,14230,210,23
Гравий керамзитовый8000,18230,210,23
Гранит (базальт)28003,49003,493,49
Гравий керамзитовый4000,12230,130,14
Гравий керамзитовый3000,108230,120,13
Гравий керамзитовый2000,099230,110,12
Гравий шунгизитовый8000,16240,200,23
Гравий шунгизитовый6000,13240,160,20
Гравий шунгизитовый4000,11240,130,14
Дерево сосна поперечные волокна5000,0915200,140,18
Фанера клееная6000,1210130,150,18
Дерево сосна вдоль волокон5000,1815200,290,35
Дерево дуба поперек волокон7000,2310150,180,23
Металл дюралюминий260022100221221
Железобетон25001,69231,922,04
Туфобетон16000,527100,70,81
Известняк20000,93231,161,28
Раствор извести с песком17000,52240,700,87
Песок под строительные работы16000,035120,470,58
Туфобетон18000,647100,870,99
Облицовочный картон10000,185100,210,23
Многослойный строительный картон6500,136120,150,18
Вспененный каучук60-950,0345150,040,054
Керамзитобетон14000,475100,560,65
Керамзитобетон16000,585100,670,78
Керамзитобетон18000,865100,800,92
Кирпич (пустотный)14000,41120,520,58
Кирпич (керамический)16000,47120,580,64
Пакля строительная1500,057120,060,07
Кирпич (силикатный)15000,64240,70,81
Кирпич (сплошной)18000,88120,70,81
Кирпич (шлаковый)17000,521,530,640,76
Кирпич (глиняный)16000,47240,580,7
Кирпич (трепельный)12000,35240,470,52
Металл медь850040700407407
Сухая штукатурка (лист)10500,15460,340,36
Плиты минеральной ваты3500,091250,090,11
Плиты минеральной ваты3000,070250,0870,09
Плиты минеральной ваты2000,070250,0760,08
Плиты минеральной ваты1000,056250,060,07
Линолеум ПВХ18000,38000,380,38
Пенобетон10000,298120,380,43
Пенобетон8000,218120,330,37
Пенобетон6000,148120,220,26
Пенобетон4000,116120,140,15
Пенобетон на известняке10000,3112180,480,55
Пенобетон на цементе12000,3715220,600,66
Пенополистирол (ПСБ-С25)15 – 250,029 – 0,0332100,035 – 0,0520,040 – 0,059
Пенополистирол (ПСБ-С35)25 – 350,036 – 0,0412200,0340,039
Лист пенополиуретановый800,041250,050,05
Панель пенополиуретановая600,035250,410,41
Облегченное пеностекло2000,07120,080,09
Утяжеленное пеностекло4000,11120,120,14
Пергамин6000,17000,170,17
Перлит4000,111120,120,13
Плита перлитоцементная2000,041230,0520,06
Мрамор28002,91002,912,91
Туф20000,76350,931,05
Бетон на зольном гравии14000,47580,520,58
Плита ДВП (ДСП)2000,0610120,070,08
Плита ДВП (ДСП)4000,0810120,110,13
Плита ДВП (ДСП)6000,1110120,130,16
Плита ДВП (ДСП)8000,1310120,190,23
Плита ДВП (ДСП)10000,1510120,230,29
Полистиролбетон на портландцементе6000,14480,170,20
Вермикулитобетон8000,218130,230,26
Вермикулитобетон6000,148130,160,17
Вермикулитобетон4000,098130,110,13
Вермикулитобетон3000,088130,090,11
Рубероид6000,17000,170,17
Плита фибролит8000,1610150,240,30
Металл сталь785058005858
Стекло25000,76000,760,76
Стекловата500,048250,0520,06
Стекловолокно500,056250,060,064
Плита фибролит6000,1210150,180,23
Плита фибролит4000,0810150,130,16
Плита фибролит3000,0710150,090,14
Клееная фанера6000,1210130,150,18
Плита камышитовая3000,0710150,090,14
Раствор цементо-песчаный18000,58240,760,93
Металл чугун720050005050
Раствор цементно-шлаковый14000,41240,520,64
Раствор сложного песка17000,52240,700,87
Сухая штукатурка8000,15460,190,21
Плита камышитовая2000,0610150,070,09
Цементная штукатурка10500,15460,340,36
Плита торфяная3000,06415200,070,08
Плита торфяная2000,05215200,060,064

Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:

Выводы и полезное видео по теме

Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.

Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.

Если у вас появились вопросы или есть ценная информация  по теме статьи, пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

Теплопроводность металлов, металлических элементов и сплавов

Теплопроводность — k — это количество тепла, передаваемого за счет единичного температурного градиента в единицу времени в установившихся условиях в направлении, нормальном к поверхности единицы площади. Теплопроводность — k — используется в уравнении Фурье.

9 0038190 9003 8 0-25
Металл, металлический элемент или сплав Температура
— t —
( o C)

Теплопроводность
— k —
(Вт / м K)
Алюминий-73 237
« 0 236
» 127 240
« 327 232
« 527 220
Алюминий — дюралюминий (94-96% Al, 3-5% Cu, следы Mg) 20 164
Алюминий — силумин (87% Al, 13% Si) 20 164
Алюминиевая бронза 0-25 70
Алюминиевый сплав 3003, прокат 0-25
Алюминиевый сплав 2014.отожженный 0-25 190
Алюминиевый сплав 360 0-25 150
Сурьма-73 30,2
« 0 25,5
« 127 21,2
» 327 18,2
« 527 16,8
Бериллий -73 301
» 0 218
« 127 161
» 327 126
« 527 107
» 727 89
« 927 73
Бериллиевая медь 25 80
Висмут-73 9.7
« 0 8,2
Бор-73 52,5
» 0 31,7
« 127 18,7
« 327 11,3
» 527 8,1
« 727 6,3
» 927 5.2
Кадмий-73 99,3
« 0 97,5
» 127 94,7
Цезий-73 36,8
« 0 36,1
Хром-73 111
» 0 94,8
« 127 87.3
« 327 80,5
» 527 71,3
« 727 65,3
» 927 62,4
Кобальт -73 122
« 0 104
» 127 84,8
Медь-73 413
« 0 401
« 127 392
» 327383
« 527 371
» 727 357
« 927 342
Медь электролитическая (ETP) 0-25 390
Медь — Адмиралтейская латунь 20 111
Медь — алюминиевая бронза (95% Cu, 5% Al) 20 83
Медь — Бронза (75% Cu, 25% Sn) 20 26
Медь — латунь (желтая латунь) (70% Cu, 30% Zn) 20 111
Медь — патронная латунь (UNS C26000) 20 120
Медь — константан (60% Cu, 40% Ni) 20 22.7
Медь — немецкое серебро (62% Cu, 15% Ni, 22% Zn) 20 24,9
Медь — фосфористая бронза (10% Sn, UNS C52400) 20 50
Медь — Красная латунь (85% Cu, 9% Sn, 6% Zn) 20 61
Мельхиор 20 29
Германий-73 96,8
« 0 66.7
« 127 43,2
» 327 27,3
« 527 19,8
» 727 17,4
» 927 17,4
Золото-73 327
« 0 318
» 127 312
« 327 304
« 527 292
» 727 278
« 927 262
Гафний-73 24.4
« 0 23,3
» 127 22,3
« 327 21,3
» 527 20,8
» 727 20,7
« 927 20,9
Hastelloy C 0-25 12
Инконель 21-100 15
Инколой 0-100 12
Индий-73 89.7
« 0 83,7
» 127 75,5
Иридий-73 153
« 0 148
« 127 144
» 327 138
« 527 132
» 727 126
« 927 120
Железо-73 94
« 0 83.5
« 127 69,4
» 327 54,7
« 527 43,3
» 727 32,6
» 927 28,2
Железо — литье 20 52
Железо — перлитное с шаровидным графитом 100 31
Кованое железо 20 59
Свинец-73 36.6
« 0 35,5
» 127 33,8
« 327 31,2
Химический свинец 0-25 35
Сурьма свинец (твердый свинец) 0-25 30
Литий-73 88,1
« 0 79.2
« 127 72,1
Магний-73 159
» 0 157
« 127 153
« 327 149
» 527 146
Магниевый сплав AZ31B 0-25 100
Марганец-73 7.17
« 0 7,68
Ртуть-73 28,9
Молибден-73 143
» 0 139
« 127 134
» 327 126
« 527 118
» 727 112
« 927 105
Монель 0-100 26
Никель-73 106
« 0 94
» 127 80.1
« 327 65,5
» 527 67,4
« 727 71,8
» 927 76,1
Никель — Кованые 0-100 61-90
Мельхиор 50-45 (константан) 0-25 20
Ниобий (колумбий)-73 52.6
« 0 53,3
» 127 55,2
« 327 58,2
» 527 61,3
» 727 64,4
« 927 67,5
Осмий 20 61
Палладий 75.5
Платина-73 72,4
« 0 71,5
» 127 71,6
« 327 73,0
« 527 75,5
» 727 78,6
» 927 82,6
Плутоний 20 8.0
Калий-73 104
« 0 104
» 127 52
Красная латунь 0-25 160
Рений-73 51
« 0 48,6
» 127 46,1
« 327 44.2
« 527 44,1
» 727 44,6
« 927 45,7
Родий-73 154
« 0 151
» 127 146
« 327 136
» 527 127
« 727 121
« 927 115
Рубидий-73 58.9
« 0 58,3
Селен 20 0,52
Кремний-73 264
» 0 168
« 127 98,9
» 327 61,9
« 527 42,2
» 727 31.2
« 927 25,7
Серебро-73 403
» 0 428
« 127 420
« 327 405
» 527 389
« 727 374
» 927 358
Натрий-73 138
« 0 135
Припой 50-50 0-25 50
Сталь — углерод, 0.5% C 20 54
Сталь — углеродистая, 1% C 20 43
Сталь — углеродистая, 1,5% C 20 36
« 400 36
« 122 33
Сталь — хром, 1% Cr 20 61
Сталь — хром, 5% Cr 20 40
Сталь — хром, 10% Cr 20 31
Сталь — хром никель, 15% Cr, 10% Ni 20 19
Сталь — хромоникель, 20% Cr , 15% Ni 20 15.1
Сталь — Hastelloy B 20 10
Сталь — Hastelloy C 21 8,7
Сталь — никель, 10% Ni 20 26
Сталь — никель, 20% Ni 20 19
Сталь — никель, 40% Ni 20 10
Сталь — никель, 60% Ni 20 19
Сталь — хром никель, 80% никель, 15% никель 20 17
Сталь — хром никель, 40% никель, 15% никель 20 11.6
Сталь — марганец, 1% Mn 20 50
Сталь — нержавеющая, тип 304 20 14,4
Сталь — нержавеющая, тип 347 20 14,3
Сталь — вольфрам, 1% W 20 66
Сталь — деформируемый углерод 0 59
Тантал-73 57.5
« 0 57,4
» 127 57,8
« 327 58,9
» 527 59,4
» 727 60,2
« 927 61
Торий 20 42
Олово-73 73.3
« 0 68,2
» 127 62,2
Титан-73 24,5
« 0 22,4
« 127 20,4
» 327 19,4
« 527 19,7
» 727 20.7
« 927 22
Вольфрам-73 197
» 0 182
« 127 162
« 327 139
» 527 128
« 727 121
» 927 115
Уран -73 25.1
« 0 27
» 127 29,6
« 327 34
» 527 38,8
» 727 43,9
« 927 49
Ванадий-73 31,5
» 0 31.3
« 427 32,1
» 327 34,2
« 527 36,3
» 727 38,6
» 927 41,2
Цинк-73 123
« 0 122
» 127 116
« 327 105
Цирконий-73 25.2
« 0 23,2
» 127 21,6
« 327 20,7
» 527 21,6
» 727 23,7
« 927 25,7

Сплавы — температура и теплопроводность

Температура и теплопроводность для

  • Hastelloy A
  • Инконель
  • Navarich
  • Advance
  • Монель

сплавы:

Теплопроводность

Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м · К) *
Алмаз 1000
Серебро 1,01 406,0
Медь 0,99 385,0
Золото 314
Латунь 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50.2
Свинец 0,083 34,7
Ртуть 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0,8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0.08
Снег (сухой) 0,00026
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0001 0,04
Минеральная вата 0,04
Полистирол (пенополистирол) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,000057 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд. Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. Имея это в виду, два приведенных выше столбца не всегда совпадают.Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана можно принять как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал процедуру численного приближения для расчета теплопроводности полиуретана на http://cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0.022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 с плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Ссылка
Young
Ch 15.

10 лучших теплопроводящих материалов

Теплопроводность — это мера способности материалов передавать тепло через них. Материалы с высокой теплопроводностью могут эффективно передавать тепло и легко забирать тепло из окружающей среды.Плохие теплопроводники сопротивляются тепловому потоку и медленно извлекают тепло из окружающей среды. Теплопроводность материала измеряется в ваттах на метр на градус Кельвина (Вт / м • К) в соответствии с рекомендациями S.I (Международная система).

10 лучших измеренных теплопроводных материалов и их значения приведены ниже. Эти значения проводимости являются средними из-за разницы в теплопроводности в зависимости от используемого оборудования и среды, в которой были получены измерения.

Теплопроводящие материалы

  1. Бриллиант — 2000 — 2200 Вт / м • K

    Алмаз является ведущим теплопроводным материалом и имеет измеренные значения проводимости в 5 раз выше, чем у меди, самого производимого металла в Соединенных Штатах. Атомы алмаза состоят из простой углеродной основы, которая представляет собой идеальную молекулярную структуру для эффективной передачи тепла. Часто материалы с простейшим химическим составом и молекулярной структурой имеют самые высокие значения теплопроводности.

    Diamond — важный компонент многих современных портативных электронных устройств. Их роль в электронике — способствовать рассеиванию тепла и защищать чувствительные части компьютера. Высокая теплопроводность алмазов также оказывается полезной при определении подлинности камней в ювелирных изделиях. Добавление небольшого количества алмаза в инструменты и технологии может сильно повлиять на свойства теплопроводности.

  2. Серебро — 429 Вт / м • K

    Серебро — относительно недорогой и распространенный теплопроводник.Серебро входит в состав многих бытовых приборов и является одним из самых универсальных металлов из-за его ковкости. 35% серебра, производимого в США, используется для производства электрических инструментов и электроники (US Geological Survey Mineral Community 2013). Вспомогательный продукт серебра, серебряная паста, пользуется все большим спросом из-за его использования в экологически чистых источниках энергии. Серебряная паста используется в производстве фотоэлементов, которые являются основным компонентом солнечных батарей.

  3. Медь — 398 Вт / м • K

    Медь — наиболее часто используемый металл для производства токопроводящих приборов в США.Медь имеет высокую температуру плавления и умеренную скорость коррозии. Это также очень эффективный металл для минимизации потерь энергии при передаче тепла. Металлические кастрюли, трубы для горячей воды и автомобильные радиаторы — все это приборы, в которых используются проводящие свойства меди.

  4. Золото — 315 Вт / м • K

    Золото — редкий и дорогой металл, который используется для специальных проводящих применений. В отличие от серебра и меди, золото редко тускнеет и может выдерживать большие количества коррозии.

  5. Карбид кремния — 270 Вт / м • K

    Карбид кремния — это полупроводник, состоящий из сбалансированной смеси атомов кремния и углерода. При изготовлении и сплавлении кремний и углерод соединяются, образуя чрезвычайно твердый и прочный материал. Эта смесь часто используется в качестве компонента автомобильных тормозов, турбинных машин и стальных смесей.

  6. Оксид бериллия– 255 Вт / м • K

    Оксид бериллия используется во многих высокопроизводительных деталях для таких приложений, как электроника, поскольку он обладает высокой теплопроводностью и является хорошим электрическим изолятором.

  7. Алюминий — 247 Вт / м • K

    Алюминий обычно используется в качестве экономичной замены меди. Хотя алюминий не такой проводящий, как медь, его много, и с ним легко манипулировать из-за его низкой температуры плавления. Алюминий является важным компонентом светильников L.E.D (светоизлучающих диодов). Медно-алюминиевые смеси набирают популярность, поскольку они могут использовать свойства как меди, так и алюминия и могут производиться с меньшими затратами.

  8. Вольфрам — 173 Вт / м • K

    Вольфрам имеет высокую температуру плавления и низкое давление пара, что делает его идеальным материалом для приборов, которые подвергаются воздействию высоких уровней электричества.Химическая инертность вольфрама позволяет использовать его в электродах, являющихся частью электронных микроскопов, без изменения электрических токов. Он также часто используется в лампах и как компонент электронно-лучевых трубок.

  9. Графит 168 Вт / м • K

    Графит — это распространенная, недорогая и легкая альтернатива другим углеродным аллотропам. Его часто используют в качестве добавки к смесям полимеров для улучшения их теплопроводных свойств. Батареи — знакомый пример устройства, использующего высокую теплопроводность графита.

  10. Цинк 116 Вт / м • K

    Цинк — один из немногих металлов, которые можно легко комбинировать с другими металлами для создания металлических сплавов (смеси двух или более металлов). 20% цинковых приборов в США состоят из цинковых сплавов. При цинковании используется 40% производимого чистого цинка. Цинкование — это процесс нанесения цинкового покрытия на сталь или железо, которое предназначено для защиты металла от атмосферных воздействий и ржавчины.

Список литературы

Мохена, Т.К., Мочане, М. Дж., Сефади, Дж. С., Мотлунг, С. В., и Андала, Д. М. (2018). Теплопроводность полимерных композитов на основе графита. Влияние теплопроводности на энергетические технологии. DOI: 10.5772 / intechopen.75676

Оксид бериллия Получено с https://thermtest.com/materials-database#Beryllium-Oxide

База данных материалов Thermtest. https://thermtest.com/materials-database

Автор: Каллиста Уилсон, младший технический писатель на Thermtest

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности

Теплопроводность элементов — Angstrom Sciences Справочник по теплопроводности Перейти к основному содержанию
Теплопроводность Имя Символ #
0.0000364 Вт / см · K Радон Rn 86
0,0000569 Вт / см · K Ксенон Xe 54
0,000089 Вт / см · K Хлор Класс 17
0,0000949 Вт / см · K Криптон Кр 36
0,0001772 Вт / см · K Аргон Ar 18
0.0002598 Вт / см · K Азот N 7
0,0002674 Вт / см · K Кислород O 8
0,000279 Вт / см · K Фтор F 9
0,000493 Вт / см · K Неон Ne 10
0,00122 Вт / см · K Бром руб. 35
0.00152 Вт / см · K Гелий He 2
0,001815 Вт / см · K Водород H 1
0,00235 Вт / см · K фосфор P 15
0,00269 Вт / см · K Сера S 16
0,00449 Вт / см · K Йод I 53
0.017 Вт / см · K Астатин в 85
0,0204 Вт / см · K Селен SE 34
0,0235 Вт / см · K Теллур Te 52
0,063 Вт / см · K Нептуний Np 93
0,0674 Вт / см · K Плутоний Pu 94
0.0782 Вт / см · K Марганец Мн 25
0,0787 Вт / см · K висмут Bi 83
0,0834 Вт / см · K Меркурий рт. Ст. 80
0,1 Вт / см · K Америций Am 95
0,1 Вт / см · K Калифорний Cf 98
0.1 Вт / см · K Нобелий Нет 102
0,1 Вт / см · K Кюрий см 96
0,1 Вт / см · K Лоуренсий Lr 103
0,1 Вт / см · K Фермий Fm 100
0,1 Вт / см · K Эйнштейний Es 99
0.1 Вт / см · K Берклий Bk 97
0,1 Вт / см · K Менделевий Md 101
0,106 Вт / см · K Гадолиний Gd 64
0,107 Вт / см · K Диспрозий Dy 66
0,111 Вт / см · K Тербий Тб 65
0.114 Вт / см · K Церий CE 58
0,12 Вт / см · K Актиний Ac 89
0,125 Вт / см · K празеодим Пр 59
0,133 Вт / см · K Самарий см 62
0,135 Вт / см · K Лантан La 57
0.139 Вт / см · K Европий Eu 63
0,143 Вт / см · K Эрбий Er 68
0,15 Вт / см · K Франций Fr 87
0,158 Вт / см · K Скандий Sc 21
0,162 Вт / см · K Гольмий Ho 67
0.164 Вт / см · K Лютеций Лю 71
0,165 Вт / см · K Неодим Nd 60
0,168 Вт / см · K Тулий ТМ 69
0,172 Вт / см · K Иттрий Y 39
0,179 Вт / см · K Прометий вечера 61
0.184 Вт / см · K Барий Ba 56
0,186 Вт / см · K Радий Ra 88
0,2 Вт / см · K Полоний Po 84
0,219 Вт / см · K Титан Ti 22
0,227 Вт / см · K Цирконий Zr 40
0.23 Вт / см · K Гафний Hf 72
0,23 Вт / см · K Резерфордий Rf 104
0,243 Вт / см · K Сурьма Сб 51
0,274 Вт / см · K Бор B 5
0,276 Вт / см · K Уран U 92
0.307 Вт / см · K Ванадий В 23
0,349 Вт / см · K Иттербий Yb 70
0,353 Вт / см · K Стронций Sr 38
0,353 Вт / см · K Свинец Пб 82
0,359 Вт / см · K Цезий CS 55
0.406 Вт / см · K Галлий Ga 31
0,461 Вт / см · K Таллий Tl 81
0,47 Вт / см · K Протактиний Па 91
0,479 Вт / см · K Рений Re 75
0,502 Вт / см · K Мышьяк Как 33
0.506 Вт / см · K Технеций Tc 43
0,537 Вт / см · K Ниобий Nb 41
0,54 Вт / см · K торий Чт 90
0,575 Вт / см · K Тантал Ta 73
0,58 Вт / см · K Дубний Db 105
0.582 Вт / см · K Рубидий руб. 37
0,599 Вт / см · K Германий Ge 32
0,666 Вт / см · K Олово Sn 50
0,716 Вт / см · K Платина Pt 78
0,718 Вт / см · K Палладий Pd 46
0.802 Вт / см · K Утюг Fe 26
0,816 Вт / см · K Индий В 49
0,847 Вт / см · K Литий Li 3
0,876 Вт / см · K Осмий Ос 76
0,907 Вт / см · K Никель Ni 28
0.937 Вт / см · K Хром Cr 24
0,968 Вт / см · K Кадмий Кд 48
1 Вт / см · K Кобальт Co 27
1,024 Вт / см · K Калий К 19
1,16 Вт / см · K Цинк Zn 30
1.17 Вт / см · K Рутений Ру 44
1,29 Вт / см · K Углерод C 6
1,38 Вт / см · K Молибден Пн 42
1,41 Вт / см · K Натрий Na 11
1,47 Вт / см · K Иридий Ir 77
1.48 Вт / см · K Кремний Si 14
1,5 Вт / см · K Родий Rh 45
1,56 Вт / см · K Магний мг 12
1,74 Вт / см · K Вольфрам Вт 74
2,01 Вт / см · K Кальций Ca 20
2.01 Вт / см · K Бериллий Be 4
2,37 Вт / см · K Алюминий Al 13
3,17 Вт / см · K Золото Au 79
4,01 Вт / см · K Медь Cu 29
4,29 Вт / см · K Серебро Ag 47

Теплопроводность обычных металлов и сплавов

Теплопроводность обычных металлов, сплавов и материалов

Таблица содержания теплопередачи
Свойства металлов — теплопроводность, плотность, удельная теплоемкость

В этой таблице приведены типичные значения термической стойкости некоторых обычных промышленных металлов и сплавов.

Значения относятся к температуре окружающей среды (от 0 до 25 ° C).

Все значения следует рассматривать как типовые, поскольку эти свойства зависят от конкретного типа сплава, термообработки и других факторов. Значения для конкретных аллотов могут сильно различаться.

Теплопроводность обычных металлов

Имя

Теплопроводность
Вт / см K

Теплопроводность
Вт / м K

Чугун

0.7

AISI-SAE 1020

0,52

Нержавеющая сталь марки 304

0,15

Серый чугун

0,47

Хастеллой C

0,12

Инконель

0,15

Чистый алюминий

237

Алюминиевый сплав 3003, прокат

1.9

Алюминиевый сплав 2014, отожженный

1,9

Алюминиевый сплав 360

9,8

Медь электролитическая (ETP)

3,9

Желтая латунь (высокая латунь)

22,3

Алюминиевая бронза

0.7

Бериллий

218

Бериллий Медь 25

1.20.8

Купроникель 30%

0,3

Красная латунь, 85%

1,6

Латунь

109

Сурьма свинец (жесткий свинец)

0.35

Припой 50-50

0,5

Магниевый сплав AZ31B

1.0

Свинец

35,3

Серебро

429

Монель

0,3

Золото

318

Никель (технический)

0.9

Мельхиор 55-45 (константан)

0,2 ​​

Титан (коммерческий)

1,8

Цинк (технический)

1,1

Цирконий (технический)

0,2 ​​

Цемент

0.29

Эпоксидная смола (с диоксидом кремния)

0,30

Резина

0,16

Epoxt (незаполненный)

0,59

Термопаста

0,8 — 3

Термоэпоксид

1–7

Стекло

1.1

Почва

1,5

Песчаник

2,4

Алмаз

900-2320

Асфальт

0,75

Бальза

0,048

Никель-хромовая сталь

16,4

Кориан

1.06

Стекловолокно

0,04

Гранит

1,65 — 3,9

Пенополистирол

0,032

Пенополиуретан

0,02

Иридий

147

Лиственные породы (дуб, клен ..)

0.16

Теплопроводность металлов

k = британских тепловых единиц / час · фут · ° F
k t = k до — a (t — t o )

Вещество Диапазон температур
, ° F
к по а Вещество Диапазон температур
, ° F
к по а

Металлы

Олово 60–212 36 0.0135
Алюминий 70–700 130 0,03 Титан 70–570 9 0,001
Сурьма 70–212 10,6 0,006 Вольфрам 70–570 92 0,02
Бериллий 70–700 80 0.027 Уран 70–770 14 -0,007
Кадмий 60–212 53,7 0,01 Ванадий 70 20
Кобальт 70 28 Цинк 60–212 65 0.007
Медь 70–700 232 0,032 Цирконий 32 11
Германий 70 34 Сплавы:
Золото 60–212 196 Адмиралтейство Металл 68–460 58.1 -0,054
Чистое железо 70–700 41,5 0,025 Латунь–265–360 61,0 -0,066
Кованое железо 60–212 34,9 0,002 (70% Cu, 30% Zn) 360–810 84,6 0
Сталь (1% C) 60–212 26.2 0,002 Бронза, 7,5% Sn 130–460 34,4 -0,042
Свинец 32–500 20,3 0,006 7,7% Al 68–392 39,1 -0,038
Магний 32–370 99 0,015 Константан-350-212 12.7 -0,0076
Меркурий 32 4,8 (60% Cu, 40% Ni) 212–950 10,1 -0,019
молибден 32–800 79 0,016 Дурал 24S (93,6% Al,
4,4% Cu,
-321-550 63,8 -0,083
Никель 70–560 36 0.0175 1,5% Mg, 0,5% Mn) 550–800 130. -0,038
Палладий 70 39 Инконель X (73% Ni, 15% Cr, 7% 27–1 070 7,62 -0,0068
Платина 70–800 41 0,0014 Fe, 2,5% Ti)
Плутоний 70 5 Манганин (84% Cu, 12% Mn, 1070–1650 3.35 -0,0111
Родий 70 88 4% Ni) -256-212 11,5 -0,015
Серебро 70–600 242 0,058 Монель (67,1% Ni, 29,2%
Cu, 1,7% Fe, 1,0% Mn)
-415-1,470 12,0 -0.008
тантал 212 32
Таллий 32 29 Нейзильбер (64% Cu,
17% Zn, 18% Ni)
68–390 18,1 -0,0156
торий 70–570 17 -0,0045

Связанный:

Артикул:

  • Справочник по металлам ASM, второе издание, Американское общество металлов, Парк металлов, штат Огайо, 1983.
  • Линч, Коннектикут, Практическое руководство CRC по материаловедению, CRC Press, Бока-Ратон, Флорида, 1989.
  • Шакелфорд, Дж. Ф., и Александер, В., Справочник CRC по материаловедению и инженерии, CRC Press, Бока-Ратон, Флорида, 1991.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки вашего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Теплопроводность | TORELINA ™ | ТОРЕЙ ПЛАСТИК

Техническая информация | Тепловые свойства | Теплопроводность

Явления теплопередачи, которые заставляют объекты, подверженные разнице температур, принимать однородную температуру, в основном подразделяются на теплопроводность, конвекцию и излучение, в зависимости от состояния пути потока, по которому течет тепло, и других факторов.Теплопроводность — это явление, при котором тепло перемещается через твердый или неподвижный газ (или жидкость). Теплопроводность — это свойство, указывающее на легкость, с которой тепло может проходить через твердое тело, такое как формованное изделие. Носители (среды) для переноса тепла включают свободные электроны, колебания решетки и колебания молекул. Эффект теплопередачи свободных электронов очень высок, поэтому такие металлы, как алюминий и медь, обладают высокой теплопроводностью. С другой стороны, пластмассовые материалы, такие как TORELINA, являются изоляционными материалами, которые не имеют свободных электронов, поэтому имеют более низкую теплопроводность, чем металлы, и превосходят их по своим теплоизоляционным свойствам.

Ⅰ. Измерение теплопроводности

Существуют различные методы измерения теплопроводности твердого тела. Их можно разделить на установившиеся методы, при которых температура образца находится в установившемся состоянии, а теплопроводность определяется по количеству (тепловой поток, Вт / м 2 ), которое проходит через единицу поперечного сечения. площадь в единицу времени и нестационарные методы, в которых теплопроводность определяется по скорости, с которой тепло распространяется через образец (температуропроводность, м 2 S -1 ).В последнее время чаще всего используются нестационарные методы, с помощью которых можно быстро получить измерения. Эти методы включают метод лазерной вспышки и метод горячего диска. Теплопроводность может быть определена с использованием плотности образца и удельной теплоемкости при температуре измерения в дополнение к температуропроводности, определенной нестационарным методом, в соответствии с формулой 6.1. Обычно для измерения теплопроводности используется плоская пластина, поэтому с помощью стационарного метода и метода лазерной вспышки можно определить теплопроводность в направлении толщины, а с помощью метода горячего диска можно определить теплопроводность в плоском направлении. в дополнение к этому по толщине.Существует еще один метод, с помощью которого теплопередачу фактического формованного продукта проверяют визуально с помощью термографии, которая анализирует инфракрасные лучи, испускаемые формованным продуктом, и затем выражает это на диаграмме распределения температуры.

Ⅱ. Теплопроводность TORELINA

Коэффициент теплопроводности TORELINA в направлении толщины, определенный стационарным методом, приведен в таблице. 6.3. Армированный ППС имеет более высокую теплопроводность, чем неармированный ППС.Армирование из стекловолокна и минерального наполнителя имеет более высокую теплопроводность, чем полимер PPS, поэтому теплопроводность различается в зависимости от типа и содержания добавленного армирования.

Таблица. 6.3 Теплопроводность TORELINA (устойчивый метод, 80 ℃)

Товар шт. Армированный стекловолокном Стекло + наполнитель армированное Улучшение эластомера Неармированный
A504X90 A604 A310MX04 A610MX03 A673M A575W20 A495MA1 A900 A670T05
Теплопроводность
(направление толщины)
Вт / м ・ K 0.3 0,3 0,5 0,5 0,3 0,3 0,4 0,2 0,2

Ⅲ. PPS

с высокой теплопроводностью

PPS с высокой теплопроводностью подходит для продления срока службы электрических и электронных компонентов, таких как системы светодиодного освещения, а также для проектирования теплового излучения в таких целях, как снижение потерь энергии в обмотках, используемых в автомобильных двигателях.TORELINA предлагает линейку TORELINA H501B, электропроводящего типа, теплопроводность которого значительно улучшена по сравнению с обычным PPS, и H718LB, который сохраняет свои изоляционные свойства. (Таблица 6.4)

Таблица. 6.4 PPS с высокой теплопроводностью (23 ℃)

с высокой теплопроводностью
Арт. Направление измерения шт. Армированный стекловолокном Высоконаполненная PPS Метод измерения
Тип изоляции Электропроводящий тип
A504X90 A310MX04 H718LB H501B
Теплопроводность Плоское направление Вт / м ・ K 0.4 0,7 1,0 10,0 Метод горячего диска
Объемное сопротивление Ом ・ м 2 × 10 14 1 × 10 14 5 × 10 13 5 × 10 0

Рис. 6.7 Термографический анализ

При термическом анализе с использованием термографии (рис.6.7) источник тепла (3,4 Вт) размещается в центре плоской пластины (80 × 80 × 3 мм t), а наблюдение ведется с противоположной стороны. На рис. 6.8 сравниваются графики распределения температуры, полученные при нагревании обычных марок PPS, армированных стекловолокном (A504X90), и марок PPS с высокой теплопроводностью (H501B и H718LB) в течение пяти минут. Можно видеть, что для марки PPS, армированной стекловолокном, которая имеет низкую теплопроводность, тепло от источника тепла трудно рассеивать, образуя горячую точку, тогда как для марок PPS с высокой теплопроводностью тепло распространяется в окружающую среду, тем самым ограничивая размер горячей точки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *