Пиролизный котел своими руками
В регионах, отдалённых от централизованного отопления, раньше каждый дом оборудовался твердотопливным котлом. Топили его углём и дровами. К сожалению, такая конструкция не была лишена недостатков. Основным являлось неудобство при использовании.
Внимание! Довольно часто люди устанавливают электрические отопительные приборы, но стоит признать, что отапливать с их помощью дом — довольно затратное предприятие.
К счастью, есть достойная альтернатива в виде пиролизного котла, который можно сделать своими руками. Основные схемы и чертежи будут представлены в этой статье. Устройства такого класса могут вырабатывать тепло за счёт сжигания дров или специальных брикетов. Мало того, можно использовать отходы с деревообрабатывающих фабрик.
Что собой представляет пиролизный котёл
Как работает
Со схем и чертежей пиролизной отопительной системы можно понять основные принципы её работы.
Процесс, который происходит внутри пиролизного котла, сделанного своими руками по чертежам и схемам, представленным в статье, функционирует благодаря сухой перегонке. Когда температура достигает 500-600 градусов по Цельсию — начинается процесс разложения. Его результатом являются два вещества — газ и природный кокс.
Созданный внутри конструкции газ смешивается с атомами кислорода. Благодаря этому начинается горение. Конечно же, чтобы всё прошло по схеме — внутри камеры, сделанной своими руками по чертежам и схемам, должна быть соответствующая температура.
Пиролизный газ, создаваемый в котле, сделанном своими руками, вступает во взаимодействие с углеродом. Это, в свою очередь, запускает реакцию. Но чтобы это стало возможным устройство должно быть сделано чётко по чертежам и схемам.
Результатом пиролизного процесса, который происходит в котле длительного горения, сделанном своими руками по популярным чертежам и схемам, образуется дым, но он не содержит каких-либо вредных соединений. Поэтом вред, наносимый, окружающей среде минимален.
Важным достоинством пиролизного котла, сделанного своими руками по чертежам и схемам, является то, что он практически не вырабатывает отходов. При этом выделяется немалое количество тепловой энергии, благодаря которой можно отопить немалую площадь.
Пиролизный процесс относится к классу экзотермических. В общем, так называются все процессы, в результате которых происходит высвобождение тепла. Но не всё так просто. Дело в том, что это тепло необходимо для того, чтобы осуществить дополнительный прогрев и сушку топлива.
Преимущества и недостатки
Есть важные нюансы, о которых нужно знать, перед тем как мастерить пиролизный котёл по чертежам и схемам. Начать нужно с достоинств и недостатков, которые имеет конструкция.
К плюсам пиролизных котлов, сделанных своими руками, можно причислить:
- Поддержание заданной температуры теплоносителя на протяжении длительного периода.
- Большой объём загрузочной камеры.
- Высокий КПД.
- Возможность утилизации отходов деревообрабатывающей промышленности в пиролизном котле, сделанном по чертежам.
Тем не менее, чтобы пиролизный котёл, сделанный своими руками, работал как нужно необходимо, чтобы в топливе было не более 30 процентов дополнительных компонентов.
Любая конструкция имеет свои недостатки, в данном случае к ним можно причислить:
- большие габариты,
- зависимость от наличия сети,
- требовательность к топливу.
Также к недостаткам пиролизной системы можно причислить высокую стоимость покупки. Но её можно значительно снизить, если создать устройство своими руками по чертежам и схемам.
В пиролизный котёл, сделанный своими руками по схемам и чертежам нельзя класть непросушенную древесину. Дело в том, что при высокой влажности пиролизной реакции не происходит. Даже при малом проценте резко падает КПД. Это происходит потому, что тепловая энергия превращается в пар.
Необходимость подключения к сети объясняется тем, что устройство должно иметь вентилятор.
Создаём пиролизный котёл
Разбор схем и чертежей
Чтобы создать пиролизный котёл своими руками, важно тщательно изучить схемы и чертежи. Именно по ним вы сможете подобрать конструкцию и максимально точно определить количество нужных для строительства материалов.
На схеме и чертеже пиролизного котла отображены основные элементы, без которых невозможно построить конструкцию своими руками:
- регуляторы,
- дымовые каналы,
- отверстия для воздуха,
- трубы для подачи воды,
- трубы для отвода воды,
- камера сгорания,
- вентилятор.
Очень важно при изготовлении пиролизного котла своими руками придерживаться чертежей и схем. Дело в том, что это сложное устройство, в котором будут происходить высокотемпературные процессы. Поэтому малейшая ошибка может обратиться аварийной ситуацией.
Для частного дома будет достаточно пиролизного котла, мощность которого составляет 40 кВт. Не стоит стремиться к большой мощности. Дело в том, что в таком случае конструкция становится значительно сложнее. Мало того, конечная стоимость также увеличивается.
Выбор мощности пиролизного котла, который вы собираетесь создать, влияет на размер ключевых деталей на чертеже или схеме. От правильного подбора размеров зависит нормальное функционирование устройства.
Совет! Если вы владелец маленького домика, то можно остановить свой выбор на котле с мощностью в 30 кВт. Этого будет более чем достаточно.
Инструменты, необходимые для изготовления котла своими руками
Чтобы своими руками сделать конструкцию, работающую на основе пиролизной реакции по чертежам и схемам, необходимо запастись некоторым инвентарём. Для воплощения задумки в жизнь, вам понадобятся следующие материалы и инструменты:
- болгарка,
- сварочный аппарат,
- шлифовальные круги,
- электрическая дрель,
- электроды,
- трубы различного диаметра,
- полосы стали,
- термодатчик,
- вентилятор,
- металлические листы.
Это базовый набор, который необходим, чтобы создать пиролизную систему своими руками по схемам и чертежам. Конечно же, в процессе работы может возникнуть необходимость в дополнительных инструментах и материалах.
Внимание! Толщина стали для корпуса должна быть 3 мм, а лучше 4.
Тонкости сборки
После того как вы выберите подходящую схему, можно будет приступить к сборке. При этом необходимо придерживаться следующих рекомендаций:
- Отверстие, через которое в топку будут попадать дрова и брикеты должно располагаться немного выше, чем у обычных твердотопливных конструкций.
- Не забудьте про ограничитель. Его главная задача — это контролировать количество воздуха. Для его создания нужна семидесятимиллиметровая труба в сечении. Её длина должна быть больше корпуса.
- К ограничителю приваривается диск. Элемент должен быть выполнен из стали. Место приваривания — низ конструкции. В результате у вас получится зазор в 40 мм. Чтобы установка ограничителя стала возможной необходимо сделать дырки в соответствующих местах крышки.
- Лучшей формой для отверстия, через которое будут загружаться дрова является прямоугольник. При этом важно не забыть о дверце. Она должна иметь специальную накладку для лучшей фиксации.
- Также в конструкции необходимо предусмотреть отверстие, через которое будет удаляться зола.
- Трубу для теплоносителя нужно сделать с изгибом. Это позволит повысить отдачу тепла.
Ещё одним важным элементом согласно любой схеме и чертежу является вентиль. С его помощью вы сможете контролировать количество теплоносителя, поступающего внутрь. Поэтому лучше всего расположить его в удобном и легкодоступном месте. Сам алгоритм создания пиролизного котла своими руками по чертежам вы можете увидеть на видео внизу.
После сборки огромное значение имеет первый запуск. Лишь после того, как вы убедитесь, что в продуктах горения нет угарного газа, можно будет утверждать, что всё сделано правильно.
Итоги
Создать котёл, работающий на основе принципа пиролиза можно своими руками. Но перед тем как начать работу необходимо написать проект. Основную роль в нём будет играть рисунок со схемой изделия и размерами.
Пиролизный котел по схеме Беляева мощностью в 25-40кВт своими руками
Пиролизный котел
Содержание:
В современной газифицированной России остается достаточно много регионов, где единственным возможным видом топлива остаются дрова и уголь.
Альтернативой неудобным твердотопливным котлам является отопление помещений при помощи электроэнергии, однако этот способ достаточно дорог.
В последнее все время на смену твердотопливным котлам все чаще приходят пиролизные котлы, работающие на прессованных брикетах и древесине. Стоимость такого оборудования на порядок выше, однако, пиролизный котел доступно сделать самостоятельно, значительно сэкономив, таким образом, свой бюджет.
Делая котел своими руками, вы можете быть уверены в качестве прибора, а также не ограничены строгими рамками характеристик готовой продукции.
Принцип работы, достоинства и недостатки
В основе работы устройства лежит пиролиз топлива. Процесс пиролиза – это сжигание топлива при температуре от 200 до 800 градусах по Цельсию в условиях недостатка притока кислорода. При подобном сжигании происходит разложение сухого дерева на три составляющих – твердый остаток, кокс и пиролизный газ.
Газ впоследствии смешивается с кислородом, вызывая тем самым более активное горение. Экзотермическая реакция пиролиза является более эффективной простого горения угля.
Также стоит отметить высокую экологичность установки – пиролизный газ вступает во взаимодействие с углекислым газом, выделяемым в процессе горения, и практически сводит на нет выделение вредных веществ в атмосферу.
Твердый остаток древесины также сгорает, выделяя достаточное количество энергии. Экзотермический процесс сопровождается выделением тепловой энергии, которая используется в установке для просушки топлива и воздуха.
Достоинства:
- Длительное время поддержания выделения тепловой энергии автономно. Это обусловлено высоким КПД установки и большим объемом камеры для загрузки топлива.
- Высокая экологичность – практически не выделяет вредных химических соединений.
- Возможность использовать в качестве топлива резину, ДСП и полимерные пластмассы, тем самым утилизируя их.
Важно: Не превышайте предельно допустимое процентное соотношение данного вида топлива с древесиной. Оно должно равняться 70% древесины и 30% полимеров.
Недостатки:
- Высокая стоимость пиролизного котла, хотя значительная экономия возможна при самостоятельном изготовлении отопительной установки.
- Большие габариты в сравнении с другими видами отопительных приборов.
- Обязательное условие использования сухой древесины, иначе полезное действие установки резко падает так, как часть тепловой энергии выходит с паром.
- Обязательное подключение к электричеству. Работа котла связана с использованием электрического вентилятора, обеспечивающего дополнительную тягу. Этот недостаток не позволяет использовать котел в не электрифицированных районах.
Внутреннее устройство и элементы
Внутреннее устройство
Конструктивная особенность пиролизного котла заключается в наличие 2-х камер для сгорания топлива. Такая необходимость обусловлена особенностями процесса пиролиза.
Первая камера сгорания необходима непосредственно для пиролиза топлива. Процесс разложения древесины на составляющие возможен только при низком проценте содержания кислорода.
Газы, полученные в результате пиролиза, попадают в следующую камеру сгорания с принудительным притоком кислорода, обеспечивающим более качественное горение.
Разделяются две камеры колосником, на который происходит укладка брикетов. Повышенное аэродинамическое сопротивление в топке обязывает применять принудительное нагнетание воздуха при помощи дымососа или вентилятора.
Расходные материалы и необходимый инструмент
Пример самодельного котла
Сборка котла дело не простое. Прежде чем приступать к самостоятельному изготовлению установки нужно внимательно ознакомиться со всеми нюансами и реально оценить свои возможности.
Если вы все же решились осуществить сборку пиролизного котла своими руками, то ваша экономия составит около 2000 долларов.
Сборку котла своими руками производят многие народные умельцы. Благодаря этому в сети можно найти достаточно много открытой информации на тему пиролизных котлов. Однако не все из них делятся информацией бесплатно. Некоторые из Кулибиных осуществляют продажу готовых проектов собственной разработки или же оказывают платные консультации.
Что же, это право авторства, ведь сам процесс разработки и воплощение работающей схемы в жизнь труд не легкий. Для начала следует, изучить все открытые источники и если вы почувствуете недостаток информации, то сможете прибегнуть к платной помощи.
Однако, даже в случае затрат на покупку готового проекта вы значительно сэкономите нежели потратили бы на промышленный котел.
Инструменты, которые вам понадобятся:
- Сварочный аппарат постоянного тока.
- Электрическая дрель.
- Две болгарки — большая (под круг 230) и малая под круг 125
Необходимые расходные материалы на постройку:
- Листы металла, толщиной 4 мм.
- Трубы диаметром 5,7 см (7-8 м).
- Трубы диаметром 15,9 см (0,5 м)
- Огнеупорный кирпич – 15 штук
- Трубы диаметром 3,2 см (1 м)
- Профтруба 60 на 30 (1,5 п.м)
- Полоска стали, 20 см на 7,5 м (толщина стали 4 мм)
- Профтруба 80 на 40 (1 п.м)
- 5 упаковок электродов для сварочного аппарата
- Полоса стали 0,8 см 1 п.м
- Отрезные круги диаметром 125мм -10штук
- Шлифовальные круги диаметром 125мм – 5 штук
- Вентилятор, для организации тяги
- Температурный датчик
youtube.com/embed/eDzimMPrmCw?rel=0″ allowfullscreen=»» frameborder=»0″/>
Вот и все, что понадобится вам для сборки собственной пиролизной установки.
Схема сборки устройства и монтаж по правилам ТПБ
Схема сборки и размеры элементов
Прежде чем начать сборку установки требуется составить план — смеху будущего устройства и сделать чертежи и необходимые расчеты. Если вы совсем новичок и никогда не делали ничего подобного, рекомендуется не заниматься разработкой схемы устройства самостоятельно.
Обозначение элементов
Лучшим вариантом будет взять из открытых источников уже готовую и проверенную схему котла и внести в нее изменения, в соответствии со своими потребностями.
Таблица размеров и мощностей
За основу можно взять схему пиролизного котла Беляева, которую легко отыскать в сети.
Данная схема позволит собрать устройство мощностью 40кВт. Вносить принципиальные изменения в конструкцию котла не стоит, если только вы не инженер, специализирующийся на разработке тепловых установок. Важно при любом внесении изменений оставить неизменным внутренний размер камеры горения.
Помните: При первом пуске пиролизного котла определите его коэффициент полезного действия. Оценить КПД можно по запаху дыма из тяговой трубы – отсутствие примесей угарного газа свидетельствует о достаточно высоком показателе.
Выбор пиролизного котла для дачного отопления имеет ряд преимуществ, однако главным из них является возможность использования в качестве теплоносителя воздух, вместо воды. Такой способ отопления предохранит трубы от замерзания зимой и не потребует слива системы. При отоплении воздухом создается такая же замкнутая система труб, как и при водяном отоплении.
Установка котла после сборки требует соблюдения требований пожарной безопасности. Нарушение данных требований влечет за собой большой риск получения не только материального ущерба, но и ставит под угрозу жизнь и здоровье людей, проживающих в доме.
- Под отопительное оборудование должна быть отведена отдельная комната, являющаяся не жилой.
- Под отопительной установкой обязательно должно быть прочное каменное основание – кирпич или бетонная стяжка.
- Камеры топок должны быть дополнительно защищены металлическим листом толщиной не менее 2-х мм.
- Котел должен быть установлен на расстоянии от стен (минимально допустимое – 20см)
- Помещение, отведенное под котельную, должно быть оборудовано дополнительной вентиляцией (площадь отверстия вентиляции не менее 100 см)
Совет: дымоход следует дополнительно утеплить минеральным утеплителем. Это необходимо для предотвращения его разрушения вследствие охлаждения газов и образования конденсата и дегтевого налета
Мало места для котла? Поставьте печь!
Пиролизная печь
Для владельцев маленьких дачных домиков, где нецелесообразно устанавливать полноценный котел из-за малой площади стоит обратить свое внимание на пиролизную печь.
Принцип работы печи тот же, что у котла и основан на горении древесины.
Для изготовления такой печи вам потребуются следующие материалы:
- Керамический кирпич около 400 шт.
- Шамотный кирпич около 100 шт.
- Лист стали толщиной 4 мм (6 на 1,5 метра)
- Вентилятор для нагнетания воздуха
- 3 чугунных колосника.
- Регулятор температуры (рычаг).
- Металлические дверцы для топки и поддувала.
Из перечисленных материалов вы сможете собрать печь мощностью 15-25 кВт. Такая печь с легкостью создаст тепло в маленьком дачном домике площадью до 60 квадратных метров.
Из этих материалов у вас получится печь, мощностью до 25 кВт. При необходимости отапливать меньший объем достаточно уменьшить размеры печи под вашу площадь.
Большинство людей отказались от дровяного отопления в пользу газификации по причине автономности последнего. Однако в загородном дачном домике, где не требуется проживать постоянно потрескивание поленьев в огне, и особое тепло создаст уют и гармоничную обстановку. Дача это место где люди отдыхают от городской суеты. Отопление на дровах будет особенно актуальным.
Схема пиролизного котла — делаем пиролизный котел своими руками
Рынок энергоносителей никогда не отличался высокой стабильностью. Постоянные колебания цен на основные виды топлива, такие как нефть и природный газ, заставляют искать им альтернативу. Одним из вариантов, которые можно применить для обогрева жилья, является использование проверенного столетиями топлива – дров. Их, конечно, можно сжигать дедовским способом в обычной печи, но КПД подобного использования древесины будет невысоким. Куда более перспективным является применение процесса пиролиза. Подобную реакцию используют в своих изделиях и заводы, производящие отопительные приборы, но цена на их продукцию является достаточно высокой. Схема пиролизного котла своими руками возможно и не позволит достичь параметров заводских котлов, но цена самодельного аппарата будет куда ниже.
Так на каком принципе работает данное устройство, каковы его достоинства и недостатки и какая схема пиролизного котла своими руками является наиболее эффективной? Рассмотрим эти вопросы более подробно.
Процесс пиролиза
Отличительным признаком данного типа отопительных приборов является использование в процессе их работы пиролиза, то есть тления топлива при условии недостаточного количества кислорода. Продуктами подобного тления являются древесный уголь, тепловая энергия, дым и пиролизный газ, который, при смешивании его с воздухом, воспламеняется и производит значительное количество тепла.
Преимущества отопительных приборов данного типа
- Этот вид котла поддерживает высокие значения температуры в течение длительного периода времени. Это особенно заметно при сравнении данного устройства с обычными дровяными печами – если для нормальной работы последних приходится вставать ночью и подбрасывать дрова в топку, то медленный характер тления при пиролизе позволяет забыть о дополнительном топливе на период в 12 часов и более.
- Продукты горения при данном процессе содержат очень небольшое количество вредных веществ.
- В качестве топлива можно применять ДСП и некоторые полимеры.
- Объем топлива для подобного типа твердотопливных котлов значительно меньше, чем у остальных отопительных приборов, работающих на древесине.
Минусы пиролизных котлов
- Для эффективной работы данного устройства необходимо наличие высушенного топлива. Влажность дерева не должна превышать 20%, иначе КПД прибора значительно упадет.
- Также для поддержания процесса тления и работы аппарата нужно увеличение скорости потока воздуха посредством использования вентилятора, работа которого зависит от наличия электросети.
- Оборудование, необходимое для сборки прибора, имеет достаточно высокую цену.
Самостоятельное изготовление устройства
Схема пиролизного котла своими руками может быть различной, но он должен соответствовать ряду параметров:
- значения температуры в топке должны составлять порядка 600оС для обеспечения наибольшего количества пиролизного газа;
- камеру сгорания необходимо изготавливать из материалов устойчивых к нагреву и способных противостоять воздействию коррозии;
- при регулировке мощности работы устройства его коэффициент полезного действия не должен сильно понижаться;
- полезным будет и присутствие в конструкции камеры для просушивания древесного топлива;
- корпус изделия должен быть способен длительное время функционировать в условиях постоянного горения.
Самостоятельное изготовление пиролизного котла требует большого количества информации и наличия схемы устройства. Всю необходимую информацию можно получить на различных специализированных сайтах, в данной статье же будет дан лишь общий алгоритм действий:
- первым этапом станет изготовление заготовок основных компонентов котла из листов стали и труб;
- создание корпуса происходит по следующей схеме: к торцевой стенке прикрепляются посредством сварки боковины, крыша и дно, удерживаемые распорками;
- затем в котел устанавливается топка;
- следующим этапом является начало сборки фильтрационных колонн и охлаждения;
- далее устанавливается вторая котельная камера, связанная с колонной охлаждения;
- затем монтируется воздухообменник и дымоход;
- завершает процесс установка лицевой корпусной стенки с дверцами и поддувалами.
Данный алгоритм работы должен опираться на конкретный чертеж изделия и может быть изменен в зависимости от схемы отопительной системы.
Необходимо помнить, что основным качеством собранного отопительного прибора должна стать безопасность его работы, поэтому перед началом эксплуатации очень важно осуществить процедуру его проверки.
Пиролизный котел своими руками — схема и видео инструкция по сборке
Сжигая самую различную древесины (прессованные брикеты, поленья, отходы), пиролизные или газогенераторные котлы получили широкую популярность для отопления бытовых и жилых помещений. Их принцип работы отличается от классических твердотельных моделей.
Однако более сложная на первый взгляд конструкция предоставляет массу преимуществ и экономию средств, затраченных на отопление. Соорудить простой пиролизный котел своими руками получится в самые кратчайшие сроки.
Видео испытания пиролизного котла
Содержание статьи:
Как устроен и работает котел пиролизный ?
Основой газогенераторного котла является топка, которая поделена на пару отделений:
- В первом горят дрова при недостатке кислорода
- Во втором догорают выделившиеся газы
Секции топки делятся между собой колосниковой решеткой. Одно из главных отличий пиролизного котла от классического – движение воздуха по направлению вниз. Высокое аэродинамическое сопротивление не позволяет воздушным массам самостоятельно циркулировать в нужном направлении, поэтому обустраивается принудительная тяга при помощи дутьевого вентилятора или дымососа.
Основной принцип, который заложен в функционирование установках данного типа – разложение древесины термическим способом. Впоследствии она делится на уголь и летучие газообразные смеси.
Процесс обязательно протекает в камере закладки дров при высоких температурах, но воздуха, насыщенного кислородом, не должно хватать до полноценного горения. Летучие газообразные смеси, которые поступают во вторую камеру, догорают при температуре свыше тысячи градусов. Впоследствии угарные газы перенаправляются через конвективную часть в дымоход, отдавая свое тепло.
Чтобы дрова горели в идеальных условиях, внутренняя поверхность обкладывается огнеупорной футеровкой. При этом облицовываться должны обе камеры.
Чертежи и схемы
Чтобы собрать пиролизный котел своими руками, необходимо более подробно познакомиться со строением на чертежах. В любой схеме основными элементами рассматриваемых моделей будут являться:
- Место для воды
- Теплообменник
- Топка
Кликните для увеличения изображения
Видео по устройству котла
Строить с самого нуля подобную конструкцию очень трудно, вот почему за основу можно взять котел Беляева. Вносить в него изменения или нет – все зависит от инженерных навыков и желаний экспериментировать. Однако менять объем внутреннего пространства точно не рекомендуют.
Вместо жидкого теплоносителя котлы пиролизные могут использовать для обогрева помещений циркулирующий по трубам горячий воздух. Данный вариант не перемерзнет. Он получил широкое распространение в отопительных системах загородного дома, так как не доставляется лишних хлопот в зимнюю пору.
Необходимые материалы
Для того, чтобы собрать пиролизный котел своими руками, необходимо подготовить ручной рабочий инструмент, сварочный аппарат, болгарку с отрезными кругами и ершами для зачистки. Из расходных материалов под руками должны находиться:
- Дверцы, крепления и замки под них
- Хотя бы один подробный чертеж с указанием размеров
- Температурный датчик
- Вентилятор дутьевой
- Трубы для подающей магистрали, подвода горячей и холодной воды
- Листовой металл большой толщины
- Шамотный кирпич
- Решетка колосниковая
Собираем простой пиролизный котел
Сразу четыре стенки нужно вырезать из подготовленного листового металла. В передней предварительно выпиливаются болгаркой пара прямоугольных отверстий:
- Нижнее – под зольник
- Верхнее – под топку
Заднюю стенку можно на время отложить в сторону. Остальные три вырезанные пластины надежно свариваются друг с другом. В местах стыка болгаркой аккуратно шлифуются образовавшиеся наросты.
Теперь можно собрать теплообменник, по которому будет циркулировать вода или другой, как правило, жидкий теплоноситель. Все его элементы также надежно свариваются и зачищаются, чтобы не было видно швов, стыков.
Следующий шаг – установка теплообменного устройства непосредственно в печь. По трубам пускается вода и создается рабочее давление внутри, чтобы определить наличие дефектов – протечек.
Топочная будет расположена внизу, а не вверху как в высокопроизводительных заводских моделях. Она отделяется от зоны газификации, которая располагается выше, колосниковой решеткой.
Смотрите так же, руководство по профессиональной кладке русской печи
Отдел для сжигания дров обязательно обкладывают огнеупорным кирпичом снизу, сверху и по бокам. Здесь же предусматривается наличие воздуховода. Теперь можно установить дверцы, которые должны максимально плотно прижиматься к стенкам.
Смонтировав дымосос, рекомендуется установить температурный датчик. Он будет следить за состоянием нагрева внутри и контролировать горение.
Остается несколько завершающих штрихов: вырезать отверстия для под трубников и дымососа, приварить заднюю стенку и отшлифовать углы.
Завершающим этапом является проверка КПД, собранного и уже готового для работы устройства. Если на выходе не наблюдается угарного газа – оборудование полностью исправно и может продолжать эксплуатироваться.
Прочие особенности газогенераторного котла
Отдельно стоит выделить некоторые особенности, которыми должен обладать производительный пиролизный котел собранный своими руками:
- Снаружи рекомендуется установить вентиль, посредством которого будет контролироваться проходящий по теплообменнику поток теплоносителя (сравнение теплоносителей для отопления)
- Чтобы увеличить теплоотдачу, рекомендуется делать трубу в теплоносителе изогнутую, например, в виде змеевика
- Отверстие для закладки дров делают прямоугольной формы, при этом на дверце предусматривается стальная накладка для более плотного прилегания
- Контролировать воздушный поток, поступающий внутрь, необходимо при помощи ограничителя
Техника безопасности
Самостоятельное изготовление пиролизного котла – занятие сложное и не всегда оправданное. Полученная модель прекрасно подойдет для отопления небольшого подсобного помещения, но для жилого дома рекомендуется приобрести заводское оборудование.
Однако любой газогенераторный котел нужно правильно установить. Если не соблюдать советы по монтажу, установка может стать причиной пожаров, поставив под угрозу жизни жильцов.
Назовем несколько обязательных правил:
- Площадь вентиляционного отверстия в помещении должна составлять не менее 100 кв. см.
- Котел должен быть удален от любых поверхностей иных предметов или стен на расстояние не менее 0.2 м
- Необходимо положить листовой металл перед котлом толщиной около 2-3 мм, так как возможно выпадения продуктов горения (золы, угля, искр и т. д.)
- Котел необходимо размещать исключительно на бетонном или кирпичном основании
- Для пиролизного отопительного оборудование необходимо наличие отдельного помещения – котельной, максимально защищенной от пожаров
- Дымоход следует качественно изолировать утеплителем, чтобы внутри от резкого переохлаждения не образовывалась обильно копать и прочие насаждения
Читайте так же, как и чем отапливать производственные помещения
Пиролизный котел на отработанном масле
Газогенераторные установки могут работать не только на древесине, но и другом топливе, например, отработанном масле. Они прекрасно подойдут для небольших автомобильных мастерских. Соорудить несложный пиролизный котел своими руками на отработке выгодно не только с практической точки зрения, однако и экономической.
Собирается пиролизный котел на масле следующим образом:
- Нижняя емкость одновременно выполняет роль камеры горения и топливного бака
- Чтобы исключить прямое взаимодействие топочной с половой поверхностью, рекомендуется приварить металлические ножки высотой 10-15 см
- Сверху емкости высверливается воздушная заслонка, для которой устанавливается задвижка, позволяющая регулировать воздушный поток (она может одновременно играть роль пробки для заливки топлива)
- К баку приваривают отводящую вверх трубу диаметром около 15 см, толщина стенок выбирается побольше
- В трубе просверливаются отверстия
- Теплообменник приваривается сверху в виде еще одной емкости, но чтобы не допустить быстрое удаление горячего дыма, внутри привариваются перемычки
- Последний этап – приваривается отводящая труба для дымохода
Подводим итоги
Делать пиролизный котел своими руками или купить заводскую модель – каждый должен решить для себя. Конструкционно такая установка – весьма сложна. Безусловно, удастся сэкономить большую сумму денежных средств. Но максимально эффективно работать и оставаться безопасной оборудование может только при соблюдении многочисленных особенностей и нюансов.
Пиролизный котел своими руками – как правильно сделать – Свой дом мечты
Для создания пиролизного котла, работающего эффективно и безотказно, следует разобраться с процессами, происходящими в этом устройстве.
Пиролизом называется процесс разложения сложных веществ при воздействии высоких температур без привлечения дополнительных реагентов. Если упростить, то под воздействием нагрева происходит расщепление молекул на простые составляющие с меньшей массой. То есть при горении органического топлива в топке вещества, полученные в ходе пиролиза, сгорают легче, полнее, отдавая при этом большее количество тепла.
Принцип работы пиролизного котлаПиролиз в чистом виде подразумевает разложение порции топлива при отсутствии доступа воздуха, который происходит в реторте. Газы, получаемые в процессе пиролиза, поступают в накопитель-ресивер и в зависимости от потребности используются. Такой принцип действия применялся в пиролизных установках, применяемых в автомобилях в период Второй мировой войны. При этом реторта нагревалась от тепла выхлопных газов.
Применение пиролиза в чистом виде имеет не высокий КПД, вследствие осаждения части горючих компонентов при остывании пиролизного газа. Эти составляющие способны поддерживать горение, но использование их в карбюраторе не представляется возможным. Также перед поездкой необходим нагрев реторты от внешнего источника тепла, а при движении следовало поддерживать давление в ней, чтобы было возможно тронуться при остановке.
Пиролизный котелВ связи с тем, что дефицита твердого топлива не было ранее, и нет сейчас, конструкция автомобильных агрегатов основывалась на газогенерации. Этот процесс происходил следующим образом: после загрузки деревянных чурок происходил их розжиг, а затем медленное тление. Источником необходимой для пиролиза температуры было частично само топливо, а пиролизные газы направлялись непосредственно в карбюратор. Во время стоянки их стравливали в воздух. Преимуществом использования принципа газогенерации в подобных установках является наличие возможности топить при движении, используя при этом любое твердое топливо.
Абсолютно все современное пиролизное котельное оборудование является газогенераторным, что дает возможность иметь КПД на уровне 65-70%. При этом нет никакой ошибки в названии, так как свыше 90% энергии получается при пиролизном сгорании газов. По сути, пиролиз и газогенерация являются синонимами, обозначающими один и тот же процесс.
На заметку: принято считать котел пиролизным в случае наличия длительного процесса горения в нем твердого топлива. В них основное количество тепловой энергии вырабатывается при протекании процесса пиролиза. Масляные устройства длительного горения производят более 50% энергии за счет пиролиза легких фракций, а тяжелые при этом оседают в виде шлама. Таким образом, печи, работающие на масле называть пиролизными можно при очень большом допущении.
Терминология
Печники выражаются на собственном языке, который, порой, не понятен остальным людям. Так, хайло не является бранным словом, а представляет собой устье топки, сооруженное по определенной конструкции. Боров представляет собой горизонтальная часть дымохода, шибер – это заслонка, которая необходима для регуляции воздушных потоков и дыма. В случае пиролизного котла газоход и дымоход являются различными понятиями. В первом из них не происходит никаких процессов, а во втором продолжают происходить термохимические реакции.
Пиролизный котел в разрезеПринципы работы
Все котлы, работающие по принципу пиролиза, функционируют одинаково:
- В камере, где происходит газификация, идет процесс тления топлива. В нее поступает снаружи первичный воздух.
- Некоторый объем кислорода, присутствующего в нем, тратиться на то, чтобы тление не прекращалось и обеспечивало требуемую для газификации температуру.
- Проходящие хайло газы, выделяемые при пиролизе, перемещаются в камеру сгорания.
- В нее же происходит поступление вторичного воздуха, и идет процесс горения пиролизных газов.
- В присутствии катализатора, в качестве которого выступает углерод топлива, идет восстановительная реакция части пиролизного газа. Результатом ее является угарный газ и окислы азота. Этот процесс требует затрат тепловой энергии.
- В камере дожигания компоненты, полученные при восстановлении, окисляются с выделением тепла.
- Продукты горения, вступившие в реакцию, движутся по теплообменнику водогрейного регистра, а затем направляются в дымоход.
- Для поддержания требуемой температуры, при которой происходит полное сгорание, служит специальная терморегулирующая система.
На заметку: если производить отбор тепловой энергии в процессе стадий работы аппарата, когда происходит газификация, сгорание и догорание, то существенно снижается КПД теплотехнического устройства. В ходе процесса, осуществляемого таким образом, имеет место образование газов, которые не только вредны, но и опасны. Количества тепла, циркулирующего в пиролизном котле, значительно больше, чем требуется для самоподдержания процесса. Поэтому проектирование пиролизных котлов для исполнения своими руками должно происходить с пониманием процессов, происходящих в нем, чтобы не создать не только неэффективное, но и опасное устройство.
Режимы работы пиролизного котла
Розжиг
На этом этапе нужно, чтобы шибер находился в открытом состоянии. Продукты горения движутся непосредственно в дымоход
Рабочий режим
Устройство работает при закрытой заслонке, обеспечивая, таким образом, протекание процесс пиролиза. Создание тяги в газоходе достигается принудительным образом или естественным путем.
Догрузка топлива
В этот момент шибер закрыт, но тяга в газоходе еще присутствует на протяжении некоторого времени. Процесс пиролиза не заканчивается. Догрузка топлива должна осуществляться как можно быстро, так как в противном случае оно может просто сгореть.
Принцип работыПреимущества и недостатки
К преимуществам пиролизных котлов относят:
- Принцип действия устройства позволяет высокого достичь КПД до 85%, так как топливо сжигается практически без остатка.
- Суточная загрузка топлива производится не более двух раз в сутки.
- Экономия топлива достигается возможностью производить регулировку подачи тепла в отапливаемое помещение.
- Экологичность отопительного прибора.
Пиролизные котлы, применяемые в быту, являются требовательными агрегатами:
- Обезводненное топливо свыше 30% резко снижает КПД. Это объясняется необходимостью расходовать дополнительно энергию на испарение и разложение водяного пара.
- Технические характеристики котла, полученные расчетным путем, могут быть достигнуты только в случае применения топлива, которое имеет в своем составе значительное количество сложных органических соединений.
- В процессе горения образуется сильная струя газов, которая обладает высокой химической активностью. Этот фактор обуславливает необходимость использования для устройства камеры сгорания высококачественных материалов.
- Небольшой предел регулировки по мощности. Предел форсирования котла составляет максимум 50%.
- Существенная стоимость.
Стандартное устройство пиролизного котла
ПиролизКонструкция пиролизного котла предусматривает наличие двух камер сгорания. Такая особенность устройства позволяет максимально полно использовать эффект пиролиза.
Первая камера служит для загрузки топлива и его пиролиза. В ней идут процессы разложения органических соединений, в результате чего образуется зола и пиролизные газы, которые перемещаются во вторую камеру.
Камеры между собой разделяются при помощи колосника.
Кроме этого, характерной особенностью пиролизного котла является создание верхнего дутья. В связи с тем, что процессы в топке сопровождаются повышенным аэродинамическим сопротивлением, возникает необходимость в организации принудительной тяги. Для этой цели применяются дымососы или вентиляторы.
Установка и требования к конструкции: рекомендации специалистов
Высокий уровень пожароопасности этого теплотехнического агрегата подразумевает выполнения ряда требований при монтаже пиролизного котла:
- Размещаться котельное оборудование должно в отдельном специально предназначенном для него помещении.
- Для безопасной эксплуатации необходимо соорудить вентиляционное отверстие площадью 100 кв. см.
- Установка котла должна осуществляться на фундамент, выполненный из кирпича или бетона.
- Должна быть обустроена защита топочных камер из листовой стали.
- Обязательно должно иметься свободное пространство между предметами мебели, стенами и кожухом котла минимум 200 мм.
- Необходимо провести мероприятия по утеплению дымохода. При невыполнении этого условия потери тепла неизбежны. Кроме этого, отсутствие надежной теплоизоляции станет причиной повышенного износа и поломок устройства из-за возникновения нагара и конденсата.
Пиролизный котел своими руками
Рост популярности пиролизных котлов обусловлен рядом преимуществ этого отопительного прибора, одним из которых, помимо всего прочего, является независимость от снабжения жилища газом. Высокая стоимость заводских экземпляров техники дало толчок к изготовлению пиролизных котлов своими силами.
Выбираем инструменты и материалы
Перед сборкой пиролизного котла необходимо определиться с типом устройства, его конструктивными особенностями и подобрать подходящий типовой проект конструкции.
Для создания пиролизного котла потребуются:
- стальная толстостенная труба;
- листовая сталь толщиной 4 мм;
- профильные трубы;
- круглый прокат диаметром 20 мм;
- вентилятор центробежного типа;
- шамотный кирпич;
- терморегулирующая автоматика;
- гайки, болты, шайбы.
Минимальный набор инструментов для сборочных работ состоит из:
- сварочный аппарат для дуговой электросварки;
- болгарка;
- электродрель;
- комплект слесарных инструментов.
Схема сборки
Для определения точного количества материалов для пиролизного котла необходимо воспользоваться чертежами, которые можно найти в справочной литературе. Не имеет смысла самостоятельно создавать конструкцию устройства, достаточно подобрать наиболее подходящую из уже имеющихся. В схеме пиролизного котла должны быть обозначены: топка, теплообменник и организация подачи воды.
Схема сборкиПиролизная печь как альтернатива котлу
Специалисты считают, что изготовление пиролизных котлов малой мощности нецелесообразно. Поэтому в домах с небольшой площадью при отсутствии возможности электрического или газового отопления, подходящим вариантом является сооружение пиролизной печи. Принцип работы такого устройства подобен тому, что используется в котлах при сгорании твердого топлива.
Сооружение классического варианта печи из кирпича, оборудованной водяным контуром является хорошим техническим решением проблемы организации отопления. Подобная конструкция объединяет преимущества двух агрегатов: традиционной печи и котла длительного горения.
Пиролизная печьПиролизный котел своими руками, чертежи и принцип работы
Несмотря на то, что газификация в городах России официально была закончена еще в прошлом веке, все-таки остались обделенные вниманием небольшие населенные пункты, в которых данные коммуникации не проведены и их проведение не планируется властями. Именно поэтому, высокий спрос на печи из кирпича не в далеком прошлом, как это может показаться на первый взгляд. Многие люди ошибочно считают, что это всего лишь простая конструкция, с помощью которой можно без труда отопить любое помещение при необходимости. Но если вы планируете регулярно эксплуатировать данное приспособление в качестве основного источника тепла, вы можете столкнуться с неожиданными для себя трудностями и проблемами. Именно поэтому, в момент создания печи своими руками, важно соблюдать огромное количество нюансов, о которых мы и поговорим в этой статье. Чертеж котла
Пиролизная печь в качестве доступного аналога кирпичной конструкции
Первое, что нужно знать тем, кто решил создать данный источник тепла, это обязательное наличие прочного и надежного фундамента. Его создание лучше всего доверить профессионалам своего дела, которые имеют необходимый опыт и навыки. Данные услуги специалистов, разумеется, стоит не мало, ведь это весьма кропотливая и непростая задача. Но, в том случае, если вы не располагаете крупной суммой, обратите свое внимание на неплохой аналог – пиролизные печи. За их создание вы можете взяться самостоятельно, для этого понадобятся только расходные материалы, а также соответствующие чертежи и схемы. Сегодня конструкции из кирпича своими руками достаточно востребованы в загородном и дачном домостроении, особенно в тех регионах, где не были проведены центральные газовые магистрали и не введены в эксплуатацию отопительные системы. Стоит отметить, что существует возможность создать печь из кирпича, которая будет функционировать, реализуя принцип пиролиза, но при этом не будет нуждаться в надежном фундаменте. Такое оборудование пригодно для ежедневной эксплуатации и при этом сможет прослужить вам достаточно долго. Все что будет требоваться от вас – подбрасывать топливо по мере необходимости.
Почему стоит отдать предпочтение такой печке?
Основными достоинствами такой конструкции стоит назвать следующие характеристики: Принцип работы пиролизной печи
Возможность поддерживания установленного температурного режима на протяжении длительного времени. Для этого потребуется только увеличить вместительности топливной камеры.
Минимальный уровень выделения токсических веществ в процессе переработки топлива. Именно поэтому, такая печь обеспечит комфортную для проживания температуру, а также безопасный для здоровья микроклимат в помещениях.
Данная печь способна сжигать всевозможные строительные и бытовые отходы, в том числе и автомобильную резину, пластик, а также части ДВП. Перечисленные материалы, будут хорошим топливом, но категорически не рекомендуется использовать отходы в качестве постоянного топлива. Кроме того, их сжигание будет безопасным, только в том случае, если при загрузке он будет составлять третью часть от всего количества топлива.
Несмотря на все перечисленные достоинства, пиролизная конструкция имеет и свои минусы. Самыми существенными являются:
- Высокие требования к качеству топлива. Оно должно быть, в первую очередь, сухим. Влажный материал не допустим к использованию, так как эксплуатация пиролиза в таком случае не даст необходимого результата, так как выделяемое тепло попросту растворится паром в процессе горения.
- Крупные габариты. Данную особенность можно считать недостатком, если пиролизный котел своими руками вы планируете расположить в небольшом помещении.
- Зависимость от вспомогательного оборудования. Обеспечивающий хорошую тягу вентилятор, к сожалению, не будет работать в круглосуточном режиме.
- Постоянный уход за печью. Для того, чтобы поддерживать микроклимат в доме, нужно постоянно следить за наличием дров в камере, а также перед каждой новой закладкой убирать перегоревшие угли.
До начала монтажных работ, чрезвычайно важно провести все необходимые расчеты, учитывая особенности помещения, после чего составить схему будущего оборудования. Сегодня существует возможность воспользоваться уже готовым чертежом из интернета, который создавался профессионалом. Принцип работы
Вместо основания, для устойчивости конструкции, проводится укладка периметр печи керамическим кирпичом. Создание перегородок внутри печи происходит с использованием шамотного кирпича. Полноценно эксплуатировать конструкцию можно будет лишь после окончательной сборки и обустройства системы вентиляции. Чрезвычайно важно брать в учет время, которое будет необходимо для полного сгорания топлива. Специалисты в области строительства рекомендуют использовать прессованные дрова для обогрева помещения. Когда пиролизная печь будет запущена, следует определить КПД (коэффициент полезного действия). Для этого не требуется закупать никакое измерительное оборудование, нужно только хорошенько принюхаться к запаху дыма. Если вы не ощущаете угарный газ, то КПД достаточно высок. Внешний вид готового котла для пиролизной печи
Создавая пиролизный котел своими руками пошаговая инструкция необходима в первую очередь для того, чтобы должным образом соблюсти все правила пожарной безопасности. Пренебрегая данным требованиям, вы можете спровоцировать пожар в своем доме или же нанести непоправимый урон здоровью всех жильцов. Кроме того, настоятельно рекомендуется проводить монтаж печи в отдельном нежилом помещении. Для того, чтобы камера прослужила долго, следует позаботиться о ее защите с помощью плотного металлической обшивки. Сравнение конструкции котлов
Теперь важно поговорить о материалах, которых понадобятся для проведения работ.
- Чугунные колосники;
- Керамический и шамотный кирпич.
- Стальной лист для защиты камеры. Его толщина должна быть не менее 2 миллиметров, но не более 4 миллиметров.
- Мощный вентилятор для циркуляции воздуха.
- Регуляторы температурных показателей.
- Дверцы для печи.
- Дверцы для котла.
- Сварочный электрический аппарат, болгарка, дрель.
- Несколько труб разного диаметра.
- Электроды для сварочных работ.
Нюансы, которые нужно знать
Как мы уже сказали, создание такой печи – процесс достаточно простой, но, требующий определенных познаний. Так как данная конструкция относится к обогревательному оборудованию, то будьте готовы к тому, что во время выполнения работ вам придется работать с повышенными температурами и учитывать многие особенности герметизации, что выполнить самостоятельно практически невозможно. Но учитывая советы, которые были упомянуты в данной статье, вам непременно удастся сделать действительно долговечные пиролизные печи.
Если вы желаете усилить тепловой эффект, то обустройте уже завершенную конструкцию дополнительной стенкой из шамотного и огнеупорного кирпича. Создание котла возможно даже с минимальными умениями в работе по свариванию металла. Учитывайте тот факт, что создание пиролизной печки – это не только процесс кирпичной кладки, но и монтаж камеры котла, которую по праву можно назвать основным конструкционным элементом. Самым правильным решением будет покупка уже собранного котла, который будет необходимо лишь обложить кирпичом
Особенности установки котла
Котел в готовом виде можно приобрести в специализированных магазинах. Производители выпускают оборудование, к которому обязательно идет руководство по монтажу и эксплуатации. Но как показывает практика, поданных данных, зачастую, не хватает для того, чтобы беспрепятственно провести установку. Помните, что котел представляет собой достаточно крупное сооружение, имеющее немалый вес. Основание под конструкцию традиционно выкладывается из кирпича. Оно является прочным и надежным, потому что без труда выдержит нагрузку. Конструкционные особенности камеры сгорания
Даже после нескольких лет эксплуатации печи, будьте уверены, что фундамент не даст трещину и уж тем более не начнет деформироваться. Для выполнения процесса кладки, применяйте предварительно замешенный песочно-глиняный раствор из песка и глины. Мы подробно рассмотрели все нюансы и особенности создания пиролизной печи, уточнили все, что нужно знать о котлах, а также раскрыли секреты для облегчения строительных работ. Надеемся, что данная информация будет полезной и пригодится вам.
Устройство и принцип работы пиролизного котла. Как изготовить пиролизный котел своими руками: чертежи, схемы и устройство
Твердотопливное отопительное оборудование постепенно начали заменять газогенераторными моделями, которые стали достойной альтернативой. Они зарекомендовали себя в качестве простых в эксплуатации, но при этом чрезвычайно эффективных решений, поэтому даже при сравнительно высокой стоимости пользуются у потребителей немалой популярностью. Достаточно отметить, что принцип работы пиролизного котла таков, что его успешно применяют не только при обогреве частных жилищ, но и промышленных предприятий.
Суть пиролиза
Газогенераторные котлы работают на принципе пиролизного сжигания топлива. Его суть состоит в том, что в условиях недостатка кислорода и под действием высокой температуры происходит процесс разложения сухой древесины на летучую и твердую части. Процесс обычно происходит при температуре 200-800 градусов Цельсия, причем это экзотермический процесс, то есть при нем еще и выделяется тепло, что позволяет улучшить прогрев топлива и его подсушивание в котле. Это сопровождается еще и подогревом воздуха, поступающего непосредственно в зону горения.
Смешение кислорода с пиролизным газом, выделившемся из древесины в условиях высокой температуры, приводит к горению последнего, что в дальнейшем приводит к получению тепловой энергии. В процессе сгорания происходит активное взаимодействие с активным углеродом, а это позволяет минимизировать выход вредных примесей. По большей части это получается смесь водяного пара и углекислого газа.
Характерные особенности
Как и прочее отопительное оборудование, твердотопливное производит нагрев теплоносителя, подаваемого впоследствии в систему. От других моделей он отличается принципом действия и некоторыми конструктивными особенностями. Принцип работы пиролизного котла базируется на процессе так называемой сухой перегонки древесины. Он заключается в выделении пиролизного газа из твердых материалов органического происхождения под действием повышенных температур в условиях минимизации подачи кислорода. Эта совокупность условий приводит к распаду древесины на газ и остатки в виде сухого кокса.
Сам процесс пиролиза осуществляется при достижении 1100 градусов Цельсия, поэтому происходит большое выделение тепла, позволяющее: подсушивать дрова в котле, нагревать воздух, поступающий в зону горения. При смешивании кислорода и газа, выделенного из древесины, происходит горение последнего, благодаря чему выделяется много тепловой энергии. При взаимодействии газа с активным углеродом происходит минимизация канцерогенных веществ в отработанных газах. Даже углекислого газа в них содержится втрое меньше, чем в обычных котлах, работающих на твердом топливе.
Устройство
Чтобы понять принцип работы пиролизного котла, необходимо не только рассмотреть его устройство, но и определить, как функционирует каждый отдельный узел прибора. В его состав входит немалое количество механизмов и деталей. Однако в качестве основы служит пара камер. Их обычно выполняют полностью герметичными из стальных листов, которые обладают толщиной не менее 5 мм. В качестве разделителя камеры используется форсунка. Верхнюю часть топки сделали в виде топливного бункера, то есть отдельной конструкции, а нижнюю применяют одновременно в качестве камеры сгорания и зольника.
Каждая камера предназначена для протекания вполне определенных процессов. В верхнем отделе происходит подсушивание дров с одновременным нагревом воздуха, направляемого после этого в следующий отсек. В нижней камере происходит сжигание полученного газа и накопление золы.
Функционирование
Принцип работы твердотопливного пиролизного котла основан на возможности регулировки мощности посредством наддува вторичного газа. Так результат получается более эффективным в сравнении с обычными отопительными аппаратами. Необходимая температура теплоносителя может быть установлена посредством встроенного терморегулятора.
Устройство пиролизного котла таково, что при его работе сажа полностью отсутствует в процессе горения, а зола образуется в минимальном количестве. Эти особенности ориентированы на предоставление возможности чистить прибор как можно реже.
Если говорить о том, как работает котел пиролизный в сравнении с обычным твердотопливным, то тут стоит отметить и более длительное горение дров при одной закладке, а именно функционирование до 12 часов. Естественно, на это влияют температурные показатели, однако ресурс работы гораздо больше. Дрова расходуются экономно за счет подогрева воздуха, поступающего в зону горения.
Выбор топлива
При том что устройство пиролизного котла предполагает его работу на дровах, что признано самым выгодным с точки зрения экономии, на практике для его функционирования могут использоваться и альтернативные виды органического топлива, к примеру, уголь, торф. Для повышения эффективности работы оборудования требуется учесть, что у каждого вида сырья своя длительность времени полного сгорания. В случае с мягкой древесиной это 5 часов, с твердой – 6, с коксом – 10.
Проведенные исследования и опросы пользователей свидетельствуют в пользу того, что наибольшая эффективность функционирования отопительного оборудования достигается при работе на сухих дровах. Влажность древесины не должна быть более 20%, а длина поленьев может составлять до 65 см. Это топливо не только обеспечит максимальную мощность оборудования, но и существенно увеличит время его бесперебойного функционирования. Однако если нет возможности приобрести такой вид ресурса, можно использовать альтернативный вид органического топлива, при условии, что изготовителем оно было разрешено. Это могут быть: торф, пеллеты, древесные отходы, целлюлозосодержащие отходы промышленности, каменный уголь.
Однако при выборе любого вида топлива важно помнить, что излишняя его влажность может привести к выделению пара во время работы аппарата, что становится причиной образования копоти и снижает тепловые характеристики оборудования во время эксплуатации. Только при использовании сухих веществ и правильной регулировке расхода первичного и вторичного воздуха происходит минимизация выделения канцерогенных веществ пиролизными газами.
Преимущества газогенераторного оборудования
Теперь, когда известно, как устроен пиролизный котел и какие виды топлива можно для него использовать, следует отметить, что среди твердотопливных моделей это наиболее экономичный вид. Функционирование подобного оборудования характеризуется:
— быстрым переходом на режим энергоэффективности;
— стабильной температурой в отопительной системе при условии, что в топке есть топливо;
— нет необходимости в частой чистке;
— котел уместно использовать в комплексе с любой системой;
— не нуждается в установке дымохода;
— выполнен из устойчивых к коррозии жаростойких материалов.
Такой перечень параметр указывает на эффективность работы пиролизных котлов в сравнении с традиционными твердотопливными моделями, поэтому их можно использовать для работы в любых помещениях. Высокая стоимость – это единственный недостаток подобного оборудования, однако в случае невозможности применения альтернативных устройств, помимо твердотопливных, выбор будет в пользу первых.
Устройство пиролизного котла: схемы, фото и рекомендации по изготовлению
Так как подобное оборудование становится в последнее время все более популярным среди потребителей, становится актуальным вопрос не только его приобретения, но и самостоятельного изготовления. Связано это с довольно высокой стоимостью готовых решений, непосильной большинству граждан. Чтобы сделать пиролизный котел своими руками, потребуется лишь желание и некоторые инструменты. Для начала требуется обладать базовой информацией о том, как выглядит и работает этот отопительный прибор. Заранее должно быть просчитано, какой тип горения окажется оптимальным для определенного задания – со щелевой горелкой или на колосниках. После этого в специализированном магазине требуется приобрести все необходимые детали. После этого можно начинать делать пиролизный котел своими руками. Чертежи, которые будут служить в качестве опоры, тоже должны быть подготовлены заранее.
Детали
Для самостоятельного изготовления газогенераторного оборудования требуется подготовить следующие материалы:
— стальную трубу со стенками толщиной 4 мм;
— листовую сталь толщиной 4 мм;
— профильные трубы;
— электроды;
— круглый прут диаметром 20 мм;
— шамотный кирпич;
— автоматика для регулировки температуры;
— асбестовый шнур;
— гайки и болты.
Итак, если вы решили сделать пиролизный котел своими руками, чертежи помогут в определении оптимального количества материалов для этого. На данный момент существует довольно много изданий, в которых опубликованы схемы и подробное описание процесса работы. Если руководствоваться ими, то можно создать довольно эффективный агрегат. Схема пиролизного котла (своими руками, как уже было сказано выше, сделать его особого труда не составит) требуется для обозначения места подачи воды, теплообменника и топки. Не стоит создавать чертеж агрегата с нуля, лучше подкорректировать типовой вариант, внеся правки под конкретную ситуацию.
Работа над созданием
При изготовлении газогенераторного котла своими руками можно взять в качестве базовой модели отопительный прибор на 40 кВт, который разработал конструктор Беляев, а после этого произвести оптимизацию под лазерную резку, уменьшив число требуемых деталей. Внутренний объем должен оставаться неизменным при любых переменах в конструкции прибора. Рубашка теплообменника при этом должна значительно увеличиться. После этого можно приступать к соединению всех деталей пиролизного котла при условии четкого следования чертежу. Воздух в указанном случае используется в качестве теплоносителя, что позволяет прогревать помещение без потерь тепла.
Герметичность труб – это необязательное условие, так как дровяной котел обычно не становится инициатором утечки и разгерметизации отопительной системы. Этот прибор вполне можно считать идеальным решением для монтажа на даче, где необходимость в отоплении возникает не так уж часто.
Установка
После того как прибор будет собран по схеме, можно приступать к его монтажу и последующим испытаниям. При правильном изготовлении газогенераторного котла он должен быстро выходить на требуемый режим, а прогрев отопительной системы должен происходить за 30 минут. Обычно температура в помещении поднимается довольно быстро.
Выводы
Итак, теперь, когда вам известен не только принцип работы пиролизного котла, но и возможности его самостоятельного изготовления, остается только принять решение: либо приобрести готовую модель, либо сделать ее своими руками. Важно понимать, что приборы, выпущенные промышленностью, изготовлены качественно, прошли тестирование и гарантируют полную безопасность эксплуатации.
(PDF) Обзор конденсационной системы для процесса пиролиза биомассы
Ссылки
[1] D. Mohan, C.U. Питтман, П. Стил, Пиролиз древесины / биомассы для получения биомассы: критический обзор
, Energy Fuel 20 (2006) 848 889,. – Https: //doi.org/10.1021/ef0502397
[2] S.N. Найк, В. Гоуд, П. Раут, А. Далай, Производство биотоплива первого и второго поколения
eration: всесторонний обзор, Renew. Sust. Energ.Ред. 14 (2010)
578 597,. – Https: //doi.org/10.1016/j.rser.2009.10.003
[3] E.I.D.M. Алсбоу, Пиролизное бионефть как возобновляемое топливо и источник химикатов: его
Производство, характеристика и стабильность, (2014).
[4] A.C. Johansson, H. Wiinikka, L. Sandström, M. Marklund, O.G.W. Öhrman,
J. Narvesjö, Характеристика продуктов пиролиза, полученных из различных типов биомассы Nordic ff
на пилотной установке циклона, Топливный процесс.Technol. 146 (2016) 9 19, —
https://doi.org/10.1016/j.fuproc.2016.02.006.
[5] Л. Сандстрём, А. К. Йоханссон, Х. Вийникка, О. Г. У. Эрман, М. Марклунд,
Пиролиз североевропейских видов биомассы в циклонной пилотной установке. Массовые балансы и —
выходов, топливный процесс. Technol. 152 (2016) 274 284, –https: //doi.org/10.1016/j.
fuproc.2016.06.015.
[6] А.Э. Пютюн, Н. Озбай, Э.П. Онал, Э. Пютюн, Пиролиз хлопкового стебля в неподвижном слое для получения
жидких и твердых продуктов, Топливный процесс.Technol. 86 (2005) 1207 1219, –https: // doi.
org / 10.1016 / j.fuproc.2004.12.006.
[7] А. Демирбас, Влияние температуры на выход соединений, существующих в fl
бионефти, полученных из образцов биомассы путем пиролиза, Топливный процесс. Technol. 88
(2007) 591 597,. – Https: //doi.org/10.1016/j.fuproc.2007.01.010
[8] С. Папари, К. Хавболдт, Обзор пиролиза древесной биомассы для получения bio-oil:
Акцент на кинетических моделях, Renew.Sust. Energ. Ред. 52 (2015) 1580 1595, –https: //
doi.org/10.1016/j.rser.2015.07.191.
[9] С. Папари, К. Хавболдт, Разработка и проверка модели процесса для описания
пиролиза лесных остатков в шнековом реакторе, Energy Fuel 31 (2017)
10833 10841,. – Https: // doi.org/10.1021/acs.energyfuels.7b01263
[10] Х. Бамдад, К. Хавболдт, Сравнительное исследование физико-химических характеристик —
Использование биоугля и металлоорганических каркасов (MOF) в качестве адсорбентов газа, Кан.J.
Chem. Англ. 94 (2016) 2114 2120,. – Https: //doi.org/10.1002/cjce.22595
[11] Х. Бамдад, К. Хавболдт, С. Маккуарри, Обзор распространенных адсорбентов для удаления кислотных
газов : сосредоточьтесь на biochar, Renew. Sust. Energ. Ред. 81 (2018) 1705 1720, —
https://doi.org/10.1016/j.rser.2017.05.261.
[12] С. Ван, Ю. Гу, К. Лю, Ю. Яо, З. Го, З. Луо и др., Разделение бионефти с помощью молекулярной дистилляции
, Топливный процесс.Technol. 90 (2009) 738 745, –https: //doi.org/
10.1016 / j.fuproc.2009.02.005.
[13] А.В. Бриджуотер, Возобновляемые виды топлива и химикаты путем термической обработки биомассы,
Chem. Англ. J. 91 (2003) 87 102, –https: //doi.org/10.1016/S1385-8947 (02)
00142-0.
[14] R.J.M. Вестерхоф, Д.В.Ф. Брилман, М. Гарсия-Перес, З. Ван, S.R.G. Ауденховен,
W.P.M. Ван Сваай и др., Фракционная конденсация паров пиролиза биомассы,
Energy Fuel 25 (2011) 1817 1829,.–Https: //doi.org/10.1021/ef2000322
[15] С. Рахман, Р. Хеллер, С. Маккуарри, С. Папари, К. Хавболдт,
«Модернизация и выделение низкомолекулярных соединений из коры и биомасла хвойных пород
путем вакуумной перегонки, Sep. Purif. Technol. 194 (2018) 123 129, –https: // doi.
org / 10.1016 / j.seppur.2017.11.033.
[16] SS Liaw, S. Zhou, H. Wu, M. Garcia-Perez, Влияние температуры предварительной обработки на выход и свойства биомасел, полученных в результате шнекового пиролиза древесины Douglas rf
, Топливо 103 (2013) 672 682,.–Https: //doi.org/10.1016/j.fuel.2012.08.016
[17] C.J. Ellens, R.C. Браун, Оптимизация реактора свободного падения для производства быстрого пиролизного биомасла
, Биоресурсы. Technol. 103 (2012) 374 380, –https: //doi.org/10.
1016 / j.biortech.2011.09.087.
[18] Ö. Onay, S.H. Бейс, Э.М. Кочкар, Быстрый пиролиз семян рапса в хорошо продуваемом реакторе с фиксированным слоем
, J. Anal. Прил. Пиролиз 58 59 (2001) 995 1007, — — https: // doi.org / 10.
1016 / S0165-2370 (00) 00133-9.
[19] Дж. Ли, Оптимальный процесс пиролиза в реакторе с вращающимся конусом и анализ продуктов пиролиза
, Int Conf Challenges Environ Sci Comput Eng CESCE 2010, 1 2010,
pp. 530 533,,. – Https : //doi.org/10.1109/CESCE.2010.74
[20] Х. Лей, С. Рен, Дж. Джулсон, Влияние температуры и времени реакции и размера частиц ff
кукурузной соломы на микроволновый пиролиз, Энергетика Топливо 23 (2009 г.) 3254 3261, —
https: // doi.org / 10.1021 / Ef
64.
[21] А. Демирбас, Влияние начального содержания влаги на выходы маслянистых продуктов от пиролиза биомассы ff
, J. Anal. Прил. Пиролиз 71 (2004) 803 815, –https: //doi.org/
10.1016 / j.jaap.2003.10.008.
[22] Д. Вамвука, Бионефть, твердое и газообразное биотопливо из процессов пиролиза биомассы — обзор
, Int. J. Energy Res. 35 (2011) 835 862,. – Https: //doi.org/10.1002/er.1804
[23] S.Папари, К. Хавболдт, Р. Хеллер, Производство и характеристика пиролизного масла
из остатков лесопиления в шнековом реакторе, Ind. Eng. Chem. Res. (2017) ac-
s.iecr.6b04405,, .https: //doi.org/10.1021/acs.iecr.6b04405
[24] Q. Zhang, J. Chang, T. Wang, Y. Xu , Обзор свойств пиролизного масла биомассы и исследования по модернизации
, Energy Convers. Manag. 48 (2007) 87 92, –https: //doi.org/10.
1016 / дж.enconman.2006.05.010.
[25] А. Оасмаа, С. Черник, Качество мазута пиролизного масла биомассы — Современное состояние для
конечных пользователей, Energy Fuel 13 (1999) 914 921, –https: //doi.org/ 10.1021 /
ef980272b.
[26] A. Oasmaa, K. Sipilä, Y. Solantausta, E. Kuoppala, Улучшение качества пиролиза
жидкость: влияние легких летучих веществ на стабильность пиролизных жидкостей, Energy Fuel 19ff
(6) ( 2005) 2556 2561–.
[27] Р.J.M. Westerhof, N.J.M. Койперс, С. Kersten, W.P.M. Van Swaaij, Controlling
содержание воды в масле быстрого пиролиза биомассы, Ind. Eng. Chem. Res. 46 (2007)
9238 9247,. – Https: //doi.org/10.1021/ie070684k
[28] Гути А. Тумбалам, Фракционная конденсация паров бионефти, (2013).
[29] A.S. Поллард, М.Р. Ровер, Р.С. Браун, Характеристика бионефти, извлеченной как фракции стадии
с уникальными химическими и физическими свойствами, Дж.Анальный. Прил. Пиролиз 93
(2012) 129 138,. – Https: //doi.org/10.1016/j.jaap.2011.10.007
[30] Т. Чен, К. Дэн, Р. Лю, Эффект селективного конденсация на характеристике бионефти №
из быстрого пиролиза сосновых опилок с использованием реактора с псевдоожиженным слоем, Energy Fuel №
24 (2010) 6616 6623,. – https: //doi.org/10.1021/ef1011963
[31 ] П. Ким, С. Уивер, Н. Лаббе, Влияние скорости потока продувочного газа на температуру — ff fl
контролируемая многоступенчатая конденсация паров пиролиза в шнековой промежуточной системе пиролиза
, J.Анальный. Прил. Пиролиз 118 (2016) 325 334, –https: //doi.org/10.
1016 / j.jaap.2016.02.017.
[32] Н. Джендуби, Ф. Бруст, Дж. М. Коммандре, Г. Мовьель, М. Сардин, Ж. Леде, Неорганика
Распределениев бионефти и угле, полученных в результате быстрого пиролиза биомассы: ключевая роль
аэрозолей , J. Anal. Прил. Пиролиз 92 (2011) 59 67, –https: //doi.org/10.1016/j.jaap.
2011.04.007.
[33] Д. Сянвэнь, В.Чуангжи, Л. Хайбин, К. Йонг, Быстрый пиролиз биомассы в реакторе CFB
, Energy Fuel 14 (2000) 552 557,. – Https: //doi.org/10.1021/ef9
5
[34] Дж. Гю, Х. Чэ, Дж. Веон, С. Янг, Й. Хо, Х. Сок, Быстрый пиролиз энергетической культуры
«» –Геодае-Уксаэ 1 в реакторе с псевдоожиженным слоем с барботажным псевдоожиженным слоем, Energy 95 (2016) 1fl 11,
https://doi.org/10.1016/j.energy.2015.11.049.
[35] Дж. Ремон, Ф. Бруст, Дж.Валетт, Ю. Чхити, И. Алава, А.Р. Fernandez-Akarregi, et al.,
Производство газа, обогащенного водородом, из бионефти быстрого пиролиза: сравнение между маршрутами гомогенного и каталитического парового риформинга
, Int. J. Hydrog. Energy 39
(2014) 171 182,. – Https: //doi.org/10.1016/j.ijhydene.2013.10.025
[36] Ю. Мэй, Р. Лю, Влияние температуры горячего пара керамики Фильтр в реакторе с псевдоожиженным слоем
по химическому составу и структуре биомасла и механизму реакции быстрого пиролиза сосновых опилок
, Топливный процесс.Technol. (2016), https://doi.org/10.
1016 / j.fuproc.2016.09.008.
[37] В. Цай, Р. Лю, Производительность промышленной установки быстрого пиролиза биомассы для производства биомассы
, Топливо 182 (2016) 677 686, –https: //doi.org/10.1016/ j.fuel.2016.
06.030.
[38] Q. Lu, X. Yang, X. Zhu, Анализ химических и физических свойств биомасла
, пиролизованного из рисовой шелухи, J. Anal. Прил. Пиролиз 82 (2008) 191 198, –https: // doi.
орг / 10.1016 / j.jaap.2008.03.003.
[39] А. Паттия, С. Суттибак, Быстрый пиролиз остатков сахарного тростника в реакторе с псевдоожиженным слоем №
с фильтром горячего пара, 90 (2015) 110119, f– https://doi.org/10.1016/ j.joei.2015.
10.001.
[40] J.M. Mesa-Pérez, J.D. Rocha, L.A. Barbosa-Cortez, M. Penedo-Medina, C.A. Luengo,
E. Cascarosa, Быстрый окислительный пиролиз соломы сахарного тростника в реакторе с псевдоожиженным слоем,
Appl.Therm. Англ. 56 (2013) 167 175, –https: //doi.org/10.1016/j.applthermaleng.
2013.03.017.
[41] F.M. Беррути, Л. Ферранте, Ф. Беррути, К. Бриенс, Оптимизация системы периодического нагнетания пробок
для пиролиза биомассы опилок, Int. J. Chem. Реагировать. Англ. 7 (2009),
https://doi.org/10.2202/1542-6580.2077.
[42] M.A.F. Мазлан, Ю. Уэмура, Н. Осман, С. Юсуп, Быстрый пиролиз остатков твердой древесины re-
с использованием пиролизера капельного типа с неподвижным слоем, Energy Convers.Manag. 98 (2015) f
208 214,. – Https: //doi.org/10.1016/j.enconman.2015.03.102
[43] Y.W. Чон, С.К. Цой, Ю.С. Чой, С.Дж. Ким, Производство биомасла из свиного навоза
методом быстрого пиролиза и анализ его характеристик, Renew. Энергия 79
(2015) 14 19,. – Https: //doi.org/10.1016/j.renene.2014.08.041
[44] С. Чанг, З. Чжао, А. Чжэн, Х. Ли, X. Wang, Z. Huang и др., Влияние гидротермальной предварительной обработки ff
на свойства бионефти, полученного в результате быстрого пиролиза древесины эвкалипта
в реакторе с псевдоожиженным слоем, Bioresour.Technol. 138 (2013) 321 328, fl– https: //
doi.org/10.1016/j.biortech.2013.03.170.
[45] С. Папари, К. Хавболдт, Р. Хеллер, Пиролиз: теоретическое и экспериментальное исследование
преобразования остатков пиломатериалов хвойных пород в бионефть, Ind. Eng. Chem. Res. 54
(2015) 605 611,. – Https: //doi.org/10.1021/ie5039456
[46] Х.С. Цой, Ю.С. Чой, Х. Парк, Характеристики быстрого пиролиза лигноцеллюлозной биомассы
при различных условиях реакции, Renew.Энергия 42 (2012) 131 135, —
https://doi.org/10.1016/j.renene.2011.08.049.
[47] М. Амутио, Г. Лопес, Дж. Альварес, М. Олазар, Дж. Бильбао, Быстрый пиролиз эвкалиптовых отходов
в реакторе с коническим носиком, Биоресурсы. Technol. 194 (2015) 225 232, —
https://doi.org/10.1016/j.biortech.2015.07.030.
[48] А. Адрадос, А. Лопес-Урионабарренечеа, Дж. Солар, Дж. Реквис, И. Де Марко,
Дж. Ф. Камбра, Повышение качества пиролизных паров от карбонизации биомассы, J.Анальный.
Заявл. Пиролиз 103 (2013) 293 299,. – Https: //doi.org/10.1016/j.jaap.2013.03.002
[49] Х. Чжан, Р. Сяо, Х. Хуан, Г. Сяо, Сравнение некаталитический и каталитический быстрый
пиролиз кукурузного початка в реакторе с псевдоожиженным слоем, Bioresour. Technol. 100 (2009) №
1428 1434,. – Https: //doi.org/10.1016/j.biortech.2008.08.031
[50] Б. Пидтасанг, П. Удомсап, С. Суккаси, Н. Чоллачуп, Паттия А., Влияние добавки спирта №
на свойства бионефти, полученного в результате быстрого пиролиза коры эвкалипта в реакторе свободного падения
, J.Ind. Eng. Chem. 19 (2013) 1851 1857, –https: //doi.org/10.
1016 / j.jiec.2013.02.031.
[51] H.V. Ли, С.С. Ким, Дж. Х. Чой, Х. Ву, Дж. Ким, Быстрый пиролиз водорослей Saccharina japonica
в реакторе с неподвижным слоем для производства бионефти, Energy Convers. Manag. 122f
(2016) 526 534,. – Https: //doi.org/10.1016/j.enconman.2016.06.019
[52] А. Бланко, Ф. Чейн, Журнал аналитического и прикладного моделирования пиролиза и др. —
Моделирование быстрого пиролиза биомассы в реакторе с псевдоожиженным слоем, J.Анальный. Прил. Пиролиз №
118 (2016) 105 114, –https: //doi.org/10.1016/j.jaap.2016.01.003.
[53] С. Тангалажи-Гопакумар, С. Адхикари, Х. Равиндран, Р. Б. Гупта, О. Фасина,
М. Ту и др., Физиохимические свойства биомасла, полученного при различных температурах
из сосны древесины с помощью шнекового реактора, Биоресурсы. Technol. 101 (2010) 8389 8395, —
https://doi.org/10.1016/j.biortech.2010.05.040.
[54] Т.Венугопал, статья в прессе, Current (2005), https://doi.org/10.1016/j.cbpc.
2005.04.011.
[55] J. Jae, R. Coolman, T.J. Mountziaris, G.W. Хубер, Каталитический быстрый пиролиз ноцеллюлозной биомассы лиг-
в установке разработки процесса с непрерывным добавлением и удалением катализатора
, Chem. Англ. Sci. 108 (2014) 33 46, –https: //doi.org/10.1016/j.ces.
S. Papari, K. Hawboldt Fuel Processing Technology 180 (2018) 1–13
12
Реактор пиролиза — обзор
Газификация и пиролиз
При нагревании топливо из биомассы разлагается на газообразные и конденсируемые видов, оставляя после себя твердый углеродистый остаток, известный как уголь.Это ранняя стадия горения, и светящееся пламя, наблюдаемое при сжигании древесины и другой биомассы, является результатом окисления летучих соединений, выделяемых во время пиролиза и газификации сырья, и теплового излучения от частиц сажи от пламени, дающего характерный желтый цвет. .
Когда отношение эквивалента топлива к воздуху, ϕ , уравнения [6] существенно больше единицы (богатое топливо), топливо будет только частично окисляться из-за недостатка кислорода, и продукты реакции не будут состоять из только диоксид углерода и вода, но большие количества оксида углерода и водорода в дополнение к различным количествам газообразных углеводородов и конденсируемых соединений (смол и масел), а также полукокса и золы.Другие окислители, включая водяной пар, также могут использоваться вместо воздуха, и в этом случае набор продуктов реакции будет отличаться. Условия реакции могут быть изменены, чтобы максимизировать производство топливных газов, жидких топлив или полукокса (как для древесного угля), в зависимости от предполагаемого энергетического рынка или рынков. Термин «газификация» применяется к процессам, которые оптимизированы для производства топливного газа (в основном CO, H 2 и легких углеводородов). При нагревании без добавления окислителя сырье подвергается пиролизу.Реакторы пиролиза обычно проектируются так, чтобы максимально увеличить производство жидкостей за счет быстрого, а не медленного нагрева, хотя растущий интерес к биоугля или сажи теперь меняет предпочтительную смесь продуктов. Катализаторы иногда используются для ускорения различных реакций, особенно крекинга высокомолекулярных углеводородов, образующихся во время газификации, а также в химическом каталитическом синтезе жидких углеводородов и других продуктов при производстве транспортного биотоплива.
Технология газификации была разработана более 200 лет назад (Kaupp and Goss, 1984), а в последнее время была усовершенствована в первую очередь с целью обеспечения доступа твердого топлива (биомасса, уголь и кокс) к некоторым из тех же коммерческих рынков, что и природные. газ и нефть.Газификаторы уже давно используются для преобразования твердого топлива в топливные газы для работы двигателей внутреннего сгорания, как с искровым зажиганием (бензин), так и с воспламенением от сжатия (дизели). Их также можно использовать для устройств внешнего сгорания, таких как котлы и двигатели Стирлинга. Наиболее распространенными типами являются газификаторы прямого действия, в которых частичное окисление сырья в топливном слое дает тепло для реакций пиролиза и газификации, которые в основном являются эндотермическими. В газификаторах непрямого действия и в реакторах пиролиза используется внешний теплообмен для обеспечения тепла, необходимого для пиролиза топлива.Тепло может быть произведено путем сжигания части исходного топлива из биомассы или путем сжигания выходящих топливных газов, жидкостей или полукокса. Аллотермические реакторы были разработаны для подачи тепла за счет внутреннего, но раздельного сжигания фазы полукокса после газификации сырья, в основном в системах с двумя реакторами (Wilk and Hofbauer, 2013). Газификаторы могут иметь меньше проблем с шлакованием золы из-за более низких рабочих температур по сравнению с камерами сгорания, хотя шлакование, засорение и агломерация слоя остаются проблемами с некоторыми видами топлива (например,г., солома).
Когда в газификаторы прямого действия подается воздух для реакции сырья, топливные газы будут содержать большое количество азота, а теплотворная способность или содержание энергии в газе будет низким (3–6 МДж м –3 ) по сравнению с природный газ (сравните метан при 36,1 МДж м −3 ) и другие более традиционные виды топлива. Двигатели без наддува, работающие на таком газе, будут иметь пониженную выходную мощность по сравнению с их работой на бензине или дизельном топливе (Jenkins and Goss, 1988).В случае дизельных двигателей газ нельзя использовать в одиночку, и для обеспечения надлежащего зажигания и выбора момента впрыскивается пилотное количество дизельного топлива. Для двигателей с искровым зажиганием выходная мощность двигателя примерно вдвое меньше, чем у того же двигателя на бензине, потому что объем воздуха в двигателе (количество воздуха, всасываемого в цилиндр двигателя во время такта впуска) уменьшается из-за большого занимаемого объема. топливным газом, и поэтому во время каждого цикла можно сжечь не так много топлива (Jenkins and Goss, 1988).Частично это можно преодолеть с помощью наддува двигателя. Для двухтопливных дизельных двигателей газ, как правило, может обеспечивать до 70% общей энергии топлива, не сталкиваясь с серьезным ударом, который возникает из-за длительной задержки зажигания, связанной с генераторным газом, тем же свойством, которое дает газу отличное октановое число ( Chancellor, 1980; Ogunlowo et al ., 1981). Те же свойства генераторного газа, которые приводят к позднему воспламенению и детонации в дизельном двигателе, делают его достаточно устойчивым к детонации в двигателе с искровым зажиганием, поэтому можно использовать степени сжатия значительно выше 10.При правильной конструкции головки блока цилиндров и увеличенной степени сжатия эффективность двигателя может быть улучшена по сравнению с бензиновым двигателем, что компенсирует некоторое снижение характеристик из-за уменьшения объема воздуха.
Если в реакторе газификации используется обогащенный или чистый кислород, полученный топливный газ или синтез-газ будет более высокого качества. Однако стоимость производства кислорода высока, и такие системы обычно предлагаются для более крупных масштабов или для производства более дорогих товаров, таких как химикаты и жидкое топливо.Метанол, жидкое спиртовое топливо, CH 3 OH, образуется в каталитической реакции
[7] CO + 2h3 = Ch4OH
Этой реакции способствует низкая температура (400 ° C), но высокое давление (30– 38 МПа). Оксид цинка и оксид хрома являются общими катализаторами. Используя медь в качестве катализатора, можно снизить температуру и давление реакции (260 ° C, 5 МПа), но медь чувствительна к отравлению серой и требует хорошей очистки газов (Probstein and Hicks, 1982). Реакции Фишера-Тропша можно использовать для получения ряда химических веществ, включая спирты и алифатические углеводороды.Снижены требования к температуре и давлению, а выбор катализатора может быть получен с большей селективностью.
Жидкости, такие как бензины, могут производиться косвенными путями, включающими газификацию или пиролиз твердой биомассы для получения реакционноспособных промежуточных продуктов, которые можно каталитически улучшить (Kuester et al ., 1985; Prasad and Kuester, 1988; Kuester, 1991; Браун, 2011). Жидкости, произведенные непосредственно путем пиролиза, обычно коррозионно-агрессивны, страдают окислительной нестабильностью и не могут быть напрямую использованы в качестве моторного топлива.Многие продукты также канцерогены. Для получения товарных соединений обычно требуется какая-либо очистка. Несмотря на это, реакторы быстрого пиролиза, использующие биомассу и другие виды топлива, находятся в стадии коммерческого запуска для производства бионефти (Ensyn Corp, 2014). Жидкое топливо также можно производить прямыми термохимическими методами, такими как гидрирование в растворителе с присутствующим катализатором (Elliott et al ., 1991; Bridgwater and Bridge, 1991).
Одним из основных технических препятствий, особенно в малых масштабах, при применении газификаторов для целей, отличных от прямого сжигания сырого газа, является очистка и очистка газа.Удаление твердых частиц и смол из газа имеет решающее значение для последующего производства электроэнергии и синтеза топлива. Смолы представляют собой класс тяжелых органических материалов, которые особенно трудно удалить или обработать. Существуют системы для производства газа приемлемого качества, но, как правило, они основаны на некоторой комбинации влажной и сухой очистки и фильтрации, что увеличивает расходы на систему конверсии. Маломасштабные газификаторы, используемые для удаленного производства электроэнергии, часто применялись без надлежащих процедур обращения с гудроном, отделенным от газа.Очистка газа и обработка гудрона остаются критическими инженерными задачами для более широкого внедрения технологии во всех масштабах.
Усовершенствованные варианты производства электроэнергии из биомассы включают использование газификатора биомассы для производства топливного газа для газовой турбины в интегрированной системе с комбинированным циклом газификации (Рисунок 17; Meerman et al ., 2013). Эффективность этих систем может быть значительно выше, чем у традиционных систем выработки электроэнергии с циклом Ренкина. Основные технические задачи включают очистку горячего газа для получения газа надлежащего качества, чтобы избежать загрязнения турбины, а также разработку надежных реакторов или компрессоров высокого давления и систем подачи топлива.Считается, что использование газогенератора является преимуществом по сравнению с камерой сгорания с прямым сгоранием, поскольку потери тепла в системе газоочистки вызывают меньшее беспокойство, поскольку большая часть энергии топлива находится в форме химической энергии получаемого газа. Другие преимущества газификаторов перед камерами сгорания включают способность работать при более низких температурах и меньшие объемы газа на единицу преобразованного сырья, что способствует удалению соединений серы и азота для снижения выбросов загрязняющих веществ. Системы этого типа в настоящее время находятся в стадии разработки, и было завершено несколько крупномасштабных демонстрационных проектов, но эта технология еще не применялась в коммерческих целях для биомассы, хотя она применяется для угля в более крупных масштабах (Stahl and Neergaard, 1998).Фиг.17 также иллюстрирует возможное использование впрыска пара для уменьшения тепловых выбросов NO x и увеличения выходной мощности газовой турбины. Высокая теплоемкость пара по сравнению с продуктами сгорания приводит к увеличению мощности, а добавление пара снижает температуру пламени, что способствует снижению термического образования NO x (Weston, 1992). Многие другие варианты термохимической конверсии находятся в стадии разработки (Brown, 2011).
Рис. 17. Передовая концепция выработки электроэнергии с комбинированным циклом с интегрированной газификацией. Показана газификация сжатым воздухом. Также показан вариант газовой турбины с впрыском пара (IG / STIG).
Границы | Каталитический пиролиз пластиковых отходов: переход к биоперерабатывающим предприятиям на основе пиролиза
Введение
Производство и потребление пластиковых отходов растет тревожными темпами в связи с увеличением численности населения, быстрым экономическим ростом, постоянной урбанизацией и изменениями в образе жизни.Кроме того, короткий срок службы пластика ускоряет ежедневное производство пластиковых отходов. Мировое производство пластика оценивается примерно в 300 миллионов тонн в год и с каждым годом постоянно увеличивается (Miandad et al., 2016a; Ratnasari et al., 2017). Пластмассы состоят из нефтехимических углеводородов с добавками, такими как антипирены, стабилизаторы и окислители, которые затрудняют биоразложение (Ma et al., 2017). Переработка пластиковых отходов осуществляется по-разному, но в большинстве развивающихся стран открытая или свалка является обычной практикой для управления пластиковыми отходами (Gandidi et al., 2018). Вывоз пластиковых отходов на свалки является местом обитания насекомых и грызунов, которые могут вызывать различные виды заболеваний (Alexandra, 2012). Кроме того, стоимость транспортировки, рабочей силы и технического обслуживания может увеличить стоимость проектов по переработке (Gandidi et al., 2018). Кроме того, из-за быстрой урбанизации сокращается количество земель, пригодных для свалки, особенно в городах. Пиролиз — это распространенный метод преобразования пластиковых отходов в энергию в виде твердого, жидкого и газообразного топлива.
Пиролиз — это термическое разложение пластиковых отходов при различных температурах (300–900 ° C) в отсутствие кислорода до полученной жидкой нефти (Rehan et al., 2017). Различные виды катализаторов используются для улучшения процесса пиролиза пластиковых отходов в целом и повышения эффективности процесса. Катализаторы играют очень важную роль в повышении эффективности процесса, нацеливании на конкретную реакцию и снижении температуры и времени процесса (Serrano et al., 2012; Ratnasari et al., 2017).В процессах пиролиза пластмасс использовался широкий спектр катализаторов, но наиболее широко применяемыми катализаторами являются ZSM-5, цеолит, Y-цеолит, FCC и MCM-41 (Ratnasari et al., 2017). Каталитическая реакция во время пиролиза пластиковых отходов на твердых кислотных катализаторах может включать реакции крекинга, олигомеризации, циклизации, ароматизации и изомеризации (Serrano et al., 2012).
В нескольких исследованиях сообщалось об использовании микропористых и мезопористых катализаторов для преобразования пластиковых отходов в жидкое масло и полукокс.Uemichi et al. (1998) провели каталитический пиролиз полиэтилена (ПЭ) с катализаторами HZSM-5. Использование HZSM-5 увеличило добычу жидкой нефти с составом ароматических углеводородов и изоалкановых соединений. Gaca et al. (2008) провели пиролиз пластиковых отходов с модифицированными MCM-41 и HZSM-5 и сообщили, что использование HZSM-5 дает более легкие углеводороды (C 3 –C 4 ) с максимальным содержанием ароматических соединений. Lin et al. (2004) использовали различные типы катализаторов и сообщили, что даже смешивание HZSM-5 с мезопористым SiO 2 -Al 2 O 3 или MCM-41 привело к максимальной добыче жидкой нефти с минимальным выходом газа.Агуадо и др. (1997) сообщили о получении ароматических и алифатических соединений в результате каталитического пиролиза полиэтилена с HZSM-5, в то время как использование мезопористого MCM-41 снизило количество получаемых ароматических соединений из-за его низкой кислотной каталитической активности. Использование синтетических катализаторов улучшило общий процесс пиролиза и улучшило качество добываемой жидкой нефти. Однако использование синтетических катализаторов увеличивало стоимость процесса пиролиза.
Катализаторы NZ могут использоваться для решения экономических проблем каталитического пиролиза, который связан с использованием дорогих катализаторов.В последние годы Новая Зеландия привлекла к себе большое внимание своими потенциальными экологическими приложениями. Естественно, NZ встречается в Японии, США, Кубе, Индонезии, Венгрии, Италии и Королевстве Саудовская Аравия (KSA) (Sriningsih et al., 2014; Nizami et al., 2016). Месторождение Новой Зеландии в КСА в основном находится в Харрат Шама и Джаббал Шама и в основном содержит минералы морденита с высокой термической стабильностью, что делает его пригодным в качестве катализатора при пиролизе пластиковых отходов. Sriningsih et al. (2014) модифицировали NZ из Сукабуми, Индонезия, отложив переходные металлы, такие как Ni, Co и Mo, и провели пиролиз полиэтилена низкой плотности (LDPE).Gandidi et al. (2018) использовали NZ из Лампунга, Индонезия, для каталитического пиролиза твердых бытовых отходов.
Это первое исследование по изучению влияния модифицированного саудовского природного цеолита на качество продукта и выход при каталитическом пиролизе пластиковых отходов. Саудовский природный цеолитный катализатор был модифицирован с помощью новой термической активации (TA-NZ) при 550 ° C и кислотной активации (AA-NZ) с помощью HNO 3 для улучшения его каталитических свойств. Каталитический пиролиз различных типов пластмассовых отходов (ПС, ПЭ, ПП и ПЭТ), как отдельных, так и смешанных в различных соотношениях, в присутствии катализаторов на основе модифицированного природного цеолита (NZ) в небольшом экспериментальном реакторе пиролиза проводился для первый раз.Были изучены качество и выход таких продуктов пиролиза, как жидкая нефть, газ и полукокс. Химический состав жидкой нефти анализировали с помощью ГХ-МС. Кроме того, обсуждались возможности и проблемы биоперерабатывающих заводов на основе пиролиза.
Материалы и методы
Подготовка сырья и запуск реактора
Пластиковые отходы, используемые в качестве сырья в процессе каталитического пиролиза, были собраны в Джидде и включали продуктовые пакеты, одноразовые чашки и тарелки для сока и бутылки для питьевой воды, которые состоят из полиэтилена (PE), полипропилена (PP), полистирола (PS), и полиэтилентерефталатные (ПЭТ) пластмассы соответственно.Выбор этих пластиковых материалов был сделан на основании того факта, что они являются основным источником пластиковых отходов, производимых в КСА. Для получения однородной смеси все образцы отходов измельчали на более мелкие кусочки размером около 2 см 2 . Каталитический пиролиз проводился с использованием отдельных или смеси этих пластиковых отходов в различных соотношениях (таблица 1). Использовали 1000 г сырья, по 100 г катализатора в каждом эксперименте. Саудовский природный цеолит (Новая Зеландия), собранный в Харрат-Шама, расположенном на северо-западе города Джидда, штат Южная Австралия (Nizami et al., 2016), был модифицирован термической и кислотной обработкой и использован в этих экспериментах по каталитическому пиролизу. NZ измельчали до порошка (<100 нм) в шаровой мельнице (Retsch MM 480) в течение 3 ч при частоте 20 Гц / с перед модификацией и использованием в пиролизе. Для термической активации (ТА) NZ нагревали в муфельной печи при 550 ° C в течение 5 часов, а для кислотной активации (AA) NZ вымачивали в 0,1 М растворе азотной кислоты (HNO 3 ) в течение 48 часов и непрерывно встряхивают с помощью цифрового шейкера IKA HS 501 со скоростью 50 об / мин.После этого образец промывали деионизированной водой до получения нормального pH.
Таблица 1 . Схема эксперимента.
Эксперименты проводились в небольшом пилотном реакторе пиролиза при 450 ° C, при скорости нагрева 10 ° C / мин и времени реакции 75 мин (рис. 1). Полученный выход каждого продукта пиролиза рассчитывали по массе после завершения каждого эксперимента. Характеристика добываемой жидкой нефти была проведена для исследования влияния состава сырья на качество жидкой нефти, полученной в присутствии модифицированного NZ.ТГА проводили на сырье для получения оптимальных условий процесса, таких как температура и время реакции (75 мин) в контролируемых условиях. В TGA брали 10 мкг каждого типа пластиковых отходов и нагревали со скоростью 10 ° C от 25 до 900 ° C в непрерывном потоке азота (50 мл / мин). Авторы этого исследования недавно опубликовали работу о влиянии состава сырья и природных и синтетических цеолитных катализаторов без модификации катализатора на различные типы пластиковых отходов (Miandad et al., 2017b; Rehan et al., 2017).
Экспериментальная установка
Небольшой пилотный реактор может использоваться как для термического, так и для каталитического пиролиза с использованием различного сырья, такого как пластмассы и биомасса (рис. 1). В этом исследовании модифицированные катализаторы NZ были добавлены в реактор с сырьем. Реактор пиролиза может вместить до 20 л сырья, а максимальная безопасная рабочая температура до 600 ° C может быть достигнута при желаемых скоростях нагрева.Подробные параметры реактора пиролиза были опубликованы ранее (Miandad et al., 2016b, 2017b). При повышении температуры выше определенных значений пластиковые отходы (органические полимеры) превращаются в мономеры, которые переносятся в конденсатор, где эти пары конденсируются в жидкое масло. Для обеспечения температуры конденсации ниже 10 ° C и максимальной конденсации пара в жидкое масло использовалась система непрерывной конденсации с использованием водяной бани и охлаждающей жидкости ACDelco Classic.Добываемая жидкая нефть была собрана из резервуара для сбора нефти, и была проведена дальнейшая характеристика, чтобы раскрыть ее химический состав и характеристики для других потенциальных применений.
Аналитические методы
Пиролизное масло охарактеризовано с использованием различных методов, таких как газовая хроматография в сочетании с масс-спектрофотометрией (ГХ-МС), инфракрасная спектроскопия с преобразованием Фурье (FT-IR),
Бомбовый калориметр и ТГА (Mettler Toledo TGA / SDTA851) с применением стандартных методов ASTM.Функциональные группы в пиролизном масле анализировали с помощью прибора FT-IR, Perkin Elmer’s, UK. Анализ FT-IR проводился с использованием минимум 32 сканирований со средним значением 4 см -1 ИК-сигналов в диапазоне частот 500-4000 см -1 .
Химический состав нефти изучался с помощью ГХ-МС (Shimadzu QP-Plus 2010) с детектором FI. Использовали капиллярную колонку GC длиной 30 м и шириной 0,25 мм, покрытую пленкой 5% фенилметилполисилоксана (HP-5) толщиной 0,25 мкм.Духовку устанавливали на 50 ° C на 2 мин, а затем увеличивали до 290 ° C, используя скорость нагрева 5 ° C / мин. Температура источника ионов и линии передачи поддерживалась на уровне 230 и 300 ° C, а инжекция без деления потока осуществлялась при 290 ° C. Библиотеку масс-спектральных данных NIST08s использовали для идентификации хроматографических пиков, и процентное содержание пиков оценивалось по их общей площади пика ионной хроматограммы (TIC). Высокая теплотворная способность (HHV) добытой жидкой нефти, полученной из различных типов пластиковых отходов, была измерена в соответствии со стандартным методом ASTM D 240 с помощью прибора Bomb Calorimeter (Parr 6200 Calorimeter), в то время как производство газа оценивалось с использованием стандартной формулы баланса масс. , учитывая разницу в весе жидкого масла и полукокса.
Результаты и обсуждение
ТГА-анализ сырья
ТГА был проведен для каждого типа пластиковых отходов в индивидуальном порядке, чтобы определить оптимальную температуру для термического разложения. Все типы пластиковых отходов демонстрируют сходное поведение при разложении с быстрой потерей веса углеводородов в узком диапазоне температур (150–250 ° C) (рис. 2). Максимальная деградация для каждого типа пластиковых отходов была достигнута в пределах 420–490 ° C. ПС и ПП показали одностадийное разложение, в то время как ПЭ и ПЭТ показали двухступенчатое разложение в контролируемых условиях.Одностадийное разложение соответствует присутствию углерод-углеродной связи, которая способствует механизму случайного разрыва с повышением температуры (Kim et al., 2006). Разложение полипропилена начинается при очень низкой температуре (240 ° C) по сравнению с другим сырьем. Половина углерода, присутствующего в цепи полипропилена, состоит из третичного углерода, который способствует образованию карбокатиона в процессе его термического разложения (Jung et al., 2010). Вероятно, это причина достижения максимальной деградации полипропилена при более низкой температуре.Начальная деградация PS началась при 330 ° C, а максимальная деградация была достигнута при 470 ° C. PS имеет циклическую структуру, и его деградация в тепловых условиях включает как случайную цепь, так и разрыв концевой цепи, что усиливает процесс его деградации (Demirbas, 2004; Lee, 2012).
Рисунок 2 . Термогравиметрический анализ (ТГА) пластиковых отходов ПС, ПЭ, ПП и ПЭТ.
PE и PET показали двухэтапный процесс разложения; начальная деградация началась при более низких температурах, а затем другая стадия разложения при более высокой температуре.Первоначальная деградация ПЭ началась при 270 ° C и медленно, но постепенно распространялась, пока температура не достигла 385 ° C. После этой температуры наблюдалась резкая деградация, и была достигнута 95% -ная деградация с дальнейшим повышением примерно на 100 ° C. Аналогичная двухэтапная картина разложения наблюдалась для пластика ПЭТФ, и первоначальная деградация началась при 400 ° C с резким снижением потери веса. Однако вторая деградация началась при несколько более высокой температуре (550 ° C). Первоначальное разложение ПЭ и ПЭТ может быть связано с присутствием некоторых летучих примесей, таких как добавочный наполнитель, используемый во время синтеза пластика (Димитров и др., 2013).
Различные исследователи сообщают, что деградация ПЭ и ПЭТ требует более высоких температур по сравнению с другими пластиками (Димитров и др., 2013; Риццарелли и др., 2016). Lee (2012) сообщил, что PE имеет длинноцепочечную разветвленную структуру и что его разложение происходит посредством разрыва случайной цепи, что требует более высокой температуры, в то время как разложение PET следует за случайным разрывом сложноэфирных звеньев, что приводит к образованию олигомеров (Dziecioł and Trzeszczynski, 2000). ; Lecomte and Liggat, 2006).Первоначальная деградация ПЭТ, возможно, была связана с присутствием некоторых летучих примесей, таких как диэтиленгликоль (Димитров и др., 2013). В литературе сообщается, что присутствие этих летучих примесей дополнительно способствует процессу разложения полимеров (McNeill and Bounekhel, 1991; Dziecioł and Trzeszczynski, 2000). Различие в кривых ТГА различных типов пластиков может быть связано с их мезопористой структурой (Chandrasekaran et al., 2015). Кроме того, Lopez et al. (2011) сообщили, что использование катализаторов снижает температуру процесса.Следовательно, 450 ° C можно было бы принять в качестве оптимальной температуры в присутствии активированного NZ для каталитического пиролиза вышеупомянутых пластиковых отходов.
Влияние сырья и катализаторов на выход продуктов пиролиза
Было исследовано влияние термической и кислотной активации NZ на выход продукта процесса пиролиза (рис. 3). Каталитический пиролиз индивидуального ПС-пластика с использованием катализаторов TA-NZ и AA-NZ показал самый высокий выход жидкого масла 70 и 60%, соответственно, по сравнению со всеми другими изученными типами индивидуальных и комбинированных пластиковых отходов.О высоком выходе жидкой нефти при каталитическом пиролизе ПС сообщалось и в нескольких других исследованиях (Siddiqui, Redhwi, 2009; Lee, 2012; Rehan et al., 2017). Сиддики и Редхви (2009) сообщили, что ПС имеет циклическую структуру, что приводит к высокому выходу жидкой нефти при каталитическом пиролизе. Ли (2012) сообщил, что деградация полистирола происходит за счет разрывов как случайных цепей, так и концевых цепей, что приводит к образованию стабильной структуры бензольного кольца, которая усиливает дальнейший крекинг и может увеличивать добычу жидкой нефти.Более того, в присутствии кислотных катализаторов разложение PS происходит по карбениевому механизму, который далее подвергается гидрированию (меж / внутримолекулярный перенос водорода) и β-расщеплению (Serrano et al., 2000). Кроме того, разложение PS происходило при более низкой температуре по сравнению с другими пластиками, такими как PE, из-за его циклической структуры (Wu et al., 2014). С другой стороны, каталитический пиролиз PS дает более высокое количество полукокса (24,6%) с катализатором AA-NZ, чем с катализатором TA-NZ (15,8%).Ma et al. (2017) также сообщили о высоком производстве полукокса при каталитическом пиролизе полистирола с кислотным цеолитным (Hβ) катализатором. Высокие показатели образования полукокса были связаны с высокой кислотностью катализатора, которая способствует образованию полукокса за счет интенсивных вторичных реакций сшивания (Serrano et al., 2000).
Рисунок 3 . Влияние TA-NZ и AA-NZ на выход продуктов пиролиза.
Каталитический пиролиз ПП дает больше жидкой нефти (54%) с катализатором AA-NZ, чем катализатор TA-NZ (40%) (Рисунок 3).С другой стороны, катализатор TA-NZ дает большое количество газа (41,1%), что может быть связано с более низкой каталитической активностью катализатора TA-NZ. По данным Kim et al. (2002) катализатор с низкой кислотностью и площадями поверхности по БЭТ с микропористыми структурами способствуют начальному разложению полипропилена, что может привести к максимальному выделению газов. Обали и др. (2012) провели пиролиз полипропилена с катализатором, содержащим оксид алюминия, и сообщили о максимальной добыче газа. Более того, образование карбокатиона во время разложения полипропилена из-за присутствия третичного углерода в его углеродной цепи также может способствовать образованию газа (Jung et al., 2010). Syamsiro et al. (2014) также сообщили, что каталитический пиролиз PP и PS с активированным кислотой (HCL) природным цеолитным катализатором дает больше газов, чем процесс с термически активированным природным цеолитным катализатором, из-за его высокой кислотности и площади поверхности по БЭТ.
Каталитический пиролиз полиэтилена с катализаторами TA-NZ и AA-NZ дает аналогичные количества жидкого масла (40 и 42%). Однако наибольшее количество газов (50,8 и 47,0%) было произведено из полиэтилена при использовании AA-NZ и TA-NZ соответственно, по сравнению со всеми другими исследованными типами пластмасс.Производство полукокса было самым низким в этом случае, 7,2 и 13,0% с AA-NZ и TA-NZ, соответственно. В различных исследованиях также сообщалось о более низком производстве полукокса при каталитическом пиролизе полиэтилена (Xue et al., 2017). Lopez et al. (2011) сообщили, что катализаторы с высокой кислотностью усиливают крекинг полимеров во время каталитического пиролиза. Увеличение крекинга в присутствии высококислотного катализатора способствует образованию газов (Miandad et al., 2016b, 2017a). Zeaiter (2014) провел каталитический пиролиз полиэтилена с цеолитом HBeta и сообщил о 95.7% выход газа из-за высокой кислотности катализатора. Batool et al. (2016) также сообщили о максимальном производстве газа при каталитическом пиролизе полиэтилена с высококислотным катализатором ZSM-5. Согласно Lee (2012) и Williams (2006), PE имеет длинноцепочечную углеродную структуру, и его разложение происходит случайным образом на более мелкие цепочечные молекулы за счет случайного разрыва цепи, что может способствовать образованию газа. Во время пиролиза полиэтилена, который удерживает только связи C-H и C-C, первоначально происходит разрыв основной цепи макромолекулы и образование стабильных свободных радикалов.Далее происходили стадии гидрирования, ведущие к синтезу вторичных свободных радикалов (новая стабильная связь C-H), что приводило к β-разрыву и образованию ненасыщенной группы (Rizzarelli et al., 2016).
Каталитический пиролиз ПП / ПЭ (соотношение 50/50%) не выявил каких-либо существенных различий в общих выходах продукта при использовании как AA-NZ, так и TA-NZ. Жидкое масло, полученное в результате каталитического пиролиза PP / PE, составляло 44 и 40% от катализаторов TA-NZ и AA-NZ, соответственно. Небольшое снижение выхода жидкого масла из AA-NZ может быть связано с его высокой кислотностью.Syamsiro et al. (2014) сообщили, что AA-NZ с HCl имеет более высокую кислотность по сравнению с TA-NZ, дает меньший выход жидкой нефти и имеет высокий выход газов. Общий каталитический пиролиз PP / PE дает максимальное количество газа с низким содержанием полукокса. Высокая добыча газа может быть связана с присутствием ПП. Разложение полипропилена усиливает процесс карбокатиона из-за присутствия третичного углерода в его углеродной цепи (Jung et al., 2010). Кроме того, разложение полиэтилена в присутствии катализатора также способствует получению газа с низким выходом жидкого масла.Однако, когда каталитический пиролиз ПП и ПЭ проводился отдельно с ПС, наблюдалась значительная разница в выходе продукта.
Наблюдалась значительная разница в выходе жидкого масла 54 и 34% для каталитического пиролиза PS / PP (соотношение 50/50%) с катализаторами TA-NZ и AA-NZ, соответственно. Аналогичным образом наблюдалась значительная разница в выходе полукокса 20,3 и 35,2%, тогда как высокий выход газов составлял 25,7 и 30,8% при использовании катализаторов TA-NZ и AA-NZ, соответственно.Lopez et al. (2011) и Seo et al. (2003) сообщили, что катализатор с высокой кислотностью способствует процессу крекинга и обеспечивает максимальное производство газа. Кроме того, присутствие ПП также увеличивает газообразование из-за процесса карбокатиона во время разложения (Jung et al., 2010). Kim et al. (2002) сообщили, что при разложении полипропилена выделяется максимум газа в присутствии кислотных катализаторов.
Каталитический пиролиз полистирола с полиэтиленом (соотношение 50/50%) в присутствии катализатора TA-NZ дает 44% жидкого масла, однако 52% жидкого масла было получено с использованием катализатора AA-NZ.Kiran et al. (2000) провели пиролиз PS с PE при различных соотношениях и сообщили, что увеличение концентрации PE снижает концентрацию жидкой нефти с увеличением количества газа. Присутствие ПС с ПЭ способствует процессу разложения из-за образования активного стабильного бензольного кольца из ПС (Miandad et al., 2016b). Wu et al. (2014) провели ТГА ПС с ПЭ и наблюдали два пика, первый для ПС при низкой температуре, а затем деградацию ПЭ при высокой температуре.Более того, деградация PE следует за цепным процессом свободных радикалов и процессом гидрирования, в то время как PS следует за процессом радикальной цепочки, включая различные стадии (Kiran et al., 2000). Таким образом, даже с учетом явления разложения, PS приводил к более высокому разложению по сравнению с PE и давал стабильные бензольные кольца (McNeill et al., 1990).
Каталитический пиролиз ПС / ПЭ / ПП (соотношение 50/25/25%) показал несколько более низкий выход жидкого масла по сравнению с каталитическим пиролизом всех отдельных типов пластмасс.Выход масла для обоих катализаторов, TA-NZ и AA-NZ, в этом случае одинаков, 44 и 40% соответственно. Производство полукокса было выше (29,7%) с катализатором AA-NZ, чем (19,0%) с катализатором TA-NZ, что может быть связано с реакциями полимеризации (Wu and Williams, 2010). Кроме того, добавление ПЭТ с ПС, ПЭ и ПП (соотношение 20/40/20/20%) снизило выход жидкого масла до 28 и 30% в целом при использовании катализаторов TA-NZ и AA-NZ, соответственно, с более высокой фракции полукокса и газа. Демирбас (2004) провел пиролиз ПС / ПЭ / ПП и сообщил аналогичные результаты для выхода продукта.Аднан и др. (2014) провели каталитический пиролиз ПС и ПЭТ с использованием катализатора Al-Al 2 O 3 с соотношением 80/20% и сообщили только о 37% жидкой нефти. Более того, Yoshioka et al. (2004) сообщили о максимальном производстве газа и полукокса при незначительном производстве жидкой нефти при каталитическом пиролизе ПЭТ. Кроме того, о максимальном образовании угля сообщалось также при проведении каталитического пиролиза ПЭТ с другими пластиками (Bhaskar et al., 2004). Более высокое производство полукокса при пиролизе ПЭТ связано с реакциями карбонизации и конденсации во время его пиролиза при высокой температуре (Yoshioka et al., 2004). Кроме того, присутствие атома кислорода также способствует высокому образованию полукокса при каталитическом пиролизе ПЭТ (Xue et al., 2017). Thilakaratne et al. (2016) сообщили, что образование свободных радикалов от бензола с двумя активированными углями является предшественником каталитического кокса в результате разложения ПЭТ.
Влияние катализаторов на состав жидкой нефти
Химический состав жидкого масла, полученного каталитическим пиролизом различных пластиковых отходов с использованием катализаторов TA-NZ и AA-NZ, был охарактеризован методом ГХ-МС (рисунки 4, 5).На состав добываемой жидкой нефти влияют различные типы сырья и катализаторов, используемых в процессе пиролиза (Miandad et al., 2016a, b, c). Жидкое масло, полученное из отдельных типов пластмасс, таких как ПС, ПП и ПЭ, содержало смесь ароматических, алифатических и других углеводородных соединений. Ароматические соединения, обнаруженные в масле из ПС и ПЭ, были выше, чем ПП при использовании катализатора TA-NZ. Количество ароматических соединений увеличилось в масле из ПС и ПП, но уменьшилось в ПЭ при использовании катализатора AA-NZ.Мезопористый и кислотный катализатор приводит к производству углеводородов с более короткой цепью из-за его высокой крекирующей способности (Lopez et al., 2011). Однако микропористые и менее кислые катализаторы способствуют получению длинноцепочечных углеводородов, поскольку процесс крекинга происходит только на внешней поверхности катализаторов. В целом, в присутствии катализаторов ПЭ и ПП следуют механизму разрыва случайной цепи, в то время как PS следует механизму разрыва цепи или разрыва концевой цепи (Cullis and Hirschler, 1981; Peterson et al., 2001). Разрыв концевой цепи приводит к образованию мономера, тогда как разрыв случайной цепи дает олигомеры и мономеры (Peterson et al., 2001).
Рис. 4. (A, B) ГХ-МС жидкого масла, полученного из различных типов пластиковых отходов с помощью TA-NZ.
Рис. 5. (A, B) ГХ-МС жидкого масла, полученного из различных типов пластиковых отходов с AA-NZ.
Жидкое масло, полученное в результате каталитического пиролиза полиэтилена, при использовании обоих катализаторов, давало в основном нафталин, фенантрен, нафталин, 2-этенил-, 1-пентадецен, антрацен, 2-метил-, гексадекан и так далее (рисунки 4A, 5A. ).Эти результаты согласуются с несколькими другими исследованиями (Lee, 2012; Xue et al., 2017). Получение производного бензола показывает, что TA-NZ усиливает процесс ароматизации по сравнению с AA-NZ. Xue et al. (2017) сообщили, что промежуточные олефины, полученные в результате каталитического пиролиза полиэтилена, в дальнейшем ароматизируются внутри пор катализаторов. Тем не менее, реакция ароматизации далее приводит к образованию атомов водорода, которые могут усилить процесс ароматизации. Ли (2012) сообщил, что ZSM-5 производит больше ароматических соединений по сравнению с морденитным катализатором из-за его кристаллической структуры.
Есть два возможных механизма, которые могут включать разложение полиэтилена в присутствии катализатора; отрыв гибридных ионов из-за присутствия сайтов Льюиса или из-за механизма иона карбения через добавление протона (Rizzarelli et al., 2016). Первоначально деградация начинается на внешней поверхности катализаторов, а затем продолжается с дальнейшей деградацией во внутренних порах катализаторов (Lee, 2012). Однако микропористые катализаторы препятствуют проникновению более крупных молекул, и, таким образом, соединения с более высокой углеродной цепью образуются в результате каталитического пиролиза полиэтилена с микропористыми катализаторами.Кроме того, в присутствии кислотных катализаторов из-за карбениевого механизма может увеличиваться образование ароматических и олефиновых соединений (Lee, 2012). Lin et al. (2004) сообщили о получении высокореакционных олефинов в качестве промежуточных продуктов во время каталитического пиролиза полиэтилена, которые могут способствовать образованию парафинов и ароматических соединений в добываемой жидкой нефти. Более того, присутствие кислотного катализатора и свободного атома водорода может привести к алкилированию толуола и бензола, превращая промежуточный алкилированный бензол в нафталин за счет ароматизации (Xue et al., 2017).
Жидкое масло, полученное каталитическим пиролизом ПС с ТА-НЗ и АА-НЗ, содержит различные виды соединений. Основными обнаруженными соединениями были альфа-метилстирол, бензол, 1,1 ‘- (2-бутен-1,4-диил) бис-, бибензил, бензол, (1,3-пропандиил), фенантрен, 2-фенилнафталин и т. Д. в добываемой жидкой нефти (Рисунки 4A, 5A). Жидкая нефть, полученная каталитическим пиролизом ПС с обоими активированными катализаторами, в основном содержит ароматические углеводороды с некоторыми парафинами, нафталином и олефиновыми соединениями (Rehan et al., 2017). Однако в присутствии катализатора было достигнуто максимальное производство ароматических соединений (Xue et al., 2017). Рамли и др. (2011) также сообщили о производстве олефинов, нафталина с ароматическими соединениями в результате каталитического пиролиза полистирола с Al 2 O 3 , нанесенных на катализаторы Cd и Sn. Деградация ПС начинается с растрескивания на внешней поверхности катализатора, а затем следует преобразование внутри пор катализатора (Uemichi et al., 1999). Первоначально крекинг полимера осуществляется кислотным центром Льюиса на поверхности катализатора с образованием карбокатионных промежуточных продуктов, которые в дальнейшем испаряются или подвергаются риформингу внутри пор катализатора (Xue et al., 2017).
Каталитический пиролиз ПС в основном производит стирол и его производные, которые являются основными соединениями в добываемой жидкой нефти (Siddiqui and Redhwi, 2009; Rehan et al., 2017). Превращение стирола в его производное увеличивалось в присутствии протонированных катализаторов из-за гидрирования (Kim et al., 2002). Шах и Ян (2015) и Укей и др. (2000) сообщили, что гидрирование стирола усиливается с увеличением температуры реакции. Огава и др. (1982) провели пиролиз ПС с алюмосиликатным катализатором при 300 ° C и обнаружили гидрирование стирола до его производного.Рамли и др. (2011) сообщили о возможном механизме деградации PS на кислотных катализаторах, который может происходить из-за атаки протона, связанного с кислотными центрами Бренстеда, что приводит к механизму карбениевых ионов, который далее подвергается β-расщеплению и позже сопровождается переносом водорода. Более того, реакции сшивки благоприятствовали сильные кислотные центры Бренстеда, и когда эта реакция происходит, завершение крекинга может в некоторой степени уменьшаться и увеличивать образование полукокса (Serrano et al., 2000). Кроме того, катализаторы оксид кремния-оксид алюминия не имеют сильных кислотных центров Бренстеда, хотя они могут не улучшать реакцию сшивки, но благоприятствуют процессу гидрирования. Таким образом, это может быть причиной того, что стирол не был обнаружен в жидком масле, однако его производное было обнаружено в больших количествах (Lee et al., 2001). Xue et al. (2017) также сообщили о деалкилировании стирола из-за задержки испарения внутри реактора, что может привести к усилению процесса риформинга и образованию производного стирола.TA-NZ и AA-NZ содержат большое количество оксида алюминия и диоксида кремния, что приводит к гидрированию стирола до его производного, что приводит к получению мономеров стирола вместо стирола.
Каталитический пиролиз полипропилена дает сложную смесь жидкого масла, содержащего ароматические углеводороды, олефины и соединения нафталина. Бензол, 1,1 ‘- (2-бутен-1,4-диил) бис-, бензол, 1,1’ — (1,3-пропандиил) бис-, антрацен, 9-метил-, нафталин, 2-фенил -, 1,2,3,4-тетрагидро-1-фенил-, нафталин, фенантрен и др.были основными соединениями, обнаруженными в жидкой нефти (Рисунки 4A, 5A). Эти результаты согласуются с другими исследованиями, в которых проводился каталитический пиролиз полипропилена с различными катализаторами (Marcilla et al., 2004). Кроме того, разложение ПП с помощью AA-NZ привело к максимальному образованию фенольных соединений. Более высокая продукция, возможно, была связана с наличием сильных кислотных центров, так как это способствует образованию фенольных соединений. Более того, присутствие высококислотного центра на катализаторах усиливает механизм олигомеризации, ароматизации и деоксигенации, что приводит к получению полиароматических и нафталиновых соединений.Dawood и Miura (2002) также сообщили о высоком образовании этих соединений в результате каталитического пиролиза полипропилена с высококислотным модифицированным HY-цеолитом.
Состав масла, полученного в результате каталитического пиролиза полипропилена с полиэтиленом, содержит соединения, обнаруженные в масле из обоих видов сырья пластикового типа. Miandad et al. (2016b) сообщили, что состав сырья также влияет на качество и химический состав нефти. Жидкое масло, полученное каталитическим пиролизом ПЭ / ПП, содержит ароматические, олефиновые и нафталиновые соединения.Основными обнаруженными соединениями были: бензол, 1,1 ‘- (1,3-пропандиил) бис-, моно (2-этилгексил) сложный эфир, 1,2-бензолдикарбоновая кислота, антрацен, пентадекан, фенантрен, 2-фенилнафталин и т. д. (Рисунки 4B, 5B) . Юнг и др. (2010) сообщили, что образование ароматических соединений при каталитическом пиролизе ПП / ПЭ может происходить по механизму реакции Дильса-Альдера, а затем следует дегидрирование. Кроме того, каталитический пиролиз ПП и ПЭ, проводимый отдельно с ПС, в основном дает ароматические соединения из-за присутствия ПС.Полученная жидкая нефть из ПС / ПП содержит бензол, 1,1 ‘- (1,3-пропандиил) бис, 1,2-бензолдикарбоновую кислоту, дисооктиловый эфир, бибензил, фенантрен, 2-фенилнафталин, бензол, (4-метил- 1-деценил) — и так далее (Фигуры 4А, 5А). Каталитический пиролиз ПС с ПЭ в основном дает жидкую нефть с основными соединениями азулена, нафталина, 1-метил-, нафталина, 2-этенила, бензола, 1,1 ‘- (1,3-пропандиил) бис-, фенантрена, 2-фенилнафталина. , бензол, 1,1 ‘- (1-метил-1,2-этандиил) бис- и некоторые другие соединения (Рисунки 4B, 5B).Miskolczi et al. (2006) провели пиролиз ПС с ПЭ с соотношением 10 и 90%, соответственно, и сообщили о максимальном производстве ароматических углеводородов даже при очень низком соотношении ПС. Miandad et al. (2016b) сообщили, что термический пиролиз ПЭ с ПС без катализатора приводит к превращению ПЭ в жидкое масло с высоким содержанием ароматических углеводородов. Однако термический пиролиз единственного полиэтилена без катализатора превратил его в воск вместо жидкого масла из-за его сильной разветвленной длинноцепочечной структуры (Lee, 2012; Miandad et al., 2016б). Wu et al. (2014) провели ТГА ПС с ПЭ и сообщили, что присутствие ПС способствует разложению ПЭ из-за образования стабильных бензольных колец.
Химический состав пиролизного масла по различным функциональным группам был изучен методом FT-IR. Полученные данные показали наличие в масле ароматических и алифатических функциональных групп (рисунки 6, 7). Очень сильный пик при 696 см -1 наблюдался в большинстве жидких масел, полученных с использованием обоих катализаторов, что соответствует высокой концентрации ароматических соединений.Еще два очевидных пика были видны при примерно 1,456 и 1,495 см -1 для C-C с одинарными и двойными связями, соответствующих ароматическим соединениям. Кроме того, в конце спектра сильные пики при 2,850, 2,923 и 2,958 см -1 наблюдались во всех типах жидких нефтей, кроме PS, соответствующих C-H-отрезку соединений алканов. В целом жидкое масло, полученное в результате каталитического пиролиза различных пластиковых отходов с использованием катализатора AA-NZ, показало больше пиков, чем образцы катализаторов TA-NZ.Эти дополнительные пики соответствуют ароматическим соединениям, алканам и алкеновым соединениям. Это указывает на то, что, как и ожидалось, AA-NZ имел лучшие каталитические свойства, чем TA-NZ. Различные исследователи сообщили о схожих результатах, что в жидкой нефти, полученной из PS, преобладали ароматические углеводороды. Tekin et al. (2012) и Panda and Singh (2013) также сообщили о присутствии ароматических углеводородов с некоторыми алканами и алкенами в результате каталитического пиролиза полипропилена. Kunwar et al. (2016) провели термический и каталитический пиролиз полиэтилена и сообщили, что полученная жидкая нефть содержит алканы и алкены в качестве основной функциональной группы.В целом, анализ FT-IR позволил лучше понять химический состав жидкого масла, полученного в результате каталитического пиролиза различных пластиковых отходов с использованием модифицированных NZ-катализаторов, и дополнительно подтвердил наши результаты GC-MS.
Рисунок 6 . FT-IR анализ жидкой нефти, полученной каталитическим пиролизом с TA-NZ.
Рисунок 7 . FT-IR анализ жидкой нефти, полученной каталитическим пиролизом с AA-NZ.
Возможное применение продуктов пиролиза
Жидкое масло, полученное в результате каталитического пиролиза различных типов пластмассового сырья, содержит большое количество ароматических, олефиновых и нафталиновых соединений, которые содержатся в нефтепродуктах.Более того, высокая теплотворная способность добываемой жидкой нефти находится в диапазоне 41,7–44,2 МДж / кг (Таблица 2), что очень близко к энергетической ценности обычного дизельного топлива. Самая низкая HHV 41,7 МДж / кг была обнаружена в жидкой нефти, полученной из PS с использованием катализатора TA-NZ, тогда как самая высокая HHV в 44,2 МДж / кг была у PS / PE / PP с использованием катализатора AA-NZ. Таким образом, жидкое пиролизное масло, получаемое из различных пластиковых отходов, потенциально может быть использовано в качестве альтернативного источника энергии. По данным Lee et al.(2015) и Rehan et al. (2016), производство электроэнергии возможно с использованием жидкого пиролизного масла в дизельном двигателе. Саптоади и Пратама (2015) успешно использовали жидкое пиролитическое масло в качестве альтернативы керосиновой печи. Кроме того, полученные ароматические соединения могут быть использованы в качестве сырья для полимеризации в различных отраслях химической промышленности (Sarker, Rashid, 2013; Shah, Jan, 2015). Кроме того, различные исследователи использовали добытую жидкую нефть в качестве транспортного топлива после смешивания с обычным дизельным топливом в различных соотношениях.Исследования проводились для изучения потенциала добываемой жидкой нефти в контексте характеристик двигателя и выбросов выхлопных газов транспортных средств. Nileshkumar et al. (2015) и Ли и др. (2015) сообщили, что соотношение смеси пиролитического жидкого масла и обычного дизельного топлива, равное 20: 80%, соответственно, дает аналогичные результаты по рабочим характеристикам двигателя, чем у обычного дизельного топлива. Более того, при том же смешанном соотношении выбросы выхлопных газов также были аналогичными, однако выбросы выхлопных газов увеличивались с увеличением количества смешанного пиролизного масла (Frigo et al., 2014; Мукерджи и Тамотаран, 2014).
Таблица 2 . Высокие значения нагрева (HHV) пиролизного масла из различного сырья с использованием катализаторов TA-NZ и AA-NZ.
Остаток (полукокс), оставшийся после процесса пиролиза, можно использовать в нескольких экологических целях. Несколько исследователей активировали полукокс с помощью пара и термической активации (Lopez et al., 2009; Heras et al., 2014). Процесс активации увеличил площадь поверхности по БЭТ и уменьшил размер пор полукокса (Lopez et al., 2009). Кроме того, Бернандо (2011) модернизировал пластиковый уголь биоматериалом и провел адсорбцию (3,6–22,2 мг / г) красителя метиленового синего из сточных вод. Miandad et al. (2018) использовали полукокс, полученный при пиролизе пластиковых отходов ПС, для синтеза нового наноадсорбента двухслойных оксидов углерода-металла (C / MnCuAl-LDOs) для адсорбции конго красного (CR) в сточных водах. Кроме того, полукокс также может использоваться в качестве сырья для производства активированного угля.
Ограничения ГХ-МС анализа пиролизного масла
Есть некоторые ограничения при проведении точного количественного анализа химических компонентов в пиролизном масле с помощью ГХ-МС.В этом исследовании мы использовали массовый процент различных химикатов, обнаруженных в образцах нефти, рассчитанный на основе площадей пиков, определенных с помощью колонки DP5-MS с нормальной фазой и FID. Идентифицированные пики были сопоставлены с NIST и библиотекой спектров банка масс. Соединения были выбраны на основе индекса сходства (SI> 90%). Дальнейшее сравнение с известными стандартами (CRM) позволило подтвердить идентифицированные соединения. Использованная колонка и детекторы ограничивались только углеводородами. Однако в действительности масло из большинства пластиковых отходов имеет сложную химическую структуру и может содержать другие группы неустановленных химических веществ, таких как сера, азот и кислородсодержащие углеводороды.Вот почему необходим более глубокий и точный качественный химический анализ, чтобы полностью понять химию пиролизного масла, с использованием расширенной калибровки и стандартизации и использования различных детекторов МС, таких как SCD и NCD, а также различных колонок для ГХ.
Возможности и проблемы биоперерабатывающих заводов на основе пиролиза
Заводы по переработке отходов привлекают огромное внимание как решение для преобразования ТБО и других отходов биомассы в ряд продуктов, таких как топливо, энергия, тепло и другие ценные химические вещества и материалы.Различные типы биоперерабатывающих заводов, такие как биоперерабатывающий завод на базе сельского хозяйства, завод биопереработки животных отходов, завод по биопереработке сточных вод, завод по биопереработке на основе водорослей, завод по переработке пластиковых отходов, биоперерабатывающий завод на базе лесного хозяйства, биопереработка промышленных отходов, биопереработка пищевых отходов и т. Д., Могут быть разработаны в зависимости от тип и источник отходов (Gebreslassie et al., 2013; De Wild et al., 2014; Nizami et al., 2017a, b; Waqas et al., 2018). Эти биоперерабатывающие заводы могут сыграть важную роль в сокращении загрязнения окружающей среды отходами и выбросов парниковых газов.Кроме того, они приносят существенные экономические выгоды и могут помочь в достижении экономики замкнутого цикла в любой стране.
Биоперерабатывающий завод на основе пиролиза может быть разработан для обработки ряда отходов биомассы и пластиковых отходов с целью производства жидкого и газового топлива, энергии, биоугля и других более ценных химикатов с использованием комплексного подхода. Комплексный подход помогает достичь максимальных экономических и экологических выгод при минимальном образовании отходов. В биоперерабатывающих заводах на основе пиролиза существует множество проблем и возможностей для улучшения, которые необходимо решать и оптимизировать, чтобы обеспечить максимальную выгоду.Хотя пиролизное масло содержит больше энергии, чем уголь и некоторые другие виды топлива, пиролиз сам по себе является энергоемким процессом, а нефтепродукт требует больше энергии для очистки (Inman, 2012). Это означает, что пиролизное масло может быть не намного лучше обычного дизельного топлива или другого ископаемого топлива с точки зрения выбросов парниковых газов, хотя для подтверждения этого необходимы более подробные исследования баланса массы и энергии по всему процессу. Чтобы преодолеть эти технологические потребности в энергии, могут быть разработаны более передовые технологии с использованием интеграции возобновляемых источников энергии, таких как солнечная или гидроэнергетика, с пиролизными биоперерабатывающими заводами для достижения максимальных экономических и экологических выгод.
Доступность потоков отходов пластика и биомассы в качестве сырья для биоперерабатывающих заводов на основе пиролиза — еще одна серьезная проблема, поскольку рециркуляция в настоящее время не очень эффективна, особенно в развивающихся странах. Газы, образующиеся при пиролизе некоторых пластиковых отходов, таких как ПВХ, токсичны, и поэтому технология очистки выбросов пиролиза требует дальнейшего совершенствования для достижения максимальных экологических преимуществ. Пиролизное масло, полученное из различных типов пластика, необходимо значительно очистить перед использованием в любом применении, чтобы обеспечить минимальное воздействие на окружающую среду.Высокое содержание ароматических веществ в пиролизном масле является хорошим, и некоторые ароматические соединения, такие как бензол, толуол и стирол, можно очищать и продавать на уже сложившемся рынке. Однако некоторые ароматические углеводороды являются известными канцерогенами и могут нанести серьезный вред здоровью человека и окружающей среде. Поэтому в этом отношении необходимо серьезное рассмотрение.
Другие аспекты оптимизации биоперерабатывающих заводов на основе пиролиза, такие как новые появляющиеся передовые катализаторы, включая нанокатализаторы, должны быть разработаны и применены в процессах пиролиза для повышения качества и выхода продуктов, а также для оптимизации всего процесса.Рынок продуктов биопереработки на основе пиролиза должен быть создан / расширен, чтобы привлечь дополнительный интерес и финансирование, чтобы сделать эту концепцию более практичной и успешной. Точно так же необходимо больше внимания уделять проведению дальнейших исследований и разработок по обогащению концепции биопереработки и раскрытию ее истинного потенциала. Кроме того, очень важно провести подробную оценку экономического и экологического воздействия биоперерабатывающих заводов на стадии проектирования с использованием специализированных инструментов, таких как оценка жизненного цикла (ОЖЦ).LCA может анализировать воздействие биоперерабатывающего завода и всех продуктов на окружающую среду путем проведения подробных энергетических и материальных балансов на всех этапах жизненного цикла, включая добычу и переработку сырья, производство, распределение продуктов, использование, техническое обслуживание и утилизацию / переработку. Результаты LCA помогут определить устойчивость биоперерабатывающих заводов, что имеет решающее значение для принятия правильного решения.
Выводы
Каталитический пиролиз — перспективный метод преобразования пластиковых отходов в жидкое масло и другие продукты с добавленной стоимостью с использованием модифицированного природного цеолита (NZ) катализатора.Модификация катализаторов NZ была проведена с помощью новой термической (ТА) и кислотной (АК) активации, которая улучшила их каталитические свойства. Каталитический пиролиз PS дал наибольшее количество жидкой нефти (70 и 60%) по сравнению с PP (40 и 54%) и PE (40 и 42%) с использованием катализаторов TA-NZ и AA-NZ, соответственно. Химический состав пиролизного масла был проанализирован с помощью ГХ-МС, и было обнаружено, что большая часть жидкого масла дает высокое содержание ароматических веществ с некоторыми алифатическими и другими углеводородными соединениями.Эти результаты были дополнительно подтверждены анализом FT-IR, показывающим четкие пики, соответствующие ароматическим и другим углеводородным функциональным группам. Кроме того, жидкое масло, полученное из различных типов пластиковых отходов, имело более высокую теплотворную способность (HHV) в диапазоне 41,7–44,2 МДж / кг, как и у обычного дизельного топлива. Следовательно, он имеет потенциал для использования в различных энергетических и транспортных приложениях после дальнейшей обработки и очистки. Это исследование является шагом к развитию биоперерабатывающих заводов на основе пиролиза.Биоперерабатывающие заводы обладают огромным потенциалом для преобразования отходов в энергию и другие ценные продукты и могут помочь в достижении экономики замкнутого цикла. Однако, как обсуждалось выше, существует множество технических, эксплуатационных и социально-экономических проблем, которые необходимо преодолеть для достижения максимальных экономических и экологических выгод от биоперерабатывающих заводов.
Доступность данных
Все наборы данных, созданные для этого исследования, включены в рукопись и / или дополнительные файлы.
Авторские взносы
RM провел эксперименты по пиролизу и помог в написании рукописи.HK, JD, JG и AH провели подробную характеристику продуктов процесса. MR и ASA проанализировали данные и письменные части рукописи. MAB, MR и A-SN исправили и отредактировали рукопись. ASA и IMII поддержали проект финансово и технически.
Заявление о конфликте интересов
Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Благодарности
MR и A-SN выражают признательность Центру передового опыта в области экологических исследований (CEES), Университету короля Абдель Азиза (KAU), Джидда, штат Калифорния, и Министерству образования штата Калифорния за финансовую поддержку в рамках гранта № 2 / S / 1438. Авторы также благодарны деканату научных исследований (DSR) КАУ за финансовую и техническую поддержку ОЕЭП.
Список литературы
Аднан А., Шах Дж. И Ян М. Р. (2014). Исследования разложения полистирола с использованием катализаторов на медной основе. J. Anal. Прил. Пирол . 109, 196–204. DOI: 10.1016 / j.jaap.2014.06.013
CrossRef Полный текст | Google Scholar
Агуадо, Дж., Сотело, Дж. Л., Серрано, Д. П., Каллес, Дж. А. и Эскола, Дж. М. (1997). Каталитическая конверсия полиолефинов в жидкое топливо на MCM-41: сравнение с ZSM-5 и аморфным SiO2 – Al 2 O 3 . Ener топливо 11, 1225–1231. DOI: 10.1021 / ef970055v
CrossRef Полный текст | Google Scholar
Александра, Л.С. (2012). Твердые бытовые отходы: превращение проблемы в ресурсные отходы: проблемы, с которыми сталкиваются развивающиеся страны, специалист по городскому хозяйству . Всемирный банк. 2–4 стр.
Батул, М., Шах, А. Т., Имран Дин, М., и Ли, Б. (2016). Каталитический пиролиз полиэтилена низкой плотности с использованием инкапсулированных цетилтриметиламмонийных моновакантных блоков кеггина и ZSM-5. J. Chem. 2016: 2857162. DOI: 10.1155 / 2016/2857162
CrossRef Полный текст | Google Scholar
Бернандо, М.(2011). «Физико-химические характеристики углей, образующихся при совместном пиролизе отходов, и возможные пути повышения ценности», в Chemical Engineering (Лиссабон: Universidade Nova de Lisboa), 27–36.
Бхаскар Т., Канеко Дж., Муто А., Саката Ю., Якаб Е., Мацуи Т. и др. (2004). Исследования пиролиза пластиков PP / PE / PS / PVC / HIPS-Br, смешанных с ПЭТ, и дегалогенирование (Br, Cl) жидких продуктов. J. Anal. Прил. Пиролиз 72, 27–33. DOI: 10.1016 / j.jaap.2004.01.005
CrossRef Полный текст | Google Scholar
Чандрасекаран С. Р., Кунвар Б., Мозер Б. Р., Раджагопалан Н. и Шарма Б. К. (2015). Каталитический термический крекинг пластмассовых отходов с получением топлива. 1. Кинетика и оптимизация. Energy Fuels 29, 6068–6077. DOI: 10.1021 / acs.energyfuels.5b01083
CrossRef Полный текст | Google Scholar
Каллис, К. Ф., и Хиршлер, М. М. (1981). Горение органических полимеров. Т.5. Лондон: Издательство Оксфордского университета.
Давуд А. и Миура К. (2002). Каталитический пиролиз c-облученного полипропилена (PP) над HY-цеолитом для повышения реакционной способности и селективности продукта. Polym. Деграда. Укол . 76, 45–52. DOI: 10.1016 / S0141-3910 (01) 00264-6
CrossRef Полный текст | Google Scholar
Де Вильд, П. Дж., Хьюджген, В. Дж., И Госселинк, Р. Дж. (2014). Пиролиз лигнина для рентабельных лигноцеллюлозных биоперерабатывающих заводов. Биотопливо Биопрод.Биорефайнинг 8, 645–657. DOI: 10.1002 / bbb.1474
CrossRef Полный текст | Google Scholar
Демирбас А. (2004). Пиролиз муниципальных пластиковых отходов для утилизации углеводородов бензиновой марки. J. Anal. Прил. Пиролиз 72, 97–102. DOI: 10.1016 / j.jaap.2004.03.001
CrossRef Полный текст | Google Scholar
Димитров, Н., Крехула, Л. К., Сирочич, А. П., и Хрняк-Мургич, З. (2013). Анализ переработанных бутылок из ПЭТ методом пиролизно-газовой хроматографии. Polym. Деграда. Stab. 98, 972–979. DOI: 10.1016 / j.polymdegradstab.2013.02.013
CrossRef Полный текст | Google Scholar
Dziecioł, M., and Trzeszczynski, J. (2000). Летучие продукты термической деструкции полиэтилентерефталата в атмосфере азота. J. Appl. Polym. Sci. 77, 1894–1901. DOI: 10.1002 / 1097-4628 (20000829) 77: 9 <1894 :: AID-APP5> 3.0.CO; 2-Y
CrossRef Полный текст | Google Scholar
Фриго, С., Сеггиани, М., Пуччини, М., и Витоло, С. (2014). Производство жидкого топлива путем пиролиза отработанных шин и его использование в дизельном двигателе. Топливо 116, 399–408. DOI: 10.1016 / j.fuel.2013.08.044
CrossRef Полный текст | Google Scholar
Гака П., Джевецка М., Калета В., Козубек Х. и Новинска К. (2008). Каталитическая деструкция полиэтилена на мезопористом молекулярном сите МСМ-41, модифицированном гетерополисоединениями. Польский J. Environ. Stud. 17, 25–35.
Google Scholar
Гандиди, И.М., Сусила, М., Д. Мустофа, А., Памбуди, Н. А. (2018). Термико-каталитический крекинг реальных ТБО в био-сырую нефть. J. Energy Inst. 91, 304–310. DOI: 10.1016 / j.joei.2016.11.005
CrossRef Полный текст | Google Scholar
Gebreslassie, Б. Х., Сливинский, М., Ван, Б., и Ю, Ф. (2013). Оптимизация жизненного цикла для устойчивого проектирования и эксплуатации заводов по биологической переработке углеводородов с помощью быстрого пиролиза, гидроочистки и гидрокрекинга. Comput. Chem. Англ. 50, 71–91.DOI: 10.1016 / j.compchemeng.2012.10.013
CrossRef Полный текст | Google Scholar
Херас, Ф., Хименес-Кордеро, Д., Гиларранц, М.А., Алонсо-Моралес, Н., и Родригес, Дж. Дж. (2014). Активация полукокса изношенных шин путем циклического жидкофазного окисления. Топливный процесс. Технол . 127, 157–162. DOI: 10.1016 / j.fuproc.2014.06.018
CrossRef Полный текст | Google Scholar
Юнг, С. Х., Чо, М. Х., Кан, Б. С., Ким, Дж. С. (2010). Пиролиз фракции отработанного полипропилена и полиэтилена для извлечения ароматических углеводородов БТК с использованием реактора с псевдоожиженным слоем. Топливный процесс. Technol. 91, 277–284. DOI: 10.1016 / j.fuproc.2009.10.009
CrossRef Полный текст | Google Scholar
Ким, Х. С., Ким, С., Ким, Х. Дж. И Янг, Х. С. (2006). Тепловые свойства полиолефиновых композитов с наполнителем из биомки с различным типом и содержанием компатибилизатора. Thermochim. Acta 451, 181–188. DOI: 10.1016 / j.tca.2006.09.013
CrossRef Полный текст | Google Scholar
Ким, Дж. Р., Юн, Дж. Х. и Пак, Д.W. (2002). Каталитическая переработка смеси полипропилена и полистирола. Polym. Деграда. Stab. 76, 61–67. DOI: 10.1016 / S0141-3910 (01) 00266-X
CrossRef Полный текст | Google Scholar
Киран, Н., Экинчи, Э. и Снейп, К. Э. (2000). Переработка пластиковых отходов пиролизом. Resour. Консерв. Recycl. 29, 273–283. DOI: 10.1016 / S0921-3449 (00) 00052-5
CrossRef Полный текст | Google Scholar
Кунвар, Б., Мозер, Б. Р., Чандрасекаран, С.Р., Раджагопалан, Н., Шарма, Б. К. (2016). Каталитическая и термическая деполимеризация малоценного бытового полиэтилена высокой плотности. Энергия 111, 884–892. DOI: 10.1016 / j.energy.2016.06.024
CrossRef Полный текст | Google Scholar
Лекомте, Х.А., и Лиггат, Дж. Дж. (2006). Механизм разложения звеньев диэтиленгликоля в терефталатном полимере. Polym. Деграда. Stab. 91, 681–689. DOI: 10.1016 / j.polymdegradstab.2005.05.028
CrossRef Полный текст | Google Scholar
Ли, К.Х. (2012). Влияние типов цеолитов на каталитическую очистку воскового масла пиролиза. J. Anal. Прил. Пирол . 94, 209–214. DOI: 10.1016 / j.jaap.2011.12.015
CrossRef Полный текст | Google Scholar
Ли С., Йошида К. и Йошикава К. (2015). Применение отработанного пластикового пиролизного масла в дизельном двигателе с прямым впрыском: Для небольшой несетевой электрификации. Energy Environ. Res . 5:18. DOI: 10.5539 / eer.v5n1p18
CrossRef Полный текст
Ли, С.Ю., Юн, Дж. Х., Ким, Дж. Р. и Пак, Д. У. (2001). Каталитическая деструкция полистирола над природным клиноптилолитовым цеолитом. Polym. Деграда. Stab. 74, 297–305. DOI: 10.1016 / S0141-3910 (01) 00162-8
CrossRef Полный текст | Google Scholar
Лин, Ю. Х., Янг, М. Х., Йе, Т. Ф. и Гер, М. Д. (2004). Каталитическое разложение полиэтилена высокой плотности на мезопористых и микропористых катализаторах в реакторе с псевдоожиженным слоем. Polym. Деграда. Stab. 86, 121–128.DOI: 10.1016 / j.polymdegradstab.2004.02.015
CrossRef Полный текст | Google Scholar
Лопес А., Марко Д. И., Кабальеро Б. М., Ларесгоити М. Ф., Адрадос А. и Торрес А. (2011). Пиролиз муниципальных пластиковых отходов II: влияние состава сырья в каталитических условиях. Управление отходами . 31, 1973–1983. DOI: 10.1016 / j.wasman.2011.05.021
CrossRef Полный текст | Google Scholar
Лопес, Г., Олазар, М., Артеткс, М., Амутио, М., Элорди, Дж., И Бильбао, Дж. (2009). Активация паром пиролитического полукокса шин при различных температурах. J. Anal. Прил. Пирол . 85, 539–543. DOI: 10.1016 / j.jaap.2008.11.002
CrossRef Полный текст | Google Scholar
Ma, C., Yu, J., Wang, B., Song, Z., Xiang, J., Hu, S., et al. (2017). Каталитический пиролиз огнестойкого ударопрочного полистирола на различных твердых кислотных катализаторах. Топливный процесс. Technol. 155, 32–41. DOI: 10.1016 / j.fuproc.2016.01.018
CrossRef Полный текст | Google Scholar
Марсилла, А., Бельтран, М. И., Эрнандес, Ф., и Наварро, Р. (2004). Дезактивация HZSM5 и HUSY при каталитическом пиролизе полиэтилена. Заявл. Катал. A Gen. 278, 37–43. DOI: 10.1016 / j.apcata.2004.09.023
CrossRef Полный текст | Google Scholar
McNeill, I.C., и Bounekhel, M. (1991). Исследования термической деструкции сложных полиэфиров терефталата: 1. Поли (алкилентерефталаты). Полимерная деградация. Stab. 34, 187–204. DOI: 10.1016 / 0141-3910 (91)
-CCrossRef Полный текст | Google Scholar
Макнил, И.К., Зульфикар М. и Кусар Т. (1990). Подробное исследование продуктов термической деструкции полистирола. Polym. Деграда. Stab. 28, 131–151. DOI: 10.1016 / 0141-3910 (90)
-O
CrossRef Полный текст | Google Scholar
Миандад Р., Баракат М. А., Абуриазаиза А. С., Рехан М., Исмаил И. М. И. и Низами А. С. (2017b). Влияние видов пластиковых отходов на жидкое пиролизное масло. Внутр. Биодетериор. Биодеград . 119, 239–252. DOI: 10.1016 / j.ibiod.2016.09.017
CrossRef Полный текст | Google Scholar
Миандад Р., Баракат М. А., Абуриазаиза А. С., Рехан М. и Низами А. С. (2016a). Каталитический пиролиз пластиковых отходов: обзор. Process Safety Environ. Защитить . 102, 822–838. DOI: 10.1016 / j.psep.2016.06.022
CrossRef Полный текст | Google Scholar
Миандад Р., Баракат М. А., Рехан М., Абуриазаиза А. С., Исмаил И. М. И. и Низами А. С. (2017a). Пластмассовые отходы превращаются в жидкое масло путем каталитического пиролиза с использованием природных и синтетических цеолитных катализаторов. Управление отходами. 69, 66–78. DOI: 10.1016 / j.wasman.2017.08.032
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Миандад Р., Кумар Р., Баракат М. А., Башир К., Абуриазаиза А. С., Низами А. С. и др. (2018). Неиспользованное преобразование пластиковых отходов в углеродно-металлические LDO для адсорбции конго красного. J Colloid Interface Sci. 511, 402–410. DOI: 10.1016 / j.jcis.2017.10.029
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Миандад, Р., Низами, А.С., Рехан, М., Баракат, М.А., Хан, М.И., Мустафа, А. и др. (2016b). Влияние температуры и времени реакции на конверсию отходов полистирола в жидкое пиролизное масло. Управление отходами . 58, 250–259. DOI: 10.1016 / j.wasman.2016.09.023
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Миандад Р., Рехан М., Низами А. С., Баракат М. А. Э. Ф. и Исмаил И. М. (2016c). «Энергия и продукты с добавленной стоимостью от пиролиза пластиковых отходов», в «Переработка твердых отходов для производства биотоплива и биохимии», , ред.П. Картикеян, К. Х. Субраманиан, С. Мутху (Сингапур: Springer), 333–355.
Google Scholar
Miskolczi, N., Bartha, L., and Deak, G. (2006). Термическое разложение полиэтилена и полистирола в упаковочной промышленности на различных катализаторах до топливоподобного сырья. Polym. Деграда. Укол . 91, 517–526. DOI: 10.1016 / j.polymdegradstab.2005.01.056
CrossRef Полный текст | Google Scholar
Мукерджи, М.К., и Тамотаран, П.С. (2014). Испытания на производительность и выбросы нескольких смесей отработанного пластикового масла с дизельным топливом и этанолом на четырехтактном двухцилиндровом дизельном двигателе. IOSR J. Mech. Гражданский Eng . 11, 2278–1684. DOI: 10.9790 / 1684-11214751
CrossRef Полный текст
Нилешкумар, К. Д., Яни, Р. Дж., Патель, Т. М., и Ратод, Г. П. (2015). Влияние смеси пластикового пиролизного масла и дизельного топлива на производительность одноцилиндрового двигателя CI. Внутр. J. Sci. Technol. Eng .1, 2349–2784.
Google Scholar
Низами А.С., Оуда О.К.М., Рехан М., Эль-Маграби А.М.О., Гарди Дж., Хассанпур А. и др. (2016). Потенциал природных цеолитов Саудовской Аравии в технологиях рекуперации энергии. Энергия 108, 162–171. DOI: 10.1016 / j.energy.2015.07.030
CrossRef Полный текст | Google Scholar
Низами А. С., Рехан М., Вакас М., Накви М., Оуда О. К. М., Шахзад К. и др. (2017a). Биоочистительные заводы: создание возможностей для экономики замкнутого цикла в развивающихся странах. Биоресурсы. Technol. 241, 1101–1117. DOI: 10.1016 / j.biortech.2017.05.097
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Низами, А.С., Шахзад, К., Рехан, М., Оуда, О.К.М., Хан, М.З., Исмаил, И.М.И. и др. (2017b). Создание завода по переработке отходов в Макке: путь вперед в преобразовании городских отходов в возобновляемые источники энергии. Заявл. Энергия . 186, 189–196. DOI: 10.1016 / j.apenergy.2016.04.116
CrossRef Полный текст | Google Scholar
Обали, З., Сезги, Н. А., Догу, Т. (2012). Каталитическое разложение полипропилена на мезопористых катализаторах, содержащих оксид алюминия. Chem. Англ. J . 207, 421–425. DOI: 10.1016 / j.cej.2012.06.146
CrossRef Полный текст | Google Scholar
Огава Т., Куроки Т., Идэ С. и Икемура Т. (1982). Восстановление производных индана из отходов полистирола. J. Appl. Polym. Sci. 27, 857–869. DOI: 10.1002 / app.1982.070270306
CrossRef Полный текст | Google Scholar
Панда, А.К. и Сингх Р. К. (2013). Экспериментальная оптимизация процесса термокаталитического разложения отработанного полипропилена до жидкого топлива. Adv. Энергия Eng . 1, 74–84.
Google Scholar
Петерсон, Дж. Д., Вязовкин, С., и Уайт, К. А. (2001). Кинетика термической и термоокислительной деструкции полистирола, полиэтилена и полипропилена. Macromol. Chem. Phys. 202, 775–784. DOI: 10.1002 / 1521-3935 (20010301) 202: 6 <775 :: AID-MACP775> 3.0.CO; 2-G
CrossRef Полный текст | Google Scholar
Рамли М. Р., Осман М. Б. Х., Арифин А. и Ахмад З. (2011). Сшитая сеть полидиметилсилоксана посредством механизмов присоединения и конденсации (RTV). Часть I: синтез и термические свойства. Polym. Деграда. Укол . 96, 2064–2070. DOI: 10.1016 / j.polymdegradstab.2011.10.001
CrossRef Полный текст | Google Scholar
Ратнасари Д. К., Нахил М. А. и Уильямс П. Т. (2017). Каталитический пиролиз пластиковых отходов с использованием ступенчатого катализа для производства углеводородных масел бензинового ряда. J. Anal. Прил. Пиролиз 124, 631–637. DOI: 10.1016 / j.jaap.2016.12.027
CrossRef Полный текст | Google Scholar
Рехан, М., Миандад, Р., Баракат, М. А., Исмаил, И. М. И., Алмилби, Т., Гарди, Дж. И др. (2017). Влияние цеолитных катализаторов на жидкое масло пиролиза. Внутр. Биодетериор. Биодеград. 119, 162–175. DOI: 10.1016 / j.ibiod.2016.11.015
CrossRef Полный текст | Google Scholar
Рехан, М., Низами, А.С., Шахзад, К., Оуда, О.К. М., Исмаил, И. М. И., Алмилби, Т. и др. (2016). Пиролитическое жидкое топливо: источник возобновляемой энергии в Мекке. Источники энергии A 38, 2598–2603. DOI: 10.1080 / 15567036.2016.1153753
CrossRef Полный текст | Google Scholar
Риццарелли, П., Раписарда, М., Перна, С., Мирабелла, Э. Ф., Ла Карта, С., Пуглиси, К., и др. (2016). Определение полиэтилена в смесях биоразлагаемых полимеров и в компостируемых мешках-носителях методами Py-GC / MS и TGA. J. Anal. Прил.Пиролиз 117,72–81. DOI: 10.1016 / j.jaap.2015.12.014
CrossRef Полный текст | Google Scholar
Саптоади, Х., Пратама, Н. Н. (2015). Использование отработанного масла из пластмассы в качестве частичного заменителя керосина в кухонных плитах под давлением. Внутр. J. Environ. Sci. Dev . 6, 363–368. DOI: 10.7763 / IJESD.2015.V6.619
CrossRef Полный текст | Google Scholar
Саркер М. и Рашид М. М. (2013). Отработанная смесь пластиков из полистирола и полипропилена в легкое топливо с использованием катализатора Fe2O3. Внутр. J. Renew. Energy Technol. Res . 2, 17–28.
Google Scholar
Со, Й. Х., Ли, К. Х. и Шин, Д. Х. (2003). Исследование каталитической деструкции полиэтилена высокой плотности методом анализа углеводородных групп. J. Anal. Прил. Пирол . 70, 383–398. DOI: 10.1016 / S0165-2370 (02) 00186-9
CrossRef Полный текст | Google Scholar
Серрано Д. П., Агуадо Дж. И Эскола Дж. М. (2000). Каталитическая конверсия полистирола над HMCM-41, HZSM-5 и аморфным SiO 2 –Al 2 O 3 : сравнение с термическим крекингом. Заявл. Катал. B: Окружающая среда. 25, 181–189. DOI: 10.1016 / S0926-3373 (99) 00130-7
CrossRef Полный текст | Google Scholar
Серрано Д. П., Агуадо Дж. И Эскола Дж. М. (2012). Разработка передовых катализаторов для переработки полиолефиновых пластмассовых отходов в топливо и химические вещества. ACS Catal. 2, 1924–1941. DOI: 10.1021 / cs3003403
CrossRef Полный текст | Google Scholar
Шах, Дж., И Ян, М. Р. (2015). Влияние полиэтилентерефталата на каталитический пиролиз полистирола: Исследование жидких продуктов. J. Taiwan Inst. Chem. Англ. 51, 96–102. DOI: 10.1016 / j.jtice.2015.01.015
CrossRef Полный текст | Google Scholar
Сиддики, М. Н., и Редви, Х. Х. (2009). Пиролиз смешанных пластиков для восстановления полезных продуктов. Топливный процесс. Technol. 90, 545–552. DOI: 10.1016 / j.fuproc.2009.01.003
CrossRef Полный текст | Google Scholar
Шрининси В., Саэроджи М. Г., Трисунарьянти В., Армунанто Р. и Фалах И. И. (2014).Производство топлива из пластиковых отходов ПВД на природном цеолите на основе металлов Ni, Ni-Mo, Co и Co-Mo. Proc. Environ. Sci. 20, 215–224. DOI: 10.1016 / j.proenv.2014.03.028
CrossRef Полный текст | Google Scholar
Syamsiro, M., Cheng, S., Hu, W., Saptoadi, H., Pratama, N. N., Trisunaryanti, W., et al. (2014). Жидкое и газообразное топливо из пластиковых отходов путем последовательного пиролиза и каталитического риформинга на природных цеолитных катализаторах Индонезии. Waste Technol. 2, 44–51. DOI: 10.12777 / Wastech.2.2.44-51
CrossRef Полный текст | Google Scholar
Текин, К., Акалин, М. К., Кади, К., и Карагез, С. (2012). Каталитическое разложение отработанного полипропилена пиролизом. Дж. Энергия Инс . 85, 150–155. DOI: 10.1179 / 1743967112Z.00000000029
CrossRef Полный текст | Google Scholar
Тилакаратне Р., Тессонье Дж. П. и Браун Р. К. (2016). Превращение метокси- и гидроксильных функциональных групп фенольных мономеров над цеолитами. Green Chem. 18, 2231–2239. DOI: 10.1039 / c5gc02548f
CrossRef Полный текст | Google Scholar
Уэмичи Ю., Хаттори М., Ито Т., Накамура Дж. И Сугиока М. (1998). Поведение дезактивации цеолита и катализаторов кремнезема-оксида алюминия при разложении полиэтилена. Ind. Eng. Chem. Res. 37, 867–872. DOI: 10.1021 / ie970605c
CrossRef Полный текст | Google Scholar
Уэмичи, Ю., Накамура, Дж., Ито, Т., Сугиока, М., Гарфорт, А.А. и Дуайер Дж. (1999). Превращение полиэтилена в бензиновые топлива путем двухступенчатой каталитической деградации с использованием диоксида кремния – оксида алюминия и цеолита HZSM-5. Ind. Eng. Chem. Res. 38, 385–390. DOI: 10.1021 / ie980341 +
CrossRef Полный текст | Google Scholar
Укей, Х., Хиросе, Т., Хорикава, С., Такай, Ю., Така, М., Адзума, Н. и др. (2000). Каталитическое разложение полистирола на стирол и конструкция пригодного для повторного использования полистирола с диспергированными катализаторами. Catal.Сегодня 62, 67–75. DOI: 10.1016 / S0920-5861 (00) 00409-0
CrossRef Полный текст | Google Scholar
Вакас М., Рехан М., Абуриазаиза А. С. и Низами А. С. (2018). «Глава 17-Биопереработка сточных вод на основе микробной электролизной ячейки: возможности и проблемы», журнал в прогрессе и последние тенденции в микробных топливных элементах , под редакцией К. Датта и П. Кунду (Нью-Йорк, Нью-Йорк: Elsevier Inc.), 347 –374. DOI: 10.1016 / B978-0-444-64017-8.00017-8
CrossRef Полный текст
Уильямс, П.Т. (2006). «Выход и состав газов и масел / парафинов от переработки отходов пластика». In Feeds Tock Recycling and Pyrolysis of Waste Plastics: преобразование пластиковых отходов в дизельное топливо и другое топливо , ред. Дж. Шейрс и В. Камински (Западный Суссекс: John Wiley & Sons Press), 285–309.
Google Scholar
Ву, К., и Уильямс, П. Т. (2010). Пиролиз – газификация пластмасс, смешанных пластмасс и реальных пластиковых отходов с катализатором Ni – Mg – Al и без него. Топливо 89, 3022–3032. DOI: 10.1016 / j.fuel.2010.05.032
CrossRef Полный текст | Google Scholar
Wu, J., Chen, T., Luo, X., Han, D., Wang, Z., and Wu, J. (2014). TG / FTIR-анализ поведения при совместном пиролизе PE, PVC и PS. Управление отходами. 34, 676–682. DOI: 10.1016 / j.wasman.2013.12.005
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Сюэ, Ю., Джонстон, П., и Бай, X. (2017). Влияние режима контакта катализатора и газовой атмосферы при каталитическом пиролизе пластиковых отходов. Energy Conv. Manag. 142, 441–451. DOI: 10.1016 / j.enconman.2017.03.071
CrossRef Полный текст | Google Scholar
Йошиока, Т., Грауз, Г., Эгер, К., Камински, В., и Окуваки, А. (2004). Пиролиз полиэтилентерефталата в установке с псевдоожиженным слоем. Polym. Деграда. Stab. 86, 499–504. DOI: 10.1016 / j.polymdegradstab.2004.06.001
CrossRef Полный текст | Google Scholar
Zeaiter, J. (2014). Исследование процесса пиролиза отходов полиэтилена. Топливо 133, 276–282. DOI: 10.1016 / j.fuel.2014.05.028
CrossRef Полный текст | Google Scholar
ПИРОЛИЗ БИОМАССЫ | AltEnergyMag
Введение
Пиролиз — это термическое разложение биомассы, происходящее в отсутствие кислорода. Это фундаментальная химическая реакция, которая является предвестником процессов горения и газификации и протекает естественным путем в первые две секунды. Продукты пиролиза биомассы включают биоуголь, бионефть и газы, включая метан, водород, монооксид углерода и диоксид углерода.В зависимости от термической среды и конечной температуры, пиролиз будет давать в основном биоуголь при низких температурах, менее 450 ° C, когда скорость нагрева довольно низкая, и в основном газы при высоких температурах, превышающих 800 ° C, с высокой скоростью нагрева. При промежуточной температуре и относительно высоких скоростях нагрева основным продуктом является бионефть.
Пиролиз можно проводить в относительно небольших масштабах и в удаленных местах, что увеличивает удельную энергию ресурса биомассы и снижает затраты на транспортировку и погрузочно-разгрузочные работы.Теплопередача является критической областью пиролиза, поскольку процесс пиролиза является эндотермическим, и для удовлетворения технологических потребностей в тепле необходимо обеспечить достаточную поверхность теплопередачи. Пиролиз предлагает гибкий и привлекательный способ превращения твердой биомассы в легко хранимую и транспортируемую жидкость, которую можно успешно использовать для производства тепла, энергии и химикатов.
Рисунок 1 Условия процесса пиролиза биомассы
Сырье для пиролиза
В процессах пиролиза можно использовать широкий спектр сырья биомассы.Процесс пиролиза очень зависит от содержания влаги в сырье, которое должно составлять около 10%. При более высоком содержании влаги образуется большое количество воды, а при более низком уровне существует риск того, что в результате процесса будет образовываться только пыль, а не масло. Потоки отходов с высоким содержанием влаги, такие как шлам и отходы мясопереработки, требуют сушки перед пиролизом.
Эффективность и характер процесса пиролиза зависят от размера частиц исходного сырья.Большинство технологий пиролиза позволяют обрабатывать только мелкие частицы размером максимум 2 мм с учетом необходимости быстрой передачи тепла через частицы. Требование малого размера частиц означает, что сырье должно быть уменьшено в размере перед использованием для пиролиза.
Рис. 2 Взгляд на доступность сырья и энергетические продукты пиролиза биомассы
Виды пиролиза
Пиролиз Процессы можно разделить на медленный пиролиз или быстрый пиролиз.Быстрый пиролиз в настоящее время является наиболее широко используемой системой пиролиза. Медленный пиролиз занимает несколько часов и приводит к получению биоугля в качестве основного продукта. С другой стороны, быстрый пиролиз дает 60% биомасла и требует секунд для полного пиролиза. Кроме того, он дает 20% биоугля и 20% синтез-газа. Процессы быстрого пиролиза включают пиролиз с неподвижным слоем с открытым сердечником, быстрый абляционный пиролиз, циклонный быстрый пиролиз и системы быстрого пиролиза с вращающимся сердечником. Существенными характеристиками процесса быстрого пиролиза являются:
- Очень высокая скорость нагрева и теплопередачи, требующая тонко измельченного сырья.
- Тщательно контролируемая температура реакции около 500 ° C в паровой фазе
- Время пребывания паров пиролиза в реакторе менее 1 с
- Гашение (быстрое охлаждение) паров пиролиза с получением продукта бионефти.
Использование биомасла
Биомасло — это жидкость темно-коричневого цвета, имеющая состав, аналогичный составу биомассы. Он имеет гораздо более высокую плотность, чем древесные материалы, что снижает затраты на хранение и транспортировку.Биомасло не подходит для прямого использования в стандартных двигателях внутреннего сгорания. В качестве альтернативы масло можно улучшить либо до специального моторного топлива, либо с помощью процессов газификации до синтез-газа, а затем биодизеля. Биомасло особенно привлекательно для совместного сжигания, поскольку с ним легче обращаться и сжигать, чем твердое топливо, и его дешевле транспортировать и хранить. Совместное сжигание биомасла было продемонстрировано на газовой электростанции мощностью 350 МВт в Голландии, когда был успешно заменен 1% мощности котла.Именно в таких приложениях биомасло может предложить значительные преимущества перед твердой биомассой и газификацией из-за простоты обращения, хранения и сжигания на существующей электростанции, когда нет необходимости в специальных процедурах запуска. Кроме того, биомасло также является жизненно важным источником широкого спектра органических соединений и специальных химикатов.
Важность Biochar
Растущая озабоченность по поводу изменения климата привлекла внимание к биочару. Сжигание и разложение древесной биомассы и сельскохозяйственных остатков приводит к выбросу большого количества диоксида углерода.Biochar может накапливать этот CO2 в почве, что приводит к сокращению выбросов парниковых газов и повышению плодородия почвы. В дополнение к его способности связывать углерод, biochar имеет несколько других преимуществ.
- Biochar может увеличить количество доступных питательных веществ для роста растений, удержания воды и уменьшить количество удобрений, предотвращая вымывание питательных веществ из почвы.
- Biochar снижает выбросы метана и закиси азота из почвы, тем самым еще больше сокращая выбросы парниковых газов.
- Biochar можно использовать во многих приложениях в качестве замены других энергетических систем, работающих на биомассе.
- Biochar можно использовать в качестве удобрения почвы для увеличения урожайности растений.
Выводы
Пиролиз биомассы привлекает большое внимание из-за его высокой эффективности и хороших экологических характеристик. Это также дает возможность перерабатывать сельскохозяйственные остатки, древесные отходы и твердые бытовые отходы в экологически чистую энергию.Кроме того, связывание биоугля может иметь большое значение для выбросов ископаемого топлива во всем мире и выступать в качестве основного игрока на мировом углеродном рынке с его надежной, чистой и простой технологией производства.
% PDF-1.5 % 513 0 объект > эндобдж xref 513 421 0000000016 00000 н. 0000009802 00000 н. 0000010007 00000 п. 0000010059 00000 п. 0000010373 00000 п. 0000010425 00000 п. 0000011279 00000 п. 0000011414 00000 п. 0000011484 00000 п. 0000011565 00000 п. 0000035634 00000 п. 0000035901 00000 п. 0000042529 00000 п. 0000042556 00000 п. 0000043145 00000 п. 0000137821 00000 н. 0000137893 00000 н. 0000138033 00000 н. 0000138153 00000 н. 0000138292 00000 н. 0000138360 00000 н. 0000138439 00000 н. 0000138588 00000 н. 0000138657 00000 н. 0000138817 00000 н. 0000138896 00000 н. 0000138975 00000 н. 0000139053 00000 п. 0000139364 00000 н. 0000139442 00000 н. 0000139530 00000 н. 0000139606 00000 н. 0000139673 00000 н. 0000139740 00000 н. 0000139891 00000 н. 0000139959 00000 н. 0000140038 00000 н. 0000140155 00000 н. 0000140224 00000 н. 0000140384 00000 н. 0000140463 00000 п. 0000140542 00000 н. 0000140645 00000 н. 0000140712 00000 н. 0000140779 00000 н. 0000140931 00000 н. 0000140999 00000 н. 0000141078 00000 п. 0000141195 00000 н. 0000141264 00000 н. 0000141424 00000 н. 0000141503 00000 н. 0000141582 00000 н. 0000141669 00000 н. 0000141814 00000 н. 0000141882 00000 н. 0000141956 00000 н. 0000142030 00000 н. 0000142104 00000 п. 0000142177 00000 н. 0000142251 00000 н. 0000142324 00000 н. 0000142398 00000 п. 0000142479 00000 н. 0000142553 00000 н. 0000142626 00000 н. 0000142700 00000 н. 0000142772 00000 н. 0000142844 00000 н. 0000142918 00000 н. 0000142992 00000 н. 0000143064 00000 н. 0000143136 00000 н. 0000143208 00000 н. 0000143282 00000 н. 0000143354 00000 п. 0000143425 00000 н. 0000143499 00000 н. 0000143570 00000 н. 0000143641 00000 п. 0000143712 00000 н. 0000143783 00000 н. 0000143850 00000 н. 0000143917 00000 н. 0000144068 00000 н. 0000144136 00000 н. 0000144215 00000 н. 0000144348 00000 п. 0000144417 00000 н. 0000144577 00000 н. 0000144656 00000 н. 0000144735 00000 н. 0000144814 00000 н. 0000144892 00000 н. 0000144970 00000 н. 0000145051 00000 н. 0000145125 00000 н. 0000145199 00000 н. 0000145270 00000 п. 0000145341 00000 п. 0000145408 00000 н. 0000145475 00000 н. 0000145607 00000 н. 0000145675 00000 н. 0000145754 00000 н. 0000145871 00000 н. 0000145940 00000 н. 0000146100 00000 н. 0000146179 00000 н. 0000146258 00000 н. 0000146337 00000 н. 0000146450 00000 н. 0000146524 00000 н. 0000146613 00000 н. 0000146687 00000 н. 0000146760 00000 н. 0000146834 00000 н. 0000146923 00000 н. 0000146997 00000 н. 0000147071 00000 н. 0000147145 00000 н. 0000147217 00000 н. 0000147310 00000 н. 0000147382 00000 п. 0000147454 00000 н. 0000147528 00000 п. 0000147600 00000 н. 0000147671 00000 н. 0000147745 00000 н. 0000147819 00000 п. 0000147893 00000 н. 0000147964 00000 н. 0000148035 00000 н. 0000148106 00000 н. 0000148177 00000 н. 0000148244 00000 н. 0000148311 00000 н. 0000148455 00000 н. 0000148523 00000 н. 0000148602 00000 н. 0000148751 00000 н. 0000148820 00000 н. 0000148980 00000 н. 0000149059 00000 н. 0000149138 00000 н. 0000149241 00000 н. 0000149327 00000 н. 0000149421 00000 н. 0000149527 00000 н. 0000149613 00000 н. 0000149680 00000 н. 0000149747 00000 н. 0000149899 00000 н. 0000149967 00000 н. 0000150046 00000 н. 0000150163 00000 н. 0000150232 00000 н. 0000150392 00000 н. 0000150471 00000 н. 0000150550 00000 н. 0000150637 00000 н. 0000150734 00000 н. 0000150802 00000 н. 0000150876 00000 н. 0000150981 00000 н. 0000151055 00000 н. 0000151129 00000 н. 0000151201 00000 н. 0000151273 00000 н. 0000151347 00000 н. 0000151421 00000 н. 0000151494 00000 н. 0000151568 00000 н. 0000151642 00000 н. 0000151714 00000 н. 0000151785 00000 н. 0000151859 00000 н. 0000151930 00000 н. 0000152001 00000 н. 0000152072 00000 н. 0000152143 00000 н. 0000152210 00000 н. 0000152277 00000 н. 0000152427 00000 н. 0000152497 00000 н. 0000152576 00000 н. 0000153757 00000 н. 0000153826 00000 н. 0000153986 00000 н. 0000154065 00000 н. 0000154144 00000 н. 0000154222 00000 н. 0000154300 00000 н. 0000154378 00000 н. 0000154456 00000 н. 0000154534 00000 н. 0000154612 00000 н. 0000154691 00000 н. 0000154770 00000 н. 0000154849 00000 н. 0000154928 00000 н. 0000154998 00000 н. 0000155085 00000 н. 0000155155 00000 н. 0000155229 00000 н. 0000155308 00000 н. 0000155387 00000 н. 0000155466 00000 н. 0000155545 00000 н. 0000155624 00000 н. 0000155703 00000 н. 0000155782 00000 н. 0000155861 00000 н. 0000155940 00000 н. 0000156019 00000 н. 0000156098 00000 н. 0000156177 00000 н. 0000156256 00000 н. 0000156335 00000 н. 0000156414 00000 н. 0000156493 00000 н. 0000156572 00000 н. 0000156651 00000 н. 0000156730 00000 н. 0000156809 00000 н. 0000156888 00000 н. 0000156967 00000 н. 0000157046 00000 н. 0000157125 00000 н. 0000157204 00000 н. 0000157283 00000 н. 0000157362 00000 н. 0000157441 00000 н. 0000157520 00000 н. 0000157599 00000 н. 0000157678 00000 н. 0000157757 00000 н. 0000157836 00000 н. 0000157915 00000 н. 0000157994 00000 н. 0000158073 00000 н. 0000158152 00000 н. 0000158231 00000 п. 0000158310 00000 н. 0000158389 00000 н. 0000158468 00000 н. 0000158547 00000 н. 0000158626 00000 н. 0000158705 00000 н. 0000158784 00000 н. 0000158863 00000 н. 0000158942 00000 н. 0000159021 00000 н. 0000159100 00000 н. 0000159179 00000 н. 0000159258 00000 н. 0000159337 00000 н. 0000159416 00000 н. 0000159495 00000 н. 0000159574 00000 н. 0000159653 00000 н. 0000159732 00000 н. 0000159811 00000 н. 0000159890 00000 н. 0000159969 00000 н. 0000160048 00000 н. 0000160127 00000 н. 0000160206 00000 н. 0000160285 00000 н. 0000160364 00000 н. 0000160443 00000 н. 0000160522 00000 н. 0000160601 00000 н. 0000160680 00000 н. 0000160759 00000 н. 0000160838 00000 н. 0000160917 00000 н. 0000160996 00000 н. 0000161075 00000 н. 0000161154 00000 н. 0000161233 00000 н. 0000161312 00000 н. 0000161391 00000 н. 0000161470 00000 н. 0000161549 00000 н. 0000161629 00000 н. 0000161709 00000 н. 0000161789 00000 н. 0000161864 00000 н. 0000161944 00000 н. 0000162019 00000 н. 0000162106 00000 н. 0000162181 00000 п. 0000162261 00000 н. 0000162340 00000 н. 0000162420 00000 н. 0000162500 00000 н. 0000162580 00000 н. 0000162660 00000 н. 0000162740 00000 н. 0000162820 00000 н. 0000162900 00000 н. 0000162980 00000 н. 0000163060 00000 н. 0000163140 00000 н. 0000163220 00000 н. 0000163300 00000 н. 0000163380 00000 н. 0000163460 00000 н. 0000163540 00000 н. 0000163620 00000 н. 0000163700 00000 н. 0000163780 00000 н. 0000163860 00000 н. 0000163940 00000 н. 0000164020 00000 н. 0000164100 00000 н. 0000164180 00000 н. 0000164260 00000 н. 0000164340 00000 н. 0000164420 00000 н. 0000164499 00000 н. 0000164579 00000 н. 0000164659 00000 н. 0000164734 00000 н. 0000164803 00000 н. 0000164872 00000 н. 0000164941 00000 н. 0000165010 00000 н. 0000165078 00000 н. 0000165149 00000 н. 0000165216 00000 н. 0000165283 00000 н. 0000165434 00000 н. 0000165503 00000 н. 0000165582 00000 н. 0000165771 00000 н. 0000165840 00000 н. 0000166000 00000 н. 0000166079 00000 н. 0000166158 00000 н. 0000166261 00000 н. 0000166364 00000 н. 0000166461 00000 н. 0000166538 00000 н. 0000166615 00000 н. 0000166692 00000 н. 0000166769 00000 н. 0000166848 00000 н. 0000166927 00000 н. 0000167006 00000 н. 0000167073 00000 н. 0000167140 00000 н. 0000167207 00000 н. 0000167276 00000 н. 0000167343 00000 п. 0000167410 00000 н. 0000167529 00000 н. 0000167597 00000 н. 0000167676 00000 н. 0000167801 00000 н. 0000167870 00000 н. 0000168030 00000 н. 0000168109 00000 н. 0000168188 00000 н. 0000168266 00000 н. 0000168345 00000 н. 0000168442 00000 н. 0000168516 00000 н. 0000168590 00000 н. 0000168664 00000 н. 0000168738 00000 н. 0000168809 00000 н. 0000168880 00000 н. 0000168951 00000 н. 0000169022 00000 н. 0000169089 00000 н. 0000169156 00000 н. 0000169223 00000 н. 0000169301 00000 н. 0000169425 00000 н. 0000169493 00000 н. 0000169652 00000 н. 0000169730 00000 н. 0000169808 00000 н. 0000169886 00000 н. 0000169958 00000 н. 0000170078 00000 н. 0000170151 00000 п. 0000170224 00000 н. 0000170297 00000 н. 0000170393 00000 п. 0000170466 00000 н. 0000170539 00000 н. 0000170612 00000 н. 0000170683 00000 н. 0000170754 00000 п. 0000170825 00000 н. 0000170898 00000 н. 0000170971 00000 п. 0000171044 00000 н. 0000171117 00000 н. 0000171188 00000 н. 0000171259 00000 н. 0000171329 00000 н. 0000171399 00000 н. 0000171469 00000 н. 0000171539 00000 н. 0000171609 00000 н. 0000171675 00000 н. 0000171741 00000 н. 0000171810 00000 н. 0000171890 00000 н. 0000171992 00000 н. 0000172062 00000 н. 0000172180 00000 н. 0000172276 00000 н. 0000172344 00000 н. 0000172412 00000 н. 0000009616 00000 н. 0000008893 00000 н. трейлер ] / Назад 2087581 / XRefStm 9616 >> startxref 0 %% EOF 933 0 объект > поток hb«`b`P«e«S`b @
Пиролиз утильных шин | BioEnergy Consult
Пиролиз изношенных шин предлагает экологически и экономически привлекательный метод преобразования изношенных шин в полезные продукты, тепло и электроэнергию.Пиролиз относится к термическому разложению изношенных шин в отсутствие или недостаток кислорода. Основным сырьем для пиролиза является предварительно обработанная стружка автомобильных, автобусных или грузовых шин. Изношенные шины — отличное топливо из-за их высокой теплотворной способности, сравнимой с углем и сырой нефтью. Теплотворная способность легковой шины среднего размера составляет 30–34 МДж / кг.
Пиролиз является наиболее рекомендуемой альтернативой термохимической обработки отработанных шин и широко используется для переработки углеродистых материалов в Европе и Азиатско-Тихоокеанском регионе.Пиролиз — это двухфазная обработка, при которой используется термическое разложение для нагрева каучука в отсутствие кислорода с целью разрушения его на составные части, например, пиролизное масло (или биомасло), синтетический газ и уголь. Растрескивание и последующее растрескивание происходит постепенно по мере нагрева материала до 450-500 ° C и выше.
Описание процесса
Метод пиролиза для переработки утильных шин включает нагревание целых, разрезанных пополам или измельченных шин в реакторе, содержащем бескислородную атмосферу и источник тепла.В реакторе каучук размягчается, после чего полимеры каучука распадаются на более мелкие молекулы, которые в конечном итоге испаряются и выходят из реактора. Эти пары можно сжигать непосредственно для выработки энергии или конденсировать в жидкость масляного типа, называемую пиролизным маслом или биомаслом.
Некоторые молекулы слишком малы, чтобы конденсироваться и оставаться в виде газа, который можно сжечь как топливо. Минералы, которые были частью шины, около 40% по весу, удаляются в виде твердого вещества. При правильном выполнении процесс пиролиза шин является очень чистой операцией и почти не имеет выбросов или отходов.
Скорость нагрева шины является важным параметром, влияющим на время реакции, выход продукта, качество продукта и потребность в энергии в процессе пиролиза отработанных шин. Если температура поддерживается на уровне около 450 o ° C, основным продуктом является жидкость, которая может быть смесью углеводородов в зависимости от исходного состава отходов. При температуре выше 700 90 361 o 90 362 ° C синтетический газ (также известный как синтез-газ), смесь водорода и окиси углерода, становится первичным продуктом из-за дальнейшего крекинга жидкостей.
Схема пиролиза утильных шин
Природа сырья и условия процесса определяют свойства газа, жидких и твердых продуктов. Например, цельные шины содержат волокна и сталь, в то время как измельченные шины имеют большую часть стали, а иногда и большую часть волокна.
Процессы могут быть периодическими или непрерывными. Энергия, необходимая для термического разложения утильных шин, может быть в виде топлива прямого сжигания, электрической индукции и / или микроволн (например, микроволновой печи).Катализатор также может потребоваться для ускорения процесса пиролиза.
Полезные товары
Широкое распространение пиролиза для обработки утильных шин объясняется тем, что полученные масла и синтез-газ могут использоваться в качестве биотоплива или сырья для переработки сырой нефти или химических продуктов. Пиролизное масло (или биомасло) имеет более высокую теплотворную способность, низкую зольность, низкое содержание остаточного углерода и низкое содержание серы.
Использование пиролизного масла в цементных печах, бумажных фабриках, электростанциях, промышленных печах, литейных цехах и других отраслях промышленности — одно из лучших применений утильных шин.При пиролизе утильных шин образуется масло, которое можно использовать в качестве жидкого топлива для промышленных печей, литейных цехов и котлов на электростанциях из-за их более высокой теплотворной способности, низкого содержания золы, остаточного углерода и серы.
Твердый остаток, называемый углем, содержит технический углерод и неорганические вещества. Он содержит технический углерод и минеральные вещества, изначально присутствующие в шине. Этот твердый полукокс можно использовать в качестве арматуры в резиновой промышленности, в качестве активированного угля или бездымного топлива.
Нравится:
Нравится Загрузка…
СвязанныеО Салмане Зафаре
Салман Зафар — генеральный директор BioEnergy Consult, а также международный консультант, советник и инструктор, обладающий опытом в области управления отходами, энергии биомассы, преобразования отходов в энергию, защиты окружающей среды и сохранения ресурсов. Его географические области деятельности включают Азию, Африку и Ближний Восток. Салман успешно выполнил широкий спектр проектов в области биогазовой технологии, энергии биомассы, преобразования отходов в энергию, рециркуляции и управления отходами.Салман принимал участие в многочисленных национальных и международных конференциях по всему миру. Он является плодовитым журналистом-экологом, автором более 300 статей в известных журналах, журналах и на веб-сайтах. Кроме того, он активно участвует в распространении информации о возобновляемых источниках энергии, управлении отходами и экологической устойчивости через свои блоги и порталы. С Салманом можно связаться по электронной почте [email protected] или [email protected].7. Исследование процессов пиролиза биомассы
7.Прогресс исследований процессов пиролиза биомассы7.1. Общее введение
.
7.2. Система пиролиза биомассы
7.3. Продукты и их характеристики
7.4. Предварительная обработка и определение характеристик исходного сырья
7.5. Установлен пилотный реактор с вращающимся конусом в САУ
7.1.1 Что такое пиролиз?
Пиролиз — это термическая деградация либо при полном отсутствии окислителя, либо с такой ограниченной подачей, что газификация не происходит в значительной степени или может быть описана как частичная газификация.Применяются относительно низкие температуры от 500 до 800 ° C по сравнению с 800 до 1000 ° C при газификации. Обычно производятся три продукта: газ, пиролизное масло и древесный уголь, относительные пропорции которых очень сильно зависят от метода пиролиза, характеристик биомассы и параметров реакции. Быстрый или мгновенный пиролиз используется для максимального увеличения количества газообразных или жидких продуктов в зависимости от используемой температуры.
7.1.2 История пиролиза биомассы
Чем интересен пиролиз?
Есть несколько способов использовать энергию, содержащуюся в биомассе, от прямого сжигания до газификации и пиролиза.Выбор наиболее прибыльного метода рекуперации энергии из биомассы определенного типа является и наиболее важным шагом на пути к прибыльным инвестициям.
Прямое сжигание — это старый способ использования биомассы. Биомасса полностью превращается в тепло, но эффективность составляет всего около 10 процентов. Газификация доводит до максимального уровня крекинг биомассы, полностью превращая ее в горючий газ перед сжиганием. Производство древесного угля, медленный пиролиз древесины при температуре 500 ° C — это процесс, который производители древесного угля использовали на протяжении тысячелетий.Древесный уголь — бездымное топливо, которое до сих пор используется для отопления. Его первое технологическое использование можно отнести к железному веку, когда древесный уголь использовался при плавке руды для производства железа. Производство древесного пара обычно связано с копчением, которое является одним из старейших методов консервирования пищевых продуктов, вероятно, применяемым с момента развития кулинарии на огне. Эти пары, содержащие природные консерванты, такие как формальдегид и спирт, использовались в качестве исходного сырья. Основная привлекательность — небольшие и очень простые установки, которые можно изготавливать с очень низкими инвестиционными затратами.Недостаток — довольно низкая выработка энергии и загрязнение воздуха.
Пиролиз биомассы привлекателен тем, что управлять твердой биомассой и отходами очень сложно и дорого. легко превращается в жидкие продукты. Эти жидкости, такие как сырая бионефть или суспензия древесного угля из воды или масла, имеют преимущества при транспортировке, хранении, сжигании, модернизации и гибкости в производстве и сбыте. Плотность энергии сведена в Таблицу 7.1.
Неочищенное пиролизное масло — это холостой флюид, который часто называют бионефть, пиролизное масло или просто нефть.Другой основной продукт — это суспензия, которую можно приготовить из отходов и древесного угля с добавлением химикатов для стабилизации суспензии. Сообщалось о стабильной и подвижной концентрации до 60 мас.%. Суспензии также можно приготовить из масла и древесного угля.
На пилотной установке газ обычно сжигается на факеле, но в промышленном процессе он будет использоваться для управления процессом или для сушки топлива или выработки электроэнергии.
При транспортировке важна насыпная плотность, некоторые расчетные значения приведены в таблице 7.1 Смеси нефти и навозной жижи имеют явное преимущество перед древесной щепой и соломой по объемной плотности при транспортировке и заметны по удельной энергии.
Для сбора биомассы на большие расстояния эта разница может быть решающим фактором.
Хранение и транспортировка могут быть важны из-за сезонных колебаний производства, и всегда будет требоваться некоторое хранение. Помимо насыпной плотности и учета энергии, важно, чтобы сырая биомасса ухудшалась во время хранения из-за процесса биологического разложения.Однако уголь очень стабилен и биологически не разлагается. Еще одним важным фактором является обращение с жидкостью, при котором жидкости имеют значительные преимущества перед твердыми веществами.
Как правило, жидкие продукты легче контролировать в процессе сгорания, и это важно при модернизации существующего оборудования. Существующие горелки, работающие на жидком топливе, не могут полностью работать на твердой биомассе без какой-либо модификации устройства, что может не быть заинтересовано в неопределенных рынках топлива. Тем не менее, бионефти, суспензии полукокса и воды, вероятно, потребуются лишь относительно небольшая переделка оборудования или даже не потребуется в некоторых случаях.Горелки на угле с электроприводом относительно легко могут принять древесный уголь в качестве частичной замены топлива, если содержание нарушений совместимо с конструкцией горелки.
На электростанциях газовые турбины могут легко работать на биомасле и жидком топливе, хотя при этом требуется щелочная зола в составе полукокса пульпы. Некоторые модифицированные двигатели можно использовать для использования модернизированного масла. В некоторых странах. существует рынок кусков древесного угля и брикетов для отдыха и промышленного использования.
Табл.7.1 Энергетические и плотностные характеристики
Корм | Насыпная плотность кг / м 3 ) | Теплотворная способность в сухом виде (ГДж / т) | Плотность энергии (ГДж / м 3 ) |
солома | 100 | 20 | 2 |
щепа | 400 | 20 | 8 |
пиро-масло | 1200 | 25 | 30 |
уголь | 300 | 30 | 9 |
суспензия угольной воды (50/50) | 1000 | 15 | 15 |
суспензия угольного масла (20/80) | 1150 | 23 | 26 |
7.1.3 Общее введение в процесс пиролиза биомассы
На сегодняшний день существует много видов процессов пиролиза биомассы, таких как обычные, мгновенные или быстрые, которые зависят от параметров реакции. Однако типичный процесс пиролиза можно описать следующим образом:
Биомассу предварительно измельчают и сушат, чтобы полностью контролировать процесс. Таким образом, биомасса подается в реактор с воздухом, достаточным для сжигания той части биомассы или теплоносителя (песка или другого), обеспечивающего тепло, необходимое для процесса.Система циклонов и конденсаторов позволяет восстанавливать продукты. Вообще говоря, система пиролиза биомассы имеет дело со многими аспектами: посадка биомассы, предварительная обработка, процесс пиролиза, использование и обновление продуктов, стоимость и экономическая оценка. Ниже будут рассмотрены новейшие технологии пиролиза биомассы в странах Европы и США
.7.2.1 Классификация пиролиза
Пиролиз применялся на протяжении веков для производства древесного угля.Это требует относительно медленной реакции при очень низких температурах для максимального увеличения выхода твердого вещества. Совсем недавно исследования механизмов пиролиза предложили способы существенного изменения пропорций газа, жидких и твердых продуктов путем изменения скорости нагрева, температуры и времени пребывания.
Высокие скорости нагрева, до заявленных 1000 ° C / с или даже 10000 ° C / с, при температуре ниже примерно 650 ° C и с быстрым охлаждением, вызывают конденсацию жидких промежуточных продуктов пиролиза до того, как дальнейшая реакция развалится. частицы с более высокой молекулярной массой в газообразные продукты.Высокие скорости реакции также сводят к минимуму образование полукокса, и при некоторых условиях, по-видимому, не образуется никакого полукокса. При высокой максимальной температуре основным продуктом является газ. Пиролиз при таких высоких скоростях нагрева известен как быстрый или мгновенный пиролиз в зависимости от скорости нагрева и времени пребывания, хотя различия нечеткие. В другой работе была предпринята попытка использовать сложные механизмы разложения путем пиролиза в необычной среде. Основные варианты пиролиза перечислены в таблице 7.2, а характеристики основных моделей пиролиза обобщены в таблице 7.3.
Таблица 7.2 Вариант технологии пиролиза
Тех. | Время пребывания | Скорость нагрева | Температура ° C | Продукты |
карбонизация | дней | очень низкий | 400 | древесный уголь |
Обычный | 5-30 мин | низкий | 600 | нефть, газ, уголь |
Быстро | 0.5-5с | очень высокий | 650 | биомасло |
Вспышка | <1 с | высокий | <650 | биомасло |
Вспышка газа | <1 с | высокая | <650 | химикаты, газ |
Ультра | <0.5 | очень высокий | 1000 | химикаты, газ |
Вакуум | 2-30с | средний | 400 | биомасло |
Hydro-pyro. | <10 с | высокая | <500 | биомасло |
Метано-пиро. | <10 с | высокая | > 700 | химикатов |
Таблица 7.3 Характеристики пиролизных технологий
Мигающий низкий T | Высокая вспышка T | Медленная | Карбонизация | ||
Сырье | |||||
Размер канала | малый | малый | умеренный | большой | |
Влажность | v.низкий | v. Низкий | низкий | низкий | |
Параметры | |||||
Температура ° C | 450-600 | 650-900 | 500-600 | 450-600 | |
Давление, бар | 1 | 0.1-1 | 1 | 1 | |
Макс. расход, т / ч | 0,05 | 0,02 | 5 | 10 | |
Товар | |||||
Газ,% мас. Сухой | <30 | <70 | <40 | <40 | |
МДж / Нм3 | 10-20 | 10-20 | 5-10 | 2-4 | |
Жидкость% | <80 | <20 | <30 | <20 | |
МДж / кг | 23 | 23 | 23 | 10-20 | |
Твердый% | <15 | <20 | <30 | <35 | |
МДж / кг | 30 | 30 | 30 | 30 |
7.2.2 Текущее состояние технологий
В Европе демонстрационная установка производительностью 500 кг / ч в настоящее время работает в Италии для производства жидкости. Планируется, что на основе этой технологии появятся небольшие коммерческие предприятия в Италии, Испании и Греции в качестве проектов LEBEN. Пилотная установка производительностью 250 кг / ч, основанная на процессах Ватерлоо, была построена в Испании. Несколько заводов работают на демонстрационном уровне для отстоя сточных вод и бытовых отходов в Западной Германии с производительностью до 2 т / ч на основе медленного пиролиза.
В другом месте в Северной Америке работает ряд демонстрационных установок для мгновенного пиролиза с производительностью до 25 кг / ч с планами нескольких коммерческих разработок с производительностью до 40 кг / ч, включая коммерческую установку, запланированную в Калифорнии на основе абляционный пиролиз и пиролиз осадка сточных вод SERI в Канаде и Австралии. Примеры текущих исследований и разработок перечислены в Таблице 7.4. Некоторые свойства, о которых было сообщено, суммированы и сравниваются в Таблице 7.5.
A. Реактор с неподвижным слоем
Древесный уголь можно производить с помощью реактора с неподвижным слоем, в котором сырье биомассы частично газифицируется воздухом. Компания Bio-Alternative SA использовала газогенератор с нисходящим потоком с неподвижным слоем газа диаметром 1 м и высотой 3 м (Bridgwater and Bridgw, 1991). с производительностью по биомассе 2000 кг / ч. Продуктами этого процесса являются газ, вязкие смолы и древесный уголь, выход которых максимален. Для древесины ели и бука был достигнут выход древесного угля 300% по весу в пересчете на загружаемую древесину.Все продукты используются как энергоносители.
Таблица 7.5. Характеристики различных технологий пиролиза бионефти
Технологии | ГИТ | Энсин | лаваль | СЕРИЯ | Твенте | |
Температура [° C] | 500 | 550 | 480 | 510 | 600 | |
Давление [бар абс.] | 1.0 | 1.0 | 0,01 | 1.0 | 1.0 | |
Расход [кг / ч] | 50 | 50 | 30 | 30 | 12 | |
dp [мм] | 0,5 | 0.2 | 10 | 5 | 0,5 | |
т газа [с] | 1.0 | 0,4 | 3 | 1 | 0,5 | |
т твердых [с] | 1.0 | 0,4 | 100 | 0.5 | ||
Выход газа [мас.%] | 30 | 25 | 14 | 35 | 20 | |
Выход гудрона [мас.%] | 60 | 65 | 65 | 55 | 70 | |
Выход полукокса [мас.%] | 10 | 10 | 21 | 10 | 10 | |
Характеристики гудрона (на мокрой основе) | ||||||
Плотность | 1.23 | 1,21 | 1,23 | 1,20 | 1,20 | |
Вязкость [cp] | 10 (60c) | 90 (25c) | 5 (40c) | 90 (30c) | 80 (20c) | |
C мас.% | 39.5 | 45,5 | 49,9 | 54,4 | 43,2 | |
H вес.% | 7,5 | 7,0 | 7,0 | 5,7 | 8,2 | |
0 мас.% | 52,6 | 45.4 | 43,0 | 39,8 | 48,6 | |
HHV [МДж / кг] | 24 | 19,3 | 21 | 15 | 25 | |
Вода в гудроне [мас.%] | 29 | 16 | 18 | 15 | 25 | |
Выход продукта | ||||||
% по массе жидкости | 21 | 59 | 66 | 70 | ||
вода | 26 | 26 | 10 | 10 | ||
знак | 21 | 15 | 14 | 10 | ||
газ | 32 | – | 10 | 10 |
Таблица 7.4 Сравнение технологий процесса пиролиза: ранжирование по желаемым продуктам
Технологии | Организация | Производительность (кг / ч) | Требуемый газ / смола / уголь | T (° C) | |
товар | (Вес%) | ||||
Фиксированная кровать | Био-альтернатива | 2000 | Char | 55/15/30 | 500-800 |
псевдоожиженный слой | ТЕБЯ | 500 | Газ | 80/10/10 | 650–1000 |
Радиационная печь | Univ.Сарагоса | 100 | Газ | 90/8/2 | 1000–2000 |
Обычный | Альтен (КТИ + Itaenergy) | 500 | Смола | ||
Циркуляционный псевдоожиженный слой | Энсин Инжиниринг | 30 | Смола | 25/65/10 | 450-800 |
Быстро увлеченный поток | Технологический исследовательский институт Джорджии. | 50 | Смола | 30/60/10 | 400–550 |
Вакуум | Университет Лаваля | 30 | Смола | 15/65/20 | 250-450 |
Вихревой реактор | Исследования солнечной энергии Ins. | 30 | Смола | 35/55/10 | 475-725 |
низкая температура | Тюбингенский университет | 10 | |||
Flash с псевдоожиженным слоем | Университет Ватерлоо | 3 | Смола | 20/70/10 | 425-625 |
Реактор с вращающимся конусом | Univ.Твенте | 10 | Смола | 20/70/10 | 500-700 |
B. Реактор с псевдоожиженным слоем
Хорошо известная технология реакторов с псевдоожиженным слоем применялась Косстрином (1980), Гуртеем и др. (1987) и Скоттом и др. (1988). Выходы смолы, производимые реактором с псевдоожиженным слоем среднего масштаба (100 кг / ч), довольно низкие из-за крекинга паров в больших объемах слоя и надводного борта.Технология реакторов с псевдоожиженным слоем предлагает хорошие возможности для газификации сырья биомассы с минимальным образованием смол. В этом случае материал слоя следует выбирать на основе оптимальных характеристик каталитического крекинга гудрона. Однако, если продуктом является деготь, следует применить некаталитический неглубокий псевдоожиженный слой с последующим немедленным гашением газообразных продуктов.
C. Специфические технологии производства бионефти.
Производство бионефти максимально при средних температурах процесса (450-650) и коротком времени пребывания паров в реакторе.Полезными критериями для выбора технологий пиролиза для производства бионефти являются: i) выход биомасла на единицу массы древесины, который должен быть как можно более высоким, ii) мощность реактора процесса должна быть достаточно большой, чтобы ограничить количество шагов по увеличению мощности до полной мощности завода. Технологии пиролиза, включенные в следующий обзор, выбираются на основе этих критериев. Соответственно, было решено рассматривать только процессы с выходом биомасла более 50 мас.% В пересчете на сухую древесину и производительностью установки более 10 кг / ч.Схематическое расположение четырех известных технологий представлено на рис. 7.1; их особенности приведены в таблице 5 вместе с характеристиками «процесса вращения конуса Твенте».
а. Реактор с увлеченным потоком
Пиролиз биомассы в проточном реакторе с увлеченным потоком был изучен Гортоном и др. (1990) в Технологическом институте Джорджии, Атланта, Джорджия, США. Технологическая схема их процесса представлена на рис. 7.1a. Вертикальная трубка реактора имеет длину 6,4 м и внутренний диаметр 0 мкм.15м. Воздух и пропан вводятся стехиометрически и сгорают в нижней части их реактора. Полученный горячий дымовой газ течет вверх по трубе, проходя через точку сбора биомассы. Таким образом, тепловая энергия горючего газа используется для нагрева частиц биомассы и, при необходимости, для обеспечения тепла реакции пиролиза. Типичные рабочие условия — отношение массового расхода газа-носителя к массовому потоку пиролиза около 4, температура на входе в реактор 900 ° C, атмосферное давление в реакторе и пропускная способность реактора 500 кг.час Недостатком является необходимость в большом количестве газа-носителя (азота).
б. Реактор с циркулирующим псевдоожиженным слоем.
Реактор с восходящим потоком циркулирующей жидкости эксплуатируется компанией Ensyn в Оттаве, Канада (Graham, 1988). Рис. 7.1b показывает, что частицы биомассы и предварительно нагретый песок подаются вместе в нижнюю часть реактора с циркулирующей жидкостью. К сожалению, в литературе нет данных о размерах и расходах предварительно нагретого газа-носителя и песка для этого процесса.Обычно этот реактор работает при температуре 600 ° C и производительности по биомассе 100 кг / ч. Утверждается, что 60% биомасла можно получить из древесины тополя в качестве исходного сырья. Использование песка в качестве теплоносителя дает преимущество компактной конструкции из-за высокой скорости передачи тепла от песка к частицам биомассы. Еще одно преимущество — короткое время пребывания газа, за счет которого подавляется вторичный крекинг гудрона. Когда этот реактор становится масштабным, особое внимание следует уделять быстрому смешиванию частиц биомассы с твердым теплоносителем.И снова потребность в газе-носителе является недостатком.
г. Вакуумная печь реактор
Вакуумный пиролиз полярной осины в многоподовом реакторе был изучен Роем и др. (1992, 1993) в Университете Лаваля, Квебек, Канада. Шесть обогреваемых подов диаметром 0,7 м установлены наверху общей высотой 2 м как часть реактора, показанного на рис. 7.1c. Древесина подается в верхний отсек реактора и транспортируется вниз под действием силы тяжести и скребков, которые в настоящее время находятся в каждом отсеке.Если биомедицина полностью преобразована, нижнее отделение будет содержать только древесный уголь, который можно легко удалить из реактора. Температура верхнего пода составляет около 200 ° C и увеличивается по направлению к нижней части реактора, где она достигает 400 ° C для достижения максимального количества бионефти. Вакуумный насос используется для поддержания давления в реакторе на уровне 1 кПа. Трудность увеличения размера реактора связана с установкой вакуумного насоса большой мощности, который чувствителен к загрязнению, а также является очень дорогим.
г. Вихревой реактор
Вихревой реактор был построен Diebold and Power (1988) в Исследовательском институте солнечной энергии, Голден, Ко. США. Диаметр трубы этого реактора составляет 0,13 м, а длина 0,7 м. Для правильной работы реактора частицы биомассы должны быть увлекаются потоком азота со скоростью 400 м / с и входят в трубку реактора по касательной (см. рис. 7.1d). В таких условиях частицы биомассы испытывают высокие центробежные силы, которые вызывают высокие скорости абляции частиц на нагретой стенке реактора (625 ° C).Абляционные частицы оставляют на стенке жидкую пленку биомасла, которая быстро испаряется. Если древесные частицы не преобразованы полностью, они могут быть переработаны с помощью специального контура рециркуляции твердых частиц. В своей статье Диблод и Пауэр (1988) оценивают количество циклов, необходимых для достижения полного преобразования частиц биомассы, примерно в 15, что считается слишком высоким. Однако до сих пор было получено 80 мас.% Биомасла на основе сухой древесины.
В зависимости от используемого процесса первичные продукты могут быть газовыми, жидкими и твердыми.Большинство проектов заинтересованы в жидких продуктах из-за их высокой энергоемкости и потенциала замещения нефти.
Жидкость при образовании приближается к биомассе по элементному составу с немного более высокой теплотворной способностью 20-25 МДж / кг и состоит из очень сложной смеси кислородсодержащих углеводородов. Сложность возникает из-за разложения лигнина и широкого спектра фенольных соединений. Жидкость часто называют маслом, но она больше похожа на деготь. Это также может быть разложено до жидкого углеводородного топлива.Неочищенная жидкость пиролиза представляет собой густую смолистую жидкость с содержанием воды до 20% и вязкостью как тяжелая нефть.
Твердым продуктом процесса пиролиза является уголь, который имеет ограниченное применение в развитых странах для металлургии и отдыха. Альтернативный подход к жидким продуктам заключается в измельчении автомобиля и замачивании его водой со стабилизатором. Сообщалось о стабильной и подвижной концентрации до 60 мас.%. Суспензию также можно приготовить из биомасла и полукокса, но максимальная концентрация твердого вещества составляет 30%.
Газовый продукт пиролиза обычно представляет собой топливный газ MHV около 15-22 МДж / м.миль 3 . или низковольтный топливный газ с концентрацией около 4-8 МДж / Нм 3 от частичной газификации в зависимости от параметров подачи и обработки.
Рис. 7.1 Схема четырех известных технологий. A. Реактор с увлеченным потоком (GIT)
Рис. 7.1 Схематическое расположение четырех известных технологий. B. Реактор с циркулирующим псевдоожиженным слоем (ENSYN)
Рис.7.1 Схематическое расположение четырех известных технологий. C. Многоподовый реактор (Университет Лаваля)
Рис. 7.1 Схематическое расположение четырех известных технологий. D. Вихревой реактор (SERI)
Сырье, обычно рассматриваемое для термохимической переработки, — это древесина и древесные отходы, энергетические культуры, такие как лесное хозяйство с коротким оборотом и сладкое сорго, сельскохозяйственные отходы и мусор. Основными техническими критериями пригодности для термохимической обработки являются влажность, зольность и характеристики.Основными экономическими критериями являются стоимость, которая включает производство, сбор и транспортировку, и количество, которое включает доступность. Существует также вопрос о конкурирующих применениях, таких как производство целлюлозы и картона, сжигание, рециркуляция или рекуперация материалов, а не рекуперация энергии.
7.4.1 Сушка исходного сырья
Обычно для пиролиза требуется сырье с влажностью менее 15%, но существует оптимизация между содержанием влаги и эффективностью процесса конверсии.Фактическое содержание влаги, необходимое для процесса конверсии, очень мало между конверсионными установками. Полученная биомасса обычно имеет влажность в диапазоне 50-60% (влажная масса).
Пассивная сушка во время летнего хранения может снизить это количество примерно до 30 %. Активная сушка силоса позволяет снизить влажность до 12%. Сушка может быть выполнена либо очень простыми средствами, такими как сушка вблизи окружающей среды, солнечная сушка или потоки отходящего тепла, либо с помощью специально разработанных сушилок, работающих на месте.Коммерческие сушилки доступны во многих формах и на разных площадках, но наиболее распространенными являются вращающиеся печи и сушилки с неглубоким псевдоожиженным слоем.
7.4.2 Характеристики исходного сырья
Основные физические характеристики биомассы приведены в Таблице 7.6. Отличительные особенности: довольно высокое содержание влаги, низкая насыпная плотность и широкий диапазон размеров частиц.
Таблица 7.6 Типичные свойства исходного сырья
Сырье | Лесные отходы | дерево процессов | целиком | MSW | Солома |
влажность (% ) | 30-60 | 20-60 | 40-60 | 15-40 | 10-20 |
плотность (кг / м3) | 300 | 350 | 300 | 350 | 200 |
7.4.3 Производство пиролиза, связанное с составом биомассы
Пиролиз древесины приводит к образованию газа, смолы и полукокса (твердого вещества). Конечно, выход этих продуктов напрямую зависит от состава биомассы.
Биомасса состоит из трех основных компонентов: целлюлозы, гемицеллюлозы и лигнина. Целлюлоза представляет собой прямую и жесткую молекулу со степенью полимеризации приблизительно 10.000 единиц глюкозы (сахар C6). Гемицеллюлоза представляет собой полимеры, построенные из сахаров C5, C6 со степенью полимеризации около 200 единиц сахара.И целлюлоза, и гемицеллюлоза могут испаряться с незначительным образованием полукокса при температурах выше 500 ° C. Лигнин представляет собой трехмерный разветвленный полимер, состоящий из фенольных звеньев. Из-за ароматического содержания лигнина он медленно разлагается при нагревании и составляет большую часть Образование угля. Помимо основного состава клеточной стенки, такого как целлюлоза, гемицеллюлоза и лигнин, биомасса часто содержит различные количества видов, называемых «экстрактивными веществами». Эти экстрактивные вещества, которые растворимы в полярных или неполярных растворителях, состоят из терпенов, жирных кислот, ароматические соединения и эфирное масло.Состав различных материалов биомассы представлен в таблице 7.7.
Таблица 7.7 Состав различных типов биомассы
Тип | Класс | HCL | LIG | Экстра. | ЯСЕНЬ |
Мягкая древесина | 41 | 24 | 28 | 2 | 0.4 |
Твердая древесина | 39 | 35 | 20 | 3 | 0,3 |
Кора сосновая | 34 | 16 | 34 | 14 | 2 |
Солома (пшеница) | 40 | 28 | 17 | 11 | 7 |
Рисовая шелуха | 30 | 25 | 12 | 18 | 16 |
Торф | 10 | 32 | 44 | 11 | 6 |
примечание: CL — целлюлоза; HCL-гемицеллюлоза; LIG-лигнин
Фиг.7.2 показывает процессы, которые управляют пиролизом частиц биомассы. Первое тепло переносится к поверхности частицы за счет теплопроводности. Нагретый объемный элемент внутри частицы биомассы впоследствии разложился на обугленные и паровые фрагменты, которые состоят из значительных газов (бионефти) и незначительных газов. Из-за объемного образования пара внутри пористой частицы создается давление, которое достигает максимума в центре частицы и уменьшается по направлению к поверхности частицы. Пары, образующиеся внутри пор биомассы, подвергаются дальнейшему растрескиванию, что приводит к образованию полукокса, газов и термически стабильных смол.Длительное время пребывания паров внутри крупных частиц s при низких температурах пиролиза объясняет образование древесного угля в корпусе. Однако этот механизм отсутствует, если размер частиц 1 меньше 1 мм. Когда газообразные продукты покидают частицу биомассы, они попадают в окружающую газовую фазу, где могут разлагаться дальше. Каждый из этих элементарных процессов анализируется ниже с точки зрения свойств частиц, условий процесса и конструкции реактора.
Рис. 7.2. Эскиз разлагающейся древесной частицы, в том числе задействованные пути реакции
Пилотный реактор пиролиза биомассы с вращающимся конусом спроектирован и поставлен Университетом Твенте, Нидерланды.Его производительность 50 кг / час. Вращающийся конус — это реактор нового типа для мгновенного пиролиза биомассы для максимального увеличения производства бионефти. Частицы древесины, подаваемые на дно вращающегося конуса вместе с избытком частиц инертного теплоносителя, преобразуются, перемещаясь по спирали вверх вдоль горячей стенки конуса. Геометрия конуса, используемого в работе, определяется верхним углом 90 градусов радиан и максимальным диаметром 650 мм. Наиболее важными преимуществами технологии атмосферного вращающегося конуса являются ее высокая селективность по отношению к бионефти и отсутствие разбавляющего газа.Выход бионефти сопоставим с выходом других технологий производства бионефти.
Отличительными особенностями этого реактора являются: быстрый нагрев (5000 К / с) твердых веществ, короткое время пребывания твердых частиц (0,5 с) и небольшое время пребывания в газовой фазе (0,3 с). Продукты, полученные в результате мгновенного пиролиза древесной пыли во вращающемся конусном реакторе, представляют собой неконденсируемые газы, бионефть (гудрон) и полукокс. Поскольку не требуется газа-носителя (снижение затрат), продукты пиролиза будут образовываться в высоких концентрациях.Если необходимо. уменьшение объема газовой фазы внутри вращающегося конуса возможно за счет перекрытия части объема внутри вращающегося конуса; он сокращает время пребывания газовой фазы в реакторе, за счет чего подавляется крекинг смолы в газовой фазе. На рис. 7.3 показано поперечное сечение реактора, в котором виден вращающийся конус.
Рис. 7.3 Поперечное сечение реактора с вращающимся конусом
Выводы и проблемы
Пиролиз является наиболее универсальной системой конверсии биомассы, предлагает высокие выходы жидких продуктов, которые можно использовать напрямую или модернизировать, эта технология открывает большие перспективы для топлива и химикатов, постоянные исследования и разработки необходимы для реализации потенциала.
Для продуктов с более высокой жидкостью используются более продвинутые процессы в Университете Твенте, Альтене, Ватерлоо, Тюбингенском университете и Исследовательском институте солнечной энергии.
Для интегрированной системы. еще предстоит выполнить следующие работы:
— Сбор данных о процессах производства, сбора, переработки и улучшения биомассы;
— Сбор данных о затратах на транспортировку и обработку биомассы и производных продуктов
— Продолжение технико-экономических оценочных исследований для оптимизации системы.
— Сделайте установку более низкой и простой в эксплуатации.
.