Menu Close

Расчет точки росы в стене: Точка росы в стене — расчет и нахождение

Точка росы в стене из газобетона, пример расчета

Точка росы в стене — температурная зона, в которой водяной пар конденсируется и превращается в воду.

Точка росы сильно зависит от влажности воздуха, и чем влажность больше, тем вероятность конденсата выше.

Также на точку росы влияет разность температур внутри и снаружи помещения.

В данном обзоре мы проводим тестирование по нахождению точки росы в стене из газобетона D500. Будут рассмотрены разные варианты стен из газобетона, к примеру толщиной в 200мм и 400мм, а также с использованием утеплителей.

Что такое точка росы в стене

Расчеты проводились в программе теплорасчет.рф 

Точку росы в газобетоне мы находили при следующих условиях:
Температура в помещении
Температура на улице
Влажность в помещении Влажность на улице
20 -20 40% 80%

Плотность газобетона 500 кг/м³ (D500).

Черная линия на графике показывает температуры внутри стены из газобетона. Начиная с 20 градусов Цельсия и заканчивая -20 град.

Синяя линия показывает температуру точки росы. Если линия температуры соприкасается с линией точки росы, то образуется зона конденсации.

Другими словами, если температура точки росы всегда ниже температуры в газобетоне, то конденсат образовываться не будет.

Газобетон марки D500 толщиной 200 мм  Газобетон марки D500 толщиной 400 мм
   

Как видно на графике, точка росы в обеих случаях находится внутри газобетона, ближе к наружной части, а количество конденсата почти равное.

Газобетон и минвата (снаружи)

А теперь рассмотрим, что происходит в газобетоне, если его утеплить минватой снаружи.

Газобетон D500 200мм + 50мм минваты 
Газобетон D500 200мм + 100мм минваты 
   

Вариант утепления газобетона минеральной ватой (100мм) исключает конденсат. Причем конденсата не будет даже в том случае, если температура в доме будет +25, а на улице -40. Более того, 100мм минеральной ваты обеспечивают очень хорошую теплоизоляцию.

Газобетон и минвата (внутри)

50мм минваты + газобетон D500 200мм 100мм минваты + газобетон D500 200мм 

Как видно на графике, внутреннее утепление минеральной ватой приводит к существенному образованию конденсата по всей толще газобетонной стены.

Заметим интересную особенность — чем толще внутренний слой минваты, тем больше конденсата образовывается в газобетонной стене, что крайне нежелательно.

Важно! Влажный газобетон хуже удерживает тепло и быстрее разрушается.

Вывод

Точку росы в газобетонной стене лучше держать ближе к наружной части. А еще лучше, если точка росы будет в утеплителе, будь то минеральная вата или пенопласт.

Отметим, что пенопласт не боится намокания, и не теряет своих теплоизоляционных качеств, а минеральная вата при намокании сильно теряет свои свойства как утеплитель. 

Сейчас очень часто фасад утепляют минеральной ватой и закрывают ее облицовочным кирпичом, оставляя вентиляционный зазор, который просушивает минеральную вату. Так же популярным способом является оштукатуренный пенопласт, который значительно дешевле.

Расчет точки росы: факторы влияния, порядок определения

Точкой росы называют охлаждённый воздух до определённой температуры, в состоянии которого пар начинает конденсировать и переходить в росу. В целом этот параметр зависит от давления воздуха в помещении и на улице. Определить значение не всегда легко, но сделать это необходимо обязательно, так как это один из самых важных факторов при строительстве и для комфортной жизни, и существования человека в помещении.

При завышенной точке росы бетон, металл, дерево и многие другие строительные материалы не дадут нужного эффекта при строительстве или ремонте дома и не прослужат долго. Во время настилания полимерных полов при попадании конденсата на поверхность материала в будущем возможно возникновение таких дефектов как: вздутие пола, шагрень, отслоение покрытия и многое другое. Визуально определить параметр в помещении невозможно, для этого необходимо использовать бесконтактный термометр и таблицу.

Какие факторы влияют

  • толщина стены в помещении и то, какие материалы использовались для утепления;
  • температура, в разных частях мира она разная и температурный коэффициент севера от юга сильно отличается;
  • влажность, если воздушное пространство содержит влагу, точка росы будет больше.

Чтобы яснее понимать, что это такое, и как на значение могут повлиять те или иные факторы рассмотрим наглядный пример:

  1. Неутеплённая стена в помещении. Точка росы будет сдвигаться в зависимости от того, какие погодные условия вне помещения. В случае стабильной погоды без резких колебаний точка росы расположится ближе к наружной стене, в сторону улицы. Вредных показателей в этом случае для самого помещения нет. Если же наступит резкое похолодание, точка росы медленно переместится ближе к внутренней части стены — это может привести к насыщению комнаты конденсатом и медленному намоканию поверхности стен.
  2. Утеплённая снаружи стена. Точка росы имеет положение внутри стен (утеплителя). Во время выбора материала для утепления следует рассчитывать на этот фактор и правильно рассчитать толщину выбираемого материала.
  3. Утеплённая изнутри стена. Точка росы находится между центром стены и утеплителем. Это не лучший вариант, если погодные условия слишком влажные, так как при резком похолодании в этом случае точка росы резко сдвинется на стык между утеплителем и стеной, а это в свою очередь может привести к губительным последствиям для самой стены дома. Утеплять стену изнутри при влажном климате возможно, если в доме присутствует хорошая система отопления, которая способна поддерживать равномерную температуру в каждой комнате.

В случае если ремонт дома сделан без учёта погодных условий, устранить возникшие проблемы будет практически невозможно, единственный выход заново начинать работы и убирать всё сделанное, что влечёт за собой большие траты денег.

О комфортной температуре в квартире можно прочитать здесь: https://teplo.guru/normy/temperatura-v-kvartire.html

Как правильно определить и вычислить (таблица и формула)

На точку росы могут влиять температура и влажность

Жить человеку в комфорте с повышенной влажностью довольно трудно. Конденсат вызывает проблемы как для здоровья (есть вероятность заболеть астмой), так и для самого дома, особенно для его стен. Потолок и стены от повышенной влажности могут покрыться вредной для человека и трудно выводимой плесенью, в редких случаях приходится полностью менять стены и потолок, чтобы убить все присутствующие вредные микроорганизмы.

Для того чтобы этого не случилось, следует произвести расчёт и узнать, стоит ли в том или ином здании затевать ремонт, утеплять стены или вообще строить жильё на этом месте. Важно знать, что для каждого строения точка росы индивидуально, а значит, и её расчёт будет проводиться с небольшими отличиями.

Во внимание, перед тем как приступить к расчету, следует взять такие факторы как: климатические условия в том, или ином регионе, толщина стен и материал из которого они сделаны, и даже наличие сильных ветров. Малую, допустимую влажность содержат абсолютно все материалы, человеку следует проследить, чтобы эта влажность не повысилась и не образовалась точка росы. При вызове специалиста для измерения значения в случае повышенной влажности, вам, скорее всего, будет дан ответ, что теплоизоляция дома сделана неправильно, не подходит толщина материала или допустили ошибку при монтаже. В какой-то мере этот человек будет прав, так как именно правильный ремонт в доме в большей степени влияет на изменение точки росы и появление конденсата на стенах.

Статья, посвящённая рекуператорам воздуха, находится здесь: https://teplo.guru/eko/rekuperator-vozduha. html

Таблица: показатели для определения точки росы

Точка росы VS в CO при относительной влажности воздуха в %
30%35%40%45%50%55%60%65%70%75%80%85%90%95%
3010,512,914,916,818,42021,422,723,925,126,227,228,229,1
299,7121415,917,51920,421,72324,125,226,227,228,1
288,811,113,11516,618,119,520,82223,224,225,226,227,1
27810,212,214,115,717,218,619,921,122,223,324,325,226,1
267,19,411,413,214,816,317,618,920,121,222,323,324,225,1
256,28,510,512,213,915,316,71819,120,321,322,323,224,1
245,47,69,611,312,914,415,81718,219,320,321,322,323,1
234,56,78,710,41213,514,816,117,218,319,420,321,322,2
223,65,97,89,511,112,513,915,116,317,418,419,420,321,1
212,856,98,610,211,612,914,215,316,417,418,419,320,2
201,94,167,79,310,71213,214,415,416,417,418,319,2
1913,25,16,88,39,811,112,313,414,515,316,417,318,2
180,22,34,25,97,48,810,111,312,513,514,515,416,317,2
170,61,43,356,57,99,210,411,512,513,514,515,316,2
161,40,52,44,15,678,29,410,511,612,613,514,415,2
152,20,31,53,24,76,17,38,59,610,611,612,513,414,2
142,910,62,33,75,16,47,58,69,610,611,512,413,2
133,71,90,11,32,84,25,56,67,78,79,610,511,412,2
124,52,810,41,93,24,55,76,77,78,79,610,411,2
115,23,41,80,412,33,54,75,86,77,78,69,410,2
1064,22,61,20,11,42,63,74,85,86,77,68,49,2
Для промежуточных показателей не указанных в таблице определяется средняя величина

График

Благодаря графику можно определить оптимальные показатели

Как рассчитать: необходимые инструменты и последовательность действий

  • термометр;
  • гигрометр;
  • бесконтактный термометр (можно заменить обычным).
  1. В помещении, котором необходимо измерить точку росы отмерьте примерно 60 см от пола, но не более. Измерьте на этой высоте, положив градусник, к примеру, на стол температуру воздуха при помощи термометра.
  2. Затем в этом же месте при помощи гигрометра измерьте влажность в помещении.
  3. В таблице выше найдите своё значение и тем самым определите параметры.

    С помощью термометра и гигрометра нужно измерить температуру воздуха и влажность

  4. Теперь следует узнать, можно ли в помещении с такой относительной влажностью проводить строительные работы, к примеру: утеплять стены или стелить полимерные полы. Для этого при помощи специального бесконтактного термометра измерьте в этом же месте на расстоянии 60 см от пола температуру поверхности. Если же такого прибора нет, обверните обычный градусник тонкой тряпкой и через 15 минут снимите с него показания.
  5. На последнем этапе сравните 2 температуры. Если температура поверхности отличается от параметра более чем на 4 градуса, в доме повышенная влажность и присутствует точка росы, в этом случае утепление стен должно проводиться под контролем специалиста с расчётами правильной толщины материала которым будет проводиться утепление.

Формула для расчёта в каркасной, кирпичной, многослойной стенах с утеплителем

Для расчёта точки росы с утеплителем используются формулы:

где:

  • h2, h3 — толщина стены и теплоизолятора;
  • λ1, λ2 — теплопроводность стены и теплоизолятора;
  • N — отношение тепловых сопротивлений.


где:

t1, t2 — температура внутренней и внешней сторон стены;
T1 — перепад температур в стене.

Расчёт:

Используя полученные показатели, составить график с диапазоном температур T1, размещённым в стене и оставшимися °C на утеплитель. В нужном месте отметить точку росы.

Узнать, какая температура горячей воды является оптимальной в квартире, можно узнать здесь: https://teplo.guru/normy/normativ-temperatury-goryachei-vody.html

Что делать, если значение определено неправильно?

Рассмотрим места, в которых возможно расположение точки росы в не утеплённой стене:

  • Ближе к наружной поверхности стены. В этом случае появление точки росы в доме минимально, как правило, внутренняя стена остаётся сухой.
  • Ближе к внутренней поверхности стены. В этом случае возможно появление конденсата при резком похолодании на улице.
  • В самых редких случаях точка росы находится на внутренней стене здания. В этом случае избавиться от неё практически невозможно, и скорее всего стены в доме всю зиму будут немного влажными.

В этих случаях решить проблему можно добавив слои пароизоляции на стены. Это поможет удерживать водяные пары, и они не пройдут сквозь стены внутрь помещения, что предотвратит появление точки росы на стенах и потолке. Если климат слишком холодный и большую часть года температура держится больше чем минус 10 градусов, стоит рассмотреть вариант поступления нагретого воздуха в помещение в принудительном порядке. Сделать это можно при помощи теплообменника или нагревателя воздуха.

Видео: почему на стенах появляется конденсат и плесень

Важно правильно определить точку росу на этапе строительства. Это поможет грамотно утеплить стену и в дальнейшем избежать появления конденсата и плесени в доме.

Оцените статью: Поделитесь с друзьями!

калькулятор расчета толщины утеплителя (теплоизоляции) для стен

Содержание   

В процессе утепления стен минеральной ватой для утепления стен очень важно заранее рассчитать все параметры теплоизоляции. Убедиться в том, что вы все сделали правильно.

Только после расчета следует приступать непосредственно к монтажу утеплителя. Но как выполнить расчет теплоизоляции правильно и не сделать ошибку во время его осуществления?

Монтаж пенополистирольных плит на стену

Сейчас мы в этом подробно разберемся.

1 Зачем нужен расчет?

Кто-то из вас может задать закономерный вопрос, а зачем собственно рассчитывать все так дотошно?

Ведь можно просто на глаз взять, к примеру, 10 сантиметров утеплителя из пенопласта, и его наверняка хватит для полноценного утепления дома.

И действительно, при отделке тех же стен часто расчет вообще не выполняется. Но это не всегда правильно.

Если вы экономный человек и желаете расходовать свои средства правильно, то вам придется выполнить несколько простых действий.

Это необходимо для того, чтобы получить возможность использовать точное количество утеплительного материала. При этом его будет достаточно и для надежной теплоизоляции, и для размещения точки росы в правильном месте.

С теплоизоляцией все и так понятно, даже если производится утепление ангара с помощью ППУ. Если толщины утеплителя не хватит, то поверхность стен не будет защищена должным образом. Рано или поздно она промерзнет, а это значит, что температура у вас в доме упадет, и очень быстро.

Тут важно использовать формулы расчета, чтобы не прогадать с толщиной, при этом не затрачивая лишних средств на работу. Ведь лишние пару сантиметров того же пенопласта – это тоже деньги.

В особенности если вы собираетесь отделывать всю наружную поверхность стен. На таких площадях перерасход теплоизоляции может существенно отразиться на вашем кошельке.

к меню ↑

1.1 Что такое точка росы?

Второй – более неочевидный момент, заключается в необходимости смещения точки росы. Для стен, особенно наружных, важно просчитать точку росы правильно.

Точкой росы называют место отложения конденсата. Конденсат образуется из-за пара, что проходит через стену. Выходит он из помещений внутри. Это нормальный процесс. Поверхность стен постоянно подвергается воздействию пара, так как пар – это продукт жизнедеятельности человека.

Горячий, слегка увлаженный воздух довольно легко проходит через почти все конструкции. И если стена не защищена пароизоляцией, то пар будет беспрепятственно выходить наружу.

Внутреннее утепление стен минеральной ватой по каркасу

Однако выход пара может существенно затрудниться, если температура разных конструкций имеет разные показатели.

Наверняка вы видели, как на поверхности стен в сарае или на даче скапливается вода даже с утеплителем для стен снаружи.

Она появляется ниоткуда и провоцирует появление на площади стен грибков, а также других подобных неприятностей.

Образуется конденсат из-за того, что неутепленные стены имеют пониженную температуру. Они промерзают, и на внешнем крае стены появляется так называемая точка росы. Положение, где температура конструкции находится на уровне примерно 10 градусов по Цельсию.

Именно в этом месте при образовании конфликта температур происходит физический процесс образования конденсата.

Если человек позаботился о монтаже утеплителя на поверхность стен, то они уже не промерзнут так, как раньше. Однако это не значит, что проблема решена. Без основательного расчета утеплитель может тоже частично промерзать. Это означает, что точка росы просто сместится на дальний край утеплителя.

Все бы ничего, да вот только большинство теплоизоляционных материалов влагу не любят, особенное ее избыточное количество. Нахождение в таких условиях может привести к различным неприятностям.

А всего этого можно избежать, если использовать калькулятор для расчета рабочей толщины теплоизоляции стен.

к меню ↑

1.2 Функции калькулятора

Выполнять расчет толщины для утепления стены можно вручную, а можно и с помощью калькулятора.

Калькулятор в привычном понимании – это специальная вычислительная машина, которая помогает проводить нам расчеты. Он часто используется даже при ручном выведении оптимальной толщины стен.

Однако в данном случае подразумевается другой калькулятор. Имеется в виду специальная программа по расчету эффективности теплоизоляции и утепления полиуретаном.

Сам по себе расчет можно изложить всего в нескольких формулах. Основные различия есть только в том, что каждый хозяин использует определенные материалы.

Так, стены могут быть выполнены из:

  • Кирпича;
  • Бетона;
  • Легких блоков;
  • Древесины и т.д.

Слой утеплителя в пустотелой стене из пеноизола

При этом каждый материал имеет свою теплопроводность и влияет на конструкции.

Аналогичная ситуация проходит с утеплителем для стен. Строители часто прибегают к помощи:

То есть по сути, все что от нас требуется – заранее определить нужные значения и подставить их в формулу. Этим и занимается калькулятор. Будучи прописанной по текущим стандартам программой, он содержит в себе все необходимые для работы данные.

Вам же нужно только выбрать материал, вписать его параметры и получить ответ. У того же пенопласта теплопроводность немного отличается от минваты.

Калькулятор же примет все заданные свойства и через секунду выдаст вам результат. Причем результат будет максимально точным, ведь калькулятор не может ошибаться.

Такие программы существенно упрощают жизнь людям. Даже далекому от математических формул и строительства человеку справиться с ними будет достаточно легко.

к меню ↑

2 Процедура расчета

Использовать калькулятор – это конечно хорошо. Но не будем забывать и про личные качества. Все-таки знание и понимание процесса расчета даст нам намного больше сведений, чем бездумное забивание нескольких цифр в рабочую программку.

Да и к тому же рассчитывать утеплители очень просто. Вся процедура заключается в сравнении наличных параметров и свойств, которые необходимы для качественного утепления.

Сначала рассчитывают номинальное теплосопротивление стен. То есть те их теплоизоляционные свойства, которыми они обладают изначально.

Теплосопротивление на утепление стен минеральными плитами считают по формуле:

R=p/k, где

  • R – непосредственно теплосопротивление;
  • P – толщина слоя;
  • k – коэффициент теплопроводности.

Однако показателей сопротивления будет несколько. Ведь стена может состоять не только из одного лишь кирпича или бетона. Снаружи ее могут отделать слоем в 3-4 см штукатурки, а изнутри нанесут еще несколько сантиметров шпаклевки. Все это надо рассчитать и сложить.

В итоге вы получите общий показатель сопротивления, что есть у ваших стен на данный момент. Затем вы сравните его с номинальными показателями по температурному региону.

Схематическое изображение теплоизоляционного пирога

Для этого загляните в справочник строительных норм. Под каждый регион в нем указывается показатель теплосопротивления, при котором стена эффективно удерживает тепло внутри дома. В большинстве случаев полученный показатель будет ниже номинального, и это нормально.

При несоответствии вам нужно отнять от номинального сопротивления реальное. Полученный результат и будет тем теплосопротивлением, которое необходимо будет нивелировать с помощью использования утеплителя.

к меню ↑

2.1 Расчет утеплителя

Итак, недостающие показатели получены. Что же делать дальше? А все очень просто. Действуем по той же схеме. Теперь у нас уже есть понимание того, сколько примерно тепла нужно компенсировать.

Также у нас есть показатели теплопроводности самих утеплительных материалов. Например, у пенопласта он находится 0,035 Вт/м. Данные берутся с таблиц.

Мы перемножаем показатели друг на друга, чтобы получить примерную рабочую толщину утеплителя. Если, например, 50 мм пенопласта не хватит, чтобы полностью компенсировать потери теплосопротивления, то нужно просто увеличить эту толщину и пересчитать ее еще раз.

В конце концов, вы придете к нормальному значению, что будет вас устраивать. Прелесть выполнения расчета в том, что вы сможете подобрать практически идеальный слой утеплителя и сэкономить на этом существенные деньги.

Вместо того чтобы по стандарту утеплять стены десятисантиметровыми пенополистирольными плитами или жидкими утеплителями для стен, можно задействовать несколько формул и определить, что в вашем случае, например, хватит и 7 см пенопласта. Так зачем платить больше?

Собственно, все калькуляторы расчета утеплителя работают по этим же формулам. Просто там все данные уже забиты в ядро программы. Это касается как табличных параметров, так и формул, а также порядка их просчета.

Человеку больше не нужно искать формулы, подставлять в них значения и мучиться с расчетами. Программа перебирает все эти функции на себя, при этом выполняя работу намного быстрее. Любой расчет такой калькулятор способен выполнить почти мгновенно, что тоже большой плюс.

к меню ↑

2.2 Пример расчета теплоизоляционных конструкций (видео)

Точка росы определение и расчет на калькуляторе

Утепление стен – один из главных вопросов при строительстве. С первого взгляда может показаться, что очень просто его решить – выбирай тот, который подходит по климатическим условиям и финансам, и утепляй. Однако, это не так. Существует ряд технических условий, которые необходимо выполнить, чтобы стены дома в холодное время года не сырели внутри и не промерзали снаружи. Одним из этих условий является утепление дома так, чтобы точка росы находилась ближе к наружной стене, и ни в коем случае – внутри дома. Для этого нужно уметь определить, где будет расположена точка росы при разных условиях, чтобы исключить возможность образования конденсата на стенах внутри помещения.

Что вы узнаете

Что такое точка росы

Точка росы – это показатель температуры, при котором происходит максимальное насыщение воздуха паром, и он начинает конденсироваться. Зависит этот показатель от двух основных факторов: температуры и влажности воздуха.

При изменении хотя бы одной из этих двух величин меняется и точка росы, то есть она постоянно перемещается, так же, как и не бывают все время постоянными температура и влажность воздуха.

Существует таблица точек росы при разных температурах и влажности воздуха, разработанная специалистами. Из нее можно увидеть, при каких условиях пар начинает конденсироваться. Например, в зимнее время при нормативной температуре воздуха в помещении +200С и влажности от 50% до 60% точка росы будет колебаться от 9,30С до 120С. То есть, внутри помещения не должен образовываться конденсат, так как при указанных условиях нет поверхностей с такой температурой.

Рассмотрим далее. Если в доме +200С, а на улице температура -200С, то в стене найдется точка росы с температурой +120С при относительной влажности 60%. Точка росы может перемещаться по толщине стены в зависимости от температуры внутри помещения и снаружи, а также от влажности в самой стене. Чем ближе точка росы к внутренней поверхности, тем больше вероятность того, что стена будет мокрая изнутри. А это уже создает неблагоприятные условия для проживания. Утепляя дом, мы можем сместить точку росы, так как при этом меняется температура самой стены.

