Паропроницаемость пенополистирола • полезная информация о пенополистироле • DОБРОПАН • dpan.by
Паропроницаемость стен и материалов Существует легенда о «дышащей стене», и былинные сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле, — все это сказки. Паропроницаемость стены небольшая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.
Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.
Что такое паропроницаемость
Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность).
Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).
Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.
Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление паропроницанию составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.Какая паропроницаемость у строительных материалов
Ниже приведены значения коэффициента паропроницаемости для нескольких
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11
Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.
Как конструировать утепление — по пароизоляционным качествамОсновное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.
Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.
Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.
Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором.
Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?
Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.
Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.
Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.
Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.
Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам. Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ∞, ∞
Металлы ∞, ∞
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ∞, ∞
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50
Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.Откуда возникла легенда о дышащей стене
Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.
Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.
А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.
Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.
Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.
Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.
состав, свойства, структура, классификация, применение и безопасность
состав, свойства, структура, классификация, применение и безопасность
Согласно исследованиям экологов до 40 % электро- и теплоэнергии, которая вырабатывается в Северном полушарии, уходит на отопление производственных, жилых и других объектов. Это обусловливает тот факт, что качественная теплоизоляция зданий приносит весомую пользу в плане экономии финансов. Помимо прочего это позволяет добиться комфортности проживания. В роли одного из наиболее распространенных теплоизоляторов выступает пенопласт, он еще называется пенополистиролом, или ППС.
Паропроницаемость
Паропроницаемость пенопласта довольно низкая. На практике это значит, что на пути движения пара изнутри дома наружу будет располагаться преграда в виде пенополистирола. За пределами зданий температура часто более низкая, чем в помещениях. Поэтому пар будет превращаться в конденсат, вследствие этого в областях стыка теплоизоляции со стеновой конструкцией будет скапливаться вода. Это приводит к риску намокания материалов, которые находятся рядом.
Для того чтобы паропроницаемость пенопласта не стала минусом при использовании этого утеплителя, следует осуществить верный расчет точки росы и определить, какую толщину изоляции выбрать. Вынос точки росы при этом удастся осуществить за пределы устанавливаемого материала. Разумным решением в этом вопросе становится устройство вентилируемого фасада. Паропропускные характеристики теплоизолятора не рассматривают в отрыве от деталей конкретной конструкции. Важно учитывать, из чего возведены стены, насколько высок фундамент, а также выполнялся ли монтаж паро- и гидроизоляции.
Как сделать паропроницаемость плюсом
Паропроницаемость пенопласта составляет 0,05 мг/(м·год·Па). В связи с этим его использование может стать причиной образования плесени. Вообще эта характеристика является не только отрицательной, но и положительной особенностью. Плюсом выступает то, что при укладке теплоизоляции нет необходимости создавать паропроницаемый барьер. А вот минус может проявиться, если технология монтажа была нарушена. Под пенопластом, как было упомянуто выше, будет образовываться влага, что непременно приведет к разрушению как самого материала конструкции, так и слоя утеплителя.
Паропроницаемость пенопласта никак не отразится на микроклимате помещений, если его установку осуществлять снаружи здания. Не стоит полагать, что в продаже можно найти пенополистирол с разной паропроницаемостью. Эта характеристика остается одинаковой, независимо от плотности и вспененности. Этот показатель аналогичен древесному срубу дуба или сосны.
Структура и состав
Пенопласт — это материал белого цвета со вспененной жесткой структурой, в которой 2 % полистирола и 98 % воздуха. Для изготовления разработана технология вспенивания полистирольных гранул. Эти микроскопические частицы на следующем этапе обрабатываются горячим паром. Такая процедура повторяется несколько раз, что позволяет снизить показатель веса и плотности материала. Подготовленная масса высушивается для удаления остаточной влаги. Сырье находится на открытом воздухе в сушильных емкостях. На этой стадии структура обретает окончательную форму.
Гранулы имеют размер, который колеблется от 5 до 15 мм. Когда они оказываются высушенными, им придают соответствующую форму. Прессование осуществляется на установках или станках, которые превращают материал во что-то наподобие упаковки компактной формы. Как только пенопласт будет спрессован, его подвергают воздействию горячим паром, в результате образуются блоки с определенными параметрами. Их нарезают инструментом по размерам. Листы могут иметь нестандартные размеры. Толщина полотна варьируется от 20 до 1000 мм, тогда как размеры плит могут обладать габаритами от 1000 x 500 мм до 2000 x 1000 мм.
Основные свойства
Когда вам известно, какая паропроницаемость у пенопласта, вы можете поинтересоваться и другими характеристиками, а также особенностями. Среди прочих следует выделить:
- низкую теплопроводность;
- высокие звуко- и ветрозащитные свойства;
- низкое водопоглощение;
- долговечность;
- прочность;
- устойчивость к химическому и биологическому воздействию.
Что касается теплопроводности, она является неоспоримым преимуществом пенопласта. Это обусловлено тем, что ячейки в основе обладают формой многогранника. Их размер достигает 0,5 мм. Замкнутый цикл ячеек снижает теплообмен и ограничивает проникновение холода.
Звуко- и ветрозащитные свойства
Толщина и паропроницаемость пенопласта — это далеко не все, что следует знать при покупке материала. Важно поинтересоваться еще и звуко-, а также ветрозащитными свойствами. Если стены утеплить пенопластом, они не будут нуждаться в ветрозащите. Звукоизоляция здания повысится. Таким образом, звукоизоляционные свойства объясняются ячеистой структурой.
Для того чтобы обеспечить качественную изоляцию от наружных шумов, понадобится уложить слой материала, толщина которого составляет 3 см. Если увеличить этот показатель, то удастся добиться лучшей шумоизоляции. Паропроницаемость фасадного пенопласта была упомянута выше. Однако эта характеристика не единственная, которую вам следует знать. Необходимо поинтересоваться еще и прочностью. Плиты этого изолятора в течение длительного времени не изменяют своих физических свойств. Они готовы претерпевать высокое давление, не разрушаясь и не деформируясь. Отличным примером этому служит строительство взлетно-посадочных полос, где пенополистирол давно и широко используется. Степень прочности зависит от толщины плит и правильного монтажа.
Паропроницаемость пенопласта 25 плотности остается такой же, как было упомянуто выше. Первый показатель никак не зависит от других характеристик. Но перед приобретением этого теплоизолятора важно знать еще и об устойчивости к химическим и биологическим воздействиям. Плиты устойчивы к агрессивным средам, растворам щелочей, солей и кислот, морской воды, гипса и извести. Пенополистирол может контактировать с битумом, цементом, водорастворимыми и силиконовыми красками. На полотно могут оказывать влияние вещества лишь при длительном воздействии. Это относится к материалам, которые имеют в составе растительные и животные масла, а также дизельное топливо и бензин.
Паропроницаемость пенопласта и экструдированного пенополистирола была упомянута выше. Перед покупкой этого материала важно знать еще и то, что вы можете использовать изоляцию в качестве строительного материала, исключая контакт с агрессивными химическими составами, среди которых — насыщенные углеводороды и органические растворители.
Пожаробезопасность
Паропроницаемость и пожаробезопасность пенопласта являются одними из важных характеристик. Современные строительные материалы должны отвечать требованиям пожаробезопасности и проявлять в процессе эксплуатации устойчивость к воздействию открытого пламени. Пенополистирол не поддерживает горение и вспыхивает при температуре, которая в 2 раза выше аналогичного показателя у древесины. Энергии при горении пенопласта выделяется в 8 раз меньше, чем при горении дерева. Это говорит о том, что температура огня будет значительно ниже.
Чего стоит опасаться
Воспламениться пенополистирол может лишь во время непосредственного контакта с пламенем. При прекращении такого контакта пенопласт самозатухает в течение 4 секунд. Эти показатели характеризуют его как пожаробезопасный материал, подходящий для строительства.
Применение
Воздухопроницаемость пенопласта довольно низкая, что не позволяет использовать его внутри помещений. Но структура материала ячеистая, что делает материал универсальным звуко- и теплоизолятором в области строительства. Из пенополистирола изготавливают промышленные изделия по типу листового пенопласта, изоляции для труб и пенопластовой скорлупы. Материалом заполняют отсеки сосудов, что повышает их плавучесть. Из пенополистирола изготавливают нагрудники, спасательные жилеты и поплавки. Его используют для транспортировки донорских органов, изготавливают медицинскую тару, применяют для других нужд в медицине.
ППС нашел свое широкое применение в строительстве и отделке, его используют в роли несъемной опалубки. Теплоизолятором он служит и в приборостроении. Он может использоваться в качестве упаковки для дорогих и хрупких товаров. Он выступает подложкой для пищевых товаров и сырьем для изготовления одноразовых тарелок. Из пенопласта часто изготавливаются декоративные элементы. Это может быть наружная и внутренняя отделка зданий, а также помещений разного назначения. Из него изготавливают потолочную плитку, плинтусы, елочные игрушки, архитектурный декор, а также декор для сада.
Классификация пенопласта
Пенопласт сегодня известен во множестве разновидностей, среди них следует выделить:
- полистирол;
- полиуретан;
- экструзионный пенопласт;
- поливинилхлорид;
- экструдированный полистирол;
- полиэтиленовый пенопласт.
ППС может изготавливаться методом прессования или беспрессовым способом. Различить эти материалы несложно. Прессовая разновидность изготавливается методом прочного сцепления гранул, поэтому такие полотна сложнее сломать. Экструдированный полистирол — это почти то же, что и беспрессовой пенопласт. Материал имеет минусы, выраженные в том, что между гранулами есть полости, куда могут проникнуть водяные пары. При минусовых температурах там скапливается влага, что приводит к постепенному разрушению материала. В этом отношении несколько выигрывает экструзионный пенопласт. По виду он обладает однородной структурой. Среди плюсов этого материала следует выделить:
- длительный срок эксплуатации;
- большую прочность.
Очень эластичным является полиэтиленовый пенопласт. Он часто имеет вид полупрозрачных листов разной толщины, которые отличаются гибкостью. Самым используемым в быту является пенополиуретановый пенопласт. В народе он называется поролоном и отличается эластичностью.
fb.ru
состав, свойства, структура, классификация, применение и безопасность
Бизнес 28 сентября 2018Согласно исследованиям экологов до 40 % электро- и теплоэнергии, которая вырабатывается в Северном полушарии, уходит на отопление производственных, жилых и других объектов. Это обусловливает тот факт, что качественная теплоизоляция зданий приносит весомую пользу в плане экономии финансов. Помимо прочего это позволяет добиться комфортности проживания. В роли одного из наиболее распространенных теплоизоляторов выступает пенопласт, он еще называется пенополистиролом, или ППС.
Паропроницаемость
Паропроницаемость пенопласта довольно низкая. На практике это значит, что на пути движения пара изнутри дома наружу будет располагаться преграда в виде пенополистирола. За пределами зданий температура часто более низкая, чем в помещениях. Поэтому пар будет превращаться в конденсат, вследствие этого в областях стыка теплоизоляции со стеновой конструкцией будет скапливаться вода. Это приводит к риску намокания материалов, которые находятся рядом.
Для того чтобы паропроницаемость пенопласта не стала минусом при использовании этого утеплителя, следует осуществить верный расчет точки росы и определить, какую толщину изоляции выбрать. Вынос точки росы при этом удастся осуществить за пределы устанавливаемого материала. Разумным решением в этом вопросе становится устройство вентилируемого фасада. Паропропускные характеристики теплоизолятора не рассматривают в отрыве от деталей конкретной конструкции. Важно учитывать, из чего возведены стены, насколько высок фундамент, а также выполнялся ли монтаж паро- и гидроизоляции.
Как сделать паропроницаемость плюсом
Паропроницаемость пенопласта составляет 0,05 мг/(м·год·Па). В связи с этим его использование может стать причиной образования плесени. Вообще эта характеристика является не только отрицательной, но и положительной особенностью. Плюсом выступает то, что при укладке теплоизоляции нет необходимости создавать паропроницаемый барьер. А вот минус может проявиться, если технология монтажа была нарушена. Под пенопластом, как было упомянуто выше, будет образовываться влага, что непременно приведет к разрушению как самого материала конструкции, так и слоя утеплителя.
Паропроницаемость пенопласта никак не отразится на микроклимате помещений, если его установку осуществлять снаружи здания. Не стоит полагать, что в продаже можно найти пенополистирол с разной паропроницаемостью. Эта характеристика остается одинаковой, независимо от плотности и вспененности. Этот показатель аналогичен древесному срубу дуба или сосны.
Структура и состав
Пенопласт — это материал белого цвета со вспененной жесткой структурой, в которой 2 % полистирола и 98 % воздуха. Для изготовления разработана технология вспенивания полистирольных гранул. Эти микроскопические частицы на следующем этапе обрабатываются горячим паром. Такая процедура повторяется несколько раз, что позволяет снизить показатель веса и плотности материала. Подготовленная масса высушивается для удаления остаточной влаги. Сырье находится на открытом воздухе в сушильных емкостях. На этой стадии структура обретает окончательную форму.
Гранулы имеют размер, который колеблется от 5 до 15 мм. Когда они оказываются высушенными, им придают соответствующую форму. Прессование осуществляется на установках или станках, которые превращают материал во что-то наподобие упаковки компактной формы. Как только пенопласт будет спрессован, его подвергают воздействию горячим паром, в результате образуются блоки с определенными параметрами. Их нарезают инструментом по размерам. Листы могут иметь нестандартные размеры. Толщина полотна варьируется от 20 до 1000 мм, тогда как размеры плит могут обладать габаритами от 1000 x 500 мм до 2000 x 1000 мм.
Основные свойства
Когда вам известно, какая паропроницаемость у пенопласта, вы можете поинтересоваться и другими характеристиками, а также особенностями. Среди прочих следует выделить:
- низкую теплопроводность;
- высокие звуко- и ветрозащитные свойства;
- низкое водопоглощение;
- долговечность;
- прочность;
- устойчивость к химическому и биологическому воздействию.
Что касается теплопроводности, она является неоспоримым преимуществом пенопласта. Это обусловлено тем, что ячейки в основе обладают формой многогранника. Их размер достигает 0,5 мм. Замкнутый цикл ячеек снижает теплообмен и ограничивает проникновение холода.
Звуко- и ветрозащитные свойства
Толщина и паропроницаемость пенопласта — это далеко не все, что следует знать при покупке материала. Важно поинтересоваться еще и звуко-, а также ветрозащитными свойствами. Если стены утеплить пенопластом, они не будут нуждаться в ветрозащите. Звукоизоляция здания повысится. Таким образом, звукоизоляционные свойства объясняются ячеистой структурой.
Для того чтобы обеспечить качественную изоляцию от наружных шумов, понадобится уложить слой материала, толщина которого составляет 3 см. Если увеличить этот показатель, то удастся добиться лучшей шумоизоляции. Паропроницаемость фасадного пенопласта была упомянута выше. Однако эта характеристика не единственная, которую вам следует знать. Необходимо поинтересоваться еще и прочностью. Плиты этого изолятора в течение длительного времени не изменяют своих физических свойств. Они готовы претерпевать высокое давление, не разрушаясь и не деформируясь. Отличным примером этому служит строительство взлетно-посадочных полос, где пенополистирол давно и широко используется. Степень прочности зависит от толщины плит и правильного монтажа.
Паропроницаемость пенопласта 25 плотности остается такой же, как было упомянуто выше. Первый показатель никак не зависит от других характеристик. Но перед приобретением этого теплоизолятора важно знать еще и об устойчивости к химическим и биологическим воздействиям. Плиты устойчивы к агрессивным средам, растворам щелочей, солей и кислот, морской воды, гипса и извести. Пенополистирол может контактировать с битумом, цементом, водорастворимыми и силиконовыми красками. На полотно могут оказывать влияние вещества лишь при длительном воздействии. Это относится к материалам, которые имеют в составе растительные и животные масла, а также дизельное топливо и бензин.
Паропроницаемость пенопласта и экструдированного пенополистирола была упомянута выше. Перед покупкой этого материала важно знать еще и то, что вы можете использовать изоляцию в качестве строительного материала, исключая контакт с агрессивными химическими составами, среди которых — насыщенные углеводороды и органические растворители.
Пожаробезопасность
Паропроницаемость и пожаробезопасность пенопласта являются одними из важных характеристик. Современные строительные материалы должны отвечать требованиям пожаробезопасности и проявлять в процессе эксплуатации устойчивость к воздействию открытого пламени. Пенополистирол не поддерживает горение и вспыхивает при температуре, которая в 2 раза выше аналогичного показателя у древесины. Энергии при горении пенопласта выделяется в 8 раз меньше, чем при горении дерева. Это говорит о том, что температура огня будет значительно ниже.
Чего стоит опасаться
Воспламениться пенополистирол может лишь во время непосредственного контакта с пламенем. При прекращении такого контакта пенопласт самозатухает в течение 4 секунд. Эти показатели характеризуют его как пожаробезопасный материал, подходящий для строительства.
Применение
Воздухопроницаемость пенопласта довольно низкая, что не позволяет использовать его внутри помещений. Но структура материала ячеистая, что делает материал универсальным звуко- и теплоизолятором в области строительства. Из пенополистирола изготавливают промышленные изделия по типу листового пенопласта, изоляции для труб и пенопластовой скорлупы. Материалом заполняют отсеки сосудов, что повышает их плавучесть. Из пенополистирола изготавливают нагрудники, спасательные жилеты и поплавки. Его используют для транспортировки донорских органов, изготавливают медицинскую тару, применяют для других нужд в медицине.
ППС нашел свое широкое применение в строительстве и отделке, его используют в роли несъемной опалубки. Теплоизолятором он служит и в приборостроении. Он может использоваться в качестве упаковки для дорогих и хрупких товаров. Он выступает подложкой для пищевых товаров и сырьем для изготовления одноразовых тарелок. Из пенопласта часто изготавливаются декоративные элементы. Это может быть наружная и внутренняя отделка зданий, а также помещений разного назначения. Из него изготавливают потолочную плитку, плинтусы, елочные игрушки, архитектурный декор, а также декор для сада.
Классификация пенопласта
Пенопласт сегодня известен во множестве разновидностей, среди них следует выделить:
- полистирол;
- полиуретан;
- экструзионный пенопласт;
- поливинилхлорид;
- экструдированный полистирол;
- полиэтиленовый пенопласт.
ППС может изготавливаться методом прессования или беспрессовым способом. Различить эти материалы несложно. Прессовая разновидность изготавливается методом прочного сцепления гранул, поэтому такие полотна сложнее сломать. Экструдированный полистирол — это почти то же, что и беспрессовой пенопласт. Материал имеет минусы, выраженные в том, что между гранулами есть полости, куда могут проникнуть водяные пары. При минусовых температурах там скапливается влага, что приводит к постепенному разрушению материала. В этом отношении несколько выигрывает экструзионный пенопласт. По виду он обладает однородной структурой. Среди плюсов этого материала следует выделить:
- длительный срок эксплуатации;
- большую прочность.
Очень эластичным является полиэтиленовый пенопласт. Он часто имеет вид полупрозрачных листов разной толщины, которые отличаются гибкостью. Самым используемым в быту является пенополиуретановый пенопласт. В народе он называется поролоном и отличается эластичностью.
Источник: fb.ru Домашний уют Кремний для очистки воды: свойства, инструкция по применению и отзывыКремний, для очистки воды используемый, добавляет жидкости уникальные характеристики, при этом противопоказания к его применению практически отсутствуют. Такая вода устраняет воспалительные процессы и проблемы в желуд…
Здоровье «Викс Актив Синекс», спрей для назального применения: состав, описание, инструкция по применению и отзывыСовременные фармацевтические компании выпускают массу разнообразных средств, помогающих устранить насморк. Все препараты подразделяются на антибактериальные, сосудосуживающие, противовирусные, иммуномодулирующие, анти…
Здоровье Состав Energy Diet. Особенности применения и эффективность функционального питанияКаждая женщина хочет научиться питаться таким образом, чтобы сократить свой вес до идеального, а потом придерживаться достигнутого уровня. Однако достигнуть этого удается далеко не всем. Поэтому вместо того, чтобы взя…
Здоровье Монастырский чай от паразитов: состав трав, рецепт, особенности применения и отзывыНа наличие паразитов в организме могут указывать прямые и косвенные симптомы. Аллергия, необоснованная физическая усталость, повышенная утомляемость, частые инфекционные заболевания — все эти признаки могут говорить о…
Здоровье Раствор «Фукорцин»: состав, свойства, показания к применениюПрепарат, известный под названием «Фукорцин», представляет собой местное антисептическое и противогрибковое лекарственное средство. Он имеет ярко-малиновый цвет, за что и получил свое второе название &ndas…
Здоровье Слабительные препараты: классификация, применение и побочные эффектыБольшинство людей привыкло легкомысленно относиться к слабительным средствам. С проблемой запора пациенты если и идут к врачам, то только на очень запущенной стадии: или уже когда многое перепробовали и получили привы…
Образование Аммиак. Химические свойства, физические характеристики. Применение и получениеПерекрёсток караванных путей Северной Африки вблизи оазиса Аммона — исторически признанная родина аммиака. Жрецы, поклоняющиеся богу Амону, во время своих ритуалов использовали нитрид водорода, который при нагревании …
Технологии Оптоэлектронные приборы: описание, классификация, применение и видыСовременная наука активно развивается в самых разных направлениях, стремясь охватить все возможные потенциально полезные сферы деятельности. Среди всего этого следует выделить оптоэлектронные приборы, которые использу…
Дом и семья Имитационная игра — это что такое? Понятие и структура, классификация, типы и примерыВ практике обучения за последние годы стали очень популярны имитационные игры. Их активно начали разрабатывать и отечественные специалисты. Что же представляет собой имитационная игра? Этот и другие вопросы будут осве…
Домашний уют «Фуфанон» от клопов: состав, принцип действия, инструкция по применению и безопасность для окружающихВ XXI веке человек уже стал забывать многие проблемы, еще совершенно недавно мешавшие комфортно жить. Во все времена рядом селились неприятные насекомые, который приносили своим соседям ряд неприятностей. Многие являл…
monateka.com
Паропроницаемость строительных материалов
В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».
Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.
Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю. Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.
Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.
Механизм паропроницаемости строительных материалов:
При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).
|
Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.
dom.dacha-dom.ru
Паропроницаемость типовых строительных конструкций | ДОМ ИДЕЙ
Понятие «дыхание» не относится к терминологии строительной физики. «Дышащие» стены обеспечивают диффузионное движение воздуха и водяного пара сквозь конструкцию.
Зачем стене дышать
Основной причиной появления влаги в помещениях является выделение ее людьми, животными и растениями при физиологических процессах, в процессе приготовления пищи, влажной уборки, стирки и сушки, саморазморозки холодильников.
Диффузионное движение молекул сквозь стену возникает при наличии различной их концентрации по разные стороны наружной стены и зависит от температуры и влажности. Для описания диффузионных процессов введены понятия воздухо-, газо- и паропроницаемости, то есть свойств материалов пропускать через свою толщу соответственно воздух, газ и пар.
Поскольку стена аккумулирует имеющийся внутри избыток водяного пара и углекислого газа, которые движутся из помещения наружу в направлении от больших концентраций к меньшим. Вместе с тем кислород, который мы используем для дыхания, поступает снаружи вовнутрь.
И хотя в процентном отношении это количество очень мало и потому не принимается в расчёт при определении воздухообмена помещения, такая проницаемость является весьма позитивным свойством материала или конструкции. Оптимальными с точки зрения физиологии качествами проницаемости обладают деревянные стены. Любой, кто хоть некоторое время провёл в деревянном доме, отмечает лёгкость и свежесть воздуха в помещениях.
Паропроницаемость
Наиболее интересной с практической точки зрения представляется эффект паропроницаемости. Относительная влажность воздуха в жилых помещениях в зависимости от времени года составляет от 25% до 50%, во влажных помещениях, например в душевых, до 97%.
Нынешние стены это слоистые конструкции, в которых помимо основного стенового материала присутствуют утеплители, декоративные и отделочные покрытия, которые либо уменьшают, либо сохраняют паропроницаемость основных строительных материалов. И очень многое зависит от характеристик сопротивления паропроницаемости различных слоев стены.
Грамотный подход к подбору материалов не только поддерживает оптимальный для человека влажностный режим, но и предотвращает разрушение стен при действии низких температур. Для более наглядного сравнения паропроницаемости материалов введена величина сопротивления диффузии μ. Чем она меньше, тем лучше протекают вышеупомянутые процессы.
Коэффициент паропроницаемости (константа диффузионного сопротивления)
Материалы | µ |
Металл, стекло | ∞ |
Железобетон, бетонные блоки | 100 |
Древесина | 40 |
Пенополистирол | 30-70 |
Керамический и силикатный кирпич | 15 |
Ячеистый бетон | 4-6 |
Минеральная вата | 1 |
Известково-цементно-песчаная штукатурка | 6 |
Минеральная штукатурка | 12 |
Полимерная штукатурка | 21 |
Силикатная штукатурка | 29 |
Силиконовая штукатурка | 41 |
Как видно, хорошей паропроницаемостью обладают современные ячеистобетонные стеновые материалы. Однако необходимо учитывать, что на величину паропроницаемости значительное влияние оказывает влажность материалов. И диффузионные процессы практически прекращаются при достижении материалом определенного порога влагонасыщенности.
Теплоизоляция фасада
Для правильной организации движения водяных паров существует правило, по которому сопротивление паропроницаемости расположенных с холодной стороны слоёв, должно быть меньше, чем расположенных с теплой стороны. Иначе образовавшаяся в стене влага сможет двигаться только вовнутрь стены, что приведёт как к опасности образования плесени, так и к повреждениям внутренней отделки, например к отслоению краски.
Ещё один важный момент, оказывающий значительное влияние на процесс высыхания свежеотстроенного здания и накопления конденсата в стенах, правильный выбор типа фасадной теплоизоляции.
Минеральная вата и пенополистирол по своим теплоизоляционным свойствам достаточно схожи. Однако паропроницаемость этих материалов совершенно различна. К примеру, у минеральной ваты μ=1, у пенополистирола μ=30-70. Это означает, что утепление минеральной ватой, в отличие от пенополистирола, не препятствует движению водяного пара из стены наружу.
Как видно, μ пенополистирола меньше чем у железобетона или бетонных блоков. Поэтому пенополистирол можно считать пригодным для утепления данных материалов. Для утепления дерева и особенно ячеистых бетонов, а также силикатного и керамического кирпича пенополистирол не пригоден, поскольку его паропроницаемость в несколько раз выше, чем утепляемых материалов. При плотном прилегании материалов это будет препятствовать диффузии пара и увеличит опасность образования конденсата и плесени в стенах.
Таким образом, накопление влажности внутри конструкций возможно и при утеплённых стенах. А неправильно подобранные теплоизоляционные и отделочные материалы ухудшают теплоизоляционные свойства стены.
Декоративная отделка фасада
Необходимо заострить внимание также и на паропроницаемости наружной отделки (краски, штукатурки).
Если паропроницаемость декоративно-отделочного покрытия в 2,5-3 раза ниже, чем материала стены, в холодную погоду возможно образование в стене конденсата на контактной поверхности под слоем наружной штукатурки или окраски.
При увеличении атмосферной температуры скопившаяся влага начинает переходить в фазу пара, интенсивно воздействуя на внутреннюю поверхность покрытий и прикладывая значительное усилие, направленное на отрыв покрытия от основания. Это, в свою очередь, вызывает образование трещин, пузырей, шелушения и иных повреждений. Избежать всего этого можно только одним способом — использовать проницаемую для паров отделку.
Например, использование полимерной штукатурки с более низкими показателями паропроницаемости поверх блоков из ячеистого бетона может привести к конденсации влаги на контактной поверхности между стеной и внешней отделкой. В связи с этим для внешней отделки ячеистых блоков рекомендуется использовать декоративную штукатурку, у которой коэффициент диффузионного сопротивления µ≤15.
domidei.ru
Табличные данные паропроницаемости строительных материалов
В процессе стройки любой материал в первую очередь должен оцениваться по его эксплуатационно-техническим характеристикам. Решая задачу построить “дышащий” дом, что наиболее свойственно строениям из кирпича или дерева, или наоборот добиться максимальной сопротивляемости паропроницанию, необходимо знать и уметь оперировать табличными константами для получения расчетных показателей паропроницаемости строительных материалов.
Что такое паропроницаемость материалов
Паропроницаемость материалов – способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»
Таблица паропроницаемости строительных материалов
Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*С) | Паропроницаемость, Мг/(м*ч*Па) |
Алюминий | 2600 | 221 | 0 |
Асфальтобетон | 2100 | 1.05 | 0.008 |
АЦП | 1800 | 0.35 | 0.03 |
Бетон | 2400 | 1.51 | 0.03 |
Битум | 1400 | 0.27 | 0.008 |
Гипсокартон | 800 | 0.15 | 0.075 |
Гранит | 2800 | 3.49 | 0.008 |
ДСП, ОСП | 1000 | 0.15 | 0.12 |
Дуб вдоль волокон | 700 | 0.23 | 0.30 |
Дуб поперек волокон | 700 | 0.10 | 0.05 |
Железобетон | 2500 | 1.69 | 0.03 |
Картон облицовочный | 1000 | 0.18 | 0.06 |
Керамзит | 800 | 0.18 | 0.21 |
Керамзит | 200 | 0.10 | 0.26 |
Керамзитобетон | 1800 | 0.66 | 0.09 |
Керамзитобетон | 500 | 0.14 | 0.30 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0.35 | 0.17 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0.41 | 0.14 |
Кирпич красный глиняный | 1800 | 0.56 | 0.11 |
Кирпич, силикатный | 1800 | 0.70 | 0.11 |
Линолеум | 1600 | 0.33 | 0.002 |
Медь | 8500 | 407 | 0 |
Минвата | 200 | 0.070 | 0.49 |
Минвата | 100 | 0.056 | 0.56 |
Минвата | 50 | 0.048 | 0.60 |
Мрамор | 2800 | 2.91 | 0.008 |
ПАКЛЯ | 150 | 0.05 | 0.49 |
Пенобетон | 1000 | 0.29 | 0.11 |
Пенобетон | 300 | 0.08 | 0.26 |
Пенопласт ПВХ | 125 | 0.052 | 0.23 |
Пенополистирол | 150 | 0.05 | 0.05 |
Пенополистирол | 100 | 0.041 | 0.05 |
Пенополистирол | 40 | 0.038 | 0.05 |
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ | 33 | 0.031 | 0.013 |
ПЕНОПОЛИУРЕТАН | 80 | 0.041 | 0.05 |
ПЕНОПОЛИУРЕТАН | 60 | 0.035 | 0.05 |
ПЕНОПОЛИУРЕТАН | 40 | 0.029 | 0.05 |
ПЕНОПОЛИУРЕТАН | 32 | 0.023 | 0.05 |
Пеностекло | 400 | 0.11 | 0.02 |
Пеностекло | 200 | 0.07 | 0.03 |
Песок | 1600 | 0.35 | 0.17 |
ПОЛИМОЧЕВИНА | 1100 | 0.21 | 0.00023 |
ПОЛИУРЕТАНОВАЯ МАСТИКА | 1400 | 0.25 | 0.00023 |
Полиэтилен | 1500 | 0.30 | 0.00002 |
Рубероид, пергамин | 600 | 0.17 | 0.001 |
Сосна, ель вдоль волокон | 500 | 0.18 | 0.32 |
Сосна, ель поперек волокон | 500 | 0.09 | 0.06 |
Сталь | 7850 | 58 | 0 |
Стекло | 2500 | 0.76 | 0 |
Фанера клееная | 600 | 0.12 | 0.02 |
Таблица паропроницаемости строительных материалов
domodelie.ru
Мифы о пенополистироле. Свойства пенополистирола
Горячеформованный пенополистирол (ГОСТ 15588–86) получил широкое распространение в строительной и упаковочной индустриях. Наиболее широкое применение нашел пенополистирол нескольких марок, в частности, ПСБ, ПСБС, выпускаемый в виде плит различного размера и плотности.
Миф первый: очень высокие теплоизоляционные свойства
При принятии решения об использовании того или иного материала теплоизоляторы оценивают, в первую очередь, по соответствию главному назначению. Для этих целей используется ряд показателей, из которых наиболее употребляемый – теплопроводность. Большинство утеплителей из вспененных пластмасс, как правило, имеют коэффициент теплопроводности 0,035–0,048 Вт/мК при температуре 25°С. Однако в последнее время отдельные производители все чаще заявляют, что у их материалов этот показатель достигает значений 0,020 Вт/мК и даже 0,018 Вт/мК, но они при этом, видимо, «забывают» указать, при каких условиях и какими методами получены такие исключительные результаты (как известно, чем ниже температура исследований, тем лучше значения коэффициента теплопроводности).
Кроме этого, есть еще один фактор, который «апологеты» вспененных пластмасс предпочитают не вспоминать, – водопоглощение. Например, гранулированный пенополистирол, изготовленный беспресовым методом увеличивает свое водопоглощение до 350% по массе. Но и это еще не предел. Зафиксированы случаи, когда плиты беспрессового пенополистирола при эксплуатации покрытия с поврежденным гидроизоляционным ковром приобретают влажность до 900%. Понятно, что при таком количестве поглощенной воды, ни о каком нормативном значении коэффициента теплопроводности теплоизоляционного материала и речи быть не может.
Практически все представленные на рынке изделия из минераловатных и стекловолоконных материалов имеют приблизительно такие же значения теплопроводности, отличие заключается в том, что верхняя граница значений этого показателя для минераловатных и стекловолоконных материалов несколько выше (0,05–0,054 Вт/мК), так как теплопроводность в значительной степени определяется плотностью материала и замкнутостью пор. Сравнение значений теплопроводности различных материалов дает возможность сделать вывод, что с точки зрения теплоизоляционных качеств свойства этих групп материалов практически полностью адекватны. Поэтому одним из главных аргументов апологетов утеплителей из вспененных материалов в пользу их применения является цена: вспененные пластмассы существенно дешевле, чем минераловатные или стекловолоконные материалы.
Миф второй: долговечный материал
Долговечность – свойство технического объекта сохранять работоспособное состояние в течение определенного времени или вплоть до выполнения определенного объема работы. Большой энциклопедический словарь Борьба за энергоэффективность явилась причиной более пристального изучения свойств многих теплоизоляционных материалов, в том числе и пенополистирола. Особенно глубокие исследования были проведены лабораторией профессора А. И. Ананьева в НИИ строительной физики (Москва). Поводом к проведению исследований стали результаты вскрытия покрытия подземного торгового комплекса на Манежной площади в Москве, построенного несколько лет назад. При вскрытии покрытия, находящегося в эксплуатации всего два года, было обнаружено значительное разрушение пенополистирольных плит, на большинстве плит образовались значительные раковины и трещины. В результате деструкционных процессов толщина некоторых плит уменьшилась 80–14 мм, при этом плотность пенополистирола в зоне самой тонкой части увеличилась более чем в четыре раза – до 120 кг/куб. м. Приведенное сопротивление теплопередаче теплоизоляционного слоя покрытия в зоне чрезмерной деструкции пенополистирольных плит стало составлять 0,32 кв. м°С/Вт, что отличает его от проектного значения, равного 2,7 кв. м°С/Вт, более чем в восемь раз. Причина столь катастрофического состояния утеплителя заключалась, как показали результаты исследований, в нарушении технологии производства работ и отсутствием учета ряда физических и химических особенностей при проектировании. Этой же лабораторией были проведены исследования беспрессового пенополистирола, эксплуатировавшегося, так сказать, в более ординарных условиях – наружных ограждающих конструкциях зданий. Результаты показали довольно существенное увеличение (0,047–0,05 Вт/м°С) теплопроводности утеплителя.
Высокую сходимость с результатами НИИСФ показывают исследования, проведенные Нижегородским государственным архитектурно-строительным университетом. Полученные там данные показывают, что величина приведенного значения сопротивления теплопередаче наружных стен, утепленных беспрессовым пенополистиролом, уменьшилась в среднем на 49–59%. С этой точки зрения более эффективен экструзионный пенополистирол (ЭППС), который, как показывают результаты моделирования в ВНИИстройполимер, выдерживает 50-летние циклические температурно-влажностные нагрузки, но при условии применения в земляном полотне для утепления подвальных помещений. Косвенно эти данные подтверждают и результаты обследования, выполненные Белорусским национальным техническим университетом. Обследованию были подвергнуты построенные в 1976 г. сооружения, в ограждающих конструкциях которых был использован экструзионный пенополистирол. Для лабораторных исследований были взяты контрольные образцы, результаты изучения которых показали, что утеплитель находится в превосходном состоянии.
Миф третий: пенополистирол – экологичный материал
Ряд исследований, проведенных в последние годы, однозначно доказали весомое влияние микроклимата на жизнедеятельность человека, поэтому созданию этого фактора, приемлемого для человека, в помещении уделяется много внимания.
В течение часа человек выделяет около 100 г влаги. Если это жилое помещение, то к этому количеству необходимо добавить влагу, появляющуюся при приготовлении пищи, стирке и т. д., в результате чего влажность увеличивается многократно. Поэтому для создания комфортного и здорового микроклимата наружные стены должны «дышать», что означает – обладать хорошей паропроницаемостью. Однако паропроницаемость абсолютно всех вспененных утеплительных материалов, применяемых в строительстве на порядок меньше, чем минераловатных и стекловолоконных утеплителей. Например, коэффициент паропроницания пенополиуретана и пенополистирола равен приблизительно 0,05 мг/мчПа, в то время как у минераловатных изделий – 0,4–0,6 мг/мчПа. Поэтому, как показывают результаты исследований, проведенные франкфуртским Институтом строительной физики и ганноверским Институтом строительной техники, применение в качестве утеплителя пенополистирольных плит уменьшает диффузию водяного пара через наружные стены в среднем на 55–57%.
Высокую сходимость с приведенными выше исследованиями немецких ученых показывают и результаты эксперимента в России. Технический университет в Хельсинки проводил мониторинг параметров микроклимата в санкт-петербургских домах, утепленных пенополистиролом. В этих домах старые, традиционные окна советского изготовления были заменены новыми, современными со стеклопакетами и вентиляционными клапанами, была восстановлена вентиляция, установлена система управления температурой теплоносителя. Однако в первую же зиму относительная влажность воздуха в 70% квартир достигла 80% при температуре воздуха 18°С, а такие условия являются весьма благоприятными для развития грибков.
К материалам на основе полистирола, который является заполимеризованным стиролом, особенно много претензий в связи с выделением вредных веществ. Дело в том, что, во-первых, на все 100% полимеризация происходит только теоретически. На самом деле этого у полистирола никогда не бывает, процесс полимеризации идет не до конца, на 97–98%; во-вторых, процесс полимеризации обратим, поэтому полимеры постоянно разлагаются под влиянием света, кислорода, озона, воды, механических и ионизирующих воздействий, и особенно под влиянием теплоты. Образовывающийся таким образом свободный стирол проникает в помещения, и люди длительное время живут в обстановке, когда в жилой атмосфере есть стирол (пусть концентрации и ниже ПДК). От этих микродоз стирола страдает сердце, особые проблемы возникают у женщин. Стирол оказывает сильное воздействие на печень, вызывая среди прочего и токсический гепатит. Кроме стирола, выделяются и другие вещества, включая фенол, формальдегид, этилбензол и т. д.
Говоря о таком параметре, как ПДК необходимо упомянуть, что существуют две концепции оценки влияния вредных веществ на организм человека. В пороговой концепции утверждается, что снижать концентрации вредных веществ нужно до некоторого уровня (порога), определяемого значением предельно-допустимой концентрации (ПДК). Из этого положения следует вывод: малые концентрации (ниже уровня ПДК) вредных веществ безвредны. В нашей стране (как, впрочем, и в других странах бывшего СССР) принята именно пороговая концепция.
В линейной концепции предполагается, что вредное влияние на человека пропорционально (линейно) зависит от суммарного количества поглощенного вещества, то есть от произведения его концентрации на время. Отсюда вывод: малые концентрации при длительном потреблении вредны. Этой концепции фактически придерживается ряд стран: США, ФРГ, Канада, Бельгия, Япония и некоторые другие.
Переход в Украине к линейной концепции вынудит пересмотреть очень многие нормативы. Но наша страна не одинока в этих проблемах, такие же вопросы являются довольно животрепещущими и у наших соседей – в России, где исследования на эту тему все-таки проводятся. Результаты россиян шокируют. Например, величина ПДК на сернистый ангидрида должна быть уменьшена в 6,2 раза, а на стирол – в 594 (!) раза. Столь низкое требуемое значение ПДК на стирол в помещении вызвано особыми свойствами стирола. Это вещество относится к конденсированным ароматическим соединениям, имеющим в своей молекуле одно или несколько бензольных ядер, и, подобно аналогичным веществам (бензол, бензпирен, безантрацен), имеет повышенные коммулятивные свойства: накапливается в печени и не выводится наружу.
Выводы российских исследователей весьма категоричны. Они считают, что, во-первых, необходимо пересмотреть нормы ПДК, которые для жилищного строительства должны быть уменьшены в десятки и сотни раз в соответствии с их коммулятивными свойствами. Во-вторых, по мнению ученых, среди веществ, содержащихся в строительных материалах, наибольшей степенью коммулятивности обладает стирол, что требует уменьшения ПДК при использовании его в жилищном строительстве до таких минимальных значений, что это равносильно полному запрещению применения продуктов полимеризации стирола в жилищном строительстве.
Вместо заключения
В последнее время у нас стало модным кивать на опыт западных стран. Что ж, во многих вопросах они действительно проделали гораздо больший путь и на «грабли» уже наступили. В данном случае под «граблями» подразумевается то, что в ряде стран уже обнаружили пагубность утепления пенополистиролом и сейчас проводят исследования на тему, как от этих последствий избавиться. Особенно активно в этом направлении работают ученые из Института жилья и окружающей среды (г. Дармштадт, ФРГ), однако, по имеющимся сведениям, впечатляющих результатов немецкие исследователи еще не получили. В так называемых высокоразвитых странах уже давно осознали, что широко распространенные вспененные пластмассы, изготовленные, так сказать, традиционным способом обладают массой недостатков, поэтому в последние годы активно разрабатывают заменители этой группы материалов.
Вячеслав Козачук Зам. глав. редактора журнала «Будмайстер», Киев Материалы предоставлены автором, e-mail: [email protected]
evropark.com
Таблица плотности, теплопроводности и паропроницаемости различных материалов
Таблица плотности, теплопроводности и паропроницаемости различных материалов.
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*С) | Паропроницаемость, Мг/(м*ч*Па) |
Железобетон | 2500 | 1.69 | 0.03 |
Бетон | 2400 | 1.51 | 0.03 |
Керамзитобетон | 1800 | 0.66 | 0.09 |
Керамзитобетон | 500 | 0.14 | 0.30 |
Кирпич красный глиняный | 1800 | 0.56 | 0.11 |
Кирпич, силикатный | 1800 | 0.70 | 0.11 |
Кирпич керамический пустотелый (брутто1400) | 1600 | 0.41 | 0.14 |
Кирпич керамический пустотелый (брутто1000) | 1200 | 0.35 | 0.17 |
Пенобетон | 1000 | 0.29 | 0.11 |
Пенобетон | 300 | 0.08 | 0.26 |
Гранит | 2800 | 3.49 | 0.008 |
Мрамор | 2800 | 2.91 | 0.008 |
Сосна, ель поперек волокон | 500 | 0.09 | 0.06 |
Дуб поперек волокон | 700 | 0.10 | 0.05 |
Сосна, ель вдоль волокон | 500 | 0.18 | 0.32 |
Дуб вдоль волокон | 700 | 0.23 | 0.30 |
Фанера клееная | 600 | 0.12 | 0.02 |
ДСП, ОСП | 1000 | 0.15 | 0.12 |
ПАКЛЯ | 150 | 0.05 | 0.49 |
Гипсокартон | 800 | 0.15 | 0.075 |
Картон облицовочный | 1000 | 0.18 | 0.06 |
Минвата | 200 | 0.070 | 0.49 |
Минвата | 100 | 0.056 | 0.56 |
Минвата | 50 | 0.048 | 0.60 |
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ | 33 | 0.031 | 0.013 |
Пенополистирол | 150 | 0.05 | 0.05 |
Пенополистирол | 100 | 0.041 | 0.05 |
Пенополистирол | 40 | 0.038 | 0.05 |
Пенопласт ПВХ | 125 | 0.052 | 0.23 |
ПЕНОПОЛИУРЕТАН | 80 | 0.041 | 0.05 |
ПЕНОПОЛИУРЕТАН | 60 | 0.035 | 0.05 |
ПЕНОПОЛИУРЕТАН | 40 | 0.029 | 0.05 |
ПЕНОПОЛИУРЕТАН | 32 | 0.023 | 0.05 |
Керамзит | 800 | 0.18 | 0.21 |
Керамзит | 200 | 0.10 | 0.26 |
Песок | 1600 | 0.35 | 0.17 |
Пеностекло | 400 | 0.11 | 0.02 |
Пеностекло | 200 | 0.07 | 0.03 |
АЦП | 1800 | 0.35 | 0.03 |
Битум | 1400 | 0.27 | 0.008 |
ПОЛИУРЕТАНОВАЯ МАСТИКА | 1400 | 0.25 | 0.00023 |
ПОЛИМОЧЕВИНА | 1100 | 0.21 | 0.00023 |
Рубероид, пергамин | 600 | 0.17 | 0.001 |
Полиэтилен | 1500 | 0.30 | 0.00002 |
Асфальтобетон | 2100 | 1.05 | 0.008 |
Линолеум | 1600 | 0.33 | 0.002 |
Сталь | 7850 | 58 | 0 |
Алюминий | 2600 | 221 | 0 |
Медь | 8500 | 407 | 0 |
Стекло | 2500 | 0.76 | 0 |
Материал | Эквивалентная1 (при сопротивлении теплопередаче = 4,2м2*С/Вт) толщина, м | Эквивалентная2 (при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м |
Железобетон | 7.10 | 0.048 |
Бетон | 6.34 | 0.048 |
Керамзитобетон | 2.77 | 0.144 |
Керамзитобетон | 0.59 | 0.48 |
Кирпич красный глиняный | 2.35 | 0.176 |
Кирпич, силикатный | 2.94 | 0.176 |
Кирпич керамический пустотелый (брутто1400) | 1.72 | 0.224 |
Кирпич керамический пустотелый (брутто1000) | 1.47 | 0.272 |
Пенобетон | 1.22 | 0.176 |
Пенобетон | 0.34 | 0.416 |
Гранит | 14.6 | 0.013 |
Мрамор | 12.2 | 0.013 |
Сосна, ель поперек волокон | 0.38 | 0.096 |
Дуб поперек волокон | 0.42 | 0.08 |
Сосна, ель вдоль волокон | 0.75 | 0.512 |
Дуб вдоль волокон | 0.96 | 0.48 |
Фанера клееная | 0.50 | 0.032 |
ДСП, ОСП | 0.63 | 0.192 |
ПАКЛЯ | 0.21 | 0.784 |
Гипсокартон | 0.63 | 0.12 |
Картон облицовочный | 0.75 | 0.096 |
Минвата | 0.30 | 0.784 |
Минвата | 0.23 | 0.896 |
Минвата | 0.20 | 0.96 |
ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ | 0.13 | 0.021 |
Пенополистирол | 0.21 | 0.08 |
Пенополистирол | 0.17 | 0.08 |
Пенополистирол | 0.16 | 0.08 |
Пенопласт ПВХ | 0.22 | 0.368 |
ПЕНОПОЛИУРЕТАН | 0.17 | 0.08 |
ПЕНОПОЛИУРЕТАН | 0.15 | 0.08 |
ПЕНОПОЛИУРЕТАН | 0.12 | 0.08 |
ПЕНОПОЛИУРЕТАН | 0.09 | 0.08 |
Керамзит | 0.75 | 0.336 |
Керамзит | 0.42 | 0.416 |
Песок | 1.47 | 0.272 |
Пеностекло | 0.46 | 0.032 |
Пеностекло | 0.30 | 0.048 |
АЦП | 1.47 | 0.048 |
Битум | 1.13 | 0.013 |
ПОЛИУРЕТАНОВАЯ МАСТИКА | 1.05 | 0.00036 |
ПОЛИМОЧЕВИНА | 0.88 | 0.00054 |
Рубероид, пергамин | 0.71 | 0.0016 |
Полиэтилен | 1.26 | 0.000032 |
Асфальтобетон | 4.41 | 0.0128 |
Линолеум | 1.38 | 0.0032 |
Сталь | 243 | 0 |
Алюминий | 928 | 0 |
Медь | 1709 | 0 |
Стекло | 3.19 | 0 |
1 — сопротивление теплопередаче ограждающих конструкций жилых зданий в Московском регионе, строительство которых начинается с 1 января 2000 года.
2 — сопротивление паропроницанию внутреннего слоя стены двухслойной стены помещения с сухим или нормальным режимом, свыше которого не требуется определять сопротивление паропроницанию ограждающей конструкции.
Понравилась статья? Поделиться с друзьями:
что это, где применяется, технические характеристики ЭПП, размеры, плотность
Экструдированный пенополистирол имеет ряд положительных характеристик, поэтому сейчас используется для выполнения многих строительных задач. Прежде всего ЭППС – утеплитель. Простота монтажа и длительный срок службы сделали материал незаменимым при обустройстве утеплительных пирогов на фундаментах, стенах и чердаках зданий разного назначения.
Что такое экструдированный полистирол. Отличия ЭПП от обычного полистирола и пенопласта
ЭПП, пенопласт и пенополистирол относятся к категории синтетических полимеров. Технология их производства обеспечивает высокие качественные характеристики. Пенопласт изготавливается из полимерного состава. Получающиеся гранулы достигают 3-5 мм в диаметре. После этого они спрессовываются с использованием клеевого состава.
Рассматривая, что такое пенополистирол, следует учесть, что это материал, который имеет равномерную структуру, включающую зернистые ячейки не более 0,1-0,2 мм. Для получения материала смешиваются гранулы полистирола со специальными вспенивающими агентами (ими могут выступать двуокись углерода или смесь фреонов). После этого под давлением формируются листы. После просушки они могут быть использованы в строительстве.
Пенопласт и полистирол имеют немало общего с экструдированным пенополистиролом, но последний отличается более сложной технологией производства. При изготовлении материала сначала гранулы оплавляются до состояния однородной массы. После этого в состав вводятся специальные присадки и дополнительные компоненты, благодаря чему вещество приобретает вязко-текучее состояние. Благодаря этому получается материал, имеющий неразрывные межмолекулярные связи.
Поры в готовых плитах отсутствуют, а ячейки, присутствующие в этом материале, заполнены газом. Благодаря такой структуре паропроницаемость материала крайне низка. Плотность экструдированного пенополистирола намного больше, чем у пенопласта и полистирола, поэтому он отличается лучшими эксплуатационными характеристиками.
Достоинства и недостатки
Плиты ЭППС имеют массу преимуществ, но данному материалу свойственны и некоторые недостатки. К плюсам относятся:
- низкая теплопроводность;
- водонепроницаемость;
- способность выдерживать деформационные нагрузки;
- повышенная жесткость;
- устойчивость к перепадам температуры;
- длительный срок использования;
- небольшой вес;
- экологичность.
Толщина экструдированного пенополистирола небольшая, что упрощает формирование утеплительных пирогов. У данного утеплителя есть и ряд недостатков. Нужно учитывать, что ЭПП стоит намного дороже, чем многие другие материалы, предназначенные для утепления поверхностей. Кроме того, температура горения данного материала крайне высока. Плиты требуют покрытия штукатуркой, т. к. ЭПП может разрушаться под воздействием прямых солнечных лучей. Также следует учитывать, что плиты могут разрушаться под действием некоторых растворителей.
Этот утеплитель достаточно жесткий, поэтому грызуны редко повреждают его. В то же время мыши могут проделывать ходы в плитах. Водонепроницаемость плит ЭПП в некоторых случаях может быть большим минусом. При использовании материала для утепления стен деревянного дома под сформированным пирогом может возникать плесень.
Задержка паров возле стен может поспособствовать появлению сырости и затхлого запаха. Кроме того, плиты при разогреве до температуры выше 75°C могут выделять вещества, способные негативным образом отражаться на состоянии здоровья человека.
Область применения
Этот строительный материал может использоваться при выполнении многих строительных задач. Есть специальный ЭПП для пола (укладывается под ламинат, линолеум и паркет). Применение данных плит допустимо даже при обустройстве систем теплого пола. Кроме того, ЭПП благодаря своей низкой теплопроводности часто используется при производстве сэндвич-панелей.
Применение этого материала допустимо при утеплении стен и крыш, для формирования отмостки. Плиты часто используются для гидроизоляции фундамента.
Этот материал может применяться в качестве наполнителя, когда требуется возведение кольцевидной кирпичной кладки, отличающейся высокими теплоизоляционными свойствами. Ограничено эти плиты можно использовать для формирования теплоизоляционного пирога, защищающего канализационные и водопроводные коммуникации от перемерзания.
Правила выбора материала
Для того чтобы приобрести плиты пенополистирола, которые будут отличаться длительным сроком службы и безопасностью для людей, нужно обратить внимание на ряд характеристик. При выборе утеплителя в первую очередь следует посмотреть на индекс, указанный на упаковке. Если данный показатель меньше 28, лучше отказаться от приобретения такого товара. Лучше всего приобретать ЭПП с индексом выше 40.
Кроме того, на упаковке обязательно должна быть представлена информация о том, подходит ли материал для утепления фасада дома, или он может быть использован только для внутренней отделки. Кроме того, желательно выбирать материал, из самозатухающих полимеров.
При приобретении ЭПП нужно обратить внимание на соответствие изделий ГОСТам, т.к. некоторые производители отмечают только технические условия. Отсутствие указания о соответствии ГОСТам может свидетельствовать о том, что материал отличается низкой плотностью, т.е. с худшими эксплуатационными характеристиками.
Для того чтобы проверить качество продукции, следует отломить небольшой кусочек плиты и тщательно осмотреть место излома. Если на нем видны небольшие шарики, это свидетельствует, что продукт произведен с нарушением технологии. У качественных плит на изломе будут видны многогранники правильной формы.
Технические характеристики экструдированного пенополистирола
Перед тем как приобрести такой материал, как экструдированный пенополистирол, технические характеристики следует изучить тщательно. Это позволит приобрести наиболее качественный материал. Изготовленный с соблюдением технологии строительный материал отличается универсальными характеристиками, что расширяет сферу его применения.
Маркировка. Марки производителя
При покупке плит обязательно нужно обращать внимание на маркировку. Должны быть указаны технические характеристики, размеры и габариты плит, а также особые сведения, касающиеся эксплуатации. Кроме того, обязательно должна быть представлена информация о производителе. Наиболее часто на рынке встречаются следующие марки экструдированного пенополистирола:
- Крауф.
- Европлекс.
- Стирекс.
- Пеноплекс.
- Техноплекс.
- УРСА.
- Технониколь.
- Примаплекс.
Многие производители выпускают не только стандартные панели, но и ЭПП со специфическими характеристиками, позволяющими использовать материал в тех или иных экстремальных условиях.
Форма выпуска. Размеры
Данный строительный материал выпускается в форме листов. Стандартные размеры листа составляют 600х1200 мм, 600х1250мм, 600х2400мм. Толщина может быть от 20 до 150 мм. Некоторые производители выпускают плиты ЭПП, отличающиеся нестандартными размерами.
Теплопроводность
Коэффициент теплопроводности экструдированного пенополистирола составляет от 0,03 до 0,032 Вт/мС. Данные показатели указывают на то, что этот материал отличается низкой способностью проводить тепло. Благодаря этому все тепло в помещении сохраняется, что позволяет снизить расходы на отопление в зимний период.
Низкая теплопроводность позволяет снизить степень нагрева поверхностей в зной. Низкая теплопроводность экструдированного полистирола позволяет эффективно применять его для обустройства теплоизоляционных пирогов.
Паропроницаемость и поглощение влаги
Чем меньше способность материала впитывать влагу и пары, тем выше его долговечность и ниже теплопроводность. Коэффициент водопоглощения этого материалов составляет от 0,2 до 0,5%. Эти показатели значат, что при контакте с парами и жидкостью впитывания влаги не происходит.
Прочности
Плиты пенополистирола могут иметь показатель прочности от 0,15 до 0,45 МПа. Это достаточно высокий показатель, позволяющий использовать плиты для формирования утеплительного пирога на крыше, полах и фасадах домов, где на материал будет оказываться большое давление и механическое воздействие. Использование плит ЭПП способствует повышению прочности поверхностей. Жесткий утеплительный пирог позволяет снизить риск сильной усадки стен.
Способность поглощать звуки
Плиты пенополистирола отличаются высокой способностью к поглощению звуковых загрязнителей. При правильном обустройстве утеплительного пирога уровень шума в помещении снижается в среднем на 30-45%.
Биологическая устойчивость
В этом материале почти нет пор, через которые внутрь могут проникать кислород и вода, поэтому его поражение грибком и болезнетворными бактериями невозможно. Кроме того, эти плиты не могут служить питательной средой для микроорганизмов.
Экологичность
При использовании вне помещения данный стройматериал не может нанести людям никакого вреда (за исключением случаев воспламенения). При использовании пенополистирола в качестве утеплителя внутри дома люди находятся в непосредственном контакте с материалом, сразу возникает вопрос, может ли быть нанесен вред здоровью в данном случае.
Полностью разобраться в данном вопросе нелегко, так как не было проведено длительных исследований, позволяющих точно сказать, что через 5-10 лет из плит начнут выделяться вредные испарения. Утеплитель может вступать в контакт с некоторыми реагентами бытовой химии.
Есть также данные, что при воздействии температур выше 75°C материал может начать выделять вредные пары. Химикаты, попавшие в воздух из пенополистирола, являются жирорастворимыми.
Степень огнестойкости
Температура плавления данного утеплителя составляет около 80°C. Большинство разновидностей этого утеплителя чрезвычайно пожароопасны. Температура горения этого вещества превышает 1100°C. Помимо всего прочего, нужно учитывать длительность горения пенополистирола. Отделанная этим утеплителем поверхность может гореть более 40 минут.
Во время горения плит выделяется много ядовитых газов, в т.ч. метанол, аммиак, окись углерода, оксид азота, формальдегид, стирол, оксид углерода и др.
Высокая горючесть и выделение смеси ядовитых газов, выбрасываемых при воспламенении данного утеплителя, не оставляет шансов на спасение людям, находящимся в непосредственной близости от очага возгорания.
Чего боится пенополистирол?
Этот стройматериал может быстро разрушиться под воздействием прямых солнечных лучей. Нужно учитывать, что он не отличается высокой устойчивостью к действию агрессивных химических реагентов и моющих веществ. При таких контактах может не только происходить разрушение утеплителя, но и выделение вредных паров. Материал не отличается высокой устойчивостью к воздействию высоких температур.
Характеристики экструдированного пенополистиролаСтройкод
Отопить квартиру к зиме — весьма недешевая задача, энергоносители дорожают с каждым годом в отличие от финансовых возможностей. И действительно жалко, когда тепло, добытое таким трудом, просто уходит наружу из нашего жилища. Потери в пересчете способны поражать воображение. Но, конечно, есть способ их существенно снизить, поможет нам в этом пенополистирол, с помощью которого мы произведем обшивание домашних стен. Чтобы узнать, насколько он эффективен, разберем характеристики пенополистирола.
Достоинства и недостатки пенополистирола
Пенопласт — это огромное количество пузырьков воздуха, объединенные в оболочки из пенополистирола. Давайте поговорим о наиболее важном аспекте этого материала теплопроводности.
Теплопроводность
В соотношении получается: 2% полистирола и 98% воздуха. Что на выходе обеспечивает нам твердую пену, которая и названа — «пенополистирол». Воздух, запаянный внутри пузырьков, превосходно сохраняет тепло, так как прослойка воздуха, движение в которой ограничено, служит отличным утеплителем. Значение коэффициента теплопроводности зависит напрямую от плотности пенопласта.
Поглощение влаги (паропроницаемость)
Пенопласт, не смешанный ни с чем другим, имеет 0 проницаемости, а вот экструдированный пенополистирол — иное дело. В системе исчисления метр-час-Паскаль значение проницаемости составило от 0,019 до 0,015 килограмма. И это заставляет задуматься, ведь в теории этот материал не должен пропускать пары. Но если мы обратим внимание, как происходит его формовка, а происходит она путем резания, то поймем, что через эти разрезы и проникает пар. Пенопласт стандартный не подлежит никаким порезам, вот он и не пускает никаких паров.
Если мы будем сравнивать материалы по параметрам водостойкости, то картина станет обратной — 4% впитает простой пенопласт, если погрузить его в воду, а пенополистирол лишь 0,4%.
Прочность
Если в предыдущем испытание победитель не был выявлен, то в плане прочности лидирует однозначно пенополистирол. Его связь между молекулами настолько крепка, что прочность изгиба составила от 0,4 до 1 килограмма на см², прочность пенопласта — от 0,02 до 0,2 килограмма на см². Данный фактор является причиной того, что неэкструдированный пенопласт потерял свою популярность. Прочность и влагостойкость, получаемая методом экструзии, — вот, что востребовано на рынке.
Плесень
Тут все коротко и вполне ясно — плесень в пенополистироле не живет, что неоднократно было доказано учеными.
Минусы пенополистирола
Сначала плюсы — реакция пенополистирола минимальна на минеральные удобрения, соду, мыло, какое-либо взаимодействие с асфальтовыми эмульсиями, битумом, известью, цементом и гипсом тоже отсутствует. Но если мы проверим реакцию данного утеплителя на скипидар с ацетоном и олифой, то они повредят и, возможно, даже напрочь растворят пенополистирол. Пенопласт способны растворить также спирты и продукты, получаемые при помощи перегонки нефти, следует помнить об этом.
А еще пенопласт (будь он хоть обычный или экструдированный), не выносит прямых солнечных лучей, ибо ультрафиолет разрушает материал, снижая его прочность.
Звукоизоляция
Если вас беспокоит уровень шума, приходящий извне, то пенополистирол не будет вашим спасением. Шум от ударов, конечно, он способен немного приглушить, но при условии, что он покрыт у вас толстым слоем. А вот шумы, что придут к вам по воздуху, он не в состоянии поглотить вообще. Если хотите отличную звукоизоляцию, то вам стоить присмотреться к иному материалу.
Вред для здоровья, горючесть, срок службы
Тесты пенопласт прошел с отличием, в его безопасности можете не сомневаться. Полистирол, к счастью, способен прослужить вам много лет, даже если его подвергать неоднократной заморозке/разморозке, он не потеряет своих свойств. Материал не очень хорошо загорается благодаря антипиренам, входящим в его состав. Но не все так замечательно, рассмотрим все стороны вопроса.
Вопрос экологии
Окисление на воздухе пенополистирола, к сожалению, плохо влияет на экологию. Стоит заметить, что пенопласт окисляется сильнее. Материал экструдированный окисляется медленнее, но оба они придут к одному. Все, что нужно дабы запустить процесс окисления — жара на улице. Окисление приводит к выработке материалами массы вредных веществ. Ядовитый формальдегид, ацетофенон, бензол с этилбензолом и еще целый букет химикатов выделяют оба материала. Если для важен вопрос экологии, то стоит задуматься над этим перед приобретением того же хитфома.
Вопрос горючести
Бывает, что производители лукавят, заявляя, что полистирол способен затухать самостоятельно, безусловно, это не так.
Случается даже, что производители умудряются ссылаться на якобы научные тесты, дабы доказать свою правоту, но, собственно говоря, всего на один. К плите, подвешенной в воздухе, подносят огонь, который прожигает ту часть, к которой его и подносят, но ведь такого не будет при реальных жизненных обстоятельствах. Положив тот же пенополистирол на плоскость из негорючего материала, мы ясно увидим, как он весь горит.
Антипирены добавляются в материал для увеличения огнестойкости. После в характеристиках материала такого пенопласта указывают букву «С». Опять же в теории, это все означает, что материал имеет способность затухать самостоятельно, но на деле — нет. К плюсам можно отнести лишь то, что загореться ему труднее. Класс горения данного материала — Г2, но Г3 и Г4 — ближайшие стадии опасности возгорания, в которые он превращается со временем эксплуатации.
Вопрос срока службы
30 лет — примерный срок службы пенополистирол при правильном его использовании. Но это если повезет, и мастера возведут правильно теплоизоляцию, заказчик не сэкономит на материалах и если монтаж пенополистирольных плит пройдет успешно. Самая же главная ошибка — ошибка в подсчетах толщины утеплителя. Ходит миф среди народа, что чем толще плита пенопласта, тем теплее будет в зиму. Спешим заверить, что это не так. От перепадов температуры характеристика большого материала начнет меняться, и он пойдет трещинами. 3,5 мм — европейский стандарт, такой размер еще и уменьшает вероятность вашего отравления в случае пожара.
Как выбрать пенополистирол
- Изучите параметры и определитесь с назначением. ПСБ-С подойдет для фасада, так как он самозатухающийся, марку следует подобрать не ниже 40-вой.
- ПБС-С-40(сороковая марка) имеет разную плотность. Берите тот утеплитель, где плотность выше.
- Если отломить кусочек материала с края, то можно определить его сорт по тому, как он сломается. Низкосортный ломается с неровными краями, а материал, имеющий правильную экструзию, будет иметь правильные многогранники.
- Лучше взять материал от известной фирмы, чем от той, кто только заявил о себе на рынке услуг. Рекомендуем «Пеноплэкс», «Технониколь», «Styrochem», «Polimeri Europa».
В окончательные мысли хочется вынести суть текста. Пенопласт выделяет токсические вещества, он небезопасен при возгорании, но все же является весьма популярным утеплителем, плюсов у которого больше, чем минусов. Он не ударит по вашему карману, сохранит ваше тепло, он влагостойкий. При использовании данного материала во внешней среде, следует скрыть его от солнечных лучей, чтобы он не окислялся. Цемент, что используется в штукатурной смеси, подойдет идеально для этой цели, но важно распределить плотно покрытие, иначе вся ваша система теплоизоляции попадает под угрозу.
Но не станем рекомендовать использование пенопласта внутри помещения. При случайном возгорании вред здоровью будет непоправим.
Технические характеристики экструдированного пенополистирола
Перед тем как приобрести такой материал, как экструдированный пенополистирол, технические характеристики следует изучить тщательно. Это позволит приобрести наиболее качественный материал. Изготовленный с соблюдением технологии строительный материал отличается универсальными характеристиками, что расширяет сферу его применения.
Маркировка. Марки производителя
При покупке плит обязательно нужно обращать внимание на маркировку. Должны быть указаны технические характеристики, размеры и габариты плит, а также особые сведения, касающиеся эксплуатации. Кроме того, обязательно должна быть представлена информация о производителе. Наиболее часто на рынке встречаются следующие марки экструдированного пенополистирола:
- Крауф.
- Европлекс.
- Стирекс.
- Пеноплекс.
- Техноплекс.
- УРСА.
- Технониколь.
- Примаплекс.
Многие производители выпускают не только стандартные панели, но и ЭПП со специфическими характеристиками, позволяющими использовать материал в тех или иных экстремальных условиях.
Форма выпуска. Размеры
Данный строительный материал выпускается в форме листов. Стандартные размеры листа составляют 600х1200 мм, 600х1250мм, 600х2400мм. Толщина может быть от 20 до 150 мм. Некоторые производители выпускают плиты ЭПП, отличающиеся нестандартными размерами.
Теплопроводность
Коэффициент теплопроводности экструдированного пенополистирола составляет от 0,03 до 0,032 Вт/мС. Данные показатели указывают на то, что этот материал отличается низкой способностью проводить тепло. Благодаря этому все тепло в помещении сохраняется, что позволяет снизить расходы на отопление в зимний период.
Низкая теплопроводность позволяет снизить степень нагрева поверхностей в зной. Низкая теплопроводность экструдированного полистирола позволяет эффективно применять его для обустройства теплоизоляционных пирогов.
Паропроницаемость и поглощение влаги
Чем меньше способность материала впитывать влагу и пары, тем выше его долговечность и ниже теплопроводность. Коэффициент водопоглощения этого материалов составляет от 0,2 до 0,5%. Эти показатели значат, что при контакте с парами и жидкостью впитывания влаги не происходит.
Прочности
Плиты пенополистирола могут иметь показатель прочности от 0,15 до 0,45 МПа. Это достаточно высокий показатель, позволяющий использовать плиты для формирования утеплительного пирога на крыше, полах и фасадах домов, где на материал будет оказываться большое давление и механическое воздействие. Использование плит ЭПП способствует повышению прочности поверхностей. Жесткий утеплительный пирог позволяет снизить риск сильной усадки стен.
Способность поглощать звуки
Плиты пенополистирола отличаются высокой способностью к поглощению звуковых загрязнителей. При правильном обустройстве утеплительного пирога уровень шума в помещении снижается в среднем на 30-45%.
Биологическая устойчивость
В этом материале почти нет пор, через которые внутрь могут проникать кислород и вода, поэтому его поражение грибком и болезнетворными бактериями невозможно. Кроме того, эти плиты не могут служить питательной средой для микроорганизмов.
Экологичность
При использовании вне помещения данный стройматериал не может нанести людям никакого вреда (за исключением случаев воспламенения). При использовании пенополистирола в качестве утеплителя внутри дома люди находятся в непосредственном контакте с материалом, сразу возникает вопрос, может ли быть нанесен вред здоровью в данном случае.
Полностью разобраться в данном вопросе нелегко, так как не было проведено длительных исследований, позволяющих точно сказать, что через 5-10 лет из плит начнут выделяться вредные испарения. Утеплитель может вступать в контакт с некоторыми реагентами бытовой химии.
Есть также данные, что при воздействии температур выше 75°C материал может начать выделять вредные пары. Химикаты, попавшие в воздух из пенополистирола, являются жирорастворимыми.
Степень огнестойкости
Температура плавления данного утеплителя составляет около 80°C. Большинство разновидностей этого утеплителя чрезвычайно пожароопасны. Температура горения этого вещества превышает 1100°C. Помимо всего прочего, нужно учитывать длительность горения пенополистирола. Отделанная этим утеплителем поверхность может гореть более 40 минут.
Во время горения плит выделяется много ядовитых газов, в т.ч. метанол, аммиак, окись углерода, оксид азота, формальдегид, стирол, оксид углерода и др.
Высокая горючесть и выделение смеси ядовитых газов, выбрасываемых при воспламенении данного утеплителя, не оставляет шансов на спасение людям, находящимся в непосредственной близости от очага возгорания.
Чего боится пенополистирол?
Этот стройматериал может быстро разрушиться под воздействием прямых солнечных лучей. Нужно учитывать, что он не отличается высокой устойчивостью к действию агрессивных химических реагентов и моющих веществ. При таких контактах может не только происходить разрушение утеплителя, но и выделение вредных паров. Материал не отличается высокой устойчивостью к воздействию высоких температур.
Характеристики экструдированного пенополистиролаСтройкод
Отопить квартиру к зиме — весьма недешевая задача, энергоносители дорожают с каждым годом в отличие от финансовых возможностей. И действительно жалко, когда тепло, добытое таким трудом, просто уходит наружу из нашего жилища. Потери в пересчете способны поражать воображение. Но, конечно, есть способ их существенно снизить, поможет нам в этом пенополистирол, с помощью которого мы произведем обшивание домашних стен. Чтобы узнать, насколько он эффективен, разберем характеристики пенополистирола.
Достоинства и недостатки пенополистирола
Пенопласт — это огромное количество пузырьков воздуха, объединенные в оболочки из пенополистирола. Давайте поговорим о наиболее важном аспекте этого материала теплопроводности.
Теплопроводность
В соотношении получается: 2% полистирола и 98% воздуха. Что на выходе обеспечивает нам твердую пену, которая и названа — «пенополистирол». Воздух, запаянный внутри пузырьков, превосходно сохраняет тепло, так как прослойка воздуха, движение в которой ограничено, служит отличным утеплителем. Значение коэффициента теплопроводности зависит напрямую от плотности пенопласта.
Поглощение влаги (паропроницаемость)
Пенопласт, не смешанный ни с чем другим, имеет 0 проницаемости, а вот экструдированный пенополистирол — иное дело. В системе исчисления метр-час-Паскаль значение проницаемости составило от 0,019 до 0,015 килограмма. И это заставляет задуматься, ведь в теории этот материал не должен пропускать пары. Но если мы обратим внимание, как происходит его формовка, а происходит она путем резания, то поймем, что через эти разрезы и проникает пар. Пенопласт стандартный не подлежит никаким порезам, вот он и не пускает никаких паров.
Если мы будем сравнивать материалы по параметрам водостойкости, то картина станет обратной — 4% впитает простой пенопласт, если погрузить его в воду, а пенополистирол лишь 0,4%.
Прочность
Если в предыдущем испытание победитель не был выявлен, то в плане прочности лидирует однозначно пенополистирол. Его связь между молекулами настолько крепка, что прочность изгиба составила от 0,4 до 1 килограмма на см², прочность пенопласта — от 0,02 до 0,2 килограмма на см². Данный фактор является причиной того, что неэкструдированный пенопласт потерял свою популярность. Прочность и влагостойкость, получаемая методом экструзии, — вот, что востребовано на рынке.
Плесень
Тут все коротко и вполне ясно — плесень в пенополистироле не живет, что неоднократно было доказано учеными.
Минусы пенополистирола
Сначала плюсы — реакция пенополистирола минимальна на минеральные удобрения, соду, мыло, какое-либо взаимодействие с асфальтовыми эмульсиями, битумом, известью, цементом и гипсом тоже отсутствует. Но если мы проверим реакцию данного утеплителя на скипидар с ацетоном и олифой, то они повредят и, возможно, даже напрочь растворят пенополистирол. Пенопласт способны растворить также спирты и продукты, получаемые при помощи перегонки нефти, следует помнить об этом.
А еще пенопласт (будь он хоть обычный или экструдированный), не выносит прямых солнечных лучей, ибо ультрафиолет разрушает материал, снижая его прочность.
Звукоизоляция
Если вас беспокоит уровень шума, приходящий извне, то пенополистирол не будет вашим спасением. Шум от ударов, конечно, он способен немного приглушить, но при условии, что он покрыт у вас толстым слоем. А вот шумы, что придут к вам по воздуху, он не в состоянии поглотить вообще. Если хотите отличную звукоизоляцию, то вам стоить присмотреться к иному материалу.
Вред для здоровья, горючесть, срок службы
Тесты пенопласт прошел с отличием, в его безопасности можете не сомневаться. Полистирол, к счастью, способен прослужить вам много лет, даже если его подвергать неоднократной заморозке/разморозке, он не потеряет своих свойств. Материал не очень хорошо загорается благодаря антипиренам, входящим в его состав. Но не все так замечательно, рассмотрим все стороны вопроса.
Вопрос экологии
Окисление на воздухе пенополистирола, к сожалению, плохо влияет на экологию. Стоит заметить, что пенопласт окисляется сильнее. Материал экструдированный окисляется медленнее, но оба они придут к одному. Все, что нужно дабы запустить процесс окисления — жара на улице. Окисление приводит к выработке материалами массы вредных веществ. Ядовитый формальдегид, ацетофенон, бензол с этилбензолом и еще целый букет химикатов выделяют оба материала. Если для важен вопрос экологии, то стоит задуматься над этим перед приобретением того же хитфома.
Вопрос горючести
Бывает, что производители лукавят, заявляя, что полистирол способен затухать самостоятельно, безусловно, это не так.
Случается даже, что производители умудряются ссылаться на якобы научные тесты, дабы доказать свою правоту, но, собственно говоря, всего на один. К плите, подвешенной в воздухе, подносят огонь, который прожигает ту часть, к которой его и подносят, но ведь такого не будет при реальных жизненных обстоятельствах. Положив тот же пенополистирол на плоскость из негорючего материала, мы ясно увидим, как он весь горит.
Антипирены добавляются в материал для увеличения огнестойкости. После в характеристиках материала такого пенопласта указывают букву «С». Опять же в теории, это все означает, что материал имеет способность затухать самостоятельно, но на деле — нет. К плюсам можно отнести лишь то, что загореться ему труднее. Класс горения данного материала — Г2, но Г3 и Г4 — ближайшие стадии опасности возгорания, в которые он превращается со временем эксплуатации.
Вопрос срока службы
30 лет — примерный срок службы пенополистирол при правильном его использовании. Но это если повезет, и мастера возведут правильно теплоизоляцию, заказчик не сэкономит на материалах и если монтаж пенополистирольных плит пройдет успешно. Самая же главная ошибка — ошибка в подсчетах толщины утеплителя. Ходит миф среди народа, что чем толще плита пенопласта, тем теплее будет в зиму. Спешим заверить, что это не так. От перепадов температуры характеристика большого материала начнет меняться, и он пойдет трещинами. 3,5 мм — европейский стандарт, такой размер еще и уменьшает вероятность вашего отравления в случае пожара.
Как выбрать пенополистирол
- Изучите параметры и определитесь с назначением. ПСБ-С подойдет для фасада, так как он самозатухающийся, марку следует подобрать не ниже 40-вой.
- ПБС-С-40(сороковая марка) имеет разную плотность. Берите тот утеплитель, где плотность выше.
- Если отломить кусочек материала с края, то можно определить его сорт по тому, как он сломается. Низкосортный ломается с неровными краями, а материал, имеющий правильную экструзию, будет иметь правильные многогранники.
- Лучше взять материал от известной фирмы, чем от той, кто только заявил о себе на рынке услуг. Рекомендуем «Пеноплэкс», «Технониколь», «Styrochem», «Polimeri Europa».
В окончательные мысли хочется вынести суть текста. Пенопласт выделяет токсические вещества, он небезопасен при возгорании, но все же является весьма популярным утеплителем, плюсов у которого больше, чем минусов. Он не ударит по вашему карману, сохранит ваше тепло, он влагостойкий. При использовании данного материала во внешней среде, следует скрыть его от солнечных лучей, чтобы он не окислялся. Цемент, что используется в штукатурной смеси, подойдет идеально для этой цели, но важно распределить плотно покрытие, иначе вся ваша система теплоизоляции попадает под угрозу.
Но не станем рекомендовать использование пенопласта внутри помещения. При случайном возгорании вред здоровью будет непоправим.
что лучше для утепления фасада?
Для утепления фасадов малоэтажных домов чаще всего используется минеральная вата или пенополистирол. Материалы обеспечивают эффективную теплоизоляцию, удобны в работе, экономичны, но их характеристики различны. Эта разница определяет рекомендации по выбору конкретного материала при устройстве фасада.
Теплопроводность
Это — главный критерий, который определяет эффективность утепления фасада. Минеральная вата и пенополистирол имеют сопоставимые характеристики теплопроводности при одинаковой толщине слоя утепления. Тем не менее пенополистирол обеспечивает более эффективное утепление. Воздух, обеспечивающий теплоизоляцию, внутри материала находится в замкнутых ячейках. При разнице температур не происходит конвекции, нет переноса тепла. Минеральная вата имеет открытую структуру (воздух находится между волокнами) и конвекция возможна. Частично эту проблему решает штукатурный слой, если он наносится на поверхность минераловатных плит. Если наружный слой фасадной системы — облицовка, энергоэффективность пенополистирола будет более высокой.
Паропроницаемость. Утеплитель должен пропускать влажные испарения со стороны помещений, не задерживать их, не накапливать влагу. Минеральная вата пропускает пар в разы лучше в сравнении с пенополистиролом. С другой стороны, отдельные производители улучшают паропроницаемость пенополистирольных плит, повышают ее. Так, плиты линейки ТЕХНОПЛЕКС (ТЕХНОНИКОЛЬ) имеют паропроницаемость 0,014 мг/(м.ч.Па), что всего в два раза меньше среднего показателя для минеральной ваты.
Паропроницаемость важна, если все слои фасадной системы выполнены из проницаемых материалов. В этом случае использование утеплителя с низкой паропроницаемостью будет провоцировать увлажнение фасадной конструкции (пар будет конденсироваться, а конденсат будет оставаться внутри системы). Если в конструкции фасада есть непроницаемые слои, лучше использовать пенополистирол. Применение минеральной ваты в этом случае неэффективно: пар будет накапливаться внутри нее, конденсироваться, увлажнять слой утеплителя. При использовании минераловатного утеплителя дополнительно со стороны стен выполняют слой пароизоляции, а внутри помещений обустраивают эффективную систему вентиляции, чтобы уровень влажности воздуха не повышался.
Акустический комфорт. Минеральная вата имеет более высокий показатель звукоизоляции, но и пенополистирол хорошо изолирует от наружных звуков. С точки зрения акустического комфорта у минеральной ваты есть преимущество только в случае, если дом расположен рядом с оживленной дорогой или в шумном районе.
Пожаробезопасность. Выше у минеральной ваты — материал не горит, выдерживает нагрев до 1000°C. Пенополистирол может плавиться, пламя распространяется по его поверхности, при горении он выделяет едкий дым.
Монтаж. Плотность, прочность выше у плит из пенополистирола. Материал легко нарезается, его поверхность можно фрезеровать самостоятельно. Минераловатные плиты не такие прочные (зависит от плотности материала), но более упругие и могут устанавливаться враспор (если утепление выполняется внутри обрешетки). При монтаже в обоих случаях инженеры компании «Вестмет» рекомендуют использовать клей или специальные монтажные составы для крепления на основании и заделки швов, стыков. Дополнительно выполняют механическое крепление на пластиковые дюбели. Работать с пенополистиролом удобнее (он меньше весит, не пылит, не ломается), но и минераловатные плиты можно приклеивать на основание в одиночку (вес одной плиты без клеевого слоя — 1,5-2 кг).
Экологичность. Показатели одинаковы для обоих материалов: они не содержат, не выделяют токсичных или потенциально опасных веществ.
Срок службы. Составляет около 50 лет для обоих материалов. На практике определяется условиями эксплуатации. Пенополистирол не должен находиться под прямыми солнечными лучами (разрушается от их действия). Минеральная вата должна быть защищена от увлажнения (при намокании теплопроводность повышается и не восстанавливается полностью даже после полного высыхания).
Цена. Примерно одинакова с учетом толщины и площади теплоизоляционного слоя, дополнительных материалов. Оценивая стоимость утепления, нужно принимать во внимание характеристики всей фасадной системы, так как утеплитель подбирается с учетом ее конструкции.
Использование утеплителя в разных фасадных системах
Вентилируемый фасад. В его составе на слой теплоизоляции не действуют механические нагрузки, и поэтому плотность, упругость и прочность не имеют значения. При этом важна паропроницаемость и пожаробезопасность. В составе таких систем компания «Вестмет» рекомендует использовать минераловатные утеплители (необязательно максимальной плотности, но желательно гидрофобизированные).
Штукатурная система. Утеплитель выбирают по характеристикам основания (материалу стен). Если оно является паропроницаемым (дерево, пенобетон, газобетон и т.п.), то теплоизоляция также должна быть паропроницаемой. Если паропроницаемость стен низкая, возможно использование пенополистирола при условии качественного монтажа (надежного крепления, правильного обрамления проемов, использования качественных клеевых и штукатурных смесей). Для утепления стен из дерева (в составе любой фасадной системы) используется только минеральная вата.
Трехслойные стены. В составе такой фасадной системы слой утеплителя располагается внутри стены, а доступ к нему затруднен. Теплоизоляция не должна давать усадку, деформироваться. Если стена кирпичная, паропроницаемость не так важна. Если стены из дерева, слой теплоизоляции должен быть паропроницаемым. Для таких конструкций используется пенополистирол (исключение — деревянные стены) или гидрофобизированная минеральная вата высокой плотности (желательно устройство дополнительного слоя пароизоляции).
Пенопласт или минеральная вата. Что выбрать
Выбор между пенопластом и минеральной ватой простой и сложный одновременно. Пенопласт дешевле минеральной ваты значительно. Для многих это решающий фактор выбора в пользу пенопласта. Но, если к процессу утепления присмотреться внимательней, то появляются сомнения, — что выбрать? Отдельные ситуации требуют применения пенопласта, другие – минеральной ваты, не смотря на ее дороговизну.
Рассмотрим в сравнении характеристики утеплителей.
Сначала обратим внимание на теплопроводность и паропроницание. Это основные свойства для утеплителей, которыми определяется их необходимая толщина, образование влаги на конструкциях, а значит их сохранность на длительное время.
Характеристики пенопласта
Коэффициент теплопроводности пенопласта — 0,034 — 0.039 Вт/мК. Он не увеличивается со временем, если не происходит замокание материала при его длительном контакте с водой, например, при его нахождении в незащищенном состоянии (без влагонепроницаемой оболочки) на улице, при укладке в грунт…
Коэффициент паропроницаемости — 0,05 мг/(м•год•Па). Можно сказать, что материал пар через себя пропускает «плохо». Для сравнения, у бетона этот коэффициент составляет 0,03 мг/(м•год•Па), кирпича — 0,11 мг/(м•год•Па).
Паропроницаемость — важнейший фактор
Разделим толщину стен на этот коэффициент получим сопротивление паропроницанию конкретной стены или слоя. (м2 • ч • Па/мг).
Паропроницаемость 10 см пенопласта составит 2,0 м2 • ч • Па/мг, стены из бетона толщиной 30 см — 10 м2 • ч • Па/мг, а стены 38 см кирпича — 3,5 м2 • ч • Па/мг. Т.е. в этом примере у слоя пенопласта сопротивление движению пара меньше, чем у стен из плотных материалов.
Пароизоляция на плотных тяжелых материалах обычно не приводит к их существенному разрушению за счет повышенного увлажнения и конденсации воды внутри. Это связано с высокой плотностью материала и высокой теплоемкостью, — возможностью аккумулирования большого количества энергии внутри, которая не позволяет конденсироваться росе внутри в обычных условиях.
С легкими пористыми блоками
Другая ситуация при утеплении пенопластом газобетонных блоков. Сопротивление движению пара у газобетона толщиной в 30 см и у 10 см пенопласта приблизительно равны или у пенопласта больше (коэффициент паропроницаемости газобетона принимается 0,2 мг/(м•год•Па), а сопротивление движению пара стены толщиной 30 см будет 1,5 м2 • ч • Па/мг). Поэтому пенопласт будет задерживать пар в газобетоне. Могут возникнуть серьезные проблемы, особенно, когда точка росы будет находиться, внутри стены.
Если газобетон утепляют тонкими слоями пароизоляторов («подутеление»), то нахождение точки росы в стене обычное явление. Высокое сопротивление выводу пара наружу из-за слоя утеплителя-пароизолятора, способствует намоканию стены в этом случае.
Теперь рассмотрим особенности минеральной ваты
Свойства минеральной ваты
Коэффициент теплопроводности — 0,045 – 0,055 Вт/мК. Производители заявляют о меньших значениях, — на уровне пенопласта. Но мы знаем, что в реальности вата будет эксплуатироваться в слегка взмокшем состоянии (в большинстве случаев). Поэтому и теплоизоляционные качества у нее снижены. К тому же в случае контакта с водой (нарушение ограждения ваты), произойдет практически мгновенное намокание материала, и он потеряет свои качества.
Паропроницаемость минеральной ваты примерно 0,3 — 0,6 мг/(м•год•Па). Это на порядок больше чем у пенопласта. Минвата легко впитывает пар, и легко с ним расстается. Но если пар сконденсируется внутри (точка росы), то просушить минвату трудно. Нужно что бы вода снова испарилась и вышла наружу, для этого необходимо повышение температуры, — смещение точки росы, и отличная вентиляция по слою утепления.
Обязательное проветривание слоя утепления
Минеральная вата должна находиться в конструкции утепления таким образом, что бы поверх ее слоя с холодной стороны постоянно двигался поток воздуха в вентиляционном зазоре. Только вентиляция минеральной ваты предотвратит взмокание утеплителя и конденсацию влаги в нем.
Если пар не буде выводится из минеральной ваты, то влажность внутри утеплителя быстро возрастет до предела, и пар начнет конденсироваться. Т.е. точка росы окажется в утеплителе при любой температуре, даже в жару, из-за предельной влажности.
Как видим, пароизоляционные качества пенопласта накладывают ограничения на его совмещение с «дышащими» материалами. Не допускается монтировать пенопласт на дерево, т.к. это выводит древесину со строя, дерево преет. Минеральная вата может соседствовать с любыми материалами, так как паропроницаемость у материала высокая. Но слой минваты при этом должен вентилироваться.
Экологичность и пожароопасность
Некоторые свойства также существенно ограничивают применение рассматриваемых теплоизляторов и влияют на выбор каждого из них.
Большое значение имеет потенциальная возможность нанесения вреда здоровью.
- Экологичность.
Применение обоих материалов внутри помещения не желательно. Минеральная вата опасная — выделяет фенолы (связующее вещество между волокнами), а также вредную микропыль. В любом месте своего применения минвата должна быть изолирована от окружающей среды герметичной оболочкой, а возле вент зазора — с помощью пародифузной мембраны.
Пенопласт (возмжно?) разлагается и выделяет в микродозах стиролы, — опасные вещества. - Пожароопасность.
Минеральная вата не горит, по условию «пожар» не опасна.
Пенопласт горит под воздействием пламени и затухает за 3 — 4 секунды при прекращении воздействия огня. При горении выделяет опасные яды.
Применять пенопласт для наружного утепления не изолированным огнеупорным штукатурным слоем толщиной менее 5 мм не рекомендуется, а внутри помещения — огнеупорным слоем менее 2 см, в том числе и в не жилых чердачных помещениях.
Масса и др.
- Удельная масса.
Минеральная вата тяжелей пенопласта в 2 – 10 раз в зависимости от плотности. Ограничения по фактору нагруженности конструкций, для минеральной ваты более вероятные и проверяются расчетом. - Водонакопление.
Если пенополистиролы способны вобрать в себя воды лишь чуть, а экструдированные варианты вообще не увлажняются, то ваты из минеральных волокон, похожи на большую мочалку, и способны содержать в себе воду «ведрами». Это нужно учитывать, прежде чем принять решение укладывать вату под стяжку, например… - Звукоизоляция. У пенопласта посредственная. У минеральной ваты — отличная.
Выбирать по проекту
Утепление — сложный процесс, выполняется по проекту, который создается организациями, имеющими лицензию. При проектировании определяются теплопотери, воздухопроницаемость, разность температур воздуха и поверхностей, движение пара, смещение точки росы и другое.
В соответствии с проектом применяются средства и методы утепления, разрабатывается конструкция их размещения и крепления. После строительства, на здание заполняется энергетический паспорт.
Только в качестве рекомендаций, когда применять пенопласт, а когда применять минеральную вату, а также с учетом необходимости экономить денежные средства, можно учесть следующее.
Выбор утеплителя для разных ситуаций
- Для внутреннего утепления стен оба материла применять не следует, в основном из-за значительной паропропускной способности (по сравнению с экструдированным пенополстиролом).
- Для утепления фундаментов, подвальных помещений изнутри, оба материала не могут быть применены, из-за относительно большой влагозависимости. То ж самое и для любых других конструкций в земле.
- Для наружного утепления стен из тяжелых материалов (бетон, кирпич, шлакоблок и т.п.) можно применить пенопласт, закрытый штукатурным слоем. Для дерева, пористых материалов его применение не допускается.
- Для наружного утепления стен из пористых материалов и дерева необходимо применять только минеральную вату.
- Для утепления фигурных конструкций, трубопроводов, можно применить минеральную вату, покрытую диффузной мембраной.
- Для утепления крыш с деревянной стропильной системой можно применить минеральную вату между стропилами, закрытую пароизолятором со стороны помещения, и дифузной мембраной со стороны вентиляционного зазора. Применение пенопласта в этом случае возможно, только лишь, если деревянные элементы не будут соприкасаться с ним по бокам.
Толщина слоев утеплителя выбирается не меньшей, чем требует СНиП по тепловому сопротивлению отдельных ограждающих конструкций. Также желательно выбрать толщину не менее той, при которой точка росы будет находиться не менее 80% холодного времени в утеплителе и только в пики морозов смещаться в стену. Подобные примерные расчеты можно сделать и «своими руками». Они будут рекомендациями, по самостоятельному выбору утеплителя.
Сравнение полистиролов: различия между пенополистиролом и XPS — страница 2 из 3
Между свойствами экструдированного и пенополистирола (XPS и EPS) есть принципиальные различия. Знание этого важно для определения того, что лучше всего подходит для стен, облицованных влагой. Сравнение рейтинговых характеристик по Пермь
«Рейтинг проницаемости» — сокращение от «проницаемость» — это стандартная мера проницаемости материала для водяного пара. Чем выше число, тем легче газообразная вода может диффундировать через материал.При использовании изоляции XPS в стеновых сборках рейтинг проницаемости снижается с 1,1 до 0,7 до 0,6, а толщина увеличивается с 25 до 50 до 75 мм (от 1 до 2 до 3 дюймов). Материал с более низким рейтингом проницаемости лучше задерживает движение водяного пара. Если рейтинг проницаемости низкий, материал считается замедлителем парообразования. Если у него очень низкий рейтинг проницаемости, его называют «пароизоляцией». Все это связано с долговечностью основания.
Общее правило: чем лучше пароизоляция и чем суше условия, тем меньше требуется вентиляции.В более холодных регионах пароизоляция должна устанавливаться на теплой зимой стороне стен, а во влажных районах, таких как побережье Мексиканского залива и Флорида, ее следует размещать на внешних стенах. Пароизоляция на теплой стороне должна быть построена с вентиляционным каналом на холодной стороне изоляции, потому что пароизоляция не может удерживать всю воду вне конструкции.
Уровень проницаемости менее 0,1 считается паронепроницаемым замедлителем схватывания класса I и классифицируется как «пароизоляция».’Рейтинг от 0,1 до 1 соответствует полупроницаемому замедлителю образования пара Класса II, а рейтинг проницаемости от 1 до 10 соответствует уровню проницаемого замедлителя пара класса III. Любой продукт с рейтингом проницаемости выше 10 обладает высокой проницаемостью и не считается замедлителем образования пара. Необлицованный XPS толщиной 25 мм (1 дюйм) имеет рейтинг проницаемости около 1 и считается полупроницаемым. Пермь рейтинг для пенополистирола равен 5. Дополнительную информацию о пароизоляционных материалах и пароизолирующих средствах можно получить в Министерстве энергетики США (DOE).
XPS выпускается как без облицовки, так и с различными пластиковыми покрытиями.Однако XPS считается замедлителем образования пара, а не пароизоляцией.
Хотя более высокая плотность EPS имеет большую прочность на сжатие, чем более низкая плотность, EPS никогда не бывает таким прочным, как XPS, и более подвержен крошению по краям и другим повреждениям на стройплощадке, поэтому EPS редко используется для обшивки стен.
При применении в качестве теплоизоляции наружных стен поверх обшивки, EPS следует укладывать поверх водостойкого барьера (WRB), такого как домашняя пленка. Этот тип жесткого пенопласта обычно не делается с облицовкой, поэтому рабочие должны обращаться с ним с особой осторожностью.
Инновационные применения EPS и XPS улучшили тепловые характеристики ограждающих конструкций здания. Изоляция и огнестойкость
Пониженная тепловая способность при повышенных температурах — один из примеров того, чем отличаются эти изоляционные материалы. EPS будет размягчаться при температуре всего 73 C (165 F), что снизит его тепловые характеристики. При 100 ° C (212 F) пенополистирол начинает плавиться и капать, что может привести к полной потере термической эффективности изоляции. По данным EPS Industry Alliance (EPS-IA), при определенных условиях пожара материал воспламеняется при воздействии открытого пламени.Температура воспламенения при переходе обычно составляет около 360 ° C (680 ° F).
Хотя изоляция из пенопласта довольно трудно воспламеняется, горение легко распространяется по открытой поверхности пенополистирола и продолжает гореть до тех пор, пока материал не сгорит. EPS представляет собой продукт на масляной основе, и при его сжигании образуется густой черный дым, который приводит к образованию вредных газов, включая оксид углерода (CO), моностирол, бромистый водород (коррозионно-активную кислоту) и другие ароматические соединения.
Эта реакция на пламя также отмечена на веб-сайте отраслевой организации EPS:
При горении пенополистирол ведет себя так же, как и другие углеводороды, такие как дерево и бумага.Если EPS подвергается воздействию температур выше 100 C (212 F), он начинает размягчаться, сжиматься и, наконец, плавиться. При более высоких температурах при разложении расплава образуются газообразные горючие продукты. Могут ли они воспламениться пламенем или искрой, во многом зависит от температуры, продолжительности воздействия и потока воздуха вокруг материала (, то есть наличия кислорода).
И наоборот, XPS, изолирующая пена, называемая термопластами, образована из несшитых полимеров и может повторно нагреваться и формоваться.Это делает XPS менее жестким и гибким при воздействии температуры около 73 C. Изоляция XPS обычно имеет температуру плавления от 93 до 98 C (200 и 210 F). Однако в крайнем аду он также будет поглощен огнем и испускать ядовитые пары.
С прошлого года Европейский союз (ЕС) запретил гексабромциклододекан (ГБЦД) — бромированный антипирен, используемый во всех изоляционных материалах из полистирола, включая пенополистирол и XPS.
Значительные средства были вложены в разработку нового поколения антипиренов для полистирольной изоляции.Большой вопрос заключается в том, являются ли рассматриваемые заменяющие антипирены галогенированными соединениями (, т.е. , содержащими бром или хлор). Chemist and Environmental Building News Член консультативного совета Арлин Блюм, доктор философии, ведущий эксперт по проблемам здоровья и окружающей среды, связанных с галогенированными антипиренами, довольна этим постановлением.
Использование галогенированного соединения «Это может означать, что мы переходим от одного токсичного вещества к другому», — сказал Блюм. Она предлагает нам рассмотреть более важные вопросы о огнестойкости и безопасности.«Пора спросить, каковы преимущества этих антипиренов для пожарной безопасности».
GM-0702: Руководство по изоляционной оболочке
Проектирование жилых домов продолжает двигаться в направлении разработки высокоэффективных экологичных строительных систем. Чтобы быть устойчивым, здание должно быть не только эффективным и прочным, но и экономически жизнеспособным. Исходя из этого, были изучены новые методы проектирования корпусов, которые обеспечивают высокие тепловые характеристики и долговечность, но также позволяют сократить использование материалов (включая отходы), упростить или интегрировать системы и детали и потенциально снизить общие начальные затраты на строительство.
Одна из концепций, связанных с дизайном корпуса, состоит в том, чтобы использовать наружную пенопластовую изоляционную оболочку в конструкции стенового блока. Как и в случае любой системы ограждения здания, необходимы соответствующие детали для управления передачей воды, пара и энергии.
ПредпосылкиПо мере того, как возрастало желание обеспечить более термически эффективные сборки ограждающих конструкций, росли и проблемы с накоплением влаги в сборках ограждающих конструкций здания.Часто проблемы возникали из-за того, что в конструкции для конкретных целей вводились новые материалы, без надлежащего понимания всех их свойств и потенциальных воздействий на сборку в целом. Многие отказы корпусов произошли из-за непонимания того, что продукты и материалы обладают другими свойствами, чем те, для которых они изначально были разработаны.
Хотя эти уроки были усвоены, теперь мы можем использовать эти знания в наших интересах. Благодаря изучению и пониманию материалов на основе всех их свойств (а не только того, для чего они изначально были созданы), мы можем устранить дублирование в конструкции корпуса, сделав системы более простыми и экономичными.
В холодном климате использование наружных жестких изоляционных панелей обшивки стало методом повышения тепловых характеристик шкафа, а также средством снижения потенциала конденсации в конструкциях наружных стен. Эта концепция, хотя и не нова, в последние годы стала более распространенной и используется в жилищном строительстве. Хотя этот метод доказал свою эффективность, он был введен в качестве дополнения к стандартному жилому строительству для определенной цели.Сборка базовой стены в целом осталась неизменной, с другими материалами, используемыми для герметизации воздуха и управления водными ресурсами.
Возможность, которая представилась сама собой, заключалась в интеграции внешней жесткой теплоизоляционной панели в сборку корпуса, чтобы действовать не только как изоляция, но и как первичная обшивка, а в некоторых областях, как плоскость дренажа и пароизоляционный слой для сборки стены. . Эта система в сочетании с передовыми концепциями каркаса может обеспечить экономию за счет сокращения используемых строительных материалов (меньшее количество стоек, отказ от фанеры или OSB-обшивки и обшивки домов) и сокращения строительных отходов (включение стандартных размеров строительных изделий в дизайн здание, чтобы минимизировать обрезку).
Хотя использование внешней изоляции первоначально использовалось в холодном климате, преимущества интегрированной системы в виде улучшенных тепловых характеристик и снижения затрат делают ее жизнеспособной и в других климатических зонах.
Тем не менее, правильное понимание типа сборки ограждения, подходящего для общей климатической зоны, в которой строится дом, имеет решающее значение. Выбор используемых материалов будет варьироваться от климатической зоны к климатической зоне, и детали водонепроницаемого барьера становятся более важными в районах с повышенным количеством осадков.
В этом руководстве рассматривается применение изоляционной оболочки для сборки наружных стен, от технического концептуального дизайна и преимуществ до установки и взаимодействия с другими системами здания.
Свойства материалаВ настоящее время в промышленности используются три основных типа изоляционной оболочки: пенополистирол (EPS), экструдированный полистирол (XPS) и полиизоцианурат (полиизо). Каждый из этих продуктов обладает различным набором физических свойств, которые влияют на динамику стеновых конструкций в отношении передачи и управления теплом и влагой.
Виды пенопласта
Изоляционные пенопластовые оболочки делятся на две основные категории: 1) термопласты, 2) термореактивные пластмассы. Пены EPS и XPS представляют собой термопластичные пены, а полиизоцианурат — это термореактивная пена.
Термопласты
Термопласты основаны на линейных или слаборазветвленных (несшитых) полимерах. Эти пены имеют определенный диапазон плавления, они размягчаются и плавятся при повышенных температурах. Они также более склонны к реакции и разложению при контакте с некоторыми органическими растворителями, которые содержатся в некоторых красках, клеях и топливах.Поэтому важно использовать только одобренные производителем совместимые материалы при использовании термопластичных пен.
Из термопластичных пен, EPS и XPS являются наиболее распространенными в промышленности. Оба продукта созданы на основе полистирольной смолы и считаются жесткими пенопластами с закрытыми ячейками1.
Производство пенополистирола включает вспенивание шариков полистирола для заполнения формы. Плотность пенополистирола при желании может быть изменена. Повышенная плотность приводит к увеличению термического сопротивления и прочности на сжатие.Плотность продукта также влияет на паропроницаемость. Хотя EPS представляет собой пенопласт с закрытыми порами (медленное прохождение водяного пара и воздуха через стенки ячеек), зазоры между ячейками по-прежнему позволяют влаге проходить через матрицу. При увеличении плотности эти пространства уменьшаются, и способность пены пропускать воду снижается.
Пена XPS формируется путем смешивания расплавленного полистирола с вспенивающим агентом в нужное время, при повышенной температуре и при повышенном давлении с последующим выдавливанием пены через фильеру в атмосферу.Это создает более регулярную структуру ячеек, обеспечивающую лучшие прочностные свойства и более высокую водостойкость, чем пенополистирол. Плотность пен XPS также может варьироваться, что позволяет повысить прочность на сжатие, однако из-за более регулярной структуры ячеек это практически не влияет на свойства паропроницаемости.
Термореактивные пластмассы
Термореактивные пластмассы основаны на сшитых полимерах. Это позволит использовать термореактивные пластмассы для более высоких температур, поскольку они обычно не имеют диапазона плавления и вместо этого будут обугливаться и гореть.Термореактивные пены также обычно более устойчивы к растворителям и химическим веществам.
Самым распространенным на рынке термореактивным пеноматериалом является полиизоцианурат. В то время как традиционные пенополиуретаны были созданы путем взаимодействия изоцианата с полиолом (и другими вспенивающими агентами, катализаторами и поверхностно-активными веществами), пенополиизоцианураты теоретически могут быть созданы без полиола, используя только изоцианат, взаимодействующий с самим собой (и другими вспенивающими агентами, катализаторами и поверхностно-активными веществами). Однако в целом коммерческий пенополиизоцианурат, используемый на рынке, на самом деле представляет собой пенополиуретан, модифицированный полиизоциануратом, или «смесью» этих двух пен.Использование смеси увеличивает огнестойкость при сохранении термического сопротивления и прочности материала.
R-Value
Термическое сопротивление каждого из продуктов может быть разным. В общем, пенополистирол имеет самое низкое значение R на дюйм, при этом XPS немного более эффективен, а полиизоцианурат имеет лучшее значение R на дюйм. Показатель R пенополистирола может быть увеличен за счет увеличения плотности продукта, однако более плотные вспененные пенопласты менее распространены на рынке.Обычно пена EPS имеет номинальное значение примерно R-4 на дюйм. Пены XPS вполне соответствуют R-значению примерно R-5 на дюйм.
Хотя термическое сопротивление этих термопластичных пен, как правило, стабильно в течение длительного времени, и, следовательно, начальное значение R во время производства не будет изменяться с течением времени, пенополиизоцианураты имеют долгосрочное термическое сопротивление (LTTR) R- значение, представляющее 15-летнюю взвешенную R-стоимость. Это является ответом на проблемы термического дрейфа полиизоциануратных продуктов.Тепловой дрейф происходит из-за газов, образующихся при образовании пены. Эти газы со временем медленно диффундируют из продукта и заменяются воздухом. Поскольку эти газы также обладают более высоким термическим сопротивлением, чем воздух, значение R полиизоцианурата со временем уменьшается по мере того, как газы диффундируют из продукта. Облицовка изоляционной плиты, например алюминиевая фольга, замедлит этот процесс, поскольку диффузия может происходить только за края изделия, а не через переднюю и заднюю поверхности.Большинство полиизоциануратных продуктов имеют показатель LTTR R-6,5 на дюйм.
Проницаемость
Проницаемость материалов важна при изучении стратегии контроля пара в стеновой сборке. Материалы могут быть разделены на четыре основных класса в зависимости от их проницаемости:
Паронепроницаемые 0,1 перм. Или менее (пароизоляция класса I — считается пароизоляцией)
Полупроницаемые для паров 1,0 перм. Или менее и более 0,1 пер. замедлитель схватывания)
Паропроницаемость 10 или менее, но более 1.0 perm (замедлитель парообразования класса III)
Паропроницаемость более 10 perms (не считается замедлителем образования пара)
Для неизолированной изоляции проницаемость зависит от толщины материала. Как правило, большинство производителей продуктов
указывают проницаемость материала исходя из толщины 1 дюйм. Увеличение или уменьшение толщины материала повлияет на проницаемость. Это может стать проблемой при использовании пенопласта XPS. 1 дюйм XPS имеет проницаемость 1.1 проницаемость (пограничный замедлитель образования паров класса II и класса III), увеличение толщины до 2 дюймов снижает проницаемость до 0,55 проницаемости (середина замедлителя образования паров класса II). Таким образом, 1 дюйм XPS считается полупроницаемым для пара, а 2 дюйма — полупроницаемым для пара.
Для облицованных жестких изоляционных плит (таких как полиизоцианурат, облицованный фольгой или стекловолокном), проницаемость облицовки часто намного ниже, чем проницаемость полиизоцианурата, и она будет определять общую проницаемость облицовочной плиты.Для этих продуктов проницаемость не изменится с увеличением толщины.
Таблица 1: Свойства материала
Долговечность
Изоляционные оболочки обычно являются довольно прочными материалами, однако они не полностью устойчивы к разрушению. Панели из полистирола разрушатся, если оставить их на длительное время под воздействием УФ-излучения. Доски обесцвечиваются, и на них образуется тонкая пыльная пленка. Полиизоцианурат с лицевым покрытием более устойчив к УФ-разрушению, однако необработанные полиизоциануратные плиты также подвержены УФ-разрушению.
Плиты EPS менее долговечны из-за чрезмерного обращения. Края плит могут обломиться, поскольку связь между расширенными валиками не такая прочная, как у матрицы, образованной XPS и полиизоциануратом. Это может привести к тому, что плиты будут иметь более закругленные края, и снизится тепловая нагрузка на стыках между досками. При использовании плит EPS рекомендуется аккуратная резка и обращение.
Большинство изоляционных плит обшивки устойчивы к воздействию влаги, однако проблемы с короблением и короблением полиизоцианурата, облицованного фольгой, возникали в прошлом, когда плиты подвергались воздействию погодных условий в течение продолжительных периодов времени.
Как правило, считается хорошей практикой хранить плиты в защищенном, закрытом и сухом месте на месте и ограничивать время, в течение которого плиты остаются открытыми, прежде чем они будут покрыты облицовочным материалом. . .
Загрузите полный документ здесь.
Причина отказа пены №4 — Контрпродуктивное замедление образования пара
Контрпродуктивный замедлитель паров
По мере повышения уровня изоляции ограждающие конструкции становятся холоднее и устойчивее к высыханию, дольше остаются влажными и создают больший риск образования плесени и повреждений конструкции.В связи с тем, что структура не может сушиться «запеканием / воздушной сушкой» неэффективным способом по старой энергии, сушильная способность сборки — ее эластичность — становится зависимой от сушки, обусловленной диффузией пара.
Слева: теплый неэффективный корпус, который «печется досуха».
Справа: холодный и хорошо изолированный корпус, зависящий от сушки диффузией пара. (Фото: Институт пассивного дома, Дармштадт, Германия)
Поэтому мы хотим максимизировать потенциал сушки диффузией пара.
Водяной пар естественным образом проникает через материалы из областей с высокой концентрацией в области с низкой концентрацией, а также от более высоких температур к более низким. В холодном и смешанном климате (климатические зоны 4 и выше) преобладающий поток пара направлен из теплого / влажного интерьера в холодный / сухой внешний вид. Если в сборке есть влага, она хочет выбраться наружу. И в общем, имеет смысл позволить это — имея за бортом открытые для пара материалы.
Но по дороге на форум произошла не такая уж забавная вещь.Подобно одержимости энергетической промышленностью ископаемым топливом и ядерной энергией, строительная промышленность влюбилась в пену (и паронепроницаемые деревянные обшивки).
Реклама пенопласта
Давайте кратко рассмотрим эволюцию деревянного каркаса в этом отношении. Ниже на диаграмме ( A ) мы видим деревянный каркас с паровой открытой обшивкой из сосновой доски, деревянный каркас с минимальной изоляцией или без нее и внутреннюю штукатурку: неудобно, неэффективно и безопасно от повреждения влагой.На диаграмме ( B ) мы видим введение изоляционного войлока в полость каркаса, чтобы обеспечить больший комфорт и энергоэффективность, наряду с паронепроницаемой фанерой или обшивкой OSB, заменяющей внешние доски из сосны. Изоляция делает конструкцию более холодной, перемещая точку росы в полость, в то время как внутренняя поверхность пароотталкивающей наружной обшивки становится первой конденсирующей поверхностью, что может привести к повреждению от влаги. На диаграмме ( C ) мы видим введение внешней непрерывной изоляции для повышения температуры пароизоляционной оболочки выше точки росы, чтобы избежать конденсации и связанных с этим повреждений.И вскоре — как будто по волшебству вводящих в заблуждение значений теплоизоляции (см. «Причина сбоя пены №3») — почти вся обертка выполняется из пенопласта, что еще больше снижает способность сборки высыхать наружу.
Поскольку мы оборачиваем наши здания паронепроницаемой оболочкой и пеной, важно учитывать их способность удерживать влагу. Паропроницаемость пенопласта варьируется от замедлителей парообразования класса 1: 0,0 проницаемости для полиизо, облицованного фольгой, до 0,5 проницаемости для XPS толщиной 2 дюйма. Проницаемость пенополистирола варьируется, но составляет приблизительно: 1 дюйм = 3.5 дюймов, 2 дюйма = 1,75 дюйма, 3 дюйма = 0,875 дюйма, 4 дюйма = 0,5 дюйма и т. Д. Обшивка из OSB и фанеры в условиях сухого термометра является замедлителем парообразования класса 3 с допуском 1.
Слева: пароизолированный полиизо, облицованный фольгой. Справа: плотина Гувера
Пар хочет выйти, а оболочка и пена забивают его, повышая влажность и влажность, снижая упругость.
Чтобы проиллюстрировать это явление, мы поместили те же самые три конструкции стен в Бостон Массачусетс и проанализировали их в WUFI Pro.Приведенные ниже графики основаны на показаниях, снятых на стеновой обшивке. Стены обращены на север и не имеют влаги, вносимой дождем, и при этом в них нет предварительно загруженной влаги в новой конструкции.
Сборка стены A: классическая каркасная стена без теплоизоляции
Во-первых, это наша классическая каркасная стена без утеплителя, стена А . Уровень влажности повышается и понижается в зависимости от сезона, но никогда не превышает 72% относительной влажности. (Примечание: уровень влажности важен по отношению к температуре.Если влажность составляет 80% или выше, средняя температура в течение 30 дней составляет 50 градусов по Фаренгейту, может начаться рост плесени, поэтому индикаторы ОПАСНО должны погаснуть.) Сборка стены A: Историческая каркасная стена без теплоизоляции, обшивки из досок и наружной обшивки с гипсом внутри.
Уровень влажности не достигает 80%. Безопасно и неэффективно.
Стена B: каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока
Следующая сборка, B , показанная ниже, имеет продолжительные периоды 100% влажности и конденсации, образующейся на внутренней стороне оболочки.Это не хорошо. Это плохо. Избегайте этой сборки.
B) Каркасная стена 2×6 с обшивкой из фанеры или OSB и изоляцией из войлока. Сборка под названием неисправность
Сборка стены C: обернута 2-дюймовым изоляционным слоем из пенопласта XPS
Затем у нас есть стена C, , затем обернутая 2-дюймовым изоляционным слоем из пенополистирола XPS. Хотя конденсата не образуется (что очень хорошо), уровень влажности повышается, а риск образования плесени увеличивается, поскольку сборка не имеет допусков. чтобы добавить влаги, на грани выхода из строя.Это не прочный и не устойчивый профиль.
Узел стены C: теперь добавьте 2 дюйма подвесного двигателя XPS, чтобы избежать конденсации, но это приведет к опасной влажности.
И если вам интересно, 1 дюйм XPS хуже, так как этого недостаточно для предотвращения конденсации. Если вы хотите остаться в этом тупике из пенопласта, единственный «ответ» — добавить еще больше Из-за этого пена является непродуктивным замедлителем образования пара и четвертой причиной выхода пены из строя.
Wall Assembly D: более прочная альтернатива без пены
Мы можем делать лучше: более устойчивые, надежные, более экологичные. Чтобы увидеть альтернативы обертыванию здания пеной, см. Наши пять файлов DWG с чертежами, которые доступны в разделе «Руководства по сборке зданий».
Чтобы увидеть сопоставимую модель WUFI сборки, которая имеет прочный и упругий паровой профиль, ниже мы показываем стену, которая представляет собой каркас стены 2×6 с изоляцией из войлока и наружной фанерной обшивкой — стена D .Но вместо того, чтобы обертывать оболочку пеной, мы оборачиваем ее снаружи волокнистой изоляцией и обеспечиваем внутри борт интеллектуальный пароизоляционный материал. Уровень влажности остается ниже 72% и допускает непредвиденные обстоятельства. Более надежный подход.
Сборка стены D: более эластичная альтернатива без пены: 2-дюймовая внешняя волокнистая изоляция, оболочка, 2×6 с войлоком и встроенный интеллектуальный замедлитель парообразования.
И альтернативная схематическая диаграмма ниже.
Стена D: внутренний паровой замедлитель и внешняя волокнистая изоляция делают это более безопасной и устойчивой альтернативой.
GPS против XPS — стойкость к воздуху и парам
Когда дело доходит до изоляционных материалов из пенопласта, на рынке есть несколько различных вариантов. Однако, как вы, возможно, заметили в своем собственном исследовании, не все созданы равными. Некоторые изоляционные материалы из пенопласта имеют явные преимущества в производительности, воздействии на окружающую среду и стоимости.
Возможно, вы уже знаете о своих возможностях, но вам нужна дополнительная информация, чтобы решить, какой вариант пенопласта лучше : графитовый полистирол (GPS) или экструдированный полистирол (XPS)?
Хотя GPS — новый продукт в Северной Америке, он быстро становится новым стандартом теплоизоляции.Кроме того, в течение нескольких десятилетий он был лучшим изоляционным материалом в Европе.
Этот пост в блоге объяснит различия между ними и (внимание, спойлер!), Почему GPS, новый стандарт теплоизоляции, считается лучшим вариантом.
GPS против XPS: что лучше?Что касается различий между этими двумя продуктами, одно из наиболее заметных различий — воздухопроницаемость.
Проще говоря, XPS не пропускает воздух. Со временем задерживает воду.Это связано с тем, что при его производстве бусины очень плотно соединены друг с другом, что приводит к гораздо более низкой проницаемости, чем у GPS.
Таким образом, двойной пароизоляционный барьер создается, когда слой пенопласта XPS размещается на внешней стороне стеновой конструкции. Согласно строительным нормам, пароизоляция имеет внутреннюю часть . Если вы положите слой непроницаемой пены снаружи (для большего значения R), у будет пароизоляция и снаружи. Проблема с двойной пароизоляцией заключается в том, что она может задерживать влагу внутри стеновой конструкции.
Это приводит к серии проблем:
- Изоляция из войлока может промокнуть и провиснуть, создавая зазоры без какой-либо изоляции, что значительно снижает коэффициент теплоотдачи стеновой конструкции.
- Деревянный каркас может гнить
- Может расти опасная плесень и плесень
GPS, однако, проницаема и поэтому очень быстро сохнет. Фактически, GPS имеет рейтинг перманентности до 5.0 при толщине 1 дюйм, что более чем в 4 раза больше, чем у XPS при такой же толщине! Таким образом, когда слой теплоизоляции из пенопласта GPS помещается на внешнюю часть стенового блока, он пропускает пар и влагу, позволяя стене высохнуть наружу.
Halo® Exterra® — отличный тому пример. Halo® Exterra® имеет проницаемую сердцевину из пенопласта GPS, покрытую с обеих сторон слоем перфорированного ламината, который в конечном итоге позволяет выходить парам. Это означает, что Exterra поддерживает коэффициент перманентности воздуха и пара на уровне 1.78 допусков на дюйм при толщине 1 дюйм, что делает его идеальным для использования в качестве сплошной внешней изоляции.
Член |
|
Влагостойкость | EPS Industry Alliance
Для получения дополнительной информации о EPS и влагостойкости прочтите технический бюллетень EPS Insulation Mold Resistance или ознакомьтесь с нашей серией статей о EPS изоляции ниже класса:
В: Устойчив ли пенополистирол к влаге?
A: EPS негигроскопичен и плохо впитывает влагу из атмосферы.Его структура с закрытыми ячейками снижает поглощение и / или миграцию влаги в изоляционный материал. Несмотря на то, что EPS обеспечивает высокий уровень влагостойкости и воздухопроницаемости, следует соблюдать рекомендуемые методы проектирования стен и фундамента при выборе пароизоляции и влагозащиты для тяжелых условий эксплуатации.
Q: Как оценивается пенополистирол с точки зрения влагостойкости?
A: Исследование Лаборатории испытаний энергетических материалов (EMTL) 1 показало, что изоляция из пенополистирола, установленная на хорошо построенных крышах, не впитывает заметную влагу в условиях, характерных для продолжительных, холодных и влажных зим.Такое же количество поглощенной влаги (в среднем 0,2% по весу) практически не влияет на его прочность на сжатие или изгиб, а изоляция из пенополистирола сохраняет от 95% до 97% своей тепловой эффективности.
Q: Влияет ли влага на тепловые характеристики изоляции EPS?
A: Да. Широкое использование изоляционных материалов из пенополистирола было доказано за последние 30 лет как в коммерческих, так и в жилых зданиях в самых разных областях. Обширные промышленные испытания подтвердили, что даже небольшое поглощение влаги оказывает минимальное влияние на тепловые характеристики изоляции из пенополистирола.Например, Отдел энергетики Министерства государственной службы Миннесоты обнаружил, что образцы пенополистирола семилетней давности, используемые для внешней изоляции фундамента, показали уровень влажности всего 0,13%. Он также пришел к выводу, что изоляция из пенополистирола сохраняет от 95 до 97 процентов своего теплового КПД, и что это не влияет на его тепловой КПД и что не влияет на его свойства прочности на сжатие или изгиб. Влага обычно способствует увеличению теплопередачи или проводимости.Правильный дизайн, методы строительства и выбор изоляции уменьшают возможность утечки влаги или попадания влаги в изоляционную полость, где это может повлиять на тепловые характеристики системы.
В: Может ли пенополистирол действовать как пароизоляция?
A: Нет, хотя EPS имеет низкую скорость прохождения водяного пара, EPS не является пароизоляцией. Скорее он «дышит» и, следовательно, не требует дорогостоящей вентиляции, как другие изоляционные материалы, которые в противном случае задерживали бы влагу внутри стен и конструкций крыши.
Q: Какие условия влияют на выбор пароизоляции?
A: Каждое кровельное покрытие должно быть изучено, чтобы определить потребность в пароизоляции для контроля внутренней конденсации. Согласно исследованиям, спонсируемым Национальной ассоциацией кровельных подрядчиков и Ассоциацией кровельных подрядчиков Среднего Запада, пароизоляция для систем кровли с изоляцией из пенополистирола менее критична, чем для изоляции любой крыши. 2
Q: Как EPS выдерживает температурные циклы?
A: EPS выдерживает циклическое замораживание-оттаивание на месте без потери структурной целостности или других физических свойств.Испытания, проведенные Dynatech Research and Development Company или Кембриджем, штат Массачусетс, исследовали образцы сердцевины пенополистирола, извлеченного из существующих стенок морозильной камеры, возраст некоторых из которых составляет 16 лет, и доказывает, что пенополистирол способен противостоять неправильному циклическому изменению температуры.
Q: В каких областях применения EPS имеет преимущества перед экструдированной пеной?
A: Поскольку плотность, толщину и размеры пенополистирола можно легко настроить в соответствии со спецификациями конкретного здания, изоляция из пенополистирола предоставляет разработчикам повышенную гибкость при проектировании следующих приложений:
- Утеплитель для конической крыши
- Архитектурные профили EIFS
- Обшивка
- Приложения ниже уровня
- Геотехнический
- Структурные изолированные панели
- Стабилизация почвы
Примечания:
1 «Разработка экспериментальных данных по кровельной изоляции из пенополистирола в условиях моделирования зимнего воздействия», Р.П. Тип и К.Ф. Бейкер, Лаборатория испытаний энергетических материалов, 1984 г.
2 Этот исследовательский проект был завершен Structural Research, Inc. в августе 1984 года под руководством совместной рабочей группы представителей Ассоциации кровельных подрядчиков Среднего Запада, Национальной ассоциации кровельных подрядчиков и Общества производителей пластмасс.
Какую жесткую изоляцию мне выбрать?
Изоляция из жесткого пенопласта упаковывает много R-value в относительно тонкую упаковку.Его часто используют в качестве слоя непрерывной изоляции на наружных стенах и крыше. При использовании таким образом пена снижает потери энергии через элементы каркаса, явление, называемое тепловым мостиком, и увеличивает общее значение R для крыши или стеновой конструкции. Некоторые типы пенопласта также можно использовать под плитами подвала и по периметру плиты, чтобы снизить потери тепла через бетон, который является очень плохим изоляционным материалом. При выборе типа пенопласта следует учитывать его расположение, коэффициент теплопередачи и другие характеристики.Три наиболее распространенных разновидности жесткого пенополистирола — это пенополистирол (EPS), экструдированный полистирол (XPS) и полиизоцианурат (ISO). Ирландский производитель предлагает четвертый и недавно разработанный тип фенольной пены .
Пена — не единственный способ построить дом с супер изоляцией
Если вы все еще находитесь на стадии планирования своего проекта, имейте в виду, что внешняя изоляция из пенопласта — не единственный способ построить энергоэффективный дом. Прочтите статью Шесть проверенных способов строительства энергоэффективных стен , если вы хотите изучить свои варианты.Также помните, что существуют и другие варианты непрерывной внешней изоляции, в том числе изоляция из минеральной ваты и ДВП, ни одна из которых не связана с нефтехимией.
Три варианта жесткого пенопласта
Пенополистирол (EPS)EPS — это изоляция, которая наиболее широко используется в изоляционных бетонных формах и конструкционных изоляционных панелях (SIP). EPS имеет самое низкое среднее значение R из трех наиболее распространенных типов изоляции из жесткого пенопласта, около R-4 на дюйм.Это также наименее затратно. EPS подходит для контакта с землей и может быть обработан для защиты от насекомых. Если вы планируете соприкасаться с землей, убедитесь, что он рассчитан на такое использование. Некоторые строители избегают использования любого типа пенопласта на внешней стороне фундамента из-за риска того, что туннельные насекомые, такие как муравьи-плотники и термиты, пройдут сквозь него или гнездятся в нем. Сначала обратитесь в местное строительное управление. При использовании в качестве обшивки EPS следует использовать поверх домашней обертки. Большая часть пенополистирола без покрытия, а это значит, что он хрупкий.Он также считается полупроницаемым для водяного пара, поэтому не создает пароизоляцию.
Экструдированный полистирол (XPS)XPS, легко узнаваемый по синему, зеленому или розовому цвету, входит в середину трех типов изоляции из жесткого пенопласта как по стоимости, так и по R-значению (около 5 R-5 за дюйм). XPS поставляется без облицовки или с различными пластиковыми покрытиями. Необлицованный XPS толщиной 1 дюйм имеет рейтинг проницаемости около 1, что делает его полупроницаемым. Более толстый, облицованный XPS прочнее и может иметь более низкую проницаемость, но он по-прежнему считается пароизолятором , а не пароизоляцией .
Если вас беспокоит воздействие на окружающую среду строительных материалов, которые вы используете, помните, что пенообразователь, используемый для изготовления XPS, имеет очень высокий потенциал глобального потепления . По этой причине многие зеленые строители избегают его использования. Температурный дрейф, постепенное снижение значения R с течением времени, необходимо учитывать как при использовании XPS, так и полиизоцианурата.
Полиизоцианурат (ISO) ПанелиISO являются самыми дорогими из трех и имеют наивысшее номинальное значение R-5.7 к R-6. Его вспенивающий агент — пентан, который имеет очень низкий потенциал глобального потепления. Поскольку изоцианат начинается с жидкой пены и для образования жесткой панели его необходимо распылить на основу, все панели ISO имеют облицовку. Панели ISO с облицовкой фольгой считаются паронепроницаемыми. Поскольку применение этих продуктов в качестве оболочки создает внешний пароизоляционный слой, их никогда не следует использовать с внутренней пароизоляцией. Более проницаемые панели ISO облицованы стекловолокном и могут использоваться без создания пароизоляции.
Хотя номинальное значение R для полиизо является наивысшим из трех основных типов жесткого пенопласта, его характеристики в холодную погоду ниже: При понижении температуры уменьшается и R-значение. Некоторые строители, работающие в холодном климате, оценивают R-значение 4,5 или 5 на дюйм. Polyiso не рассчитан на контакт с землей.
Слева направо: Пенополистирол (EPS), экструдированный полистирол (XPS), полиизоцианурат (ISO)Прочтите статью полностью : Экономьте энергию с помощью жесткой пенопластовой изоляции
Подробнее о вариантах изоляции из жесткого пенопласта и деталях конструкции:
Подберите подходящий жесткий пенопласт — Изоляция из пенопласта может повысить R-показатель, замедлить тепловые мосты и контролировать конденсацию, но вам лучше выбрать правильный тип.
Ваша внешняя жесткая пена слишком тонкая? — Чтобы соответствовать нормам или придерживаться «зеленой» цели, все больше и больше строителей добавляют слой изоляции из жесткого пенопласта снаружи домов. Идея имеет смысл, если все сделано правильно. Узнайте, правильно ли вы наносите жесткий пенопласт для наружных работ.
Отделка стен с помощью жесткого пенопласта — Строитель Стив ДеМетрик делится деталями конструкции и дизайна для эффективной и беспроблемной установки наружной обшивки из пенопласта.Его метод использует оболочку Zip System для конструкции и герметизации, 2 дюйма. пена с фольгированной облицовкой для внешней изоляции и атмосферостойкий барьер из войлочной бумаги за экраном от дождя.
Выбор подходящей толщины наружной пены — Жесткая пена должна быть достаточно толстой, чтобы предотвратить образование конденсата на кровельной обшивке.
Изолировать подвал, часть 3 — В этом эпизоде Джастин Финк объясняет, почему и как использовать пенопласт на кирпичных стенах, и демонстрирует, как правильно изолировать область балки по краю с помощью жесткой пены и теплоизоляции из войлока в вашем подвале.