Где будет находиться точка росы

Могут существовать три варианта конструкции стены: без утеплителя, с наружной и внутренней обшивкой. Рассмотрим, где может находиться точка росы в каждом из этих случаев?

  1. Конструкция без утеплителя, тогда точка росы расположена:
  • внутри стены ближе к наружной поверхности;
  • внутри стены смещена к внутренней поверхности;
  • на внутренней поверхности – внутри помещения стена будет оставаться мокрой на протяжении всего зимнего периода.

2. Имеется наружный утеплитель, тогда точка росы находится:

  • внутри утеплителя – это говорит о том, что расчет точки росы и толщины утеплителя проведены правильно, и стена в помещении будет сухой;
  • любой из трех описанных случаев в пункте 1 – причиной является неправильный выбор утеплителя и его характеристики.

3. Сделана внутренняя обшивка, то точка росы будет:

  • внутри стены ближе к утеплителю;
  • на внутренней поверхности стены под обшивкой;
  • в самом утеплителе.

Из рассмотренного выше становится понятно, что расположение точки росы также зависит от таких характеристик ограждения, как температура и паропроницаемость. Большинство современных утеплителей практически не пропускает пар, поэтому рекомендуется наружная обшивка стен.

Если вы выбираете внутреннее утепление, то нужно соблюсти следующие условия, чтобы:

  • стена была сухой и теплой;
  • утеплитель имел хорошую паропроницаемость и небольшую толщину;
  • в здании функционировали вентиляция и отопление.

Зная возможные зоны образования конденсата, т.е. место расположения точки росы, можно для определенных климатических зон подобрать такой вид и материал утепления, который не создаст условий для сырых стен внутри дома.

Существует мнение, что дом должен утепляться снаружи, а утеплитель по всем параметрам соответствовать ГОСТу. Тогда точка росы будет находиться внутри обшивки, то есть снаружи дома, и внутренние стены будут сухими в любой сезон. Именно поэтому наружное утепление выгоднее внутреннего.

Чтобы более точно рассчитать точку росы для этого существует множество калькуляторов в интернете.

Как убрать точку росы из стены (видео)

Автор статьи:

основные методы и нормативные документы

При проектировании строительства любого объекта ведется расчет точки росы. Это определение значения температуры, при которой образуется конденсат.

Данное значение позволяет определить локализацию образования конденсата, которая располагается на поверхности стены или внутри нее. Целесообразность ее расчета связана с определением толщины стены для сохранения тепла.

Важность определения точки росы определяется тем, что этот процесс влияет, влажной будет стена снаружи или внутри. Температура образования конденсата зависит от следующих факторов внутри помещения:

  • уровня влажности;
  • температуры воздуха.

Например, при температуре воздуха +20 oC и влажности 60% в помещении температурное значение выпадения конденсата на любой поверхности ниже +12 oC. Если на улице снизилась температура, а внутри она стабильно постоянна, то точка росы сдвинется в толще стены ближе к помещению.

Чем точнее определено значение показателя, тем выше вероятность создания комфортного микроклимата в зданиях и сооружениях. Расчет точки росы позволяет вычислить сегменты наиболее высокой влажности.

Целесообразно предотвратить данные процессы во избежание развития процессов гниения и появления грибка и плесени.

Достигается это смещением точки росы ближе к внешней поверхности, то есть мероприятиями по утеплению снаружи.

Грамотный расчет толщины утеплителя предотвратит промерзание стен в результате замерзания и оттаивания конденсата. Оптимально, если конденсат будет выпадать внутри утепляющего слоя.

Определение точки росы в стене

Основные показатели, необходимые для расчета, это влажность и температура внутри помещения. Для их определения используется бытовой психрометр.

Данный аппарат определяет оба показателя. Его работа основана на сочетании термометра, охлаждаемого увлажняющим устройством. Чем выше процент влажности, тем выше показатели термометра.

Для строительных нужд разработаны электронные устройства, мгновенно рассчитывающие величины температуры и влажности и выводящие показатели на дисплей. Также функцию расчета точки росы имеют некоторые модели тепловизоров.

Существует несколько способов расчета точки росы:

  • по формуле;
  • по таблице;
  • с помощью онлайн-калькулятора.

Расчет по формуле

Расчет точки росы T с помощью формулы проводится при известных показателях влажности и температуры. Итоговое значение будет считаться приблизительным ввиду пренебрежения некоторыми факторами.

Где нужно предварительно рассчитать f:

t — комнатная температура oC, φ — влажность %, а 17,27 и 237,7 — постоянные величины.

Например, для помещения нормальными показателями является влажность 60% и комнатная температура 21 oC, расчет будет выглядеть следующим образом:

Таким образом, расчет точки росы выглядит так:

Температура выпадения конденсата равняется 12.92 oC. Таким образом, утепление стен снаружи предотвратит потери тепла из помещения и промерзание стены.

Расчет по таблице

Точку росы можно определить с помощью созданной специалистами таблицы. Для того, чтобы определить точку росы, например для 21oC при 60% влажности, ищем пересечение строки температуры со столбиком влажности и получаем значение 12.9 oC.
Таблица 1. Определения точки росы.

Расчет с помощью онлайн-калькулятора

Также вы можете рассчитать значение точки росы, воспользовавшись онлайн-калькулятором на сайтах и форумах строительной тематики. Внеся значения температуры и влажности, снова получаем значение 12,92 oC.

Как работать с онлайн-калькулятором для расчета точки росы в стене посмотрите на видео:

Нормативные документы

Необходимость расчета точки росы регламентируется строительными нормами и правилами. СП 23-101-2004 «Проектирование тепловой защиты зданий», а также СНиП 23-02 «Тепловая защита зданий». Недостаточное утепление смещает точку росы ближе к помещению.

Так как температура в районе оконных блоков или дверей ниже, чем общая рассчитанная точка росы, то выпадение конденсата в этих сегментах неизбежно в холодное время года. Определение точки росы важно для осуществления решения, с какой стороны проводить утеплительные работы и какой толщины целесообразнее приобрести утеплитель.

Важно! Чем ниже коэффициент теплопроводности утеплителя, тем меньшей толщины потребуется утепляющий слой. Например, толщины утеплителя из минеральной ваты будет достаточно 0,12 м, когда для сохранения тепла в помещении вам понадобится более 5 метров железобетона.

Таблица 2. Зависимость толщины материала стены от теплопроводности

Материал стеныКоэфф. теплопроводн. I, Вт/(м* oC)Требуемая толщина в метрах
Пенополистирол0,0390,12
Минеральная вата0,0410,13
Железобетон1,75,33
Кладка из силикатного полнотелого кирпича0,762,38
Кладка из дырчатого кирпича0,51,57
Клееный деревянный брус0,160,5
Керамзитобетон0,471,48
Газосиликат0,150,47
Пенобетон0,30,94
Шлакобетон0,61,88

Сведение к минимуму потерь тепла и поддержание комфортного микроклимата являются первоочередными задачами при проектировании и утеплении зданий. Соблюдение строительных правил и норм, а также санитарно-гигиенических нормативов позволит грамотно изготовить инженерную документацию и рассчитать объемы требуемых стройматериалов.

Как рассчитать точку росы в стене при утеплении

При строительстве здания или отдельных его частей часто перед застройщиком возникает понятие точка росы.

Этот термин слышали все кто хоть раз менял окна, утеплял стены или менял систему отопления в своем жилье.

Итак, рассмотрим, что такое точка росы, зачем надо знать её расположение в стене и как её можно определить с помощью доступных подручных средств.

Определяем суть термина

При высокой температуре и влажности холодные стены покрываются росой

Если выражаться простым языком, то точка росы – это момент, когда внутренняя температура помещения и влажность значительно превышают температуру поверхности перекрытия. При этом на поверхности стены неизбежно конденсируется влага из воздуха. Влияние на этот момент оказывают:

  • влажность воздуха в помещении;
  • температура стен или перекрытий;
  • температура внутри здания.

Если в помещении влажно и жарко, то на холодном стакане сразу образуются капли росы.

Для чего данный термин используется при строительстве?Любые ограждения: стена или окно – это граница с внешним миром, а значит температура их поверхности отличается от средней в помещении.

Значит, в том месте, где на стене расположена точка росы, будет регулярно скапливаться влага. На нахождение точки росы оказывают влияние:

  • характеристики используемых при строительстве материалов и их толщина;
  • место монтажа, количество слоев и качество утеплителя.

Важно, чтобы точка росы находилась с внешней стороны стены здания. В противном случае мы получаем постоянно влажную поверхность и как следствие образование плесени, грибка, разрушение декоративного слоя и несущих характеристик конструкции.

Расчет точки росы

Многих владельцев квадратных метров интересует вопрос, как самостоятельно рассчитать точку росы в стене. Чисто теоретически в этом нет ничего сложного, особенно, если вы математик, физик или просто хорошо помните школьную программу.

Для этого необходимо воспользоваться формулой:

ТР = (b * λ(Т,RH))  / (a * λ(Т,RH)), где:

  • ТР – искомая точка;
  • а –константа равная значению 17,27;
  • b – константа равная значению 237,7;
  • λ(Т,RH) – коэффициент, который рассчитывается следующим образом:

λ(Т,RH) = (а*Т) / (b*T+ lnRH), где:

  • Т – внутренняя температура помещения;
  • RH – влажность в помещении, значение берется в долях, а не в процентах: от 0,01 до 1;
  • ln – натуральный логарифм.

Если в школе вы увлекались игрой в баскетбол или чтением Достоевского больше, чем логарифмами, не расстраивайтесь. Все уже посчитано в таблице данных тепловой защиты за номером СП 23-101-2004, составленной на основании замеров и расчетов научно-проектными организациями.

Наиболее вероятные значения в средних российских условиях указаны в таблице ниже:

Если вы решите рассчитать значение, то получите данные, сходные с указанными в таблице. Кроме всего прочего, для расчета можно воспользоваться онлайн – калькулятором.

Практическое применение

Знание величины значения точки росы важно при планировании утепления здания

На практике значение термина точки росы важно при утеплении стен здания. Для обеспечения оптимальных теплоизоляционных характеристик ограждающих частей здания необходимо знать не только величину значения точки росы, но и ее положение на поверхности или в теле стены.

Современные методы строительства допускают 3 варианта проведения работ и в каждом случае точка выпадения конденсата может быть разной:

  1. Здание, построенное из единого материала без дополнительной теплоизоляции. Если тело стены состоит из кирпича, камня или монолитного бетона, то при соблюдении технологии строительства в таких зданиях точка росы находится внутри стены. Её расположение тяготеет к внешнему краю поверхности. При условии снижения внешних температур точка росы будет смещаться внутрь стены. Если разница температур окажется значительной, то может наступить момент, когда точка росы окажется внутри помещения, и на стене выступит влага. Всем нам знакомая ситуация: запотевание окон зимой.

    При правильном утеплении снаружи точка росы будет располагаться внутри утеплителя

  2. Здание построено с укладкой слоя внешней теплоизоляции. При правильном расчете данная теплоизоляция является оптимальной. Правильно подобранные толщины материала позволят утеплить строение, при этом точка росы будет располагаться внутри слоя утеплителя.
  3. Строение с внутренним утепляющим слоем. В данном случае точка росы будет находиться близко к внутренней поверхности стены, а в случае похолодания сместится непосредственно к поверхности.

Исключение в случае с однотипной стеной составят, пожалуй, деревянные срубы. Дерево – природный материал, обладающий прекрасными качественными характеристиками низкой теплопроводности и высокой паропроницаемости. В таких зданиях точка росы всегда будет расположена ближе к внешней поверхности. Деревянные срубы почти никогда не требуют проведения работ по дополнительной теплоизоляции.

Последний вариант крайне нежелателен и производится только тогда, когда нет другого выхода. О том, как правильно утеплять стены дома, смотрите в этом видео:

Если всё же утеплитель укладывается внутри здания, то следует провести дополнительные мероприятия:

  • оставить воздушный карман между слоем теплоизоляции и облицовкой;
  • предусмотреть устройство вентиляционных отверстий и обогрев помещения с дополнительным уменьшением уровня влажности.

Что делать, чтобы вывести точку росы из дома наружу?

Как правильно поступать, когда дом уже построен и эксплуатируется, а стены начали сыреть? Всё выше сказанное говорит нам о том, что необходимо изменить факторы, влияющие на точку росы. А значит, можно либо усилить отопление, чтобы снизить уровень влажности, либо снизить разницу в температуре покрытий, а именно проложить слой внешней теплоизоляции.

Варианты утепления стен

Почему утепляем стены именно снаружи? Во-первых, это удобно. Во-вторых, в таком случае температуру внешней среды будет иметь не стена дома, а слой теплоизоляции. Кривая снижения температуры станет более пологой, и точка росы фактически сдвинется к краю теплоизоляционного слоя. Важные советы по данному вопросу смотрите в этом видео:

Чем толще покрытие, тем вероятнее смещение точки росы в тело теплоизоляции за пределы стены дома. Как результат, дома, хорошо утепленные снаружи, служат дольше и не требуют больших затрат на отопление.

Материал теплоизоляции

Пеноплекс рекомендуется для наружного утепления стен

Как мы уже разобрались, лучше использовать теплоизоляционный материал, который можно монтировать с наружной стороны здания. Как правило, речь идет о пеноплексе, пенопласте или минеральной вате.

Материал на основе минеральной ваты обладает хорошей паропроницаемостью. При этом частично влага задерживается в утеплителе и стекает вниз под действием силы тяжести. Утеплителю данное обстоятельство ничем не грозит, поскольку базальтовое или стеклянное волокно устойчиво к действию влаги.

Нелишним не будет устроить слой гидроизоляции в нижней части строения, чтобы предотвратить разрушение фундамента.

Материалы типа пеноплекса паронепроницаемы, поэтому при их монтаже следует оставить воздушный карман, чтобы отвести влагу с внутренней поверхности материала.

При соблюдении данных условий можно говорить о сохранности стен и эффективности утепления.

Расчет точки росы в каркасном доме

Как рассчитать точку росы в каркасном доме и почему мокнет утеплитель

При выстраивании и проектировании всех домов крайне важным будет грамотный расчет точки росы в каркасном доме при выстраивании стен. Неправильный расчет точки росы и/или полное игнорирование такого показателя сможет разрушить дом изнутри.

Учет точки росы в области строительства может обезопасить от разрушительного влияния внешней среды.

Точка росы – что это такое

Итак, точка росы – определенный температурный предел воздуха, ниже которой пар будет содержаться в воздухе, а еще станет насыщенным и преобразуется в жидкость.

Точка росы является еще и тем местом, где холодный и теплый воздух встречаются, и в том месте при их взаимодействии появляется жидкость в виде конденсата. На примере строительный построек точка росы будет проявляться как конденсат на окнах, и всегда при резких похолоданиях на улице заметно, как на ранее сухом стекле окна появляется запотевание и капли воды. Это безвредное и ближайшее проявление точки росы. В природе точка росы появляется как капельки утренней росы на листиках растений и остальных объектах. Все это появится в результате взаимодействия ночного холодного воздуха и нагреваемого солнечными лучами утреннего теплого воздуха. В случае с нагреваемым помещением точка росы будет создавать искусственного в любое время суток, при температурных условиях ниже нуля на улице.

Совсем иным будет то, если образование точки росы (т.е. конденсата) будет обнаружено внутри домовой стены. Даже не самый опытный строитель обеспокоиться образованием излишней влаги в помещении, которое ранее было сухим. Так как последствия такого скопления влажности могут быть наиболее неблагоприятными. Но внутренняя домовая стена не единственное место для разрушения, где можно проявить себя неграмотный расчет точки росы или даже его полное отсутствие. Неправильно выполненный расчет и размещение точки росы станет врагом №1 в сфере строительства, который медленно изнутри будет разрушать все крепкие строения.

Подробности

Где должна быть ТР

Лучшим местом для появления точки росы в стене будет утеплитель, размещенный извне стены. Толщина утеплительного слоя на стенке должна быть такой, чтобы в прохладное время года конденсат не смещался в саму стенку или если начал смещаться, но не на долгое время. О разрушительных последствиях нахождения ТР в теле стены несущего типа рассмотрим дальше. Стены, базой которой стали пористые материалы (газоблоки и пеноблоки), ракушечник и иные материалы нуждаются в большем слое утеплителя, так как они прекрасно впитывают и сохраняют влагу. Получается, что даже не долгосрочное (несколько дней) пребывание в пористой стенке ТР может разрушительным образом будет сказываться на внутренней целостности. И потому теплые материалы для укладки стен могут быть эффективными лишь в определенных регионах, далеко с не самыми морозными зимами.

Если по расчетам точка росы будет время от времени перемещаться в стену дома или есть большая вероятность сдвига, то такой факт важно учитывать при выборе материала для стеновой укладки. Для такого случая прекрасно подойдут стеновые материалы с высокой степенью плотностью, и те, что выдерживают множество циклов заморозки и оттаивания, без повреждений, с огромным коэффициентом морозустойчивости. К материалам, устойчивым к морозу, отнесется кирпич и керамзитобетон. В таблице представлены все показатели устойчивости к морозу наиболее популярных стеновых материалов.

Как рассчитать точку росы в каркасном доме с утеплением

Рассчитать одно, определенное место на стене, где будет проявлять себя конденсат, нереально. Так как нахождение точки росы будет зависеть от определенных параметров и такой показатель переменчивый. Рассчитать можно лишь определенную дистанцию в стеновой толщине, где будет появляться жидкость при разных изменениях температуры снаружи дома. К примеру, если в помещении температура стабильная, а на улице стало резко холодно, то точка росы станет сдвигаться по толщине стен поближе к помещению. Посредством формулы можно получать по максимуму точные расчеты росы и однородной, и многослойной стены. Вычислять место появления точки росы во всех многслойных стенах крайне просто, и для того, чтобы узнать точку росы в каркасном доме, нужны такие показатели:

  •  Температура воздуха в помещении.
  • Температура на улице.
  • Отдельная толщина всех слоев стен.
  • Коэффициент теплового сопротивления материалов, из которых выстроены домовые стены.
  • ТР при относительной влажности воздуха в регионе (таблица представлена ниже).

Для определения части планируемой стены, в которой будет точка росы и выделение конденсата, важно знать о таких показателях.

  1. Температура ТР в регионе, с нужными для вас показателями влажности и воздушной температуры в помещении. Такой показатель можно просмотреть в таблице выше.
  2. Воздушная температура, которая появляется на границе пары слоев стен, при интересующих показателях. Назовем это ТС (точка между слоев).

Если разница выделенных выше показателей станет положительной, то ТР будет в утеплителе, если показатель будет отрицательный, и ТР начнет накапливать жидкость в доме или стене. Иными словами, если температура стыка утеплителя и стен будет выше и иметь знак  +, чем температура ТР по таблице, и тогда конденсат будет появляться в утеплителе. Рассмотрим пример. Температура ТР в регионе со влажностью 60% и температурой в комнате +21 градус, по таблице будет составлять +12.9 градусов. Температура воздуха на границе утеплительного слоя и стены составляет +15 градусов. Разница между показателями составляет +2.1 градус. Если разница показателей, отмеченных выше, будет положительной, как в этом случае, то точка росы будет в утеплителе, если показатель отрицательный, то ТР начнет скапливать жидкость в домовой стене.

В нашем случае температура выделения жидкости из пара будет раньше, нежели насыщенный влагой воздух дойдет до главной стены. Конденсат выпадет в утеплителе, а не в несущей стеновой части или внутри него. Появляется вопрос о том, что если температуру ТР при заданной влажности выберем из таблицы, то так вычислять температуру между стеновыми слоями.

Расчет температуры воздуха на границе пары слоев стен очень просто, применяя такую формулу:

ТС=(Т2-Т1)*(С1*0.01/к)/(С2*0,01/к)

Т2 – воздушная температура внутри помещения.

Т1 – температура воздуха со стороны улицы.

С1 – толщина стенового материала.

К – коэффициент тепла стенового материала.

К примеру, выберем регион, где точка росы +12.9 градусов со влажностью в 60%, температура в комнате +21 градус и температура на улице -12 градусов. Далее вам требуется вычислить для таких условий, какая будет температура между обычной стеной в 1.5 кирпича с толщиной 0.38 метров и наружным видом утеплителя из пенопласта, толщина в 0.1 метр. Чтобы убрать температуру ТР из таблицы. Для этого применяйте формулу. Получится следующее:

Т2 составляет =21 градусов (воздушная температура в помещении).

Т1 составляет – 13 градусов (воздушная температура на улице).

С1 составляет 0.38 метров (толщина стенового материала).

К1 – 0.6 (коэффициент теплового вида сопротивляемости кирпичей).

С2 – 0.1 метр (толщина слоя утеплителя, сделанного из пенопласта).

К2 составляет 0.04 (коэффициент теплового сопротивления пенопластовых листов).

Расчет температуры между стеной из кирпича утеплителе из пенопласта, в выбранных нами условиях климата 9.52.

По вычислениям температура воздуха между пенопластовым утеплителем в 0.1 метр и стеной из кирпича в 0.38 метра при температуре воздуха на улице -13 градусов и температуре в доме +21, составляет 9.52. так, если произвести вычисления, точка росы, из-за которой намокает утеплитель, будет -3.38. Как вы видите, получится отрицательный показатель, т.е. состояние конденсата воздух достигнет в кирпичной стене и в нем начнет накапливаться влажность. Приведенный расчет ТР будет самым точным, с погрешностью до ½ градуса, в отличие от определенных онлайн-калькуляторов и остальных приборов, которые не способны учесть разную материальную структуру.

Расчет точки росы на калькуляторе/приборе

В Интернете есть много онлайн-программ (калькуляторов), посредством которых можно рассчитывать приблизительное размещение ТР в стене. Программа рассчитает ТР, основываясь на множество показателей, которые важно вводить вручную. Это информация о материалах, из которых вы планируете возводить стены, число стеновых слоев и их толщина, температура воздуха внутри и снаружи, а также влажность воздуха. Калькуляторы удобны в расчетах, и вместе с цифровыми расчетами можно будет увидеть диаграммы и графики перемещения ТР в зависимости от изменений воздушной температуры. Но результаты расчетов у большинства калькуляторов отличаются и насколько точны расчеты, неизвестно.

ТР можно определять даже в реальном времени, посредством особого устройства. Это электроприбор с монитором, где отображены сведения про влажность внутри помещения, отображается температура воздуха и ТР. Эти приборы актуальны для изменения точки росы в уже законченной и возведенной строительной конструкции. При проектировании стеновой толщины и здания этот прибор не поможет.

Вред точки росы для домовых стен

Мы рассмотрели, что ТР может быть размещена в 3 разных стеновых участках:

  • В наружном виде утеплителя стен.
  • В стенах, поближе к наружной части.
  • В стеновой поверхности, поближе ко внутренней части.

В каждом из мест, которые перечислены, ТР будет проявляться себя по-разному. Если в одном месте она будет безвредной, то внутри дома/стене будет оказывать разрушительные последствия на стеновую целостность. Ниже мы рассмотрим поведение ТР в каждом из описанных мест.

Точка росы в утеплителе наружного вида

Это наиболее безвредное нахождение ТР для дома, и в таком случае:

  1. Конденсат при попадании ТР образуется в самом утеплителе.
  2. Слой утеплительного материала не гигроскопичный, и потому влага не станет задерживаться в стеновом конструктиве и испаряется при изменении воздушной температуры.
  3. За счет пароизоляционных качеств утеплительного материала, влажность, которая появляется во время испарения конденсата, выйдет на улицу и не будет взаимодействовать с домовой стеной.
  4. Домовые стены сухие в течение года, причем и снаружи, и изнутри.
  5. Стены сохранят прочность и целостность в течение многих десятков лет.

Рассмотрим еще один вариант.

Точка росы в домовой стене, ближе к наружной части

Поведение стен будет во многом зависеть от материала, из которого она сделана. Лучше всего переносят ТР стены из тяжелых и плотных стройматериалов, таких как керамзитобетон, кирпич, древесина и камень, потому что они в меньшей мере подвержены разрушению и обладают огромный коэффициент морозоустойчивости. Домовые стены выстроенных из пористых материалов, отлично впитывают влагу и тех, которые пропускают пар. Это газоблоки, пеноблоки и подобные материалы, а у них действие точки росы должны быть по минимуму коротким.

При появлении конденсата внутри стен, материал начнет насыщаться жидкостью. При дальнейшем понижении температуры воздуха накопленная жидкость станет замерзать и расширяться, а увеличение объема жидкости разрушит любые материал стен внутри. Это приведет к появлению и мелких, и больших трещин к стеновой структуре. Так они окончательно потеряют свою прочность. В случае, когда стена, в которой точка росы внутри, а еще утеплена снаружи, то материал не станет препятствовать выходу влаги наружу.

По этой причине вся жидкость будет накапливаться на поверхности, между стеной и утеплителем. Это влечет образование грибковых колоний и плесени, со всеми последствиями, которые вредят и зданию, и человеческому здоровью. Если домовые стены не утеплены снаружи, то жидкость будет выходить с повышением воздушной температуры, но это не спасет стены от внутренних разрушений после замерзания воды. Такие испарения жидкости от влажных стен вы сможете наблюдать в виде белоснежного налета на стенах из кирпичей.

Q&A: Что такое точка росы? | JLC Онлайн

Q. Когда люди говорят о точке росы в сборке стены, они говорят о местоположении или температуре? Как рассчитывается точка росы?

A. Консультант по энергетике и устойчивому дизайну Энди Шапиро отвечает : Точка росы — это не место; это температура, при которой вода конденсируется из воздуха. Поскольку точка росы изменяется в зависимости от влажности в воздухе, а также от температуры воздуха, точку росы для определенной температуры и относительной влажности лучше всего искать в таблице или психрометрической диаграмме (см. Ниже).

Вода из воздуха будет конденсироваться на компонентах здания, когда они будут ниже точки росы воздуха, который с ними контактирует. В трубах холодной воды жарким влажным летом вода конденсируется и капает. Неизолированные подвальные полы в жаркое влажное лето часто имеют температуру ниже точки росы горячего влажного наружного воздуха, поэтому вода конденсируется на них, если пространство открыто наружу. В здании с кондиционером в теплом влажном климате, например на юго-востоке США, гипсокартон может месяцами находиться ниже точки росы наружного воздуха.

То, что компонент здания находится ниже точки росы, не означает, что возникнет проблема. Виниловые оконные рамы и медные трубки не боятся влаги. С другой стороны, деревянные оконные элементы и гипсокартон не выдерживают большого количества влаги, особенно если смачивание продолжается и компоненты не могут высохнуть.

Определение того, будет ли компонент в стеновой сборке когда-либо достаточно холодным, чтобы допустить конденсацию, то есть быть ниже точки росы, может быть сложно.Если бы каждый элемент стены действовал как твердое тело (чего не делает стекловолокно), то расчет температуры в любой точке конструкции стены был бы довольно простым. На половине значения теплоизоляции стены температура будет на полпути между внутренней и внешней.

На самом деле такие статические расчеты могут вводить в заблуждение, поскольку материалы стен могут впитывать влагу, не будучи поврежденными. Более точные расчеты, называемые динамическими расчетами, учитывают множество дополнительных факторов, но настолько сложны, что их лучше всего выполнять с помощью компьютерного программного обеспечения.Хорошая новость заключается в том, что этот тип динамических расчетов обычно не требуется — до тех пор, пока строители применяют хорошие методы строительства, которые удерживают внутренний воздух из стен в холодном климате и наружный воздух из стен в холодном климате и позволяют компонентам здания, которые иногда влажный, чтобы высохнуть. Одним из очень хороших источников информации о зданиях, позволяющих избежать повреждения от влаги, является серия Builder’s Guide от Building Science Corp. (978 / 589-5100; www.buildingscience.com).

Калькулятор точки росы — Найдите точку росы

Этот калькулятор точки росы можно использовать для изучения взаимосвязи между точкой росы, температурой и относительной влажностью.Если вы когда-нибудь задавались вопросом «что такое точка росы?» или как рассчитать относительную влажность в определенных условиях, тогда этот калькулятор для вас! Кроме того, не стесняйтесь обращаться к нашему калькулятору охлаждения ветром или калькулятору индекса жары, если вас интересует влияние погоды на температуру. Продолжайте читать, чтобы узнать больше об образовании росы, комфортной температуре точки росы и относительной влажности.

Что такое точка росы? Определение точки росы

Название может быть немного обманчивым — точка росы на самом деле не имеет ничего общего с геометрией.Это просто максимально возможная температура, при которой водяной пар может конденсироваться с образованием росы. Например, если в вашей комнате высокая относительная влажность, вы можете наблюдать образование росы на поверхности окна. Это происходит из-за того, что температура в районе окна упала ниже точки росы. Если подумать, то можно найти пример именно этого явления в фильме «Титаник» …

Вы просто ищете краткое определение точки росы? Вот, пожалуйста!

  • Точка росы — это температура, при которой водяной пар начинает конденсироваться в воду.

или, если хотите более сложный:

  • Точка росы — это температура, при которой воздух или газ должны быть охлаждены, чтобы водяной пар конденсировался в росу (или иней, если температура ниже точки замерзания воды).

Что такое относительная влажность?

Относительная влажность выражается в процентах. Это отношение текущей абсолютной влажности к максимальной абсолютной влажности, возможной для текущей температуры.Другими словами, это количество влаги в воздухе по сравнению с тем, что воздух может максимально «удерживать» при этой температуре:

  • relative_humidity = 100% * текущая абсолютная влажность / максимальная абсолютная влажность , при текущей температуре

или, иначе говоря, относительная влажность — это отношение давления водяного пара Pw к давлению насыщенного водяного пара Pws при данной температуре:

  • относительная_влажность = 100% * Pw / Pws

Чтобы понять это определение, вам также необходимо знать значение абсолютная влажность .Это просто содержание воды в воздухе, выраженное в граммах на кубический метр:

.

абсолютная влажность = m / V , где m — масса водяного пара, а V — объем смеси воздуха и водяного пара.

Для насыщенного воздуха при 30 ° C (86 ° F) абсолютная влажность в атмосфере колеблется от ~ 0 до 30 граммов на кубический метр. Вы заметили, что формулы не учитывают температуру?

Как рассчитать точку росы? Как рассчитать относительную влажность?

Было сформировано множество уравнений, описывающих эту взаимосвязь.Однако ни один из них не идеален. В этом калькуляторе точки росы используется формула Magnus-Tetens (Sonntag90), которая позволяет нам получать точные результаты (с погрешностью 0,35 ° C) для температур от -45 ° C до 60 ° C.

Точка росы рассчитывается по следующей формуле:

Ts = (bα (T, RH)) / (a ​​- α (T, RH))

где:

  • Ts — точка росы;
  • T — температура;
  • RH — относительная влажность воздуха;
  • a и b — это коэффициенты.Для набора констант Sonntag90 a = 17,62 и b = 243,12 ° C ;
  • α (T, RH) = ln (RH / 100) + aT / (b + T) .

Если вы хотите рассчитать относительную влажность, вам необходимо знать точку росы и температуру, чтобы использовать уравнение, полученное из приведенной выше формулы. Или просто введите значения в наш калькулятор точки росы (который также может служить калькулятором относительной влажности). Результат появляется в кратчайшие сроки!

Зависимость точки росы от влажности: разница между точкой росы и влажностью

Теперь, когда вы знаете формулы для точки росы и влажности, вы можете задаться вопросом, в чем разница между этими двумя терминами? Точка росы — это точное измерение содержания влаги в воздухе.Чем выше точка росы, тем больше влаги в воздухе. Если вы хотите знать, удобно ли вам (или погоде, хех) совершать утреннюю пробежку или отправиться в поход на выходных, придерживайтесь этого термина. Относительная влажность — более запутанная величина, поскольку она зависит от температуры и давления в рассматриваемой системе.

Точка росы и относительная влажность — это не одно и то же, но они тесно связаны: чем выше относительная влажность, тем ближе точка росы к текущей температуре воздуха.В частном случае, когда воздух максимально насыщен водой (относительная влажность 100%), точка росы равна текущей температуре.

Чтобы лучше понять разницу между точкой росы и влажностью, давайте посмотрим на этот пример:

  • Представьте, что сейчас холодное осеннее утро, 40 ° F на улице (~ 4,5 ° C). Наш прогноз показывает, что точка росы также равна 40 ° F, , поэтому относительная влажность составляет 100% .
  • Возьмем другой пример: наконец-то наступило лето, мы отдыхаем у реки, а температура составляет 75 ° F (24 ° C).Точка росы составляет 60 ° F, (~ 15,5 ° C), поэтому, следуя формуле, мы можем узнать, что относительная влажность составляет ~ 60% .
  • А теперь парадоксальный вопрос: какая из этих двух ситуаций была бы более влажной ? Однозначно второй! Точка росы — это значение, на которое мы должны обратить внимание, если мы хотим знать, насколько сухой или влажный снаружи, а не относительную влажность.

Утренняя роса

Вы, наверное, заметили, что роса обычно образуется ночью.Наша обувь быстро намокает, когда мы идем по траве на рассвете, особенно в летние месяцы. Почему это? Почему мы не наблюдаем росу средь бела дня? А как образуется утренняя роса?

  1. Когда солнце садится, температура поверхности падает — солнце не светит и не нагревает землю, поэтому поверхность охлаждается за счет потери инфракрасного излучения.
  2. Объекты с плохой теплопроводностью не удерживают эту энергию слишком долго: поверхность холоднее, чем более глубокие слои грунта.
  3. Если поверхность охлаждается до температуры ниже точки росы, атмосферный водяной пар конденсируется с образованием капель или инея на поверхности.
  4. Кроме того, если слой воздуха, прилегающий к земле, охлаждается до температуры точки росы, образуется туман.
  5. Когда солнце встает высоко, капли росы испаряются в воздух.

Предпочтительные условия для образования росы

Мы можем разделить предпочтительные условия для образования росы на две группы — погодные факторы и структурные характеристики, при которых роса предпочитает формироваться.

  1. Предпочтительные погодные условия:

    • Чистое ночное небо, особенно после теплого дня
    • мало водяного пара в верхних слоях атмосферы
    • высокая влажность в нижних слоях воздуха
    • спокойная ночь, без сильного ветра
  2. Предпочтительные структуры, на которых образуется роса:

    • тонкие открытые объекты, такие как листья, стебли травы, лепестки

    • плохая теплопроводность, хорошие радиаторы

    • хорошо изолирован от земли

Какая комфортная температура точки росы?

Высокие значения точки росы могут вызывать дискомфорт.При высоких температурах наш организм использует испарение пота для достижения охлаждающего эффекта. Этот процесс сильно замедляется, если воздух уже насыщен водяным паром.

Точка росы Уровни комфорта
<50 ° F (<10 ° C) немного сухо для некоторых
50-60 ° F
(10-16 ° C)
сухой и комфортный
60-65 ° F
(16-18 ° C)
становится липким
65-70 ° F
(18-21 ° C)
неприятно, много влаги в воздухе
> 70 ° F
(> 21 ° C)
неудобно, угнетающе, даже опасно выше 75 ° F

Применение точки росы

Вы можете быть удивлены, но калькулятор точки росы может быть полезен во многих различных областях.Назову лишь несколько:

  • Meteorology — самый очевидный: точка росы используется для выражения количества влаги в воздухе

  • Aviation — температура точки росы рассчитывается для оценки вероятности обледенения карбюратора или появления тумана

  • Сельское хозяйство — для поддержания оптимальной влажности в теплице и предотвращения конденсации воды на растениях

  • Технология — измерители точки росы используются при производстве и использовании различных технических газов (например,г. H 2 , N 2 , O 2 , Ar), а также в области электроники и оптики (осаждение из паровой фазы и тонкие пленки)

  • Лекарство — например, мониторинг процесса стерилизации

Интересные факты о росе

Знаете ли вы, что …

  • Теоретически максимально возможное количество росы составляет около 0,8 мм / ночь, но редко превышает 0,5 мм.
  • В некоторых засушливых регионах — таких как, например, пустыня Негев в Израиле — роса — действительно важный источник воды , представляете ?! Подсчитано, что растения пустыни получают ~ 50% воды за счет выпадения росы.
  • Люди иногда путают росу с другим процессом, называемым гуттацией . Если растения получают слишком много воды, на кончиках и краях листа образуются капли. Экссудируемое вещество с высоким содержанием сахара и калия, поэтому, если капли высыхают, на поверхности остается белая корка. Это может быть похоже на обычную росу, но это совершенно другое явление, обычно происходящее в течение дня.

Почему внешние стены должны дышать

Точка росы (DP) — это температура, до которой воздух должен остыть, прежде чем его насыщает водяной пар.Если воздух охлаждается дальше, влага «выливается» в виде конденсата. Так образуется роса в саду, когда ночью становится прохладно. Когда это происходит внутри дома, «роса» конденсируется на любой поверхности, более холодной, чем воздух.

Взаимосвязь между точкой росы, влажностью и замерзанием

Существует взаимосвязь между точкой росы и влажностью. Более высокий DP соответствует большей влажности в воздухе. Следовательно, нет абсолютной меры. Роса становится иней, когда температура воздуха опускается ниже точки замерзания воды.

.

Как рассчитать текущую DP в вашем регионе

Классическая формула для точки росы (T dp ) использует следующие данные для расчета

# Градусы Цельсия (T)

# Относительная влажность (RH)

Слава богу, есть веб-сайты, которые делают для нас вычисления. Погуглите «калькулятор точки росы», если мы возбудили ваше любопытство в достаточной степени, чтобы узнать больше.

Почему мы должны позволять наружным стенам дышать

Природа освежает воздух в большинстве мест за пределами наших домов. Это сохраняет его чистым и здоровым. Мы должны делать что-то подобное в своих домах. Это простой способ впустить свежий воздух и удалить несвежий воздух, как это делают наши легкие. В противном случае может накапливаться влага, запахи, газы, пыль и другие загрязнители, а это плохо.

Градостроители настаивают на том, чтобы во всех зданиях были двери и окна, открывающиеся наружу, если для этого нет убедительной причины.Обычно они подходят для рециркуляции свежего воздуха, если мы их откроем.

Многие дома в Калгари полагаются на механические системы для подачи свежего воздуха и удаления загрязняющих веществ из кухонь и ванных комнат. Эти системы часто работают лучше всего, когда есть фильтры для предотвращения вторичного загрязнения.

Общие способы, которыми наши дома могут дышать свежим воздухом

# Открывайте окна и двери на противоположных концах не менее десяти минут каждый день

# Избегайте герметизации стыков, трещин и отверстий в местах соединения частей здания

# Используйте механическую систему для всего дома, чтобы нагнетать воздух внутрь и наружу.

Как плохая вентиляция может вызвать эти проблемы

# Избыточная энергоэффективность может улавливать загрязняющие вещества внутри дома

# Концентрация угарного газа может увеличиваться до тех пор, пока не достигнет опасной точки

# Высокая внешняя влажность может проникнуть внутрь, вызывая плесень и гниль древесины.

Вентиляция чердака может помочь предотвратить это.

В ближайшее время поговорите с Valiant Exteriors (403) 829-1661) о нашей системе вентиляции чердака.Это вытягивает старый воздух из дома, поэтому в него входит свежий свежий воздух. Мы — небольшой семейный бизнес в Калгари, но у нас большие творческие идеи.

Связанные сообщения

Введение в типы окон, доступные в Канаде

Наука о вентиляции чердаков в жилых домах

Конденсация на бутылке: Лиз Вест BY CC 2.0

Формула и график: любезно предоставлено Wikipedia

Building Envelope Thermal & Анализ влажности

Термический анализ ограждающих конструкций здания и влажность

Пример

: использование THERM и WUFI-ORNL / IBP для прогнозирования конденсации и влагосодержание в стеновых конструкциях

Филип Луо, архитектор, LEED AP
4 января 2010 г.

1.0 Введение

С момента судебного разбирательства по делу о токсичной плесени Ballard vs. Fire Insurance Exchange. в 2001 году архитекторы и владельцы зданий все больше беспокоились об ответственности, вызванной наличием плесени на здоровье жильцов и качество воздуха в помещениях. Дело Балларда показывает, что присяжные были готовы вынести многомиллионные судебные решения против страховых компаний за ответственность за загрязнение плесенью. 1 Часто участвуют в качестве ответчиков в судебных процессах о загрязнении плесенью, архитекторы начинает сомневаться, что старые «практические правила» проектирования для контроля влажности в оболочке здания ‘может способствовать накопление влаги в некоторых зданиях 2 .

К счастью, есть ряд программных приложений, которые могут помочь Архитекторы оценивают эффективность своей конструкции оболочки.Эта статья исследует две бесплатные программы анализа конвертов: THERM и WUFI. THERM — бесплатная программа, предоставляемая Национальной лабораторией Лоуренса Беркли. для анализа двумерной теплопередачи через строительные изделия. WUFI-ORNL / IBP, совместная разработка Окриджской национальной лаборатории и Институт Фраунгофера — это гигротермальная модель, предсказывающая перенос влаги. в системах ограждающих конструкций зданий в течение определенного периода времени.

2.0 Дождевик в сравнении со стеной из металлических панелей

Ventilated Rainscreen — это система облицовки, разработанная архитекторами и производителями производители приложили все усилия для улучшения характеристик влажности традиционных систем облицовки металлическими панелями. В этом исследовании будет использоваться THERM и WUFI для сравнения производительности системы Rainscreen с традиционная система металлических панелей.

РИСУНОК 1. РАЗРЕЗ ТРАДИЦИОННОЙ МЕТАЛЛИЧЕСКОЙ ПАНЕЛИ

Традиционная система металлических панелей механически крепится к металлической каркасная стена.Между металлической панелью и ограждением здания находится прослойка из воздухопроницаемого гидроизоляционного материала, такого как строительная бумага (асфальт пропитанная бумага) или строительная пленка. Полость стойки изолирована ватный утеплитель (минеральное волокно). Между металлическими шпильками и интерьером гипсокартон — это пароизоляция. Пароизоляция сохраняет тепло, влажность попадание воздуха в полость стены.

РИСУНОК 2. ВЕНТИЛИРУЕМЫЙ ДОЖДЕВЫЙ ЭКРАН

Вентилируемый дождевик отделяет внешнюю металлическую панель от ограждение здания с вентилируемым воздушным пространством и слоем жесткой изоляции.Вместо того, чтобы пропускать воздух через слой гидроизоляции, гидроизоляция слой также является воздушной преградой. Полость стойки неизолирована и не герметизируется пароизоляцией. Таким образом, воздух из внутренних помещений здания может высушить полость шипа.

3.0 Термический анализ холодного климата (THERM)

В данном исследовании используется программное обеспечение LBNL THERM 3 для сравнения тепловых характеристик сборки металлических панелей и сборки вентилируемого дождевого экрана в холодное время года, городской климат, такой как St.Луис, штат Миссури. 99% зимних дизайнерских условий данные из международного аэропорта Сент-Луис Ламберт показывают температуру воздуха 6 ° F (-14,5 ° C) и точки росы -6,5 ° F (-21,4 ° C). Температура в помещении установлена ​​на 68 ° F (20 ° C) с относительной величиной 50%. Влажность (RH).

РИСУНОК 3. СХЕМА ТЕПЛОПЕРЕДАЧИ ТЕРМИЧЕСКОЙ МЕТАЛЛИЧЕСКОЙ ПАНЕЛИ


Рисунок 3 — это цветная инфракрасная диаграмма THERM температурной модели через секция металлической панели.Цветовая диаграмма показывает, что наиболее впечатляющие перепад температур возникает в изоляционном слое, где температура падает с 58 ° F до 10,3 ° F от боковой поверхности комнаты к внешняя поверхность. Любой влажный воздух, просачивающийся через пароизоляция, вероятно, будет конденсироваться при попадании на холодную внешнюю поверхность. Термический анализ показывает, что существует большой риск накопления влаги. вверх в полость стены традиционной сборки металлических панелей.

РИСУНОК 4. СХЕМА ТЕПЛОПЕРЕДАЧИ ТЕРМИЧЕСКОГО Дождевого экрана

Рисунок 4 — это цветная инфракрасная диаграмма THERM модели теплопередачи. вентилируемого дождевика в сборе. Происходит значительное изменение температуры в жесткой изоляции снаружи ограждения здания. Тепло от комната способна прогреть полость стойки выше точки росы. Тепловой Модель переноса предполагает низкий риск образования конденсата.

ТАБЛИЦА 1. АНАЛИЗ ТОЧКИ РОСЫ

МЕТАЛЛИЧЕСКАЯ ПАНЕЛЬ ДОЖДЕВЫЙ ЭКРАН
Наружная температура, 6 ° F, 6 ° F
Температура в помещении 68 ° F 68 ° F
Относительная влажность в помещении 50% 50%
Точка росы в помещении 48 ° F 48 ° F
Температура поверхности в помещении 62.8 ° F 54,1 ° F
РИСК КОНДЕНСАЦИИ НИЗКИЙ НИЗКИЙ
Температура воздуха в камере 38 ° F 47 ° F
Точка росы полости 20 ° F 29 ° F
Температура поверхности полости 10.3 ° F 40,6 ° F
РИСК КОНДЕНСАЦИИ ВЫСОКИЙ! НИЗКИЙ

Анализ точки росы в таблице 1 показывает, как анализ теплопередачи может использоваться для определения риска попадания влаги. THERM предсказывает температуру по различным компонентам сборки; однако он не моделирует влажность.Пользователь должен использовать другие ресурсы, чтобы предсказать опасность образования конденсата. Я использовал онлайн-калькулятор точки росы 4 найти точку росы в полости стены.

4.0 Анализ влажности холодного климата (WUFI)

WUFI-ORNL / IBP 5 может рассчитать термическую и перенос влаги в сборке в течение определенного периода времени. Эта учеба сравнивает сборку металлических панелей и дождевиков в Сент-Луисе, штат Миссури, с С 22 сентября 2008 г. по 1 февраля 2009 г. (зима).Интерфейс WUFI включает в себя анимированную диаграмму, которая отслеживает изменения следующих данных в течение период времени: температура (КРАСНЫЙ), относительная влажность (ЗЕЛЕНЫЙ) и вода содержание (СИНИЙ). Пользователь может увидеть, достигнет ли относительная влажность и когда 100%, и конденсат начинает накапливаться по мере содержания воды в компонентах здания.

РИСУНОК 5. РАСЧЕТ ПЕРЕДАЧИ ВЛАЖНОСТИ МЕТАЛЛИЧЕСКОЙ ПАНЕЛИ WUFI

На Рисунке 5 показано, что относительная влажность (ЗЕЛЕНЫЙ) в стойке Metal Panel полость достигает 100% (происходит конденсация) в течение периода выполнения расчетов.Кроме того, в фанерной подложке повышается содержание воды (СИНИЙ). подтверждает наличие воды в полости шипа. Результаты расчета анимированы, чтобы пользователь мог видеть конденсацию в начале полости стены в декабре и до февраля.

РИСУНОК 6. РАСЧЕТ ПЕРЕДАЧИ ВЛАЖНОСТИ ДОЖДЕВОГО СТЕКЛА WUFI

Относительная влажность на Рисунке 6 Расчет дождевого экрана остается в пределах нормальный диапазон (20% -80%) на протяжении всего периода выполнения.Нет значительного увеличение содержания воды в сборке. Результаты расчета подсказывают низкий риск скопления влаги в вентилируемом дождевом экране.

5.0 Заключение

WUFI решает проблему конденсации и накопления влаги более прямым образом чем THERM. Он предсказывает, когда произойдет конденсация и сколько влаги будет в сборке в течение определенного периода времени. Главный недостаток WUFI-ORNL / IBP ограниченная библиотека строительных материалов и отсутствие опций в толщина строительного материала.Например, утеплитель бывает толщиной 0,089 м и 0,140 м. Пользователь не может создать изоляцию на расстоянии 1 дюйма (0,025 м). приращения. Бесплатная версия не позволяет пользователю редактировать или добавлять библиотека материалов.

THERM менее сложен, чем WUFI, но более гибок. Пользователь может нарисовать рассматриваемую сборку и смоделировать ее в THERM. Также THERM может использоваться для расчета теплопередачи на окнах.

В целом, этот автор смог достичь тех же результатов, используя THERM и WUFI.Они оба предсказали низкий риск образования конденсата в вентилируемом дождевом экране. и высокий риск образования конденсата в традиционной металлической панели. Если пользователь не имеет никакого реального жизненного опыта, чтобы подтвердить результаты любого программа, не помешает использовать одни программы для проверки результатов другого.

6.0 Примечания

1 Энн Диринг, (2001), За больным зданием синдром: судебные тяжбы по плесени становятся основным направлением деятельности AllBusiness, http: // www.allbusiness.com/finance/insurance-risk-management/992659-1.html

2 Рон Никсон, (2005), Является ли ваша оболочка здания дизайн вызывает проблемы с плесенью ?, AllBusiness, http://www.allbusiness.com/technology/computer-software/587784-1.html

3 http://windows.lbl.gov/software/therm/therm.html

4 http://www.dpcalc.org/

5 http://www.ornl.gov/sci/btc/apps/moisture/index.html

Статьи :

Исследования в области дизайна :

  • Отель и конференц-центр, Напа, CA
  • Ветеринарная больница, Сан-Рамон, Калифорния
  • Retail Building, Сан-Бруно, Калифорния
  • Офисное здание, Сан-Бруно, Калифорния
  • Развлекательный центр, Литтлтон, CO

Проекты :

Калькулятор точки росы

Калькулятор рассчитывает температуру, до которой воздух должен быть охлажден, чтобы он стал насыщенным водяным паром и образовал росу.

Укажите любых двух из трех переменных ниже для расчета третьей.


Калькулятор относительной температуры ветра | Калькулятор теплового индекса

Что такое влажность?

Влажность определяется как количество водяного пара (газообразная фаза воды) в воздухе. Это индикатор наличия росы, мороза, тумана и осадков. Максимальное количество водяного пара, которое может удерживать воздух, зависит от температуры; чем выше температура, тем большее количество водяного пара он может удержать, прежде чем достигнет насыщения.

Влажность часто называют абсолютной влажностью и относительной влажностью, как в этом калькуляторе. Значение абсолютной влажности возвращается как часть результатов расчета, но именно относительная влажность широко используется в повседневной жизни и используется как часть расчета температуры точки росы.

Абсолютная влажность — это измерение содержания воды в воздухе, обычно в граммах на кубический метр. Он рассчитывается путем деления общей массы водяного пара на объем воздуха.Учитывая такое же количество водяного пара в воздухе, абсолютная влажность не изменяется с температурой при фиксированном объеме. Если объем не фиксирован, как в атмосфере, абсолютная влажность изменяется в ответ на изменения объема, вызванные колебаниями температуры и давления.

Относительная влажность сравнивает текущее отношение абсолютной влажности к максимальной влажности для данной температуры и выражает это значение в процентах. Чем выше процент, тем выше влажность.На него влияют как температура, так и давление. При таком же количестве водяного пара в прохладном воздухе будет более высокая относительная влажность, чем в более теплом.

Относительная влажность — широко используемый показатель в сводках погоды и прогнозах погоды и является хорошим индикатором осадков, росы, мороза, тумана и видимой температуры. Кажущаяся температура — это температура, воспринимаемая людьми. Летом, чем выше относительная влажность, тем выше кажущаяся температура. Это результат более высокой влажности, что снижает скорость испарения пота, что увеличивает воспринимаемую температуру.

Относительная влажность 100% указывает на то, что воздух насыщен, а это означает, что при текущих условиях водяной пар в воздухе не может увеличиваться дальше в нормальных условиях. Относительная влажность 100% также является точкой, при которой может образовываться роса.

Что такое точка росы?

Точка росы определяется как температура, при которой данный объем воздуха при определенном атмосферном давлении насыщается водяным паром, вызывая конденсацию и образование росы. Роса — это конденсированная вода, которую человек часто видит рано утром на цветах и ​​траве.Точка росы варьируется в зависимости от количества водяного пара, присутствующего в воздухе, при этом более влажный воздух приводит к более высокой точке росы, чем сухой воздух. Кроме того, чем выше относительная влажность, тем ближе точка росы к текущей температуре воздуха, а относительная влажность 100% означает, что точка росы эквивалентна текущей температуре. В случаях, когда точка росы ниже точки замерзания (0 ° C или 32 ° F), водяной пар превращается непосредственно в иней, а не в росу.

В то время как восприятие различается у разных людей, и люди на определенном уровне могут адаптироваться к более высоким точкам росы, более высокие точки росы обычно вызывают дискомфорт, потому что влажность препятствует правильному испарению пота, затрудняя охлаждение тела человека.И наоборот, более низкие точки росы также могут быть неудобными, вызывая раздражение и растрескивание кожи, а также высушивая дыхательные пути человека. Управление по охране труда и здоровья США рекомендует поддерживать температуру воздуха в помещении в пределах 68–76 ° F при относительной влажности 20–60%.

Точка росы также учитывается в авиации общего назначения для расчета вероятности таких потенциальных проблем, как обледенение карбюратора или туман. В некоторых случаях устройства, известные как измерители точки росы, используются для измерения точки росы в широком диапазоне температур.Эти устройства состоят из полированного металлического зеркала, которое охлаждается при прохождении через него воздуха. Температура, при которой на зеркале образуется роса, и есть точка росы.

Программное обеспечение WUFI

Образовательные программы для ПК для расчета совместного тепло- и влагообмена в строительных элементах

WUFI — Национальная лаборатория Ок-Ридж (ORNL) / Институт строительной физики им. Фраунгофера (IBP) — это управляемая с помощью меню программа для ПК, которая позволяет реалистично рассчитывать переходный одномерный перенос тепла и влаги в многослойных компонентах здания, подверженных естественному Погода.WUFI-ORNL / IBP основан на новейших открытиях, касающихся диффузии пара и переноса жидкости в строительных материалах. Базовая модель проверялась более 20 лет.

Гигротермия

Помимо тепловых свойств строительного элемента и их влияния на потери тепла, необходимо также учитывать его гигричность. Постоянно повышенное содержание влаги в компоненте может привести к его повреждению. Повышенный уровень поверхностной влажности в жилых комнатах может привести к гигиеническим проблемам и риску для здоровья из-за роста плесени.

Кроме того, термические и гигричность компонентов здания тесно взаимосвязаны, а повышенное содержание влаги способствует потерям тепла. Тепловая обстановка влияет на перенос влаги. Следовательно, оба должны исследоваться вместе в их взаимозависимости; область исследований в области гигротермии занимается этими проблемами.

Устарело: точка росы (глазер)

Метод точки росы, подробно описанный в справочнике Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха (ASHRAE), был распространенным методом оценки баланса влаги в компонентах здания с учетом диффузионного переноса пара в его внутреннем пространстве.Однако этот метод не позволяет ни капиллярному переносу влаги в компоненте, ни его сорбционной способности, что снижает риск повреждения в случае конденсации. Кроме того, поскольку метод рассматривает только установившийся перенос при сильно упрощенных граничных условиях, он не может воспроизвести отдельные краткосрочные события или учесть дождь и солнечную радиацию. Он предназначен для обеспечения общей оценки гигротермической пригодности компонента, а не для моделирования реальных условий нагрева и влажности в компоненте, подверженном воздействию погодных условий, преобладающих в его отдельном месте.

На сегодняшний день: WUFI-ORNL / IBP

Управляемая меню компьютерная программа WUFI-ORNL / IBP, разработанная отделением Holzkirchen Fraunhofer IBP, и ORNL проверяет, используя данные, полученные в результате наружных и лабораторных испытаний, позволяет реалистично рассчитать переходное гигротермическое поведение многослойных компонентов здания, подверженных естественному климатические условия.

WUFI-ORNL / IBP основан на новейших открытиях, касающихся диффузии пара и переноса жидкости в строительных материалах.WUFI-ORNL / IBP требует только стандартных свойств материала и легко определяемых функций хранения влаги и транспортировки жидкости.

WUFI-ORNL / IBP может использовать измеренные погодные данные, включая проливной дождь и солнечную радиацию, в качестве граничных условий, что позволяет проводить реалистичные исследования поведения компонента при воздействии естественной погоды.

WUFI-ORNL / IBP можно использовать для оценки:

  • время высыхания кладки при захваченной строительной влаге
  • опасность межклеточного конденсата
  • Влияние проливного дождя на внешние элементы здания
  • Эффект от ремонта и модернизации
  • — гигротермические характеристики конструкций кровли и стен при предполагаемом использовании или в различных климатических зонах.

WUFI-ORNL / IBP — это инструмент для разработки и оптимизации строительных материалов и компонентов. Например, он использовался в качестве инструмента для разработки интеллектуального замедлителя парообразования.

WUFI-ORNL / IBP ориентирован на производителей строительной продукции, консультантов, дизайнеров, инженерные бюро и экспертов в области гигротермии. WUFI-ORNL / IBP можно использовать в качестве учебного пособия или рекламного инструмента, поскольку наглядно визуализируются результаты расчетов.

WUFI-ORNL / IBP работает на ПК под управлением Windows 7, 2000, XP и Vista.Обширная он-лайн справка и документация составляют 200 страниц. WUFI-ORNL / IBP доступен на 10 языках. Бесплатная версия для исследований и образования для США и Канады доступна для загрузки.

Правильное применение WUFI-ORNL / IBP требует опыта в области гигротермии и некоторых базовых знаний в использовании численных методов расчета.

Эксперименты и моделирование на открытом воздухе

Национальная лаборатория Ок-Ридж (ORNL) и филиал Института строительной физики им. Фраунгофера в Хольцкирхене проводят лабораторные и полевые испытания для оценки термического и гигрического поведения строительных материалов и компонентов.Эти эксперименты, как правило, длительны и дороги, поэтому можно исследовать лишь небольшое количество вариантов. Подходящий метод моделирования может заменить некоторые из этих экспериментов. После проверки и калибровки экспериментально его можно использовать для тестирования других вариантов.

Эксперимент

На стены из силикатно-силикатного кирпича, выходящие на западную сторону, были нанесены внешние теплоизоляционные композитные системы с изоляцией из пенополистирола (EPS) и минеральной ваты (MW) (исходное содержание воды: 10% об.) тестового дома. Просыхание стены контролировали в течение трех лет путем гравиметрических испытаний образцов сверл.

Моделирование эксперимента с помощью расчета WUFI-ORNL / IBP

Сборка компонентов и числовая сетка

Отдельные слои компонента и их толщина заносятся в таблицу. Затем компонент разделяется на числовые элементы сетки, ширина которых выбирается в соответствии с ожидаемыми изменениями температуры и влажности для соответствующего местоположения.Определение сетки вручную выполняется путем ввода желаемого количества элементов сетки на слой и коэффициента расширения, который описывает соотношение размеров следующих друг за другом элементов сетки. Особенно следует ожидать резких градиентов температуры и влажности вблизи границ раздела слоев. Разделение слоя на два позволяет сетке расширяться и впоследствии сжиматься внутри слоя материала. При желании WUFI-ORNL / IBP создает автоматическую сетку (грубую, среднюю или точную), которая подходит для большинства приложений.

Данные материала

Данные о гигротермическом материале для каждого слоя можно прочитать из базы данных WUFI-ORNL / IBP. Как минимум, WUFI-ORNL / IBP требует объемной плотности, пористости, удельной теплоемкости, теплопроводности (в сухом состоянии) и коэффициента сопротивления диффузии (в сухом состоянии). В зависимости от объекта и цели расчета могут использоваться дополнительные данные: функция накопления влаги, коэффициенты переноса жидкости для всасывания и перераспределения, зависящая от влажности и температуры теплопроводность, зависящий от влажности коэффициент сопротивления диффузии и Этальпия, зависящая от температуры.В данном примере использовались параметры материала из образовательной базы данных. Предупреждаем пользователей при использовании свойств материалов из этой образовательной базы данных. ORNL работает над обеспечением надежной базы данных по новым гигротермальным лабораториям.

Данные о погоде

Граничными условиями, действующими на компонент здания, являются температура и относительная влажность внутреннего и внешнего воздуха, а также дождевые и радиационные нагрузки, которые зависят от наклона и ориентации компонента здания.Эти данные могут быть получены из базы данных. ASHRAE предоставило исходные данные для разработки расчетного года влажности для 64 городов.

Временные шаги для климатических данных и расчета могут быть выбраны по усмотрению пользователя; в большинстве случаев подходят почасовые значения.

Нажмите, чтобы увеличить

Расчеты

После ввода нескольких оставшихся данных, таких как коэффициенты поверхностного переноса, начальные условия и т. Д., можно начинать расчет. Затем WUFI-ORNL / IBP вычисляет временную эволюцию температуры и поля влажности в компоненте. Обычно расчет на один год с шагом в один час занимает менее одной минуты. WUFI-ORNL / IBP предлагает экспериментально проверенные значения по умолчанию в отдельной базе данных материалов. Во время расчета WUFI-ORNL / IBP дополнительно отображает вновь вычисленные поля температуры и влажности после каждого шага, позволяя вам наблюдать за процессами в компоненте в виде «пленки».Этот кинопоказ, конечно, несколько медленнее, так что вам придется проводить длительные вычисления без пленки; с другой стороны, вы можете сразу увидеть, соответствует ли тестовый расчет или исследование параметров вашим ожиданиям, и при необходимости остановить его. Направление и величина потоков тепла и влаги через внутреннюю и внешнюю поверхности, а также через внутренние поверхности раздела материалов указаны соответствующими стрелками.

Результаты расчетов и сравнение с экспериментом

Отображение результатов

После расчета результаты, сохраненные в двоичном файле результатов, доступны для просмотра и анализа.WUFI-ORNL / IBP позволяет отображать кривые курсов во времени и профили поперечных сечений в виде графиков, сравнивать их с данными измерений, редактировать и распечатывать их. Вы также можете просматривать графики климатических данных. Вы можете посмотреть фильм после расчета на досуге; вы можете экспортировать его вместе с внешней программой просмотра на компакт-диск. Если вы хотите обработать результаты самостоятельно, вы можете экспортировать их в файлы ASCII.

Курсы

Для всего смоделированного промежутка времени WUFI-ORNL / IBP создает курсы, которые описывают временное поведение следующих величин: плотности теплового потока через внутреннюю и внешнюю поверхность, соответственно, температуры и относительной влажности на произвольном количестве свободно выбираемых мониторов. позиции, среднее содержание влаги в каждом материале и общее содержание влаги во всем строительном компоненте.Диаграмма для настоящего примера показывает результирующие зависимости содержания влаги, усредненные по поперечному сечению кладки силикатного кирпича, и сравнивает их со значениями, измеренными гравиметрически. Стене с изоляцией из минеральной ваты требуется несколько больше года, чтобы достичь нормальной равновесной влажности 2,5% об. и стены с изоляцией EPS два с половиной года.

Профили

Кроме того, для моментов времени, выбранных пользователем, WUFI-ORNL / IBP предоставляет профили, которые показывают распределение следующих величин по компоненту: температура, относительная влажность, содержание влаги.На диаграмме показано сравнение измеренного и рассчитанного профилей влагосодержания для четырех разных моментов времени. Очевидно, хорошее согласие между измерениями и расчетами может быть достигнуто для изоляции EPS (вверху), а также для изоляции MW (внизу). Форма профиля влажности указывает на то, что в случае изоляции из пенополистирола большая часть первоначальной влаги высыхает по направлению к стороне помещения (справа), тогда как система отделки внешней изоляции (EIFS) с более проницаемой минеральной ватой также позволяет значительно высыхать для снаружи, что приводит к более быстрому общему высыханию.

Пленка

WUFI-ORNL / IBP также записывает файл пленки во время расчета, который содержит все вычисленные профили и который — отображается как «пленка» — передает динамическое впечатление о тепловых и гигрических процессах в компоненте.

Эта пленка идеальна для понимания гигротермических процессов и развития «ощущения» ситуации в компоненте. Можно напрямую наблюдать за реакцией различных материалов на изменяющиеся климатические условия.

В данном примере получено хорошее соответствие между расчетом и экспериментом, так что метод расчета в целом, а также параметры материала, использованные для этого конкретного примера, можно считать действительными. Таким образом, теперь возможно провести чисто вычислительное исследование вариантов и экстраполяций этого эксперимента.

За дополнительной информацией обращайтесь: Саймон Паллин или Андре Десьярле

% PDF-1.7 % 7241 0 объект > эндобдж xref 7241 107 0000000016 00000 н. 0000005798 00000 н. 0000006121 00000 п. 0000006175 00000 н. 0000006305 00000 н. 0000006737 00000 н. 0000006776 00000 н. 0000006826 00000 н. 0000006941 00000 н. 0000007829 00000 н. 0000008608 00000 н. 0000009231 00000 п. 0000009502 00000 н. 0000010192 00000 п. 0000010469 00000 п. 0000011071 00000 п. 0000011759 00000 п. 0000012016 00000 п. 0000012617 00000 п. 0000013090 00000 н. 0000013341 00000 п. 0000013902 00000 п. 0000014325 00000 п. 0000014583 00000 п. 0000015034 00000 п. 0000064920 00000 н. 0000095825 00000 п. 0000129592 00000 н. 0000167236 00000 н. 0000186411 00000 н. 0000189062 00000 н. 0000189119 00000 н. 0000235588 00000 н. 0000324046 00000 н. 0000324592 00000 н. 0000325846 00000 н. 0000326131 00000 н. 0000326482 00000 н. 0000326533 00000 н. 0000326608 00000 н. 0000326698 00000 н. 0000326792 00000 н. 0000326849 00000 н. 0000326979 00000 н. 0000327036 00000 н. 0000327201 00000 н. 0000327258 00000 н. 0000327384 00000 н. 0000327530 00000 н. 0000327731 00000 н. 0000327788 00000 н. 0000327894 00000 н. 0000327996 00000 н. 0000328149 00000 н. 0000328206 00000 н. 0000328338 00000 н. 0000328440 00000 н. 0000328605 00000 н. 0000328661 00000 н. 0000328767 00000 н. 0000328871 00000 н. 0000329012 00000 н. 0000329068 00000 н. 0000329166 00000 н. 0000329282 00000 н. 0000329435 00000 н. 0000329491 00000 н. 0000329593 00000 н. 0000329713 00000 н. 0000329835 00000 н. 0000329891 00000 н. 0000330001 00000 п. 0000330057 00000 н. 0000330173 00000 н. 0000330229 00000 н. 0000330347 00000 н. 0000330403 00000 п. 0000330460 00000 н. 0000330517 00000 н. 0000330574 00000 н. 0000330631 00000 н. 0000330689 00000 н. 0000330805 00000 н. 0000330863 00000 н. 0000330973 00000 п. 0000331030 00000 н. 0000331176 00000 н. 0000331233 00000 н. 0000331290 00000 н. 0000331348 00000 н. 0000331458 00000 н. 0000331516 00000 н. 0000331574 00000 н. 0000331632 00000 н. 0000331742 00000 н. 0000331800 00000 н. 0000331984 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *