Menu Close

Какие батареи отопления лучше алюминиевые или биметаллические: Биметаллические или алюминиевые радиаторы отопления: какой выбрать?

Биметаллические или алюминиевые радиаторы отопления: какой выбрать?

Еще до этапа монтажа всей системы важно определиться с тем, что лучше: биметаллические или алюминиевые радиаторы отопления. Для организации грамотного выбора необходимо сравнить их основные параметры.

Биметаллические и алюминиевые радиаторы: в чем разница?

Внешне оба типа радиаторов выглядят практически одинаково. Они имеют идентичный дизайн и секционную конструкцию. Однако существенное отличие заключается в их устройстве, что определяет эксплуатационные качества батарей.

Алюминиевые радиаторы изготовлены целиком из специального алюминиевого сплава. При их производстве может использоваться метод экструзии или метод литья. В первом случае получают более дешевые и легкие радиаторы. Однако по качеству экструзионные изделия существенно уступают литым, которые отличаются повышенной надежностью и долговечностью.

Основная разница между алюминиевыми и биметаллическими радиаторами состоит в том, что второй тип приборов изготавливается из двух разных видов металлов.

Корпус с ребрами изготовлен из алюминия, а трубы, по которым движется теплоноситель, сделаны из качественной стали.

Теплоотдача

Чтобы правильно выбрать отопительные приборы, важно определиться с тем, какие радиаторы теплее. По этому показателю безусловным преимуществом обладают алюминиевые радиаторы. Это объясняется высокой теплопроводностью алюминия. Благодаря этому одна секция может давать до 200 Вт тепловой энергии. Также важным плюсом является малая тепловая инерция, за счет чего помещение очень быстро прогревается после запуска системы отопления.

Биметаллические радиаторы уступают алюминиевым по теплоотдаче. Потери тепла объясняются наличием стального сердечника, которые имеет меньшую теплопроводность. В результате теплоотдача может уменьшаться до 20 %. Также несколько выше у этих радиаторов тепловая инерция.

Таким образом, если оценивать, какие радиаторы отопления лучше (алюминиевые или металлические) по тепловой эффективности, то выбор будет в пользу первого варианта. Однако этот показатель является не единственным, который нужно принимать во внимание при выборе.

Прочность

Определяясь с тем, какие выбрать радиаторы, обязательно нужно учитывать их прочность. В этом отношении алюминиевые батареи сильно уступают биметаллическим. Они рассчитаны на рабочее давление в среднем от 6 до 16 атмосфер. Также эти батареи не устойчивы к перепадам давления и гидроударам, чем отличаются от аналогов не в лучшую сторону. При гидроударах обычно происходит разрушение алюминиевых батарей.

Прочность биметаллических радиаторов, в которых вода движется по стальным трубам, намного выше. Их использование допускается при давлении до 20-40 атмосфер, в зависимости от модели. Также батареи данной категории хорошо выдерживают гидроудары. Эти преимущества биметаллических радиаторов имеют особое значение при комплектации систем централизованного типа, используемых в многоэтажных домах.

Химическая стабильность

Довольно существенной является разница между алюминиевыми и биметаллическими радиаторами по химической стойкости. Здесь алюминий также проигрывает. При повышении уровня pH теплоносителя более 8 он достаточно быстро подвергается коррозии. При этом такой высокий уровень pH является нормой для воды, которая циркулирует в наших центральных отопительных системах. Сталь по химической стойкости не считается более надежным сплавом. Биметаллические приборы намного дольше и эффективнее противостоят коррозии.

Что выбрать

Вопрос о том, какие радиаторы отопления лучше: алюминиевые или биметаллические, следует рассматривать в разрезе типа монтируемой системы.

В индивидуальных системах отсутствует чрезмерное давление воды, не возникают перепады и гидроудары, а качество теплоносителя контролируется и поддерживается на высоком уровне самим пользователем. Поэтому для таких систем хорошо подходят алюминиевые радиаторы. Они прослужат не менее 10 лет, обеспечивая эффективный и экономичный обогрев помещений.

Для централизованных систем использование батарей из алюминия противопоказано. Поэтому в данном случае лучше подойдут биметаллические радиаторы, которые хорошо выдерживают тяжелые условия эксплуатации.

Стоят они существенно дороже, но и срок их эксплуатации увеличен примерно в 2 раза.

Нередко пользователей интересует вопрос, можно ли совмещать алюминиевые и биметаллические радиаторы в доме. Каких-либо противопоказаний в этом плане нет. Вполне допускается использование биметаллических и алюминиевых радиаторов в одной системе, однако ее эксплуатационные характеристики должны удовлетворять параметрам алюминиевых батарей, которые являются более слабым звеном. Другими словами, можно ставить биметаллические радиаторы в систему, рассчитанную на алюминиевые батареи, а не наоборот.

Продажа качественных радиаторов

Компания Ogint предлагает купить оптом алюминиевые и биметаллические радиаторы собственного производства.

Наша продукция имеет все необходимые сертификаты и отвечает современным требованиям качества. Обращаясь в нашу компанию, вы получаете максимально выгодную цену от производителя. Оформляйте заказ через форму на сайте или свяжитесь с нами по телефону.

Какой радиатор отопления лучше: алюминиевый или биметаллический

В последние несколько лет все большее число людей принимает решение заменить морально и физически устаревшие чугунные батареи на более современные и удобные — алюминиевые или биметаллические радиаторы.

Внешне такие приборы выглядят практически идентично, поэтому у большинства возникает вполне логичный вопрос — какой выбрать радиатор отопления: алюминиевый или биметаллический, и существует ли между ними принципиальная разница.

Чтобы понять, какой радиатор отопления лучше, алюминиевый или биметаллический, нужно разобраться в специфике их эксплуатации, а также технических характеристиках:

  • Алюминиевые радиаторы имеют: максимальное давление от 10 до 20 Бар, массу одной секции от 1,2 до 1,45 кг, теплоотдачу одной секции при температуре теплоносителя 70 градусов по Цельсию — от 175 до 200 Ватт.
    В среднем гарантийный срок службы составляет от 3 до 10 лет.
  • Биметаллические радиаторы имеют: максимальное давление от 30 до 35 Бар, массу одной секции от 1,36 до 1,92 кг, теплоотдачу одной секции при температуре теплоносителя 70 градусов по Цельсию — до 200 Ватт. В среднем гарантийный срок службы составляет от 10 до 15 лет.
Впрочем, даже оценив эти параметры, нельзя сделать однозначного вывода о том, какой радиатор — биметаллический или алюминиевый — лучше, то есть при выборе следует учитывать характерные особенности оборудования и планируемую сферу эксплуатации.

Особенности алюминиевых радиаторов

Особенность алюминиевых радиаторов заключается в том, что они достаточно «требовательны» к чистоте теплоносителя. Именно поэтому их бесперебойная работа на протяжении всего срока службы может быть гарантирована лишь при использовании в составе автономных систем отопления частных домов. В данном случае владелец загородного дома или коттеджа может лично контролировать не только качество и состав теплоносителя, но также давление в трубах и приборах.

К сожалению, в централизованных сетях это невозможно, нельзя исключать риска гидроударов (а значит, и протечек алюминиевых радиаторов), наличия щелочей и кислот в теплоносителе.

Таким образом, если вы выбираете радиатор для автономной системы отопления, то алюминиевый вполне подходит, впрочем, можно использовать и биметаллический, но затраты на его приобретение окажутся выше. Учитывая это, частные домовладельцы в подавляющем большинстве случаев делают выбор именно в пользу качественных алюминиевых радиаторов.

Технологии изготовления алюминиевых радиаторов

Обратите внимание: все алюминиевые радиаторы изготавливаются из сплава, который состоит из алюминия и кремниевых добавок. Но при этом технологии изготовления могут использоваться различные. Наиболее популярны следующие методы производства устройств:

  • Экструзия. Такие устройства считаются достаточно «хрупкими», так как имеют многочисленные соединения деталей. Чаще всего для производства используется вторичный алюминий, что в конечном итоге влияет на срок службы и надежность прибора в целом.
    Впрочем, цена таких изделий более чем доступна. Эксперты не рекомендуют использовать такие модели в центральных отопительных системах.
  • Литье. Приборы, созданные по такой технологии, способны выдерживать давление до 16 Бар. Как правило, методом литья создаются секционные разборные радиаторы.

Чтобы понять, какой радиатор отопления лучше (алюминиевые или биметаллические модели), нужно учитывать не только преимущества, но и недостатки. К числу минусов алюминиевых радиаторов относят:

  • Вероятность газообразования внутри секций. При несоблюдении ряда условий велика вероятность появления очагов кислородной коррозии уже в первый год использования.
  • При резких перепадах давления (то есть гидроударах) есть вероятность образования течи в результате повреждения соединительных областей.
  • Тепло внутри секций распределяется неравномерно, по большей степени оно «концентрируется» на ребрах.
Таким образом, алюминиевые радиаторы можно назвать отличным решением для автономных отопительных систем, где владелец дома может лично контролировать химический состав теплоносителя, а также температуру, давление и другие параметры.


Преимущества и недостатки биметаллических радиаторов

В отличие от алюминиевого, биметаллический радиатор изготавливается не из одного, а из двух видов металла — алюминия и стали (или иногда меди).

А в частности, внутренние каналы, предназначенные для циркуляции теплоносителя, создаются из нержавеющей стали, а корпус, выполняющий декоративные и теплообменные функции, изготавливается из алюминия. Такое «сочетание» обеспечивает высокую надежность и эффективность приборов: сталь гарантирует химическую стойкость и прочность, а алюминий — отличную теплопроводность.


Учитывая это, можно однозначно ответить на вопрос о том, какой радиатор отопления лучше выбрать для квартиры — алюминиевый или биметаллический. Конечно, в условиях центральной системы отопления лучшие эксплуатационные параметры демонстрирует биметаллический радиатор, так как:

  • Стальные каналы, по которым перемещается теплоноситель, инертны к повышенной кислотности и щелочности теплоносителя. То есть, теплоноситель, который содержит агрессивные вещества, циркулирует только по стальным внутренним каналам, которые устойчивы к их воздействию, и при этом они не соприкасаются с алюминиевым корпусом, который к ним не устойчив.
  • Детали из стали обеспечивают невосприимчивость прибора к высокому рабочему давлению отопительной системы, а также возможным гидроударам.
  • Алюминиевый корпус, который имеет гладкую поверхность и несколько конвекционных каналов, представляет собой отличный излучатель тепла.
Переходя к минусам, можно назвать лишь один — по сравнению с алюминиевыми, биметаллические радиаторы стоят дороже, поэтому особого смысла использовать их в частных домах или коттеджах нет, зато в условиях городских квартир они попросту незаменимы.

Сравнение по основным параметрам

Если вы затрудняетесь с выбором, какой радиатор отопления лучше — алюминиевый или биметаллический — просто сравните основные критерии:

  • Теплоотдача. По этому параметру устройства практически не отличаются, теплоотдача одной секции и в том, и в другом случае составляет около 200 Вт.
  • Стойкость к высокому давлению. Алюминиевые модели выдерживают 16 Бар, а биметаллические — 35 Бар. Этот критерий имеет ключевое значение, если планируется эксплуатация в составе центральной отопительной системы.
  • Чувствительность к составу теплоносителя. Алюминий вступает в реакции со многими химическими соединениями, присутствующими в теплоносителе из центральной отопительной системы. Помимо этого, он подвержен кислородному окислению.
  • Максимально допустимая температура теплоносителя. Для алюминиевых моделей этот параметр соответствует 110 градусам по Цельсию, а для биметаллических — до 130 градусов по Цельсию.
  • Стоимость. В среднем, цена на биметаллические модели на 20-30% больше, чем на алюминиевые.
Если вы хотите подробнее узнать о том, какой радиатор отопления выбрать, вам нужна подробная информация об особенностях алюминиевых или биметаллических устройств — получите бесплатные консультации у представителя «САНТЕХПРОМ» по телефону +7 (495) 730-70-80.

Выбираем радиаторы отопления, какие лучше – алюминиевые или биметаллические?


Выбирая приборы отопления, важно не ошибиться и приобрести оборудование, имеющее оптимальные технические и эксплуатационные характеристики. Главными аспектами, оказывающими влияние на отбор продукции, являются особенности конструкции батареи, качество сборки, теплоотдача и устойчивость к механическому и химическому воздействию.

Если учитывать эти критерии, то выбрать, какие радиаторы отопления лучше, алюминиевые или биметаллические, будет не сложно?

Определяя, что лучше, алюминиевый или биметаллический радиатор отопления, в первую очередь следует обратить внимание на особенности конструкции. То как устроена батарея, влияет на эксплуатационные характеристики и теплоотдачу.

Биметаллические батареи

Биметалл – это конструкция из двух различных металлов. Сердечник изготавливается из меди или стали, а оболочка алюминиевого сплава. Особенность конструкции не дает возможность использовать в качестве сердечника трубы большого диаметра, поэтому существует большая вероятность засорения батареи в процессе эксплуатации. Рекомендуется регулярно промывать секции.

Алюминиевые батареи

Состоят из наборных секций, изготавливаемых посредством литья или экструзии. Последний способ не используется в странах ЕС. Батареи экструзивного типа производят китайские и несколько отечественных производителей.

Конструкция предусматривает наличие конвекционных ребер, увеличивающих теплоотдачу. Батарея состоит исключительно из алюминия, что влияет на долговечность эксплуатации.

Принципиальное отличие алюминиевых отопительных радиаторов от биметаллических состоит в том, что в конструкции последних предусмотрен сердечник из металла, отличного от используемого для оболочки. Это влияет на параметры и эксплуатационные характеристики батареи:

  • Теплоотдача радиаторов – у алюминиевых батарей одна секция имеет производительность 200 Вт. Мощность биметаллического оборудования со стальным сердечником не больше 180 Вт. Производительность секции алюминиево-медных радиаторов, также 200 Вт.
  • Максимальное давление – гидроудары и скачки давления являются слабым местом алюминиевых моделей. Максимальное давление всего 16 атм., что часто недостаточно для подключения к центральной системе отопления.
    Биметаллические приборы отопления со стальной сердцевиной легко переносят скачки давления в 20 атм., а некоторые производители изготавливают сердечник способный выдержать гидроудар с мощностью в 40 атм.
  • Качество теплоносителя – отличие биметалл радиаторов от алюминиевой продукции заключается в использовании в качестве сердцевины стали, материала, практически не вступающего в химическую реакцию.
    Алюминий реагирует на любые примеси, поэтому стенки секций при подключении к центральному отоплению быстро истончаются, появляются протечки. В этом случае, выбор радиатора отопления между алюминием или биметаллом явно в пользу последнего.
  • Срок службы батарей – биметалл гарантировано отработает не меньше 15-20 лет. Алюминиевые батареи приблизительно на 5 лет меньше. На сроки эксплуатации может существенно повлиять качество теплоносителя и интенсивность нагрева. Максимальная рабочая температура для алюминиевого оборудования 110°С, биметалла 130°С.
  • Стоимость – батареи из алюминия стоят приблизительно на треть дешевле биметалла.

При выборе отопительного оборудования следует обратить внимание на источник обогрева. В центральной системе используется агрессивный теплоноситель и неблагоприятное для алюминия давление. В автономном отоплении негативных факторов, влияющих на эксплуатацию устройств гораздо меньше.

Решающую роль в определении играет конструкционное различие радиаторов из алюминия и биметалла. Устанавливать алюминиевые секции лучше для частных систем отопления. Давление в трубопроводе, даже при использовании циркуляционного оборудования, редко превышает несколько атмосфер, а хозяин дома сможет проследить за качеством теплоносителя и таким образом продлит сроки эксплуатации.

Биметаллические радиаторы, без контакта теплоносителя с алюминием, рекомендуется использовать в многоэтажных домах. Но, это касается исключительно моделей, сердцевина которых выполнена из стали, медный сердечник выдерживает нагрузку не больше 16 атм.

Разница между биметаллическими и алюминиевыми радиаторами отопления заключается не только в особенностях конструкции, но и эксплуатационных характеристиках, на которые они влияют. Если учесть все показатели и параметры, то более качественными остаются биметаллические приборы отопления.

алюминиевые или биметаллические радиаторы отопления, характеристики батарей, плюсы и минусы

Довольно часто старые чугунные батареи приходят в негодность и их приходиться заменять на новые. Раньше даже вопроса не стояло о том, какой радиатор выбрать для установки. В настоящее время производители устройств для отопления выпускают батареи из самых разнообразных материалов, разного дизайна и технических характеристик. Такое разнообразие привело к тому, что у многих стал возникать вопрос: какие радиаторы лучше – биметаллические или алюминиевые? Для ответа на этот вопрос, необходимо более подробно рассмотреть особенности и технические характеристики батарей, которые изготавливаются из алюминия и биметалла.

Характеристика алюминиевых радиаторов

На сегодняшний день такие радиаторы считаются самыми эффективными устройствами, которые используются для отопления. В нашей стране они появились 30 лет назад и за это время уже успели показать свои положительные и отрицательные стороны.

Потребителям нравится современный дизайн такого устройства и привлекательный внешний вид. Кроме того, они имеют довольно небольшой вес. Но не только этими характеристиками славятся алюминиевые батареи. Необходимо также обратить внимание на то, каким способом они изготавливаются и на особенности монтажа.

Алюминиевые батареи для отопления изготавливают двумя способами: методом экструзии или литья.

Первый вариант предусматривает использование алюминиевого профиля. С помощью пресса из него начинают формировать отдельные части, которые затем сваривают между собой в секции. Эти секции затем соединяют друг с другом, а чтобы конструкция была герметичной, используют качественные утеплители и прокладки.

Второй вариант характеризуется созданием монолитной конструкции без отдельных соединений, что придает готовому изделию высокую прочность.

При соблюдении в процессе производства технологических этапов получается достаточно надежный прибор, у которого технические характеристики будут такими же, как и у литых моделей.

Алюминий – это такой металл, который нагревается очень быстро. Благодаря особенностям конструкции радиатора тепло передается в помещение таким способом – исходящее от панелей мощное тепловое излучение конвекционными воздушными потоками перемещается к потолку.

Каждая секция такого прибора обладает тепловой мощностью в 120 Вт. Весит секция около 2 кг, а глубиной она может быть от 70 до 110 мм. Чтобы ее заполнить, потребуется 0,4 л теплоносителя. Максимальная температура нагревания, которую металл спокойно выдерживает, составляет 90 градусов.

Преимущества батарей из алюминия

Благодаря таким техническим характеристикам алюминиевые устройства для отопления имеют следующие преимущества:

  • экономия топлива до 35% при высокой теплоотдаче и минимальном количестве теплоносителя.
  • алюминиевые радиаторы нагреваются очень быстро и также моментально остывают. Благодаря этому необходимая температура достигается за короткое время. Спустя 15 минут после запуска отопительной системы комната уже хорошо прогревается и такое же время потребуется для ее остывания, если отопление выключить.
  • в комплектацию радиатора входят термоклапаны, которые используются для регулирования притока теплоносителя и самостоятельного создания необходимой температуры. Кроме того, современные терморегуляторы могут сами открывать и закрывать устройство для того, чтобы контролировать поступление теплоносителя. Благодаря этому и достигается существенная экономия расхода топлива.
  • современный дизайн и приятный внешний вид батарей из алюминия позволяют им прекрасно вписываться в любой интерьер помещения. Они замечательно будут смотреться и в квартире и в офисе. Метод литья способствует созданию батарей под индивидуальные условия эксплуатации. А благодаря методу экструзии появляется возможность компоновать количество секций самостоятельно, что также является очень важным преимуществом.
  • алюминиевые радиаторы имеют достаточно компактные размеры, поэтому, чтобы их установить, потребуется довольно немного места по сравнению с чугунными приборами. А благодаря такой компактности устройство весит довольно мало, что облегчает его монтаж. Крепятся такие приборы на любые стены.

Сравнительно недавно секции из алюминия использовались только при сборке автономных систем отопления, потому что рабочее давление в них составляло 6 атмосфер. На сегодняшний день в продаже имеются усиленные приборы отопления с рабочим давлением в 16 атмосфер, которые эксплуатируются в центральных системах отопления. Это следует учитывать при покупке радиатора.

Недостатки батарей из алюминия

Такой прибор имеет и некоторые минусы:

  • На сборные модели устанавливают резиновые уплотнители. Они довольно быстро изнашиваются, что может повлечь за собой возникновение опасных ситуаций. Именно по этой причине такие модели ни в коем случае нельзя использовать там, где в качестве теплоносителя применяют антифриз или любое другое химическое вещество.
  • Алюминий подвержен коррозии. Если горячая вода, которая используется в качестве теплоносителя, будет очень плохого качества, с содержанием крупных твердых частиц, то такие батареи очень быстро выйдут из строя, потому что у них начнет разрушаться тонкая защитная пленка внутренней поверхности прибора.
  • Существенным недостатком считается завоздушивание. Воздух необходимо все время стравливать, поэтому в обязательном порядке устанавливают кран Маевского.
  • Сборные модели чувствительны к гидроударам. Если давление вдруг резко подскочит, внутри прибора нарушится его герметичность. Именно поэтому батареи из алюминия нельзя использовать в системе центрального отопления, кроме тех моделей, которые изготовлены по методу литья.

Характеристика биметаллических радиаторов

Хотя алюминиевые радиаторы довольно хороши, использование их в центральной отопительной системе совершенно нежелательно. Такой материал очень плохо контактирует с другими металлами, а для алюминиевых приборов необходима только качественная вода. Также их работа возможна только при стабильной системе без скачков давления. Такие параметры соблюдаются только в автономных системах.

Однако, биметаллические батареи не имеют таких недостатков, потому что для их конструкции применяют стальные трубы, на которые надевают алюминиевые радиаторы. Сталь является довольно прочным материалом, который хорошо держит давление и не реагирует на некачественный теплоноситель. Ребра из алюминия обладают высокими теплопроводными характеристиками и, благодаря сочетанию двух этих металлов, можно использовать их преимущества, избегая недостатков.

Биметаллические батареи изготавливать очень непросто. Чтобы обеспечить достаточно плотное взаимодействие металлов друг с другом, применяют технологию изготовления литья под давлением. Биметаллические приборы отопления имеют высокую химическую стойкость и могут спокойно выдержать давление до 10 атмосфер, возникающее внутри сети. Такие устройства легче чугунных приборов, их проще устанавливать и они замечательно вписываются в современный интерьер.

Если сравнивать мощности алюминиевых и биметаллических батарей, то последние выигрывают, и довольно значительно. Мощность одной секции, выполненной из биметалла, составляет 170–190 Вт. Такой прибор для отопления выдерживает максимальную температуру нагрева в 100 градусов. Если сердцевина изготовлена из нержавеющей стали, то устойчивость к образованию коррозии возрастает в несколько раз.

Недостатки биметаллических радиаторов

Такое устройство хоть и совершенно, но не до конца, поэтому также имеет и определенные минусы:

  • из-за того, что секции имеют небольшие размеры, а также благодаря высокой тепловой инертности, батареи из биметалла при отключении отопления остывают очень быстро;
  • если сталь взаимодействует с другими металлами, то часто возникают вялотекущие химические реакции, в результате чего внутри прибора может образоваться газ. Если при этом отсутствуют воздушные клапаны, то может произойти разрыв прибора;
  • стоимость биметаллических радиаторов очень высока.

Биметалл или алюминий: что лучше?

Чтобы понять, какой радиатор является лучшим, необходимо провести их сравнение. Простой человек по внешнему виду не сможет их отличить, потому что разницу совсем не видно. Оба вида этих батарей выглядят совершенно одинаково и представляют собой плоский треугольник, который покрыт порошковой белой или цветной эмалью. Поверхность этих приборов может быть монолитной или состоять из секций.

У прибора из алюминия высокая тепловая мощность, а у биметаллического – средняя. В первом случае максимальные показатели рабочего давления обычно составляют 16 атмосфер, а во втором – 20. Оба этих металла не слишком устойчивы к образованию коррозии.

Гарантийный срок эксплуатации эти приборов для отопления составляет 20–25 лет. Их можно ремонтировать своими руками. А вот стоимость приборов из алюминия гораздо ниже, чем у биметаллического изделия.

Учитывая эти факты, трудно определиться с тем, какой радиатор лучше. Они оба хорошо справляются с выполнением поставленных задач. Поэтому лучше всего выбирать прибор, учитывая один момент — в какой системе он будет эксплуатироваться.

Алюминиевые батареи очень легкие, рабочее давление стабильно всегда, теплоноситель хорошо поддается контролю, поэтому их используют для автономной системы отопления. Для центральной отопительной системы замечательно подойдут приборы из биметалла, потому что они хорошо выдерживают скачки давления и высокую температуру теплоносителя.

Батареи, изготовленные из таких материалов, как алюминий и металл, имеют свои преимущества. Они проявляются только в случае их правильной установки и эксплуатации. Приборы из алюминия устанавливаются в том случае, если в системе с низким давлением требуется обеспечить по максимуму теплоотдачу. Во всех остальных случаях устанавливают устройства из биметалла.

Оцените статью: Поделитесь с друзьями!

Какие лучше радиаторы отопления: алюминиевые или биметаллические

Выбор радиатора для дома или квартиры – задача не из легких. Очень важно, чтобы он удовлетворял не только функциональные, но и эстетические потребности. Сегодня современный рынок предлагает нам огромное разнообразие различных радиаторов отопления, имеющих свои специфические особенности.

Главная задача, которая встает перед нами – определить, какие лучше радиаторы отопления алюминиевые или биметаллические и сделать необходимый выбор. Чтобы не ошибиться, нужно обладать информацией по каждому виду радиаторов.

Главной технической характеристикой отопительного радиатора — это мощность. От нее зависит то, как прогреется помещение. Не менее важным критерием, требующим внимания при выборе – это размер радиатора.

Следующий существенный момент – это мощность рабочего давления оборудования. Она зависит от того, где размещен прибор. Важный показатель — это материал, из которого сделаны регистры. Чаще используют алюминий, чугун или сталь.

Виды радиаторов отопления

1. Алюминиевые. Приборы, изготовленные из этого материала, отличаются большой теплопроводимостью. Подобные радиаторы могут оснащены спускником воздуха. Алюминиевые радиаторы способны выдержать давление выше 6 атмосфер.

2. Стальные приборы обладают рабочим давлением 8 атмосфер. Это наиболее подходящая разновидность радиаторов, предназначенная для обогрева одноэтажных помещений.

Во избежание поломок и преждевременного выхода из строя, прибор желательно использовать в системах, обладающих высоким давлением. Из производителей стальных панельных радиаторов можно порекомендовать немецкие радиаторы Керми или радиаторы Зендер.

3. Биметаллические радиаторы – это прочные, долговечные приборы с высоким уровнем теплопроводимости. Они сочетают в себе все лучшие качества, которыми обладают стальные и алюминиевые радиаторы. Стальные внутренности радиатора способны выдержать высокое давление и гидроудары в системе.

4. Чугунные радиаторы получили на сегодняшний день широкое распространение. Они обладают большой теплопроводимостью, и использовать их можно даже в системах, не подготовленных для теплоносителя.

Для частного дома подойдут практически все виды вышеперечисленных отопительных приборов. В квартиру с центральным лучше будет приобрести чугунный радиатор или биметаллический.

Для современных домов отлично подойдут и биметаллические, и алюминиевые регистры, выполненные в уникальном стиле и устойчивые к воздействию коррозии.

Биметаллический радиатор в разрезе


Секционные радиаторы отопления

Данные радиаторы состоят из секций, соединенных друг с другом специальными ниппелями. При необходимости их можно затянуть туже либо расслабить. Для этого достаточно всего лишь повернуть ключ.

Сегодня секционные теплоносители пользуются большим спросом и популярностью. Это связано с имеющимся у таких приборов преимуществом – возможностью добавлять либо убирать элементы.

Коллекторами радиатора служат находящиеся в горизонтальном положении верхние и нижние трубки, которые соединены каналом, расположенным вертикально. Стандартные радиаторы обычно состоят из секций, каждая из которых имеет по каналу.

Для увеличения теплоотдачи оснащение радиаторов сделали из алюминия. Его главной задачей является обеспечение мощного потока воздуха сквозь сам радиатор. Это способствует увеличению его теплоотдачи.

Если рассмотреть радиатор с обратной стороны, то мы увидим, что нижний коллектор имеет специальные карманы. Они предназначены для того, чтобы в них оседали частицы металла и прочий мусор из системы отопления и не попадали в радиаторный коллектор.

Вырез, сделанный с обратной стороны алюминиевого коллектора, в упрощает процесс монтажа прибора на стеновые кронштейны. Алюминиевые радиаторы идеально подойдут для частных домов с индивидуальной отопительной системой.

Радиаторы для центрального отопления

К покупке радиатора для квартиры нужно отнестись предельно серьезно. Это обусловлено тем, что системы вынуждены работать под высоким давлением, в условиях неоднородного состава жидкости в приборах, а также частичного наполнения или сливания воды из систем отопления.

Учитывая данные обстоятельства, лучшим вариантом для квартиры будет биметаллический радиатор, обладающий рабочим давлением, равным 16 атмосфер.

Строение биметаллического радиатора


Если перед вами встает задача какие лучше радиаторы отопления алюминиевые или биметаллические для системы с центральным отоплением, ответ однозначен — биметаллические.

Благодаря высоким рабочим давлением, биметаллическим радиаторам не страшны гидравлические удары, которые возникают в централизованных системах отопления. Биметалл дороже алюминия, но не нужно экономить при покупке радиаторов для централизованной системы отопления.

Приобретая теплоноситель, учитывайте все его особенности. Опытным путем доказано, что 1 секция прибора с монтажной высотой 500 мм по осям предназначена для обогрева приблизительно 2 кв. метров помещения.

Выбирая радиатор, также смотрите на качество покраски прибора. При незначительном повреждении или ударе краска может отлететь, и это приведет к преждевременному выходу из строя теплоносителя.

Существует мнение, что радиаторы из алюминия часто лопаются и текут. Такое происходит довольно редко. Главными их недостатками являются большая химическая активность, высокое температурное напряжение и большая степень газообразования. Срок эксплуатации таких радиаторов в большинстве случаев зависит от качества изготовления прибора и от заводских дефектов.

Читайте также:

Сравнение алюминиевых, биметаллических и стальных радиаторов отопления

Чтобы у вас дома даже в самые холода было комфортно и уютно нужно правильно выбрать радиатор: конструкцию, материал и размер для каждого помещения. Как же выбрать из многообразия вариантов?

Шаг 1: Выбираем тип радиатора

Алюминиевый радиатор

Достоинства:
  • Для него характерна низкая инерционность (быстро нагревается и быстро остывает) и способность выдерживать относительно высокое давление. Эти особенности делают алюминиевый радиатор универсальным отопительным прибором. Он может быть использован как в автономной, так и в центральной системе отопления.
  • Дополнительно можно приобрести термоголовки и индивидуально задавать температуру для каждого помещения. Это позволит экономить на топливе.
  • Алюминиевые радиаторы обладают эффектным внешним видом, который подойдет под любой интерьер помещения. Эти радиаторы являются секционными — от 4 до 12 секций. И если у вас возникнет необходимость в дополнительных секциях, вы сможете их приобрести в магазинах «Бауцентр». Но надо учитывать, что секционные радиаторы можно раскрутить только напополам (то есть если радиатор состоит из 10 секций, то вы можете купить отдельно 5 секций, если 12 — то 6 секций и т.д.)

Важно! При установке алюминиевых радиаторов важно не допустить контакта алюминия с медными переходниками и фитингами, поскольку в такой паре наступает коррозия металла с возможным выделением водорода.

Биметаллический радиатор

Достоинства:
  • Идеален для всех систем отопления — как для центральной, так и для автономной. Что значит биметалл? Корпус радиатора сделан из алюминия, благодаря чему он обладает высокой теплоотдачей, а внутренние коллекторы (места, где радиатор соприкасается с теплоносителем) выполнены из стали. Стальной коллектор позволяет без опаски устанавливать данный радиатор в центральную систему отопления. Биметаллический радиатор не боится некачественного теплоносителя и выдерживает высокое давление, 25-50 атмосфер, в зависимости от производителя. Этот вид радиатора долговечнее стального и алюминиевого.
  • Биметаллические радиаторы выглядят так же эстетично как алюминиевые и подойдут под любой интерьер помещения. Они тоже являются секционными — от 4 до 12 секций. Можно приобрести дополнительные секции (эти радиаторы также раскручиваются только напополам.).

Важно! Биметаллические радиаторы более тяжелые, чем алюминиевые и стальные, поэтому требуют большего количества креплений при монтаже.

Стальной радиатор

Достоинства:
  • Подходит для автономной системы отопления. В систему центрального отопления устанавливать можно, но при условии, что теплоноситель соответствует ГОСТ-ам, а давление в центральной системе отопления не будет превышать 9 атмосфер. То есть такие радиаторы можно ставить только в малоэтажные дома. В высокоэтажных зданиях с центральной системой отопления давление превышает 9 атмосфер.
  • Огромный выбор размеров – от очень крупного до самого маленького, позволяет подобрать именно тот стальной панельный радиатор, который подойдет для того помещения, которое нужно обогреть.
  • Также стальной радиатор имеет очень низкую тепловую инерционность (быстро нагревается и быстро остывает), и при использовании термоголовок на стальных радиаторах получается наибольшая экономия тепловой энергии.
  • Стальные радиаторы подойдут к дизайну любого помещения. Эти радиаторы панельные и имеют множество вариаций размеров, что дает возможность подобрать стальной радиатор под любую потребность.

Внимание! У данного радиатора есть важная особенность — оборудование из стали плохо переносит редко посещаемые помещения. Если спустить воду из системы на срок более 2-х недель, то попавший воздух приведет к активной коррозии, которую невозможно будет остановить.
Есть и свое ограничение — нарастить или уменьшить такой радиатор не получится, только полностью его заменить при необходимости.

Шаг второй: Считаем количество секций

Важный критерий выбора радиатора — его тепловая мощность. Она указана на ценнике или в паспорте радиатора. Как правильно подобрать радиатор под Ваши потребности?
Необходимо вспомнить размер помещения, куда планируется его установка. Приблизительный расчет таков: 1000 Вт на 10 м кв (для угловых комнат, помещений с обширным остеклением и плохой теплоизоляцией берем 1200-1300 Вт на 10 м кв).
В зависимости от расчетной тепловой мощности выбираем радиатор нужного размера с необходимым количеством секций.
Например, чтобы обогреть помещение 15 м кв, потребуется прибор мощностью 1500 Вт.

Шаг третий: Выбираем вид подключения и размер радиатора

В зависимости от того, в каком месте будет установлен радиатор, а также как и на какой высоте расположены подводящие трубы системы отопления, определяется: вид подключения радиатора (нижняя или боковая подводка), а также размер радиатора (межосевое расстояние – т.е. расстояние между трубами подключения). Он может составлять от 200 до 2000 мм. Это число обязательно указывается в маркировке каждой модели.

Шаг четвертый: Выбираем место установки

Обычно нагревательные приборы находятся около окон под подоконниками. Выступающая над батареей подоконная доска может препятствовать движению вверх теплого воздуха. Поэтому радиатор рекомендуется устанавливать около наружной стены на высоте 10 см от пола так, чтобы между ним и подоконником был зазор не менее 8 см.
Часто из эстетических соображений около батареи ставят различные декоративные экраны, загораживающие нагревательный прибор. В этом случае экран становится препятствием для излучаемой радиатором тепловой энергии, и помещение начинает обогреваться только за счет конвективного теплообмена, что естественно снижает его эффективность. В этом случае мы рекомендуем брать более мощный радиатор для компенсации потери тепла.

Шаг пятый: Самостоятельно регулируем температуру

Можно самостоятельно регулировать и задавать оптимальную температуру в разных комнатах, согласно их использованию, и при этом беречь значительную часть энергии. Это легко сделать с помощью термостатической головки, установленной на термостатический вентиль на подводе к радиатору отопления.
Термостатическая головка, установленная с радиатором, регулирует мощность обогрева в соответствии с заданной температурой. Термостатический вентиль, тот на который ставится термоголовка, не регулирует расход теплоносителя – он либо открыт, либо закрыт. Таким образом, остается лишь установить желаемый уровень температуры в помещении (путём поворота термоголовки на определенную цифру) и термоголовка, в зависимости от температуры окружающей среды, самостоятельно будет её регулировать – открывая или закрывая путь теплоносителю к радиатору отопления. Важно! При установке необходимо, чтобы температура воздуха, окружающего термоголовку, была выставлена правильно, отражая реальную температуру помещения, тогда вся система в целом будет работать как положено.

Больше подробностей об использовании термоголовки — в наших советах!

Оптимальное решение для каждого дома!

Для коттеджной застройки и домов с индивидуальными тепловыми пунктами можно использовать все типы отопительных приборов, при условии, что вы правильно учли при проектировании рабочее и опрессовочное давление, на которое рассчитан выбранный радиатор, а также не забыли о небольших технических нюансах, свойственных каждому типу радиаторов, например, таких как повышенное газовыделение в алюминиевых радиаторах.
В современных многоэтажных домах желательно использовать биметаллические и алюминиевые радиаторы, отличающихся элегантным дизайном, высокой прочностью и коррозийной стойкостью.


Алюминиевый или биметаллический радиатор, какой лучше?

В данной статтье мы попробуем разобраться какой все таки выбрать радиатор отопления, алюминиевый или биметаллический? Есть плюсы и минусы за каждый вид отопительного прибора. Для того чтобы не путаться мы перечислим основные за и против по каждому виду.

С момента появления вариаций отопительных элементов не угасают дискуссии относительно преимуществ и недостатков каждого из видов. В начале выясним, что собой представляют эти радиаторы.

Алюминиевый радиатор — изготавливается способом литья. Основной материал – алюминий.

Биметаллические радиаторы отопления — используют два материала: сталь и алюминий. Труба, по которой течет теплоноситель (горячая вода) создается из стали, а внешний слой покрывающий трубу и пластины (ламели), увеличивая тем самым площадь нагреваемого элемента, из алюминия.

Алюминиевые радиаторы

Рабочее давление 16 атмосфер — этого вполне достаточно чтобы нормально функционировать в любой многоэтажке. Так как давление в старых домах находится в пределах 6-9 атмосфер. Если же брать новостройки, то там давление также не более 9 атмосфер. Даже в новостройках более 20 этажей все равно, с помощью редукторов давление все остается в пределах допустимого. Простым подтверждением этого есть то, что застройщики устанавливают в таких домах стальные радиаторы у коорых рабочее давление 9-10 атмосфер.

Лучшая теплопроводность — ни для кого, ни секрет, что алюминий не имеет конкурентов по уровню теплопроводности. Поэтому именно чисто алюминиевые радиаторы считаются наиболее эффективными, способными обогревать огромные площади.

Подробнее: Лучшие алюминиевые радиаторы | Рейтинг Алюминиевых радиаторов | Алюминиевые радиаторы производство Украина

 

Биметаллические радиаторы

Рабочее давление от 24 атмосферэто основное преимущество биметаллических радиаторов. Но если разобраться, то это преимущество практически не используется, так как рабочее давление в наших домах 6-9 атмосфер. Можно еще сказать что бывают скачки давления, гидроудары. Но эти перепады они не длительны, и у каждого алюминиевого и стального радиатора есть еще испытуемое давление, которое выше рабочего. У алюминиевых радиаторов это 20-24 Бар, у стальных 13 Бар.

Качество теплоносителя и коррозия — если какому преимуществу и стоит отдать должное так это этому. Так как в биметаллическом радиаторе внутренний слой стальной, это защищает батарею от воздействия химических реакций алюминия с воздухом и некачественным теплоносителем. Дополнительный слой металла более надежно защищает от воздействия внешних факторов. Но кто сказал что слой стали не подвержен коррозии?

Срок эксплуатации — за счет дополнительного слоя стали, срок эксплуатации у биметаллических радиаторов выше, так как риск коррозии и вымывания двух слоев, алюминия и стали ниже. Соответственно биметаллический радиатор расчитан на более длительный срок эксплуатации чем алюминиевая батарея. На ряду с этим преимуществом стоит недостаток. За счет доп. слоя стали у биметаллических радиаторов заужен диаметр прохода. Данный радиатор более подвержен засорению и забитию каналов в каких либо секциях, из за некачественного носителя в наших централизованных системах.

И все же клиент хочет получить более точный ответ, что выбрать? Алюминий или Биметал? Так вот точного ответа нет, по той причине, что один и второй радиатор оличный! Радиаторы выдерживают давление не меньше 16 Бар, чего вполне достаточно, для высоко этажных домов.

Наша рекомендация:

Алюминиевый радиатор — стоит выбирать в высоко этажные дома новой постройки, а также в частные дома, коттеджи, и системы с автономным (индивидуальным) отоплением. Так как как с давлением они справятся на отлично, а теплоотдачи отдают все таки немного больше чем Биметал.

 

Биметаллический радиатор — стоит выбрать обязательно в этажные дома старой постройки, с централизованным отоплением. Так как там системы современной защиты и гашения гидроударов практически не используются, в связи с чем могут быть скачки давления. От чего радиатор может выйти из строя. И также данный радиатор должен все таки служить на 10-30% дольше по времени, хотя подтвержденных тестов жтому нет.

Чем алюминиевые радиаторы отличаются от биметаллических и какие лучше?

После окончания отопительного сезона на первый план выходит вопрос о замене радиаторов. Если в вашей квартире протекшие чугунные батареи, то пора их на заслуженный отдых, установив вместо них современные модели. Частные застройщики, устраивая систему отопления, часто не могут определиться, какие радиаторы лучше — алюминиевые, биметаллические, чугунные, ведь каждая из этих моделей имеет свои достоинства и недостатки.Потребитель может растеряться, услышав рекомендации продавцов в магазинах соответствующего товара. Если вы тоже решите этот вопрос, то стоит сравнить алюминиевые и биметаллические радиаторы.

Сравнение алюминиевых и биметаллических батарей

Алюминиевые радиаторы хорошо и аккуратно выглядят, они имеют несколько секций, которые соединены между собой ниппелями. Между секциями есть прокладки, они обеспечивают необходимую герметичность. С внутренней стороны есть ребра, они увеличивают площадь рекуперации тепла до 0.5 м 2 . Такие аккумуляторы производятся по одной из существующих сегодня технологий. Например, метод экструзии позволяет получать более дешевые и легкие изделия, но их качество нельзя назвать высоким. Сегодня в Европе уже отказались от этой техники.

Если вы задумались над вопросом, чем отличаются радиаторы отопления биметаллические от алюминиевых, стоит обратить внимание на то, что последние могут быть выполнены даже методом литья. Продукция дороже, но прослужит дольше.Биметаллические батареи изготавливаются из двух разных металлов. Корпус имеет нервюры, которые выполнены на основе алюминиевого сплава. Внутри корпуса находится сердцевина из труб, по которым течет горячая вода. Такие трубы изготавливают из меди или стали, однако первый вариант сегодня встречается все реже. Многие потребители также задумываются над тем, как узнать перед ними радиатор алюминиевый или биметаллический. Диаметр последних меньше по сравнению с алюминиевыми моделями. Поэтому вероятность их засорения выше.Когда потребители рассматривают преимущества биметаллических радиаторов перед алюминиевыми радиаторами, они в первую очередь отмечают более привлекательный внешний вид. Ведь все составляющие таких изделий спрятаны внутри, поэтому конструкция способна удовлетворить самые изысканные запросы.

Какие батареи лучше в вопросе рекуперации тепла

Если вы решили, чем алюминиевые радиаторы отличаются от биметаллических, стоит сравнить их еще и по интенсивности тепловыделения. Алюминиевые радиаторы в этом деле рвутся вперед.Одна секция способна отдавать около 200 Вт тепловой энергии или более. Половина тепла передается в виде излучения. Другая половина — конвекция. Края батареи позволяют увеличить тепловую мощность. Алюминию в этом вопросе нет равных. Помимо прочего, у него минимальная тепловая инерция. Если включить эти батарейки, то через 10 минут в помещении дома или квартиры будет тепло.

Если речь идет о частном строительстве, то на алюминиевых радиаторах можно хорошо сэкономить.Сегодня становятся популярными алюминиевые и биметаллические радиаторы отопления, характеристики которых представлены в статье. Последние характеризуются тепловыделением, которое зависит от производителя и модели. Этот параметр будет ниже по сравнению с алюминиевым радиатором. Это связано с тем, что сердечник из стали снижает теплоотдачу, что на 1/5 меньше, чем у алюминиевой батареи того же размера.

Различия между алюминиевыми и биметаллическими батареями с точки зрения их способности выдерживать гидравлические удары

Этот алюминий является вторым из них.Его рабочее давление не так уж и велико, оно колеблется от 6 до 16 атмосфер, а в некоторых моделях этот параметр достигает отметки в 20 атмосфер. Если такие радиаторы установить как составную часть центрального отопления, то изделия могут просто не выдержать воздействия высокого давления. Гидравлический удар может привести к тому, что аккумулятор лопнет, и в квартире случится горячий потоп. Поэтому рисковать установкой алюминиевого радиатора в квартире многоэтажного дома не стоит.

Если вам интересно, чем отличаются биметаллические радиаторы от алюминиевых, стоит сравнить эти изделия по способности выдерживать высокие нагрузки.Биметаллические батареи имеют прочный стальной сердечник, подготовленный под напор. Такие изделия способны выдерживать давление от 20 до 40 атмосфер. Поэтому можно утверждать, что биметаллические радиаторы более надежны при нестабильном давлении, когда есть вероятность гидроудара.

Для справки

Указанный выше параметр важен, если вы выбираете аккумулятор для квартиры, которая отапливается централизованно. Если вы планируете купить радиатор для частного дома, то этот параметр нельзя назвать минусом, ведь в локальной сети нет избыточного давления.

Какой радиатор выбрать с точки зрения охлаждающей жидкости?

Довольно часто владельцы недвижимости и квартир задавались вопросом, чем алюминиевые радиаторы отличаются от биметаллических. Этот вопрос также следует рассматривать с точки зрения теплоносителя. Алюминий способен вступать в химические реакции, поэтому вода для него просто сокровище. Он содержит столько химических примесей, что стенки аккумуляторной батареи во время работы могут подвергаться коррозии. Поэтому, если уровень pH протекающей в системе воды превышает 8 единиц, то стоит ждать неприятностей.Однако, используя центральное отопление, контролировать эти параметры просто невозможно.

Даже в ходе химической реакции алюминий может выделять водород, что создает пожароопасную ситуацию. Поэтому необходимо время от времени стравливать воздух из таких радиаторов. Менее требовательны к качеству воды стальные трубы, расположенные в сердечнике биметаллического изделия. Это связано с тем, что сталь не так химически активна, как алюминиевые сплавы. На такой материал попадет коррозия, но произойдет это не так скоро.Помимо прочего, производители покрывают поверхность защитным слоем, иногда в процессе изготовления используется нержавеющая сталь, но это делает радиаторы дорогими.

Подбор радиаторов по температуре охлаждающей жидкости

Монтаж алюминиевых, биметаллических радиаторов отопления сегодня делается довольно часто. Однако перед приобретением таких изделий следует поинтересоваться, какие из них способны работать под воздействием воды внушительной температуры. Алюминий выдерживает 110 ° C, что является средним показателем.Для биметаллических радиаторов эта характеристика достигает 130 ° C, поэтому эти изделия выигрывают.

Надежность и долговечность

Если вы задумываетесь над вопросом, чем отличаются алюминиевые радиаторы от биметаллических, то в первую очередь следует понимать, что алюминиевые изделия будут разрушены гидроударом, частой и коррозией, а также внушительным перепадом температур. Поэтому в вопросе надежности в лидерах снова оказываются изделия из двух металлов, они сочетают в себе лучшие качества каждого материала.Такие изделия готовы прослужить более 20 лет, конечно же, в данном случае речь идет о качественных товарных марках, зарекомендовавших себя на рынке. Алюминиевые радиаторы отличаются половиной срока службы. После установки они готовы служить 10 лет.

Сравнение простоты установки

Биметалл и алюминий довольно просты, удобны в установке, они меньше весят по сравнению с чугуном. Для крепления нет необходимости использовать мощные кронштейны, даже стена из гипсокартона сможет выдержать небольшой вес.Если поставляемые трубы изготовлены из пластика, для выполнения монтажных работ потребуются только фасонные элементы и набор ключей. Но как показывает практика, биметаллические батареи все же проще установить, так как сталь не деформируется, в отличие от алюминия, который относится к мягким металлам.

Сравнить цены

Если вы столкнулись с вопросом, чем отличаются радиаторы алюминиевые от биметаллических, стоит рассмотреть эти изделия еще и в вопросе цены. Второй вариант на 1/5, а иногда и на 1/3 дороже алюминиевых изделий.Эта разница довольно существенная, поэтому биметалл сегодня не так распространен среди частного потребителя, потому что доступен далеко не всем. Биметаллические инструменты имеют более высокое гидравлическое сопротивление, поэтому для перекачивания воды требуется больше энергии, что увеличивает стоимость эксплуатации.

Выбор радиатора для конкретной системы отопления

Рассмотрев основные характеристики радиаторов, можно сделать вывод, какая модель подходит для той или иной системы. Если использовать центральное отопление, то давление в нем может резко меняться, иногда отметка выходит за пределы, имеют место гидроудары.Температура не будет стабильной, она может меняться в отопительный сезон и даже сутками. Состав теплоносителя не чистый, в нем есть химические примеси, абразивные частицы, о приемлемом уровне pH тоже сказать нельзя. Исходя из всего этого, можно утверждать, что в таких системах лучше всего отказаться от алюминиевых аккумуляторов.

Какие радиаторы лучше: алюминиевые или биметаллические? Понять

Большинство городских квартир в России подключено к системе центрального водяного отопления.Из-за отсутствия необходимых средств работа всей тепловой инфраструктуры недостаточно эффективна. Учитывая то, что повсеместно используются устаревшие чугунные радиаторы, что не позволяет получить достаточно комфортную температуру, в настоящее время широко применяются новые типы отопительных батарей, которые предназначены для работы в водяном отоплении. системы. И тогда возникает вопрос, какие радиаторы лучше — алюминиевые или биметаллические? Необходимо разобраться в этом вопросе.

По внешнему виду алюминиевые радиаторы они утилитарны, имеют строгую прямоугольную форму, а вся внешняя поверхность представляет собой большой рассеиватель тепла. Повышается эффективность теплоотдачи за счет наличия еще нескольких пластин внутри радиаторов. Если говорить о том, какие радиаторы лучше — алюминиевые или биметаллические, то следует отметить, что практически все алюминиевые батареи состоят из стандартных секций, в количестве 6-12 штук. Общая мощность зависит от количества секций, что необходимо учитывать при проектировании системы отопления для конкретной квартиры.Привлекательность внешнего вида гарантируется за счет использования качественной порошковой эмали. Эти характеристики позволяют им достаточно гармонично вписаться в интерьер. Если понимать, какие радиаторы лучше — алюминиевые или биметаллические, стоит сказать, что первые обладают высокой теплопроводностью, поэтому быстро прогревают комнату. Однако при выключении обогрева они так же быстро остывают, так как теплоемкость алюминия очень мала. Самый серьезный недостаток таких аккумуляторов — высокие требования к качественному составу теплоносителя.У радиаторов импортного производства проявляется наиболее сильно. Отечественные производители с ситуацией в нашей стране хорошо знакомы, поэтому стараются учитывать все эти особенности. В системе центрального отопления в теплоносителе много механических примесей, которые оказывают сильное абразивное воздействие на алюминий. Говоря о выборе алюминиевых или биметаллических радиаторов, нельзя не упомянуть о необходимости установки локальных систем фильтрации. В этом случае вы можете гарантировать безопасность работы. Если вы понимаете вопрос, в чем состоит отличие биметаллических радиаторов от алюминиевых, следует отметить, что первые были спроектированы так, чтобы сохранить все преимущества второго, а в для получения аккумуляторов, устойчивых к коррозии и механическому износу.Внешне они ничем не отличаются. Отличие заключается в использовании двух металлов — высокопрочной стали и алюминия, который отлично проводит тепло. По теплопередаче биметаллические радиаторы почти не уступают алюминиевым, но способны выдерживать большее давление и менее требовательны к качеству теплоносителя. Именно поэтому их все чаще используют в квартирах.

Отвечая на вопрос, какие радиаторы лучше — алюминиевые или биметаллические, нельзя однозначно сказать, что одни — одни.При соблюдении определенных условий можно одинаково эффективно использовать оба типа.

(PDF) Жидкометаллические батареи: прошлое, настоящее и будущее

(2) Bard, A.J .; Parsons, R .; Джордан Дж. Стандартные потенциалы в водном растворе

; Марсель Деккер: Нью-Йорк, 1985.

(3) Stender, W. W .; Животинский, П. Б .; Строганов, М. М. Перспективы.

Электрохим. Soc. 1934, 65, 189.

(4) Bard, A. J .; Фолкнер, Л. Р. Электрохимические методы: основы

и приложения; Джон Вили: Нью-Йорк, 2001.

(5) Christensen, J .; Ньюман, Дж. Дж. Электрохимия твердого тела. 2006,10,

293.

(6) Deshpande, R.D .; Li, J.C .; Cheng, Y.T .; Verbrugge, M. W. J.

Electrochem. Soc. 2011, 158, А845.

(7) Eyer, J .; Кори, Г. Хранение энергии для электросети:

Руководство по оценке выгод и рыночного потенциала — Исследование для программы

Министерства энергетики США по системам хранения энергии, SAND2010-0815; Sandia

Национальные лаборатории: Ливермор, Калифорния, 2010.

(8) Растлер, Д. Варианты технологий накопления электроэнергии: Информационный документ

, посвященный приложениям, затратам и выгодам, отчет

номер 1020676; Научно-исследовательский институт электроэнергетики: Пало-Альто, 2010.

(9) Schoenung, S. Обновление стоимости систем хранения энергии: исследование для

Программы по системам хранения энергии Министерства энергетики, SAND2011-2730; Sandia

Национальные лаборатории: Ливермор, Калифорния, 2011.

(10) Ассоциация хранения электроэнергии. http: // www.хранение электроэнергии.

org / (по состоянию на декабрь 2011 г.).

(11) Yang, Z. G .; Zhang, J. L .; Kintner-Meyer, M.C.W .; Лу, X. C .;

Choi, D. W .; Lemmon, J. P .; Лю, J. Chem. Rev. 2011,111, 3577.

(12) Hoopes, W. Электролитически очищенный алюминий и изделия

, изготовленные из него. Патент США 1534315, 1925.

(13) Kondo, M .; Maeda, H .; Mizuguchi, M. JOM 1990, 42, 36.

(14) Сандерс, Р. Э. Кирк-Отмер Энциклопедия химической технологии;

John Wiley & Sons, Inc.: Нью-Йорк, 2000; Vol. 2.

(15) Van, T. D .; Segers, L .; Winand, R.J. Electrochem. Soc. 1994, 141,

927.

(16) Kondo, M .; Имамаки, Т. Метод производства и свойства

высокочистого алюминия, улучшенного трехслойным процессом электролитического рафинирования

, представленный на симпозиуме легких металлов

(симпозиум Кейкинзоку Гаккай), Япония, 1998 г.

(17) Йегер , E. Топливные элементы: основные соображения, в источниках энергии

Division, Proceedings of 12th Annual Battery Research and Development;

Армейская лаборатория исследований и развития сигналов: Форт Монмут,

Нью-Джерси, 21–22 МАЯ 1958 г .; стр 2.

(18) Ячейки с регенеративными ЭМП; Crouthamel, C.E., Recht, H.L., Eds .;

Успехи химии, Vol. 64; Американское химическое общество:

Вашингтон, округ Колумбия, 1967.

(19) Agruss, B. Регенеративная батарея. Патент США 3245836, 1966.

(20) Weaver, R.D .; Smith, S.W .; Willmann, N. L. J. Electrochem. Soc.

1962 109 653.

(21) Agruss, B.J. Electrochem. Soc. 1963, 110, 1097.

(22) Agruss, B .; Карас, Х. Р. В регенеративных элементах ЭМП; Crouthamel,

C.E., Recht, H. L., Eds .; Успехи химии, Vol. 64; Американское

Химическое общество: Вашингтон, округ Колумбия, 1967; С. 62-81.

(23) Agruss, B .; Карас, Х. Р. Первый квартал технического прогресса

Отчет о проектировании и разработке жидкометаллической ячейки, 274197;

General Motors Corporation: Индианаполис, Инидана, 1962.

(24) Groce, I.J .; Oldenkamp, ​​R. D. В регенеративных клетках ЭМП;

Crouthamel, C.E., Recht, H. L., Eds .; Успехи химии, Vol.64;

Американское химическое общество: Вашингтон, округ Колумбия, 1967; С. 43-52.

(25) Heredy, L.A .; Iverson, M. L .; Ульрих, Г. Д .; Рехт, Х. Л. В

регенеративных элементах ЭМП; Crouthamel, C.E., Recht, H.L., Eds .;

Успехи химии, Vol. 64; Американское химическое общество:

Вашингтон, округ Колумбия, 1967; С. 30-42.

(26) Oldenkamp, ​​R.D .; Рехт, Х. Л. В регенеративных ячейках ЭМП;

Crouthamel, C.E., Recht, H. L., Eds .; Успехи химии, Vol.64;

Американское химическое общество: Вашингтон, округ Колумбия, 1967; С. 53−61.

(27) Фишер А.К. В клетках с регенеративной ЭМП; Crouthamel, C.E.,

Recht, H. L., Eds .; Успехи химии, Vol. 64; Американское

Химическое общество: Вашингтон, округ Колумбия, 1967; С. 121−135.

(28) Фостер М.С. в регенеративных ЭМП-клетках; Crouthamel, C.E.,

Recht, H. L., Eds .; Успехи химии, Vol. 64; Американское

Химическое общество: Вашингтон, округ Колумбия, 1967; С. 136-148.

(29) Hesson, J. C .; Шимотаке, Х. В регенеративных клетках ЭМП;

Американское химическое общество, 1967; Vol. 64, pp82-104.

(30) Johnson, C.E .; Генрих, Р. Р. В регенеративных ячейках ЭМП;

Crouthamel, C.E., Recht, H. L., Eds .; Успехи химии, Vol. 64;

Американское химическое общество: Вашингтон, округ Колумбия, 1967; С. 105-120.

(31) Lawroski, S .; Vogel, R .; Левенсон, М .; Munnecke, V. Chemical

Краткий отчет инженерного отдела, ANL-6543; Аргоннская национальная лаборатория

: Чикаго, 1962 г.

(32) Lawroski, S .; Vogel, R .; Левенсон, М .; Munnecke, V. Chemical

Краткий отчет инженерного отдела, ANL-6687; Аргоннская национальная лаборатория

: Чикаго, 1963.

(33) Lawroski, S .; Vogel, R .; Левенсон, М .; Munnecke, V. Chemical

Полугодовой отчет инженерного отдела, ANL-6800; Аргонн

Национальная лаборатория: Чикаго, 1963.

(34) Lawroski, S .; Vogel, R .; Левенсон, М .; Masten, F. Chemical

Полугодовой отчет инженерного отдела, ANL-6925; Аргонн

Национальная лаборатория: Чикаго, 1964.

(35) Vogel, R .; Левенсон, М .; Masten, F. Chemical Engineering

Полугодовой отчет

отдела, ANL-7055, Аргоннская национальная лаборатория

, Чикаго, 1964-1965.

(36) Vogel, R .; Левенсон, М .; Schraidt, J .; Royal, J. Chemical

Инженерный отдел Полугодовой отчет; ANL-7125; Аргонн

Национальная лаборатория: Чикаго, 1966.

(37) Cairns, E.J .; Crouthamel, C.E .; Фишер, А. К .; Фостер, М. С .;

Hesson, J. C. Гальванические элементы с конденсированными солями, ANL-7316; Аргонн

Национальная лаборатория: Чикаго, 1967.

(38) Vogel, R .; Левенсон, М .; Proud, E .; Royal, J. Chemical

Полугодовой отчет инженерного отдела, ANL-7325; Аргонн

Национальная лаборатория: Чикаго, 1967.

(39) Vogel, R.C .; Левенсон, М .; Schraidt, J. H .; Royal, J. Chemical

Инженерный отдел Полугодовой отчет; ANL-7125; Аргоннская национальная лаборатория

: Чикаго, 1966.

(40) Shimotake, H .; Кэрнс, Э. Дж. Биметаллические гальванические элементы с плавленым солевым электролитом

.Межобщественная конференция по вопросам преобразования энергии

Труды; Американское общество инженеров-механиков: Нью-Йорк,

1967.

(41) Shimotak., H; Кэрнс, Э. Дж. IEEE Trans. Electron Devices 1968,

ED15, 803.

(42) Cairns, E.J .; Shimotake, H. Science 1969, 164, 1347.

(43) Cairns, E.J .; Kyle, M. L .; Марони, В. А .; Shimotake, H .;

Steunenberg, R.K .; Тевебо, А. Д. Разработка высокоэнергетических аккумуляторов

для электромобилей, ANL-7756; Аргоннская национальная лаборатория

: Чикаго, 1970.

(44) Cairns, E.J .; Gay, E.C .; Колба, В. М .; Kyle, M. L .; Tevebaugh,

A.D .; Треворроу, Л. Э. Литий-селеновые вторичные элементы для

компонентов в двигательных системах электромобилей,

ANL-7745; Аргоннская национальная лаборатория: Чикаго, 1970.

(45) Cairns, E.J .; Cafasso, F.A .; Cunningham, P.T .; Eberhart, J. G .;

Feder, H.M .; Марони, В. А .; Schnyders, H.C .; Veleckis, E .;

Tevebaugh, A.D .; Фогель, Р.C. Физическая химия жидких металлов

и расплавленных солей — полугодовой отчет, ANL-7823; Аргоннская национальная лаборатория

: Чикаго, 1971.

(46) Cairns, E.J .; Steunenberg, R.K .; Ackerman, J. P .; Feay, B.A .;

Gruen, D. M .; Kyle, M. L .; Latimer, T. W .; Mundy, J. N .; Рубищко,

р .; Shimotake, H .; Уокер, Д. Э .; Zielen, A.J .; Тевебо, А. Д.

Разработка высокоэнергетических аккумуляторов для электромобилей, ANL-

7888; Аргоннская национальная лаборатория: Чикаго, 1971.

(47) Cunningham, P.T .; Johnson, S.A .; Кэрнс, Э. Дж. Дж. Электрохим.

Soc. 1971, 118, 1941.

(48) Cairns, E.J .; Gay, E.C .; Steunenberg, R.K .; Shimotake, H .;

Selman, J. R .; Wilson, T. L .; Вебстер, Д. С. Разработка аккумуляторных батарей повышенной мощности

для электромобилей, ANL-7953; Argonne

Национальная лаборатория: Чикаго, 1972 г.

(49) Gay, E.C .; Arntzen, J.D .; Cairns, E. J .; Kincinas, J. E .; Риха, Дж.

Г.; Trevorrow, L.E .; Walsh, W. J .; Вебстер, Д. С. Литий-халькоген

Вторичные элементы для компонентов силовой установки электромобиля

Генераторные системы, ANL-7863; Аргоннская национальная лаборатория:

Чикаго, 1972.

Chemical Reviews Review

dx.doi.org/10.1021/cr300205k | Chem. Ред. XXXX, XXX, XXX − XXXW

Биметаллическая шина медь-алюминий для аккумуляторной батареи EV

RHI производит и поставляет широкий ассортимент сборных алюминиевых шин.

Биметаллический материал Cu-Al — это новый технический материал, основанный на различных отраслевых потребностях, созданный с помощью передовой технологии обработки: технология обработки твердой жидкостью для постоянного и прочного соединения меди и алюминия в бескислородной среде, что и определило сплав. и характеристики основного материала лучше сохраняются. Он подходит для непрерывного автоматического производства и не требует другого производственного процесса, такого как сварка или пайка после его формирования.

Шина CCA заменяет медную шину для электрода электрооборудования, промышленных и строительных шкафов управления электричеством, метро и передачи электроэнергии высокоскоростных поездов, она очищает обработанную поверхность, исключает дугу, перегревает, снижает энергопотребление, имеет значительные экономические и практические перспективы.

Биметаллическая шина Cu-Al Преимущества:


  • Изготовлен по инновационной патентной технологии —— Технология обработки твердой жидкостью для прочного и прочного соединения меди и алюминия;

  • С более высокой электропроводностью: может достигать более 98% такой же объемной проводимости чистой меди;

  • Легче чистой меди: примерно 1/3 веса того же объема чистой меди;

  • Более низкая стоимость, чем чистая медь;

  • Изгиб 90 градусов, не мнется, штамповка без трещин, простая обработка;

  • Соответствует любой толщине от 0.20-15 мм при соотношении 20Cu: 80Al по толщине для биметалла Cu-Al;

  • Без ограничений по длине и площади.

Выставка продукта:

Технические характеристики:

9034 9034 Пайка Возможности производства Формовка
Фрезерование
Покрытие
Пробивка
Распил

Нарезание резьбы

Клепка

Возможности
Варианты покрытия: Никелирование,
Серебрение
Олово
олово , ПЭТ и эпоксидное порошковое покрытие

  • PE: выдерживаемое напряжение 2700 В переменного тока, рабочая температура от -40 ℃ до 125 ℃,

    Огнестойкий UL224 VW-1.Используется для жестких и гибких шин, но

    нельзя использовать для изделий специальной формы.

  • ПВХ (погружение): выдерживаемое напряжение 3500 В переменного тока, рабочая температура -40 ℃

    от

    до 125 ℃, огнестойкий UL94V-0. Используется для жестких и гибких шин, а

    может использоваться для изделий специальной формы.

  • Эпоксидное порошковое покрытие: выдерживаемое напряжение 5000 В переменного тока, рабочая температура

    от -40 ℃ до 150 ℃, огнестойкий UL94V-0. Используется для сплошной шины.

  • ПВХ (экструдированный): выдерживаемое напряжение 3500 В переменного тока, рабочая температура -40 ℃

    от

    до 125 ℃, огнестойкий UL94V-0. Используется для гибкой шины.

  • PA12 (экструдированный): выдерживаемое напряжение 5000 В переменного тока, рабочая температура -40 ℃

    до 150 ℃, огнестойкий UL94V-0. Используется для сплошной шины.

  • ПЭТ: выдерживаемое напряжение 5000 В переменного тока, рабочая температура -40 ℃

    от

    до 125 ℃, огнестойкий UL94V-0. Используется для сплошной шины.

re Поверхность
Кромка: Полностью закругленные края
Скругленные углы
Квадратные углы
Тип напряжения: AC
DC
Обслуживаемые отрасли: Самолет
Автомобильная промышленность
Электрооборудование
Переключатель
Проектирование Проектирование Допустимые форматы файлов:

JPG

PDF

DWG

DXF

Почему выбирают RHI BUSBAR?

1.Передовые технологии: у нас есть ведущие в отрасли процессы и технологии, такие как автоматическое роботизированное погружение, автоматическая роботизированная сварка, автоматическая формовка меди и 20-летний опыт технологии погружения с изоляцией сборных шин. Благодаря оборудованию для автоматизации и команде R&D мы постоянно повышаем эффективность производства и надежность качества продукции.

2. Эффективная цепочка поставок: от сырья до готовой продукции, все процессы, включая пресс-формы и приспособления, завершаются на нашем заводе. Только покрытие готово нашим поставщиком рядом с нашим заводом.

3. Превосходное обслуживание: дайте ответ в течение 8 часов, прибудьте к клиенту для решения проблемы в течение 24 часов (возможно, потребуется расширение сайта за пределами Китая).

4. Быстрое реагирование: благодаря эффективной цепочке поставок и безупречному производственному процессу мы можем в короткие сроки поставлять небольшие партии продукции для поддержки ранней разработки проекта клиента.

5. Обязательство по качеству: Мы привержены высочайшим стандартам качества. Перед производством материал проходит испытания, чтобы гарантировать, что это медь марки ETP.Все товары проверяются перед доставкой. У нас есть сертификаты ROHS, REACH, UL94V-0, ISO14000 и IATF16949.

6. Своевременная доставка: Опытная рабочая сила, большие производственные мощности и надежная цепочка поставок гарантируют своевременную доставку для клиента.

7. Конкурентоспособная цена: благодаря эффективной цепочке поставок и производственной среде в Китае у нас есть преимущество низкой стоимости.


ТЕГ: & nbsp & nbsp & nbsp Медно-алюминиевые шины

Frontiers | Последние достижения в области биметаллических сульфидных анодов для ионно-натриевых батарей

Введение

В последние годы ископаемое топливо чрезмерно эксплуатировалось в качестве основного источника энергии для промышленности и повседневной жизни людей во всем мире.В то же время риски нехватки ресурсов и загрязнения окружающей среды из-за сжигания ископаемого топлива привели к развитию исследований и применению возобновляемых источников энергии. В начале 1990-х LIB стали важным источником питания в различных электронных устройствах с момента их первой коммерциализации Sony. С ростом спроса на чистую энергию LIB стала одной из самых незаменимых технологий хранения энергии (Maleki Kheimeh Sari and Li, 2019; Su et al., 2020). Однако ограниченные ресурсы лития и высокая стоимость Li препятствовали крупномасштабному применению LIB. Поэтому очень важно изучить нового кандидата в качестве альтернативы этому типу батарей (Che et al., 2017; Hwang et al., 2017; Kang et al., 2017; Ortiz-Vitoriano et al. , 2017; Xiao et al., 2017; Fan, Li, 2018).

В последние годы SIB привлекли большое внимание из-за сходства между Na и Li с точки зрения химических / электрохимических свойств.Кроме того, натрий является четвертым по распространенности металлическим элементом после алюминия, железа и кальция, который равномерно распределен в земной коре (Yu and Chen, 2020). Кроме того, из-за обильных и дешевых ресурсов Na, SIB считались одними из наиболее многообещающих кандидатов для крупномасштабных систем хранения возобновляемой энергии для хранения электроэнергии от солнца, ветра и волн (Palomares et al., 2012; Kim et al. ., 2015; Kundu et al., 2015; Fan et al., 2016). Однако между этими двумя элементами все еще есть много различий.Как показано в Таблице 1, натрий имеет больший ионный радиус (1,02 Å), чем у Li (0,76 Å), который тяжелее атома, а также более высокий стандартный электродный потенциал (Slater et al., 2013; Chen J. et al. al., 2017; Meng, 2017; Xiao et al., 2017; Fang Y. et al., 2018; Wang et al., 2018). Хотя SIB уступают LIB с точки зрения плотности энергии и скорости заряда-разряда, Li и Na составляют лишь часть всего электрода, а емкость в значительной степени зависит от характеристик активных материалов.Таким образом, исследование анодов с исключительными свойствами для усовершенствованных SIB является ключевым моментом в разработке этой технологии, которая действительно сопряжена со многими проблемами (Li and Wang, 2012; Cao et al., 2017; Lin et al., 2018; Xiong et al. , 2018). В общем, хорошо спроектированные наноструктурные материалы могут сократить пути диффузии ионов и электронов, а также уменьшить механическое напряжение, вызванное большим объемным расширением. Кроме того, по сравнению с анодными материалами на основе углерода (например, пористым углеродом, углеродными нановолокнами, легированными азотом) (Lai et al., 2012; Kong et al., 2014; Xiao et al., 2014, 2017), металлические составные материалы обладают более высокой теоретической удельной емкостью из-за их превосходного механизма электрохимического преобразования (Yang et al., 2015; Yu et al., 2015; Chen Y. et al., 2016; Wu et al., 2016; Yu XY. Et al., 2016; Wen et al., 2017). Например, многие однослойные оксиды переходных металлов (MOs-NiO 2 , FeO 2 , TiO 2 , MnO 2 и т. Д. Xia et al., 2014; Yu DJ et al., 2016) были широко изучены в качестве материалов для хранения Na.NiO 2 показал обратимую емкость около 123 мАч g -1 с небольшой поляризацией. Однослойный FeO 2 показал самую большую обратимую емкость (до 80 мАч g −1 ) при высоком напряжении отсечки 3,5 В. При использовании в качестве электродного материала в SIB TiO 2 также показал отличные характеристики. сохранение емкости (снижение емкости на 25% за 1200 циклов). Действительно, MnO 2 был синтезирован простой окислительно-восстановительной реакцией и методом гидротермальной обработки, и была получена большая разрядная емкость 219 мАч г -1 .Jiang et al. разработали тонкую пленку Fe 2 O 3 в качестве анода для SIB с постоянной емкостью 380 мАч g -1 после 200 циклов. Однако оксиды металлов (МО) имеют ряд недостатков, связанных с их низкой электропроводностью и электрохимической активностью (Du et al., 2015; Zhu et al., 2015; Yu and David Lou, 2018).

Таблица 1 . Сравнение Ли и На.

Среди различных анодных материалов, описанных для SIB, сульфиды металлов (MS) привлекли большое внимание из-за их обратимости окислительно-восстановительных реакций, превосходной емкости и более высокой проводимости по сравнению с MO.Связь МС в МС более слабая, чем связь гомологичных МО в МО из-за разной электроотрицательности S и O, что способствует химическим реакциям во время заряда-разряда (Li et al., 2015; Yu XY. Et al., 2016; Zheng et al. ., 2017). Например, нанолисты MoS 2 в качестве анодного материала в SIB показали хорошую зарядно-разрядную емкость 386 мАч g -1 . Однако МС страдают от серьезных проблем, таких как увеличение объема во время процесса введения / экстракции Na + , медленная кинетика диффузии Na + и плохая электропроводность, что может привести к некоторым дефектам, сопровождающимся потерей емкости, малым сроком службы и т.д. и неприемлемые показатели скорости.Известно, что многие исследования улучшают электрохимические характеристики этих анодных материалов за счет разумной конструкции конструкции (Zhou Q. et al., 2016; Hwang et al., 2017).

Наряду с МС, BMS также стали горячей темой, поскольку анодные материалы SIB с точки зрения их высокой электронной проводимости, хорошей электрохимической активности и сильной электрохимической управляемости (Li et al., 2013; Youn et al., 2016; Li Y. et al. ., 2017; Tang et al., 2017). Пока что BMS с разной морфологией и структурой (например,g., нанолисты, нанопластинки, нанотрубки, полые сферы типа «шарик в шарике», наночастицы и структуры, похожие на ежей) были описаны как высокоэффективные аноды в LIB (Chen T. et al., 2016; Li et al., 2016 ; Ma et al., 2016). К настоящему времени существует ряд замечательных работ по применению BMS в качестве анодных материалов в LIB. Синергетический эффект между BMS с более высокой теоретической емкостью и оптимизированной наноструктурой может более эффективно поддерживать механическую стабильность по сравнению с MO и MS (Lai et al., 2012; Kong et al., 2014; Чен Ю. и др., 2016; Wu et al., 2016). Одним из примеров является композит 0D / 1D C @ FeCo-S NDS / CNR, полученный гидротермальным методом (Gao et al., 2017), или порошки Fe-Ni-S со структурой желток-оболочка и (Ni 0,3 Co 0,7 ) 9 S 8 / N-CNT / композит rGO со сверхвысокой длительной циклической стабильностью и выдающимися характеристиками скорости в качестве анода для SIB. Причина может быть связана с их меньшим изменением объема и более высокой начальной кулоновской эффективностью (ICE), что приводит к низкой необратимой емкости (Kim and Kang, 2017).Ли и его коллеги подготовили NiCo 2 S 4 с углеродом, легированным азотом, который служил анодным материалом для SIB с помощью восходящей стратегии и путем регулирования оптимальной области напряжения, выдающую емкость 570 мАч g -1 за 200 циклов при 0,2 A g было получено −1 (Li S. et al., 2019).

Более того, BMS обладают более высокой электронной проводимостью и более многочисленными окислительно-восстановительными реакциями, чем одиночные MS, что может значительно улучшить электрохимические характеристики.Однако существует лишь несколько обзоров, посвященных анодам на основе BMS для SIB (Yan et al., 2014; Fan et al., 2016; Chang et al., 2017). В этом обзоре систематически обсуждаются последние достижения анода BMS в SIB, различные стратегии синтеза и их механизмы накопления натрия, а также их ограничения. В конце представлены существующие проблемы и возможности для разработки высокоэффективных анодов BMS для SIB.

Механизм хранения натрия

Благодаря высокой теоретической удельной емкости и низкой стоимости BMS были подходящим классом анодных материалов как для LIB, так и для SIB (Duan et al., 2019). При использовании в SIB, BMS могут резервировать Na + через специальный механизм. В некоторых случаях процесс интеркаляции / деинтеркаляции или реакция удаления сплава происходит в процессе заряда-разряда, который зависит от BMS (Li Z. et al., 2017; Yan et al., 2017).

Как правило, в процессе первого разряда BMS (например, NiCo 2 S 4 (Zhang et al., 2018), CuCo 2 S 4 (Gong et al., 2018; Li Q. et al., 2018) др., 2019), Ti 0.25 Sn 0,75 S 2 (Huang et al., 2018) и ZnSnS 3 Jia et al., 2018; Liu et al., 2019), Na + интеркалируется в BMS, после чего происходит обратимая реакция превращения (Li S. et al., 2019). Принцип корреляционной реакции аналогичен принципу LIB. Тем не менее, есть некоторые различия в процессе реакции между SIB и LIB (Stephenson et al., 2014; Zhang et al., 2014). Первый процесс восстановления приписывается интеркаляции Na + в BMS без какого-либо фазового превращения, уравнение (1).В том же цикле происходят реакции превращения, как показано в уравнениях (2) и (3), которые обеспечивают впечатляющую способность вызывать структурную нестабильность (Jin et al., 2015; Song et al., 2017; Li S. et al. , 2019).

MSx + xNa ++ xe- → NaxMSx (1) NaxMSx + (2-x) Na ++ (2-x) e- → MS + Na2S (2) МС + 2Na ++ 2e- → M + Na2S (3)

В качестве другого типа механизма хранения Na, ZnSnS 3 используется в качестве анода для SIB, Na + внедряется в слоистую структуру в начальном процессе содирования.В течение всего электрохимического процесса происходит комбинированный механизм преобразования и механизм удаления сплава. Соответствующую реакцию можно изобразить следующим образом (например, ZnSnS 3 ): (Fu et al., 2015; Qin et al., 2016b; Dong et al., 2017; Deng et al., 2018; Zhang Y. et al. др., 2019).

Реакция превращения: ZnSnS3 + 6Na ++ 6e- → Sn + Zn + 3Na2S (4) Реакция легирования: 4Sn + 13Zn + 16Na ++ 16e- → Na15Sn4 + NaZn13 (5)

Важно отметить, что во время электрохимического процесса электродов BMS (M = Zn, Co) обязательно должны происходить реакции превращения, и можно предположить следующие уравнения реакций, NiCo 2 S 4 можно использовать в качестве примера, в то время как Na x MS y является промежуточным продуктом реакции интеркаляции:

Разряд: MSx + xNa ++ xe- → NaxMSx (M = Ni / Co) 3.0-1,3 В (6) NaxMSx + (2-x) Na ++ (2-x) e- → MS + Na2S 1,3-0,6 В (7) МС + 2Na ++ 2e- → M + Na2S 0,6-0,1 В (8) NiCo2S4 + 8Na ++ 8e- → 4Na2S + Ni + 2Co 3,0-0,1 В (9) Заряд: Ni + Na2S → NiSx + 2Na 0,1-0,7 В (10) Co + Na2S → CoSx + 2Na1.7-3.0В (11) 2Na2S + Ni + Co → NiSx + CoSx + 4Na 0,1-3,0 В (12)

Синтез БМС с наноструктурами

Сольвотермальные методы

Являясь недорогим и экологически безопасным методом синтеза, сольвотермическая реакция эффективна для синтеза различных наноматериалов с несопоставимой морфологией, полными кристаллическими частицами, небольшими размерами частиц, однородным распределением, контролируемой стехиометрией и высокой кристалличностью.Благодаря указанным выше достоинствам сольвотермический метод получил широкое распространение при синтезе новых структур и материалов. В последние десятилетия этот метод часто использовался для получения материалов на основе оксидов и серы с идеальной структурой и контролируемым размером для SIB. В последние годы успешно синтезированы БМС различной морфологии сольвотермическим методом. Например, NiCo 2 S 4 наноточки с углеродом, легированным N (NiCo 2 S 4 @NC) (Li S.et al., 2019), NiCo 2 S 4 полая призма, обернутая восстановленным оксидом графена (RGO) (Zhang et al., 2018), N / S-rGO @ ZnSnS 3 аморфный ZnSnS 3 @ rGO (Liu et al., 2019), ((Ni 0,3 Co 0,7 ) 9 S 8 / N-CNTs / rGO) (Lv et al., 2018), (Co 0,5 Ni 0,5 ) 9 S 8 / NC) наночастиц (Cao et al., 2019), CuCo 2 S 4 наночастиц / rGO (Li Q. et al., 2019) и т. Д.Эти наноструктурированные материалы, синтезированные с помощью сольвотермического метода, обладают высокой управляемостью, отличными электрохимическими характеристиками, быстрыми ионами и путями переноса электронов, а также выдающимися скоростными характеристиками (Zhao and Manthiram, 2015; Liu et al., 2017; Jia et al., 2018; Chen et al. ., 2019).

Новый тип NiCo-композита с иерархической оболочкой из rGO 2 S 4 был синтезирован группой Инь путем кипячения с обратным холодильником и сольвотермических реакций. Как показано на рисунках 1A – C, изображения SEM показывают, что нанопризмы NiCo 2 S 4 с однородным размером плотно поглощаются отрицательно заряженными нанолистами оксида графена из-за электростатических взаимодействий между ними (Zhang et al., 2018). (Ni 0,3 Co 0,7 ) 9 S 8 наночастиц / N-CNT / rGO также были получены путем плотного роста in-situ на rGO, как показано на рисунке 1D (Lv et al., 2018). Chen et al. синтезировали фонарную архитектуру Ti 0,25 Sn 0,75 S 2 с композитом MWCNTs с помощью гидротермального метода (рис. 1E) (Huang et al., 2018). В частности, уникальная архитектура с большим количеством пор и большой площадью поверхности может не только сократить путь прохождения Na + , но и зарезервировать большое пространство для увеличения объема.Группа Лю впервые разработала полые наномикрокубы из ZnSnS 3 с инкапсулированным N / S с двойным легированием rGO (подарено как N / S-rGO @ ZnSnS 3 ). В процессе приготовления прекурсор ZnSn (OH) 6 кубиков был успешно синтезирован с помощью простого метода соосаждения. После этого прекурсор был смешан с Na 2 S, тиомочевиной и дисперсией GO, и, наконец, материал N / S-rGO @ ZnSnS 3 был получен посредством типичной гидротермальной реакции (Рисунок 1F) (Liu et al., 2019). Все вышеупомянутые эксперименты проводились по двухэтапному методу. Тем не менее, недавно нанокомпозиты CuCo 2 S 4 / rGO были получены группой Чжао с помощью одностадийного сольвотермического метода, как схематически показано на рисунке 1G (Gong et al., 2018). Ян и др. также синтезировал анодный материал SIB без связующих с иерархической гибридной наноструктурой, которая состояла из массивов нанолистов NiMo 3 S 4 , выращенных на гибких углеродных тканях (обозначенных как NiMo 3 S 4 / CTs) в один этап. гидротермальный метод и последующий процесс после отжига (рис. 1H) (Kong et al., 2018).

Рис. 1. (A – C) СЭМ-изображения прекурсора NiCo, NiCo 2 S 4 и rGO-NiCo 2 S 4 , соответственно. Воспроизведено с разрешения Zhang et al. (2018) Авторское право 2018, Королевское химическое общество. (D) Схематическое изображение получения (Ni 0,3 Co 0,7 ) 9 S 8 / N-CNT / rGO. Воспроизведено с разрешения Lv et al. (2018) Авторское право 2018, Королевское химическое общество. (E) СЭМ-изображения фонарного Ti 0,25 Sn 0,75 S 2 микрочастиц. Воспроизведено с разрешения Huang et al. (2018) Авторские права 2018, Elsevier. (F) Схематическое изображение процесса получения ZnSnS 3 и N / S-rGO @ ZnSnS 3 . Воспроизведено с разрешения Liu et al. (2019) Авторские права 2019, Elsevier. (G) Схематическое изображение образования CuCo 2 S 4 / rGO.Воспроизведено с разрешения Gong et al. (2018) Авторские права 2018, Elsevier. (H) Схематическое изображение для синтеза трехмерного иерархического NiMo 3 S 4 массивов нанолистов на гибких углеродных тканях. Воспроизведено с разрешения Kong et al. (2018) Авторские права 2018, Elsevier.

Кроме того, нанолисты VMo 2 S 4 -rGO (Zhang K. et al., 2019), наночастицы ZnSnS 3 @rGO (Jia et al., 2018), Cu 2 MoS 4 наночастицы (Чен и др., 2019), CuCo 2 S 4 суб-микросферы (Li Q. et al., 2019) и CoSnS x @NC нанобоксы (Liu et al., 2017) были успешно приготовлены с использованием аналогичного подхода. .

Распылительный пиролиз

Пиролиз распылением — популярный метод получения BMS с малым размером частиц и хорошей дисперсией. Действительно, распылительный пиролиз — это метод обработки, который рассматривается во многих исследованиях для получения тонких и толстых пленок, керамических покрытий и порошков. Он предлагает чрезвычайно простой подход для приготовления образцов любого состава.По сравнению с другими методами осаждения, пиролиз распылением представляет собой очень простой и относительно недорогой способ обработки.

Например, полая сфера Ni 3 Co 6 S 8 -rGO с пластинчатыми нанокристаллами никель-кобальтового сульфида (Ni 3 Co 6 S 8 ), равномерно распределенными на смятом Структура rGO (рис. 2A) путем пиролиза распыления была приготовлена ​​в качестве анода для SIB. Небольшие пластинчатые нанокристаллы Ni 3 Co 6 S 8 были встроены в rGO, в результате чего образовался трехмерный полый взаимосвязанный нанокомпозит (рис. 2B) (Choi and Kang, 2015a).Кроме того, порошок твердого раствора со структурой желток (Fe 0,5 Ni 0,5 ) 9 S 8 был приготовлен той же группой посредством процесса пиролиза распылением в одной емкости в качестве анода для SIB. В результате были достигнуты отличные электрохимические характеристики. Схематические диаграммы процесса подготовки показаны на рисунках 2C, D (Kim and Kang, 2017).

Рис. 2. (A) Схематическое изображение механизма образования порошка Ni 3 Co 6 S 8 -rGO. (B) ПЭМ-изображение композитного порошка Ni 3 Co 6 S 8 -rGO. Воспроизведено с разрешения Choi and Kang (2015a) Copyright 2015. Королевское химическое общество. (C) Схематические диаграммы для получения безуглеродистых порошков Fe – Ni – O (D) процессом сульфидирования. Воспроизведено с разрешения (Kim and Kang, 2017) Copyright 2017, Tsinghua University Press. (E) Схематическое изображение синтеза (SnCo) S 2 / SG.Воспроизведено с разрешения Yang et al. (2019) Авторские права 2019. Wiley-VCH.

Основным преимуществом этого метода является то, что материалы электродов BMS могут быть синтезированы только в одну стадию и без каких-либо дополнительных обработок.

Метод соосаждения

Метод соосаждения использовался в последние годы для получения гомодисперсных наноструктурных материалов BMS в SIB. Доказано, что этот метод обладает выдающимися достоинствами, такими как легкое получение наноматериалов с высокой фазовой чистотой и получение нанопорошков с контролируемым размером частиц и однородным распределением.

Используя метод соосаждения, Yang et al. сообщили о разновидности нанокубов (SnCo) S 2 / rGO (рис. 2E) (Yang et al., 2019). Кроме того, Оу и его коллеги синтезировали MnSn (OH) 6 нанобоксов сначала посредством прямого процесса соосаждения, затем SnS 2 / Mn 2 SnS 4 нанобокса / C (SMS / C) были приготовлено влажно-химическим методом для лица. В качестве анодного материала для SIB электрод SMS / C может иметь высокий ICE 90.8%, отличная производительность (488,7 мА · ч · г -1 при 10 A · г -1 ) и стабильность при длительном цикле (522,5 мА · ч · г -1 при 5 А · г -1 сохраняется после 500 циклов) ( Ou et al., 2019).

Благодаря своим преимуществам, простоте эксплуатации, низкой стоимости и меньшему времени синтеза, метод соосаждения широко используется для получения BMS в качестве анодных материалов для SIB.

Другие методы

В дополнение к упомянутым выше методам синтеза, все большее количество высокоэффективных способов было исследовано для получения BMS с различными структурами.Например, группа Sun сообщила о губчатом композите (ZnxCo 1-x S QD @ HCP) @rGO посредством одновременного термического сульфидирования, карбонизации и восстановления. Квантовые точки (QD) ZnxCo 1 − x S в исходном состоянии были равномерно распределены на мезопористой полоуглеродной полиэдрической (HCP) матрице и покрытии rGO с большой удельной поверхностью, обозначенном как [ZnxCo 1 − x S QD @ HCP] @rGO (Рисунки 3A, B) (Chen Z. et al., 2017; Hwang et al., 2017). Используя метод твердофазной реакции, Кренгель синтезировал частицы CuV 2 S 4 с широким распределением по размерам от 5 до 50 мкм (рис. 3C).Полученные продукты показали отличную стабильность при циклическом воздействии 580 мА · ч г -1 сохранялась после 500 циклов при 0,7 A g -1 и относительно высоком ICE 72,5% (Qin et al., 2016a; Xu et al., 2016 ; Zhou J. et al., 2016; Krengel et al., 2017).

Рис. 3. (A, B) СЭМ-изображения композитов [Zn x Co 1-x S QD @ HCP] @rGO. Воспроизведено с разрешения Chen Z. et al. (2017) Copyright 2017. Wiley-VCH. (C) SEM-изображение CuV 2 S 4 .Воспроизведено с разрешения Krengel et al. (2017) Copyright 2017. Американское химическое общество.

С развитием новых методов синтеза наноматериалов с уникальной структурой в EES было применено множество BMS с высокоэффективной наноструктурой. Сравнение структурных свойств, методов синтеза и ресурса S BMS приведено в таблице 2.

Таблица 2 . Сравнение структурных свойств, методов синтеза и S-ресурса BMS.

Как уже упоминалось, наноматериалы, полученные сольвотермическим методом, характеризуются хорошей морфологией кристаллов, контролируемым нанометровым размером и высокой чистотой. Однако масштабирование производства может оказаться затруднительным. В результате струйного пиролиза получаются порошковые материалы с достоинствами небольшого нанометрового размера и однородной дисперсии, но этот многообещающий метод требует специального оборудования со сложной работой. Несмотря на некоторые преимущества простоты эксплуатации, низкой стоимости и более короткого времени реакции, метод соосаждения по-прежнему вызывает некоторые проблемы, которые необходимо решить, например, скорость реакции не поддается контролю, с сервером агломерации наноматериалов.Таким образом, желаемые и материалы могут быть рассмотрены путем выбора подходящих стратегий синтеза для BMS (Lai et al., 2012; Palomares et al., 2012).

Приложения в SIBS

Переходные BMS

С учетом специфического механизма реакции, большого количества активных центров и коротких путей диффузии, наноматериалы переходных БМС имеют много преимуществ в качестве перспективных анодных материалов для СИП. Большой объем работ был посвящен разработке переходных анодов BMS в SIB.В этом разделе обсуждаются и рассматриваются переходные BMS как высокоэффективные анодные материалы SIB.

В некоторых случаях Fe – Ni – O со структурой желтка и скорлупы был разработан путем пиролиза распылением в одной емкости, как показано на рисунке 4A. При использовании в качестве анода в SIB, (Fe 0,5 Ni 0,5 ) 9 S 8 показал емкость 527 мАч / г -1 при 1 А г -1 после 100 циклов. Выдающиеся показатели скорости были также получены с емкостью обратимого разряда 465 мАч g -1 при 5.0 A g −1 (Kim, Kang, 2017). Канг и др. исследовали FeS 2 , легированный кобальтом, путем изменения содержания Co простым сольвотермическим методом. При первом использовании в качестве анодного материала в SIB FeS 2 , легированный Co, показал хорошие характеристики цикличности и скорости в диапазоне напряжений 0,8–2,9 В благодаря высокой производительности FeS 2 и высокой емкости. CoS 2 . Все образцы имели сферическую форму частиц со средним диаметром около 100 нм (рисунки 4B, C).Когда содержание Co увеличилось до 0,5, Co 0,5 Fe 0,5 S 2 показал лучшие электрохимические характеристики. Как показано на рисунках 4D, E, стабильная удельная емкость 220 мАч g -1 была достигнута после 5000 циклов при 2 A g -1 (Zhang et al., 2016; Ge et al., 2017). Feng et al. использовали простой сольвотермический метод для синтеза CuCo 2 S 4 суб-микросфер с размерами от 300 до 500 нм (рис. 4F). Уникальная структура и синергетические эффекты двойного металла CuCo 2 S 4 могут эффективно улучшить стабильность электродных материалов, избегая агрегации наноматериалов и сокращая пути диффузии ионов / электронов.Полученный композит CuCo 2 S 4 продемонстрировал отличную стабильность при циклическом воздействии и высокую кулоновскую эффективность в качестве анода для SIB Рисунок 4G (Li Q. et al., 2019). Как показано на вставке к фиг. 4H, неправильный микрополиэдр CuV 2 S 4 был синтезирован методом твердотельной реакции. Возможность переключения CuV 2 S 4 , как показано на рисунке 4H, который отображает емкость 490 мАч g −1 при 0,15 A g −1 и 410 мАч g −1 при 0.7 А г −1 . Промежуточный продукт Na 2 S матрица начинает участвовать в окислительно-восстановительном процессе, вызывая стабильное увеличение емкости до 580 мАч g −1 в течение первых 250 циклов при 0,7 A g −1 и поддерживая ее на этом уровне в течение следующие 50 циклов (Krengel et al., 2017).

Рис. 4. (A) ПЭМ-изображения (Fe 0,5 Ni 0,5 ) 9 S 8 порошок желтка и скорлупы. Воспроизведено с разрешения Kim and Kang (2017) Copyright 2017, Tsinghua University Press. (B, C) SEM и TEM изображения образца Co 0,5 Fe 0,5 S 2 . (D, E) Иллюстрация состава и циклических характеристик Na / Co 0,5 Fe 0,5 S 2 полуэлемент. Воспроизведено с разрешения Zhang et al. (2016) Авторские права 2016, Wiley-VCH. (F) СЭМ-изображение CuCo 2 S 4 суб-микросфер; (G) Циклические характеристики CuCo 2 S 4 .Воспроизведено с разрешения Li Q. et al. (2019) Авторские права 2019, Wiley-VCH. (H) Циклические характеристики и кулоновский КПД CuV 2 S 4 ячеек с гальваностатическим циклированием при 0,15 A g −1 между 3 и 0,1 В и 3 и 0,01 В при 0,7 A g −1 . На вставке в (H) показана элементарная ячейка шпинельного типа. Воспроизведено с разрешения Krengel et al. (2017) Авторское право 2017 г., Американское химическое общество.

В заключение, обилие переходных металлов с различными валентными состояниями заставляет их проявлять высокую теоретическую удельную емкость во время электрохимических реакций.

Несмотря на многие преимущества BMS, все еще остаются проблемы с точки зрения медленной кинетики реакции, плохих электрохимических свойств из-за большого радиуса Na + и значительного изменения объема во время цикла. Чтобы преодолеть упомянутые выше ловушки, были введены материалы на основе углерода из-за их устойчивости к циклическим нагрузкам, обширных ресурсов и платформы с низким содержанием натрия. Действительно, покрытие и легирование BMS углеродными материалами использовались в качестве многообещающих методов для улучшения характеристик накопления ионов натрия в SIB, поскольку они могут улучшить электропроводность и поддерживать структурную стабильность BMS (Chen S.et al., 2017; Lin et al., 2018; Lv et al., 2018; Zhang et al., 2018).

Как типичный BMS, NiCo 2 S 4 привлек большое внимание благодаря своей превосходной электропроводности, чрезвычайно стабильным характеристикам электрохимического циклирования и выдающимся скоростным характеристикам. Тем не менее, его медленная кинетика Na + ограничивает продвижение этого анодного материала. Чтобы решить эту проблему, были исследованы композиты NiCo 2 S 4 с материалами на основе углерода, такими как углерод с примесью азота (NC), rGO и углеродные нанотрубки (CNT).Материалы на основе углерода могут не только улучшить электропроводность, но также предоставить больше активных центров для быстрого накопления Na + и уменьшить объемное расширение во время процесса заряда-разряда (Xiao et al., 2017). Например, Инь и др. сообщили об эффективности матрицы rGO в улучшении электрохимических свойств полой призмы NiCo 2 S 4 , подтвержденной ее циклическими характеристиками (рис. 5A). Во время процесса разряда полые наночастицы оболочки NiCo 2 S 4 будут схлопываться, когда Na + вставляется в анод, в то время как наноматериал NiCo 2 S 4 , завернутый в rGO, может хорошо сохраняться ( Рисунок 5B) (Zhang et al., 2018). Таким образом, ультратонкие нанолисты rGO с большой удельной поверхностью, активным центром и пористыми каналами обеспечивают выдающиеся электрохимические характеристики с хорошим накоплением натрия. Рисунок 5C иллюстрирует циклическую производительность Ni 3 Co 6 S 8 @rGO электрода при 0,5 A g -1 , полученного Kang et al. с распределением пластинчатых нанокристаллов Ni 3 Co 6 S 8 по смятой структуре rGO. Эти нанокристаллы имели емкость 298 мкм.1 мАч g -1 после 300 циклов при 25 мАч g -1 в качестве материала анода в SIB (Choi and Kang, 2015b). CuCo 2 S Было синтезировано 4 нанокомпозитов / rGO, которые показали емкость 433 мАч г -1 после 50 циклов при 0,1 А г -1 и показали отличную производительность при 336 мАч г -1 при 1 A g −1 (Gong et al., 2018).

Рис. 5. (A) Циклические характеристики NiCo 2 S 4 и rGO – NiCo 2 S 4 при 50 мА g −1 . (B) Схема процесса внедрения ионов натрия в NiCo 2 S 4 и rGO – NiCo 2 S 4 . Воспроизведено с разрешения Zhang et al. (2018) Copyright 2018. Королевское химическое общество. (C) Циклические характеристики (Ni, Co) O-rGO и Ni 3 Co 6 S 8 — rGO при 0,5 A g −1 . Воспроизведено с разрешения Choi and Kang (2015a) Copyright 2015. Королевское химическое общество. (D) СЭМ изображения NiCo 2 S 4 -NC, (E) Циклические характеристики NiCo 2 S 4 -NC в различных электролитах при 1.0 A g −1 , (F) Циклические характеристики и кулоновский КПД NiCo 2 S 4 -NC в различных окнах напряжения отсечки при 0,2 A g −1 . Воспроизведено с разрешения Li S. et al. (2019) Авторские права 2019. Elsevier.

Более того, комбинируя с графеном, Ji et al. использовали восходящую стратегию для получения NiCo 2 S 4 наноточек, однородно включенных с легированным азотом углеродом (обозначенным как NiCo 2 S 4 -NC) (рис. 5D).Затем было исследовано влияние различных электролитов и окон напряжения на его электрохимические характеристики. Как показано на рисунке 5E, из-за гибкой одномерной цепной структуры DEGDME ячейка с электролитом на основе простого эфира NaClO 4 / DEGDME обеспечивает максимальную емкость 530 мА · ч · г -1 при 1,0 A · г — 1 . Действительно, наилучший диапазон напряжения был определен как 0,4–3,0 В, в котором ячейка может эффективно поддерживать обратимое фазовое превращение и избегать побочных реакций (рис. 5F) (Li S.и др., 2019). Chen et al. также синтезированы полые нанокубы Co 8 FeS 8 с покрытием из легированного N углеродом с большой площадью поверхности, малым сопротивлением переносу заряда и быстрым коэффициентом диффузии Na + . Кроме того, этой группой был получен слоистый Cu 2 MoS 4 -rGO с кристаллической структурой (Chen et al., 2019).

Co 1 Zn 1 -xS (600) — еще одна уникальная композитная структура, полученная путем простого сульфидирования и прокаливания.Эта особая структура может замедлить изменение объема во время электрохимического процесса, ускорить кинетику диффузии Na + и повысить электропроводность, что приводит к относительно низкой необратимой емкости, а также превосходным циклическим и скоростным характеристикам (рис. 6A). При использовании в SIB превосходная емкость 542 мАч g −1 может быть достигнута после 100 циклов при 0,1 A g −1 , с впечатляющими характеристиками скорости 219,3 мАч g −1 при 10 A g — 1 (Choi et al., 2015; Qin et al., 2016b; Fang G. et al., 2018; Wang et al., 2018). В другом исследовании был приготовлен подобный губке (Zn x Co 1 − x S QD @ HCP) композит @rGO в сочетании с мезопористой полоуглеродной полиэдральной (HCP) матрицей и листами, обернутыми rGO. Благодаря достоинствам этой структуры (Zn x Co 1 − x S QD @ HCP) @rGO в качестве анода без связующего в SIB показал хорошую обратимую емкость и циклические характеристики (т. Е. 638 мАч g — 1 при 0,3 A г -1 после 500 циклов), что было лучше, чем у монометаллического сульфида в тех же условиях (рис. 6B) (Chen Z.и др., 2017). Для решения проблем, связанных с низкой плотностью энергии и малым сроком службы при использовании в качестве анода в SIB, прекурсоры MOF были использованы для изготовления in-situ NC , украшенных полыми сферическими наноматериалами BMS. Они приготовили (Co 0,5 Ni 0,5 ) 9 S 8 твердый раствор в сочетании с in-situ NC [подарен как (Co 0,5 Ni 0,5 ) 9 S 8 / NC], который показал превосходные свойства хранения Na.Действительно, хорошая удельная емкость 723,7 мАч g -1 сохранялась после 100 циклов при 1 A g -1 , с кулоновской эффективностью 83% по сравнению со вторым циклом. Впечатляющая емкость 596,1 мА · ч g −1 была достигнута при 10 A g −1 с сохранением высокой емкости 60,2% при 0,1 A g −1 , демонстрируя отличные характеристики скорости. В результате модификации углерода и иерархической сферической структуры в процессе циклирования были достигнуты высокая электропроводность и механическая стабильность (Cao et al., 2019).

Рисунок 6. (A) Циклические характеристики Co 1 Zn 1 -xS. Воспроизведено с разрешения Fang G. et al. (2018) Copyright 2018. Wiley-VCH. (B) Циклические характеристики композитов (ZnS QD @ HCP) @rGO и (Zn x Co 1 − x S QD @ HCP) @rGO при 3 A g −1 . Воспроизведено с разрешения Chen Z. et al. (2017) Copyright 2017. Wiley-VCH.

Из-за присущих BMS недостатков материалы электродов очень чувствительны к расширению, а затем легко отделяются от токосъемника во время цикла.Соответствующие результаты показали, что модификация углерода и оптимизация наноструктуры являются хорошим выбором для получения высокоэффективной системы хранения ионов натрия. Кроме того, Ян и др. разработали электродный материал без связующего в качестве анода SIB, который имеет массивы нанолистов NiMo 3 S 4 / CTs с иерархической гибридной наноструктурой (Kong et al., 2018). Следовательно, он обеспечивал высокую емкость накопления натрия и отличную производительность при циклических нагрузках.

За последнее десятилетие было проведено большое количество исследований по изучению превосходных электродных материалов для хранения натрия.Таким образом, подробное сравнение электрохимических характеристик анодов BMS в SIB представлено в таблице 3.

Таблица 3 . Сравнение электрохимических характеристик анодов BMS в SIB.

Смешанные BMS

BMS на основе олова (ZnSnS 3 , CoSnS x ) показали высокую емкость в качестве анодов SIB и привлекли большое внимание из-за большого расстояния между слоями, обусловленного их слоистой структурой типа CdI2, и высокой теоретической емкости благодаря сочетание конверсионного и легирующего типов механизма электрохимической реакции (Qu et al., 2014; Choi et al., 2015; Cho et al., 2016; Лу и др., 2016). Однако важно решить проблемы, связанные с расширением большого объема и их низкой проводимостью. Поэтому для изменения электрохимических свойств BMS требуются структурная инженерия и внедрение углеродных материалов.

Наночастицы сульфида цинка и олова @ rGO (ZnSnS 3 @rGO) были получены Zhang et al. путем сочетания сольвотермической реакции с процессом отжига. При использовании в SIB превосходная производительность Na-хранилища с большой удельной емкостью (472.2 мАч g −1 при 0,1 A g −1 ), высокая производительность (165,8 мАч g −1 при 2 A g −1 ) и сверхдлительный срок службы (401,2 мАч g −1 при 0,1 A г −1 после 200 циклов) (Jia et al., 2018). Таким образом, представленная конструкция композитного анода обеспечивает новые изменения для разработки высокостабильных анодных материалов, которые обладают превосходной проводимостью и высокой адаптируемостью к большим изменениям объема во время процесса натрирования / десодиации.Лю и др. разработали наноструктуру ZnSnS 3 с полыми нано-микрокубиками с помощью соосаждения и гидротермальных методов. За процессом следовало покрытие rGO с двойным легированием N / S (N / S-rGO @ ZnSnS 3 ) (Рисунки 7A, B) для улучшения кинетики медленной реакции и плохих электрохимических свойств BMS. В результате приготовленный композит N / S-rGO @ ZnSnS 3 показал высокую удельную емкость 501,7 мА · ч · г -1 после 100 циклов при 0,1 А · г -1 и превосходный длительный срок службы 290.7 мАч г -1 после 500 циклов при 1 А г -1 . Между тем, поддерживалась высокоскоростная емкость 256,6 мАч g -1 при 2 A g -1 (Рисунки 7C, D). Такие выдающиеся характеристики были в первую очередь приписаны покрытию из двойного легированного rGO, которое обеспечивает некоторые синергетические преимущества для EES, а именно: (1) из-за сильной полярности области легирования, которая сдерживает агрегацию приготовленного rGO; (2) повышение электропроводности за счет уменьшения полупроводникового зазора; (3) из-за недостатков обладают высокой электроотрицательностью, могут легко притягивать положительные ионы, что приводит к увеличению количества ионов щелочных металлов; (4) из-за эффекта адсорбции между анодом и rGO, который усиливает структурную стабильность (Liu et al., 2019). Кроме того, Chen et al. введен титан в кристаллическую структуру SnS 2 , чтобы частично заменить олово, образуя подобный фонарю Ti 0,25 Sn 0,75 S 2 с последующим покрытием одномерных многостенных углеродных нанотрубок (MWCNT) (обозначенных как Ti 0,25 Sn 0,75 S 2 @MWCNTs) для улучшения дефектов объемного расширения SnS 2 и низкой проводимости. Благодаря своей фонарно-подобной структуре с большой удельной поверхностью электролит мог полностью проникать в Ti 0.25 Sn 0,75 S 2 @MWCNTs, увеличивающие перенос электронов / ионов во время циклирования. Высокая удельная емкость 307 мАч g -1 была получена после 1000 циклов при 0,4 A g -1 в процессе электрохимического тестирования (Huang et al., 2018). Монокристаллические мезопористые нанобоксы CoSn (OH) 6 также были синтезированы методом соосаждения. TAA использовали в качестве ресурса S для достижения CoSnSx с помощью сольвотермического метода с последующим нанесением полимерных нанопокрытий и карбонизацией дофамином при более высокой температуре в потоке N 2 с получением материалов электродов CoSnS x @NC.Впоследствии были исследованы характеристики накопления Na и влияние содержания углерода на электрохимические свойства нанобоксов CoSnS x @NC. Результаты показали, что наилучшее количество углерода составляет 36,8 мас.% Для защиты нанобоксов от разрушения во время глубоких циклов. Электрод продемонстрировал отличные характеристики циклирования и достиг высокой емкости 300 мАч г −1 с высокой кулоновской эффективностью почти 100% после 500 циклов, а также выдающимся длительным циклом работы 180 мАч г -1 после 4000 циклов при 1 A g -1 (рис. 7E) (Liu et al., 2017). Более того, Ou et al. приготовили гетероструктурированные нанобоксы SnS 2 / Mn 2 SnS 4 / углеродные нанобоксы размером около 100 нм с помощью метода лицевого соосаждения. При оценке в качестве анодного материала в SIB особая структура между SnS 2 и Mn 2 SnS 4 может облегчить изменение объема в результате массового электрохимического процесса, предотвратить когезию наночастиц Sn и повысить обратимость реакция превращения-легирования.Он также продемонстрировал высокий ICE 90,8%, выдающуюся стабильность при длительном цикле 522,5 мАч g −1 после 500 циклов при 5 A g −1 , а также замечательную производительность (752,3, 604,7, 570,1, 546,9, 519,7 , и 488,7 мАч г -1 при 0,1, 0,5, 1,0, 2,0, 5,0 и 10,0 А г -1 , соответственно). Обладая преимуществами этих преимуществ (огромная удельная поверхность, большое количество активных центров и высокая электропроводность) углеродных материалов, полученный композитный электрод показал впечатляющие электрохимические характеристики (Ou et al., 2019). Ян и др. сообщили о новом материале, состоящем из нанокубов (SnCo) S 2 , переплетенных с двумерными нанолистами из легированного серой графена (SG) ((SnCo) S 2 / SG), синтезированных с помощью простого метода соосаждения и отжига. Он продемонстрировал превосходную обратимую емкость 487 мАч g −1 для 5000 циклов при 5 A g −1 , а также высокую сохраняемость емкости 92,6% (Yang et al., 2019).

Рис. 7. (A, B) FESEM-изображения ZnSnS 3 и N / S-rGO @ ZnSnS 3 , (C, D) Скорость и циклические характеристики N / S-rGO, ZnSnS 3 и Н / С-рГО @ ZnSnS 3 электрода .Воспроизведено с разрешения Liu et al. (2019) Авторские права 2019. Elsevier. (E) Долговременная стабильность аморфных нанобоксов CoSnS x @NC с различным содержанием углерода, нанобоксов аморфного CoSnS x , кристаллического CoS-Sn 2 S 3 нанобоксов @NC и N- легированный углерод при 1,0 А г −1 . На вставке в (E) показаны характеристики циклирования и кулоновская эффективность электрода CoSnS x @NC в виде нанобоксов при 0,2 A g -1 .Воспроизведено с разрешения Liu et al. (2017) Copyright 2017. Королевское химическое общество.

Другие BMS

В дополнение к вышеупомянутым BMS, Manthiram et al. сообщили о кластере наностержней Bi 0,94 Sb 1,06 S 3 -графит в качестве анодного материала SIB. Они обнаружили, что создание твердых растворов можно рассматривать как идеальный метод исследования новых анодных материалов с превосходными электрохимическими характеристиками для SIB. Би 0,94 Сб 1.06 S 3 -графитовый анод показал замечательную емкость 380 мАч g −1 после 200 циклов при 1 A g −1 , что выше, чем у Sb 2 S 3 -графит электрод (~ 50 мАч г -1 ) и Bi 2 S 3 -графитовый электрод (~ 210 мАч г -1 ). Это означает, что биметаллические атомы могут не только повысить устойчивость электродных материалов к циклированию, но и улучшить их емкость (Zhao and Manthiram, 2015).Чжун и др. успешно спроектировал новый композитный микрорельеф, подобный гортензии, желтку и скорлупе, самособирающийся с помощью нанолистов для SIBs. Соответственно, высокая емкость 607,14 мАч г -1 была доставлена ​​при 0,05 А г -1 , наряду с уменьшением объемного расширения и повышением стабильности при циклировании в значительной степени благодаря уникальной структуре материала электродов (Zhong и др., 2019). Кроме того, производительность различных материалов BMS показана на Рисунке 8, а сравнение характеристик цикла BMS и MS приведено в Таблице 4.

Рисунок 8 . Расчетная способность при различных плотностях тока от 0,1 до 5 А г -1 для различных биметаллических сульфидов в SIB. Ссылка 1 (Choi and Kang, 2015a), ссылка 2 (Chen J. et al., 2017), ссылка 3 (Zhang et al., 2016), ссылка 4 (Yang et al., 2019), ссылка .5 (Lv et al., 2018), ссылка 6 (Zhang et al., 2018), ссылка 7 (Gong et al., 2018), ссылка 8 (Huang et al., 2018), ссылка 9 (Liu et al., 2017), ссылка 10 (Liu et al., 2019), ссылка 11 (Zhang K. et al., 2019), ссылка 12 (Jia et al., 2018), ссылка.13 (Cao et al., 2019), ссылка 14 (Chen et al., 2019), ссылка 15 (Ou et al., 2019), ссылка 16 (Li Q. et al., 2019), ссылка. 17 (Kong et al., 2018), ссылка 18 (Kim and Kang, 2017), ссылка 19 (Zhao and Manthiram, 2015), ссылка 20 (Krengel et al., 2017).

Таблица 4 . Сравнение электрохимических характеристик анодов BMS и MS в SIB.

Выводы и перспективы

В этом обзоре систематизированы последние разработки BMS в качестве анодных материалов для SIB.БМС демонстрируют очевидные достоинства относительно высокой электропроводности и электрохимической активности. Более того, значительный эффект самоматрицы и самопроводимости из-за реакции двух металлических элементов с Na может быть полностью эффективным. Действительно, из-за наличия «синергетического эффекта» непрореагировавшая часть может служить временным демпфером / проводником для прореагировавшей из-за их разного окислительно-восстановительного потенциала (Pumera et al., 2014; Wang et al., 2014; Chang et al., 2016; Liu et al., 2019).В этом обзоре, во-первых, были представлены стратегии синтеза BMS. Затем были обсуждены механизмы накопления натрия в различных BMS в процессе заряда-разряда. Что еще более важно, применение BMS в качестве анодов SIB систематически анализировалось, и в то же время высказывались глубокие ожидания относительно его будущего развития.

Чтобы избежать потери емкости анодных материалов BMS, первая стратегия заключается в разработке новых наноструктур с подходящим пустым пространством, чтобы уменьшить влияние объемного расширения и сжатия во время процесса реакции (Palomares et al., 2012; Slater et al., 2013; Оу и др., 2016; Путунган и др., 2016; Шен и др., 2016; Су и др., 2016). В качестве второй стратегии интеграция с другими электрохимически стабильными материалами может не только ограничить объемное расширение, но также повысить общую электропроводность анода. Кроме того, растворение полисульфидов в электролите во время электрохимического процесса можно до некоторой степени подавить (Wang et al., 2018). До сих пор многие аноды BMS в SIB, о которых сообщалось, относятся к их комбинации с материалами на основе углерода.Таким образом, для разработки анодных материалов SIB важно полностью изучить достоинства наноструктурированных материалов (Lu et al., 2017; Ma et al., 2018). В будущем необходимо приложить гораздо больше усилий, чтобы преодолеть недостаток плохой длительной езды на велосипеде. Ожидается, что использование рационально спроектированных структур в BMS может эффективно улучшить электрохимические характеристики в SIB (Kim et al., 2012; Jiang et al., 2014; Su et al., 2015; Gao et al., 2017; Hwang и др., 2017).

Несмотря на то, что к настоящему времени выполнены все новые работы, необходимо еще больше времени и усилий направить на эффективное улучшение электрохимических свойств BMS, чтобы проложить путь их практического применения в SIB в ближайшем будущем.

Авторские взносы

YH, DX и XL внесли свой вклад в концепцию и дизайн исследования. YH организовал базу данных, выполнил статистический анализ и написал рукопись с помощью HM, JP, YiL, YuL, DL, QS и XS. Все авторы одобрили окончательную версию рукописи.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы искренне благодарны за поддержку Фонда естественных наук провинции Цинхай в Китае (2020-ZJ-910), Национального фонда естественных наук Китая (51672189) и Тяньцзиньского научно-технологического проекта (18PTZWHZ00020).

Список литературы

Цао, Д., Кан, В., Ван, С., Ван, Ю., Сун, К., Ян, Л. и др. (2019). In situ Углерод, модифицированный легированным азотом (Co 0,5 Ni 0,5 ) 9 S 8 полые сферы в виде твердых растворов в качестве анодов большой емкости для натрий-ионных аккумуляторов. J. Mater. Chem. А 7, 8268–8276. DOI: 10.1039 / C9TA00709A

CrossRef Полный текст | Google Scholar

Цао, X., Тан, К., Синдоро, М., и Чжан, Х. (2017). Гибридные микро- / наноструктуры, полученные из металлоорганических каркасов: подготовка и применение в накоплении и преобразовании энергии. Chem. Soc. Ред. 46, 2660–2677. DOI: 10.1039 / C6CS00426A

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чанг, К., Хай, X., и Йе, Дж.(2016). Дисульфиды переходных металлов как альтернативные благородные металлы сокатализаторы для производства солнечного водорода. Adv. Energy Mater. 6: 1502555. DOI: 10.1002 / aenm.201502555

CrossRef Полный текст | Google Scholar

Chang, L., Wang, K., Huang, L.A., He, Z., Zhu, S., Chen, M., et al. (2017). Иерархическая пленка из микроцветов CoO с отличными электрохимическими характеристиками накопления лития / натрия. J. Mater. Chem. А 5, 20892–20902. DOI: 10.1039 / C7TA05027E

CrossRef Полный текст | Google Scholar

Че, Х., Chen, S., Xie, Y., Wang, H., Amine, K., Liao, X-Z., Et al. (2017). Стратегии разработки электролитов и результаты исследований натриево-ионных аккумуляторов, работающих при комнатной температуре. Energy Environ. Sci. 10, 1075–1101. DOI: 10.1039 / C7EE00524E

CrossRef Полный текст | Google Scholar

Чен, Дж., Ли, С., Кумар, В., и Ли, П. С. (2017). Биметаллические полые нанокубки из сульфида с углеродным покрытием в качестве усовершенствованного анода для ионно-натриевой батареи. Adv. Energy Mater. 7: 1700180. DOI: 10.1002 / aenm.201700180

CrossRef Полный текст | Google Scholar

Chen, J., Mohrhusen, L., Ali, G., Li, S., Chung, K. Y., Al-Shamery, K., et al. (2019). Исследование электрохимического механизма полых наносфер Cu 2 MoS 4 для быстрого и стабильного хранения ионов натрия. Adv. Функц. Матер. 29: 1807753. DOI: 10.1002 / adfm.201807753

CrossRef Полный текст | Google Scholar

Chen, S., Wu, C., Shen, L., Zhu, C., Huang, Y., Xi, K., et al.(2017). Проблемы и перспективы для электродных материалов типа NASICON для перспективных натриево-ионных аккумуляторов. Adv. Матер. 29: 1700431. DOI: 10.1002 / adma.201700431

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Chen, T., Cheng, B., Chen, R., Hu, Y., Lv, H., Zhu, G., et al. (2016). Иерархические тройные карбидные наночастицы / углеродные нанотрубки со вставленными N-легированными углеродными вогнутыми многогранниками для эффективного хранения лития и натрия. ACS Appl. Матер. Интерфейсы 8, 26834–26841.DOI: 10.1021 / acsami.6b08911

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чен, Ю., Ю, X., Ли, З., Пайк, У., и Лу, X. Д. (2016). Иерархическая структура MoS 2 трубчатые структуры с внутренними связями углеродных нанотрубок в качестве высокостабильного анодного материала для литий-ионных аккумуляторов. Sci. Adv. 2: e1600021. DOI: 10.1126 / sciadv.1600021

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чен, З., Ву, Р., Лю, М., Ван, Х., Xu, H., Guo, Y., et al. (2017). Общий синтез двойных углеродных квантовых точек сульфидов металлов в направлении высокоэффективных анодов для натрий-ионных аккумуляторов. Adv. Функц. Матер. 27: 1702046. DOI: 10.1002 / adfm.201702046

CrossRef Полный текст | Google Scholar

Чо, Э., Сонг, К., Пак, М. Х., Нам, К. В., и Кан, Ю. М. (2016). Цветы SnS 3D с превосходными кинетическими свойствами для анодного использования в натриевых аккумуляторных батареях нового поколения. Малый 12, 2510–2517.DOI: 10.1002 / smll.201503168

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чой, С. Х., и Кан, Ю. К. (2015a). Синергетические композиционные и морфологические эффекты для улучшенных свойств накопления Na + Ni 3 Co 6 S 8 -восстановленные композитные порошки оксида графена. Наноразмер 7, 6230–6237. DOI: 10.1039 / C5NR00012B

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Цой, С.Х., Канг Ю.С. (2015b). Синергетический эффект структуры желточной оболочки и равномерного перемешивания нанокристаллов SnS-MoS 2 для улучшенных возможностей хранения Na-ионов. ACS Appl. Матер. Интерфейсы 7, 24694–24702. DOI: 10.1021 / acsami.5b07093

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чой, С. Х., Ко, Ю. Н., Ли, Дж. К., и Кан, Ю. К. (2015). 3D MoS 2 — графеновые микросферы, состоящие из множества наносфер с превосходными свойствами хранения ионов натрия. Adv. Функц. Матер. 25, 1780–1788. DOI: 10.1002 / adfm.201402428

CrossRef Полный текст | Google Scholar

Deng, P., Yang, J., He, W., Li, S., Zhou, W., Tang, D., et al. (2018). С помощью олова Sb 2 S 3 наночастиц, равномерно привитых на графен, эффективно улучшает характеристики накопления ионов натрия. ChemElectroChem 5, 811–816. DOI: 10.1002 / celc.201800016

CrossRef Полный текст | Google Scholar

Донг, С., Ли, К., Ге, X., Ли, З., Мяо, X., и Инь, Л. (2017). ZnS-Sb 2 S 3 @C структура многогранника ядро-двойная оболочка, полученная из металлоорганического каркаса в качестве анодов для высокоэффективных ионно-натриевых батарей. ACS Nano 11, 6474–6482. DOI: 10.1021 / acsnano.7b03321

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ду, Ю., Чжу, X., Чжоу, X., Ху, Л., Дай, З., и Бао, Дж. (2015). Co 3 S 4 пористых нанолистов, внедренных в листы графена в качестве высокоэффективных анодных материалов для хранения лития и натрия. J. Mater. Chem. А 3, 6787–6791. DOI: 10.1039 / C5TA00621J

CrossRef Полный текст | Google Scholar

Дуань, Дж., Тан, X., Дай, Х., Ян, Ю., Ву, В., Вэй, X., и др. (2019). Создание безопасных литий-ионных аккумуляторов для электромобилей: обзор. Electrochem. Energy Rev. 3, 1–42. DOI: 10.1007 / s41918-019-00060-4

CrossRef Полный текст | Google Scholar

Фан, Л., и Ли, X. (2018). Последние достижения в области эффективной защиты анода из металлического натрия. Nano Energy 53, 630–642. DOI: 10.1016 / j.nanoen.2018.09.017

CrossRef Полный текст | Google Scholar

Fan, L., Li, X., Yan, B., Feng, J., Xiong, D., Li, D., et al. (2016). Контролируемая кристалличность SnO 2 эффективно доминирует над характеристиками накопления натрия. Adv. Energy Mater. 6: 1502057. DOI: 10.1002 / aenm.201502057

CrossRef Полный текст | Google Scholar

Fang, G., Wu, Z., Zhou, J., Zhu, C., Cao, X., Lin, T., et al.(2018). Наблюдение псевдоемкостного эффекта и быстрой диффузии ионов в биметаллических сульфидах в качестве перспективного анода натрий-ионной батареи. Adv. Energy Mater. 8: 1703155. DOI: 10.1002 / aenm.201703155

CrossRef Полный текст | Google Scholar

Фанг, Ю., Сяо, Л., Чен, З., Ай, X., Цао, Ю., и Ян, Х. (2018). Последние достижения в области материалов для натриево-ионных аккумуляторов. Electrochem. Энергия. Ред. 1, 294–323. DOI: 10.1007 / s41918-018-0008-x

CrossRef Полный текст | Google Scholar

Fu, Y., Zhang, Z., Yang, X., Gan, Y., and Chen, W. (2015). Наночастицы ZnS, внедренные в пористые углеродные матрицы в качестве анодных материалов для литий-ионных аккумуляторов. RSC Adv. 5, 86941–86944. DOI: 10.1039 / C5RA15108B

CrossRef Полный текст | Google Scholar

Гао, X., Ван, Дж., Чжан, Д., Адаир, К., Фэн, К., Сун, Н., и др. (2017). Биметаллические сульфидные наноточки с углеродным покрытием / гетероструктура углеродных наностержней, обеспечивающая длительный срок службы литий-ионных аккумуляторов. J. Mater. Chem. А 5, 25625–25631.DOI: 10.1039 / C7TA06849B

CrossRef Полный текст | Google Scholar

Ge, X., Li, Z., and Yin, L. (2017). Металлоорганические каркасы образованы пористыми многогранниками ядро ​​/ оболочка CoP @ C, закрепленными на трехмерных сетках из восстановленного оксида графена в качестве анода для натрий-ионной батареи. Nano Energy 32, 117–124. DOI: 10.1016 / j.nanoen.2016.11.055

CrossRef Полный текст | Google Scholar

Гонг Ю., Чжао Дж., Ван Х. и Сюй Дж. (2018). CuCo 2 S 4 / Нанокомпозиты из восстановленного оксида графена, синтезированные одностадийным сольвотермическим методом, в качестве анодных материалов для натриево-ионных аккумуляторов. Электрохим. Acta 292, 895–902. DOI: 10.1016 / j.electacta.2018.09.194

CrossRef Полный текст | Google Scholar

Хуан Ю., Се М., Ван З., Цзян Ю., Сяо Г., Ли С. и др. (2018). Кинетика быстрого накопления натрия в фонарном Ti 0,25 Sn 0,75 S 2 , связанных углеродными нанотрубками. Energy Storage Mater. 11, 100–111. DOI: 10.1016 / j.ensm.2017.10.004

CrossRef Полный текст | Google Scholar

Цзя, Х., Dirican, M., Sun, N., Chen, C., Yan, C., Zhu, P., et al. (2018). Усовершенствованный анодный материал ZnSnS 3 @rGO для превосходного накопления ионов натрия и лития со сверхдлительным сроком службы. ChemElectroChem 6, 1183–1191. DOI: 10.1002 / celc.201801333

CrossRef Полный текст | Google Scholar

Jiang, Y., Hu, M., Zhang, D., Yuan, T., Sun, W., Xu, B., et al. (2014). Оксиды переходных металлов для анодов высокоэффективных ионно-натриевых аккумуляторных батарей. Nano Energy 5, 60–66.DOI: 10.1016 / j.nanoen.2014.02.002

CrossRef Полный текст | Google Scholar

Цзинь, Р., Лю, Д., Лю, К., и Лю, Г. (2015). Иерархический NiCo 2 S 4 полые сферы как высокоэффективный анод для литий-ионных батарей. RSC Adv. 5, 84711–84717. DOI: 10.1039 / C5RA14412D

CrossRef Полный текст | Google Scholar

Кан, В., Ван, Ю. и Сюй, Дж. (2017). Недавний прогресс в создании слоистых наноструктур из дихалькогенидов металлов в качестве электродов для высокоэффективных натриево-ионных батарей. J. Mater. Chem. А 5, 7667–7690. DOI: 10.1039 / C7TA00003K

CrossRef Полный текст | Google Scholar

Kim, H., Lim, E., Jo, C., Yoon, G., Hwang, J., Jeong, S., et al. (2015). Упорядоченный мезопористый композит Nb 2 O 5 / углерод в качестве материала для вставки натрия. Nano Energy 16, 62–70. DOI: 10.1016 / j.nanoen.2015.05.015

CrossRef Полный текст | Google Scholar

Ким, Дж. Х., и Канг, Ю. К. (2017). Желточно-ракушечная структура (Fe 0.5 Ni 0,5 ) 9 S 8 твердые порошки: синтез и применение в качестве анодных материалов для Na-ионных аккумуляторов. Nano Res. 10, 3178–3188. DOI: 10.1007 / s12274-017-1535-1

CrossRef Полный текст | Google Scholar

Ким, С.-З., Сео, Д.-Х., Ма, X., Седер, Г., и Кан, К. (2012). Электродные материалы для перезаряжаемых натриево-ионных батарей: потенциальные альтернативы существующим литий-ионным батареям. Adv. Energy Mater. 2, 710–721.DOI: 10.1002 / aenm.201200026

CrossRef Полный текст | Google Scholar

Kong, D., Wang, Y., Lim, Y.V, Huang, S., Zhang, J., Liu, B., et al. (2018). Трехмерный иерархический NiMo с высоким содержанием дефектов 3 S 4 массивов нанолистов, выращенных на углеродном текстиле для высокоэффективных натрий-ионных батарей и реакции выделения водорода. Nano Energy 49, 460–470. DOI: 10.1016 / j.nanoen.2018.04.051

CrossRef Полный текст | Google Scholar

Конг, С., Цзинь, З., Лю, Х., Ван, Ю. (2014). Морфологическое влияние графеновых нанолистов на ультратонкие нанолисты CoS и их применение для высокопроизводительных литий-ионных аккумуляторов и фотокатализа. J. Phys. Chem. C 118, 25355–25364. DOI: 10.1021 / jp508698q

CrossRef Полный текст | Google Scholar

Krengel, M., Hansen, A. L., Kaus, M., Indris, S., Wolff, N., Kienle, L., et al. (2017). CuV 2 S 4 : высокая емкость и стабильный анодный материал для ионно-натриевых батарей. ACS Appl. Матер. Интерфейсы 9, 21283–21291. DOI: 10.1021 / acsami.7b04739

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Кунду Д., Талаи Э., Даффорт В. и Назар Л. Ф. (2015). Возникающая химия ионно-натриевых батарей для электрохимического накопления энергии. Angew. Chem. Int. Эд. Англ. 54, 3431–3448. DOI: 10.1002 / anie.201410376

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Лай, Ц-Х., Лу, М-У., и Чен, Л. Дж. (2012). Наноструктуры сульфидов металлов: синтез, свойства и применение в преобразовании и хранении энергии. J. Mater. Chem. 22, 19–30. DOI: 10.1039 / C1JM13879K

CrossRef Полный текст | Google Scholar

Ли, Л., Пэн, С., Ву, Х. Б., Ю, Л., Мадхави, С., и Лу, X. W. D. (2015). Гибкий квазитвердотельный асимметричный электрохимический конденсатор на основе иерархических пористых нанолистов V 2 O 5 на углеродных нановолокнах. Adv.Energy Mater. 5: 1500753. DOI: 10.1002 / aenm.201500753

CrossRef Полный текст | Google Scholar

Ли, К., Цзяо, К., Фэн, X., Чжао, Ю., Ли, Х., Фэн, К. и др. (2019). Синтез CuCo в одном баке 2 S 4 суб-микросфер для высокоэффективных литий- / натрий-ионных батарей. ChemElectroChem 6, 1558–1566. DOI: 10.1002 / celc.2019

CrossRef Полный текст | Google Scholar

Ли, С., Ге, П., Цзян, Ф., Шуай, Х., Сюй, В., Jiang, Y., et al. (2019). Продвижение никель-кобальт-сульфида в качестве сверхбыстрых материалов с высоким содержанием натрия: влияние морфологической структуры, фазового развития и свойств поверхности раздела. Energy Storage Mater. 16, 267–280. DOI: 10.1016 / j.ensm.2018.06.006

CrossRef Полный текст | Google Scholar

Ли, X., Ху, Ю., Лю, Дж., Лашингтон, А., Ли, Р., и Сан, X. (2013). Структурно адаптированные графеновые нанолисты в качестве анодов литий-ионных аккумуляторов: понимание, обеспечивающее исключительно высокую производительность хранения лития. Nanoscale 5, 12607–12615. DOI: 10.1039 / c3nr04823c

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ли, X., и Ван, C. (2012). Значительно увеличены циклические характеристики нового анода «самоматрица» NiSnO 3 в литий-ионных батареях. RSC Adv. 2, 6150–6154. DOI: 10.1039 / c2ra20527k

CrossRef Полный текст | Google Scholar

Ли, Й., Ху, И-С., Ци, Х., Ронг, X., Ли, Х., Хуанг, X., и др. (2016).Усовершенствованные натриево-ионные батареи с превосходным недорогим пиролизованным антрацитовым анодом: к практическому применению. Energy Storage Mater. 5, 191–197. DOI: 10.1016 / j.ensm.2016.07.006

CrossRef Полный текст | Google Scholar

Ли Ю., Чжэн Ю., Яо Дж., Сяо Дж., Ян Дж. И Сяо С. (2017). Легкий синтез собранных из нанокристаллов полых микросфер NiO в форме гнезда с превосходными характеристиками накопления лития. RSC Adv. 7, 31287–31297. DOI: 10.1039 / C7RA05373H

CrossRef Полный текст | Google Scholar

Li, Z., Zhang, L., Ge, X., Li, C., Dong, S., Wang, C., et al. (2017). Пористые микрокубы из CoP / FeP со структурой ядро-оболочка, соединенные восстановленным оксидом графена в качестве высокоэффективных анодов для ионно-натриевых батарей. Nano Energy 32, 494–502. DOI: 10.1016 / j.nanoen.2017.01.009

CrossRef Полный текст | Google Scholar

Лин Ю., Цю, З., Ли, Д., Уллах, С., Хай, Ю., Синь, Х. и др. (2018).NiS 2 @CoS 2 нанокристалла, заключенные в углеродные нанокубцы с примесью азота для высокоэффективных литий-ионных аккумуляторов. Energy Storage Mater. 11, 67–74. DOI: 10.1016 / j.ensm.2017.06.001

CrossRef Полный текст | Google Scholar

Лю X., Хао Й., Шу Дж., Сари, Х. М. К., Лин, Л., Коу, Х. и др. (2019). Двойное легирование восстановленного оксида графена азотом и серой с получением полых наномикрокубов ZnSnS 3 с превосходным хранением натрия. Nano Energy 57, 414–423. DOI: 10.1016 / j.nanoen.2018.12.024

CrossRef Полный текст | Google Scholar

Лю, X., Ван, Y., Wang, Z., Zhou, T., Yu, M., Xiu, L., et al. (2017). Достижение сверхдлительного хранения натрия в нанобоксах из аморфного бинарного сульфида кобальта и олова, заключенных в углеродную оболочку с примесью азота. J. Mater. Chem. А 5, 10398–10405. DOI: 10.1039 / C7TA01701D

CrossRef Полный текст | Google Scholar

Лу, Х., Чен, Р., Ху, Ю., Ван, X., Ван, Ю., Ма, Л. и др. (2017). Восходящий синтез легированных азотом пористых углеродных каркасов для хранения лития и натрия. Nanoscale 9, 1972–1977. DOI: 10.1039 / C6NR08296C

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Лу, Ю., Чжао, К., Чжан, Н., Лей, К., Ли, Ф., и Чен, Дж. (2016). Легкий синтез распылением и высокоэффективное накопление натрия мезопористых микросфер MoS 2 / C. Adv. Функц. Матер. 26, 911–918. DOI: 10.1002 / adfm.201504062

CrossRef Полный текст | Google Scholar

Lv, J., Bai, D., Yang, L., Guo, Y., Yan, H., and Xu, S. (2018). Биметаллические сульфидные наночастицы, заключенные в двухуглеродные наноструктуры в качестве анодов для литий- / натрий-ионных аккумуляторов. Chem. Commun. 54, 8909–8912. DOI: 10.1039 / C8CC04318C

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ma, L., Chen, R., Hu, Y., Zhu, G., Chen, T., Lu, H., et al. (2016). Иерархические пористые богатые азотом углеродные наносферы с высокими и прочными возможностями для хранения лития и натрия. Наноразмер 8, 17911–17918. DOI: 10.1039 / C6NR06307A

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ma, L., Gao, X., Zhang, W., Yuan, H., Hu, Y., Zhu, G., et al. (2018). Сверхвысокая скорость и сверхдлительная устойчивость натрий-ионных аккумуляторов при циклической работе благодаря морщинистым черным нанолистам диоксида титана с большим количеством кислородных вакансий. Nano Energy 53, 91–96. DOI: 10.1016 / j.nanoen.2018.08.043

CrossRef Полный текст | Google Scholar

Maleki Kheimeh Sari, H., и Ли, X. (2019). Управляемая граница раздела катод – электролит Li [Ni 0,8 Co 0,1 Mn 0,1 ] O 2 для литий-ионных аккумуляторов: обзор. Adv. Energy Mater. 9: 1

7. DOI: 10.1002 / aenm.201

7

CrossRef Полный текст

Мэн, X. (2017). Модификации поверхности в атомном масштабе и новые конструкции электродов для высокоэффективных натриево-ионных аккумуляторов посредством осаждения атомных слоев. J. Mater. Chem. А 5, 10127–10149.DOI: 10.1039 / C7TA02742G

CrossRef Полный текст | Google Scholar

Ортис-Виториано Н., Дрюетт Н. Э., Гонсало Э. и Рохо Т. (2017). Высокоэффективные катоды на основе слоистого оксида марганца: решение проблем, связанных с ионно-натриевыми батареями. Energy Environ. Sci. 10, 1051–1074. DOI: 10.1039 / C7EE00566K

CrossRef Полный текст | Google Scholar

Ou, X., Cao, L., Liang, X., Zheng, F., Zheng, H. S., Yang, X., et al. (2019). Изготовление SnS 2 / Mn 2 SnS 4 / углеродных гетероструктур для натрий-ионных аккумуляторов с высокой начальной кулоновской эффективностью и циклической стабильностью. ACS Nano 13, 3666–3676. DOI: 10.1021 / acsnano.9b00375

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ou, X., Xiong, X., Zheng, F., Yang, C., Lin, Z., Hu, R., et al. (2016). In situ Дифракция рентгеновских лучей на нанолистах NbS 2 в качестве материала анода для ионно-натриевых батарей. J. Источники энергии 325, 410–416. DOI: 10.1016 / j.jpowsour.2016.06.055

CrossRef Полный текст | Google Scholar

Паломарес, В., Серрас, П., Вильялуэнга, И., Уэсо, К. Б., Карретеро-Гонсалес, Дж., И Рохо, Т. (2012). Na-ионные батареи, последние достижения и проблемы, связанные с превращением в недорогие системы хранения энергии. Energy Environ. Sci. 5: 5884–5901. DOI: 10.1039 / c2ee02781j

CrossRef Полный текст | Google Scholar

Пумера М., Софер З. и Амбрози А. (2014). Слоистые дихалькогениды переходных металлов для электрохимического производства и хранения энергии. J. Mater. Chem. А 2, 8981–8987.DOI: 10.1039 / C4TA00652F

CrossRef Полный текст | Google Scholar

Путунган, Д. Б., Лин, С. Х., Куо, Дж. Л. (2016). Металлический VS 2 однослойных политипов в качестве потенциального анода натрий-ионной батареи с помощью неэмпирического поиска случайной структуры. ACS Appl. Матер. Интерфейсы 8, 18754–18762. DOI: 10.1021 / acsami.6b03499

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Qin, W., Chen, T., Lu, T., Chua, D.HC, and Pan, L. (2016a).Слоистые композиты из оксида графена с восстановленным сульфидом никеля, синтезированные с помощью микроволнового метода, в качестве высокоэффективных анодных материалов натрий-ионных аккумуляторов. J. Источники энергии 302, 202–209. DOI: 10.1016 / j.jpowsour.2015.10.064

CrossRef Полный текст | Google Scholar

Цинь, В., Ли, Д., Чжан, X., Янь, Д., Ху, Б., и Пань, Л. (2016b). Наночастицы ZnS, встроенные в восстановленный оксид графена, в качестве высокоэффективного анодного материала натрий-ионных аккумуляторов. Электрохим.Acta 191, 435–443. DOI: 10.1016 / j.electacta.2016.01.116

CrossRef Полный текст | Google Scholar

Qu, B., Ma, C., Ji, G., Xu, C., Xu, J., Meng, Y. S., et al. (2014). Многослойный композит из восстановленного оксида графена SnS 2 — анодный материал для натриево-ионных аккумуляторов с высокой емкостью, быстродействием и длительным сроком службы. Adv. Матер. 26, 3854–3859. DOI: 10.1002 / adma.201306314

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Шен, Ф., Луо, В., Дай, Дж., Яо, Ю., Чжу, М., Хитц, Э., и др. (2016). Сверхтолстый мезопористый древесно-угольный анод с низкой извилистостью для высокопроизводительных натриево-ионных батарей. Adv. Energy Mater. 6: 1600377. DOI: 10.1002 / aenm.201600377

CrossRef Полный текст | Google Scholar

Слейтер, М. Д., Ким, Д., Ли, Э. и Джонсон, К. С. (2013). Натрий-ионные аккумуляторы. Adv. Функц. Матер. 23, 947–958. DOI: 10.1002 / adfm.201200691

CrossRef Полный текст | Google Scholar

Песня, Ю., Chen, Z., Li, Y., Wang, Q., Fang, F., Zhou, Y-N., Et al. (2017). Высокоскоростная и долговременная циклируемость NiCo с регулируемой псевдоемкостью. 2 S 4 гексагональных нанолистов, приготовленных путем преобразования пара для хранения лития. J. Mater. Chem. А 5, 9022–9031. DOI: 10.1039 / C7TA01758H

CrossRef Полный текст | Google Scholar

Стивенсон Т., Ли З., Олсен Б. и Митлин Д. (2014). Применение в литий-ионных батареях нанокомпозитов дисульфида молибдена (MoS 2 ). Energy Environ. Sci. 7, 209–231. DOI: 10.1039 / C3EE42591F

CrossRef Полный текст | Google Scholar

Су Д., Доу С. и Ван Г. (2015). Ультратонкие нанолисты MoS 2 в качестве анодных материалов для натрий-ионных аккумуляторов с превосходными характеристиками. Adv. Energy Mater. 5: 1401205. DOI: 10.1002 / aenm.201401205

CrossRef Полный текст | Google Scholar

Су, Х., Джаффер, С., Ю, Х. (2016). Оксиды переходных металлов для натрий-ионных аккумуляторов. Energy Storage Mater. 5, 116–131. DOI: 10.1016 / j.ensm.2016.06.005

CrossRef Полный текст | Google Scholar

Su, Z., Liu, J., Li, M., Zhu, Y., Qian, S., Weng, M., et al. (2020). Разработка дефектов в оксидах на основе титана для электрохимических накопителей энергии. Electrochem. Energy Rev 3, 90–147. DOI: 10.1007 / s41918-020-00064-5

CrossRef Полный текст | Google Scholar

Тан, К., Цуй, Ю., Ву, Дж., Цюй, Д., Бейкер, А. П., Ма, Ю., и другие. (2017). Тройной наносплав сульфида олова и селена (SnSe 0,5 S 0,5 ) в качестве высокоэффективного анода для литий-ионных и натрий-ионных аккумуляторов. Nano Energy 41, 377–386. DOI: 10.1016 / j.nanoen.2017.09.052

CrossRef Полный текст | Google Scholar

Ван Х., Фенг Х. и Ли Дж. (2014). Графен и графеноподобные слоистые дихалькогениды переходных металлов в преобразовании и хранении энергии. Малый 10, 2165–2181. DOI: 10.1002 / smll.201303711

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ван, Т., Су, Д., Шанмукарадж, Д., Рохо, Т., Арман, М., и Ван, Г. (2018). Электродные материалы для натрий-ионных аккумуляторов: соображения о кристаллических структурах и механизмах накопления натрия. Electrochem. Energy Rev. 1, 200–237. DOI: 10.1007 / s41918-018-0009-9

CrossRef Полный текст | Google Scholar

Вэнь, Ю., Пэн, С., Ван, З., Хао, Дж., Цинь, Т., Лу, С. и др. (2017).Легкий синтез ультратонких NiCo 2 S 4 нано-лепестков, вдохновленных цветущими бутонами для высокопроизводительных суперконденсаторов. J. Mater. Chem. А 5, 7144–7152. DOI: 10.1039 / C7TA01326D

CrossRef Полный текст | Google Scholar

Ву, X., Ли, С., Ван, Б., Лю, Дж., И Ю, М. (2016). NiCo 2 S 4 массивов нанотрубок, выращенных на гибких углеродных пенопластах, легированных азотом, в качестве трехмерных интегрированных анодов без связующего для высокопроизводительных литий-ионных батарей. Phys. Chem. Chem. Phys. 18, 4505–4512. DOI: 10.1039 / C5CP07541F

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Xia, X., Zhu, C., Luo, J., Zeng, Z., Guan, C., Ng, C.F., et al. (2014). Синтез автономных наномассивов сульфидов металлов посредством реакции анионного обмена и их применение в электрохимическом накоплении энергии. Малый 10, 766–773. DOI: 10.1002 / smll.201302224

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Сяо, Дж., Ван, Л., Ян, С., Сяо, Ф., и Ван, С. (2014). Разработайте иерархические электроды из высокопроводящего NiCo 2 S 4 массивов нанотрубок, выращенных на углеродной бумаге для высокопроизводительных псевдоконденсаторов. Nano Lett. 14, 831–838. DOI: 10.1021 / nl404199v

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Сяо, Ю., Ли, С. Х., и Сунь, Ю. К.. (2017). Применение сульфидов металлов в ионно-натриевых батареях. Adv. Energy Mater. 7: 1601329.DOI: 10.1002 / aenm.201601329

CrossRef Полный текст | Google Scholar

Xu, X., Yu, D., Zhou, H., Zhang, L., Xiao, C., Guo, C., et al. (2016). MoS 2 нанолистов, выращенных на аморфных углеродных нанотрубках для улучшенного хранения натрия. J. Mater. Chem. А 4, 4375–4379. DOI: 10.1039 / C6TA00068A

CrossRef Полный текст | Google Scholar

Янь Б., Ли X., Бай З., Линь Л., Чен Г., Сонг X. и др. (2017). Превосходное хранение натрия в новых наночастицах VO 2 , инкапсулированных в смятый восстановленный оксид графена. J. Mater. Chem. А 5, 4850–4860. DOI: 10.1039 / C6TA10309J

CrossRef Полный текст | Google Scholar

Янь, Й., Инь, И-Х., Го, И-Г., И Ван, Л-Дж. (2014). Иерархически пористый композит углерод / графен в виде сэндвича в качестве высокоэффективного анодного материала для натрий-ионных аккумуляторов. Adv. Energy Mater. 4: 1301584. DOI: 10.1002 / aenm.201301584

CrossRef Полный текст | Google Scholar

Ян, К., Лян, X., Оу, X., Чжан, К., Чжэн, Х.С., Zheng, F., et al. (2019). Гетероструктурированный бинарный сульфид в форме нанокубика (SnCo) S 2 , чередующийся с S-легированным графеном, в качестве высокоэффективного анода для современных аккумуляторов Na + . Adv. Функц. Матер. 29: 1807971. DOI: 10.1002 / adfm.201807971

CrossRef Полный текст | Google Scholar

Янг Дж., Ма, М., Сунь, К., Чжан, Ю., Хуанг, В., и Дун, X. (2015). Гибридные NiCo 2 S 4 @MnO 2 гетероструктуры для электродов высокопроизводительных суперконденсаторов. J. Mater. Chem. А 3, 1258–1264. DOI: 10.1039 / C4TA05747C

CrossRef Полный текст | Google Scholar

Юн Д. Х., Штауфер С. К., Сяо П., Парк Х., Нам Й., Долокан А. и др. (2016). Простой синтез композитов нанокристаллического сульфида олова / восстановленного оксида графена, легированного азотом, в качестве анодов литий-ионных аккумуляторов. ACS Nano 10, 10778–10788. DOI: 10.1021 / acsnano.6b04214

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Ю, Д.J., Yuan, Y.F., Zhang, D., Yin, S.M., Lin, J.X., Rong, Z., et al. (2016). Массив никель-кобальт-сульфидных нанотрубок на никелевой пене в качестве анодного материала для современных литий-ионных аккумуляторов. Электрохим. Acta 198, 280–286. DOI: 10.1016 / j.electacta.2016.01.189

CrossRef Полный текст | Google Scholar

Ю. Л., Чен Г. З. (2020). Супераккумуляторы как высокоэффективные электрохимические накопители энергии. Electrochem. Energy Rev 3, 85–89. DOI: 10.1007 / s41918-020-00063-6

CrossRef Полный текст | Google Scholar

Ю, Н., Чжу, М.К., и Чен, Д. (2015). Гибкие твердотельные асимметричные суперконденсаторы с трехмерными электродами из CoSe 2 / углеродная ткань. J. Mater. Chem. А 3, 7910–7918. DOI: 10.1039 / C5TA00725A

CrossRef Полный текст | Google Scholar

Ю., X. Y., и Дэвид Лу, X. W. (2018). Смешанные сульфиды металлов для электрохимического накопления и преобразования энергии. Adv. Energy Mater. 8: 1701592. DOI: 10.1002 / aenm.201701592

CrossRef Полный текст | Google Scholar

Ю, Х-У., Ю., Л., и Лу, X. W. D. (2016). Полые наноструктуры сульфидов металлов для электрохимического накопления энергии. Adv. Energy Mater. 6: 1501333. DOI: 10.1002 / aenm.201501333

CrossRef Полный текст | Google Scholar

Zhang, K., Park, M., Zhou, L., Lee, G.H., Shin, J., Hu, Z., et al. (2016). Легированный кобальтом FeS 2 наносферы с полной растворимостью в твердых веществах в качестве высокоэффективного анодного материала для натрий-ионных аккумуляторов. Angew. Chem. Int. Эд. Англ. 55, 12822–12826.DOI: 10.1002 / anie.201607469

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжан, К., Сунь, Ю., Чжан, В., Го, Дж., И Чжан, X. (2019). VMo с межслойным расширением 2 S 4 нанолиста на RGO для быстрого и быстрого хранения лития и натрия. J. Alloys Compd. 772, 178–185. DOI: 10.1016 / j.jallcom.2018.09.082

CrossRef Полный текст | Google Scholar

Zhang, L., Wu, H. B., Yan, Y., Wang, X., and Lou, X. W. (2014).Иерархические микробоксы MoS 2 , построенные из нанолистов с улучшенными электрохимическими свойствами для хранения лития и расщепления воды. Energy Environ. Sci. 7, 3302–3306. DOI: 10.1039 / C4EE01932F

CrossRef Полный текст | Google Scholar

Zhang, Y., Wang, P., Yin, Y., Zhang, X., Fan, L., Zhang, N., et al. (2019). Гетероструктурированные полые нанобоксы SnS-ZnS @ C, залитые в графен, для высокоэффективных литиевых и ионно-натриевых батарей. Chem. Англ.J. 356, 1042–1051. DOI: 10.1016 / j.cej.2018.09.131

CrossRef Полный текст | Google Scholar

Чжан З., Ли З. и Инь Л. (2018). Полая призма NiCo 2 S 4 , соединенная между собой восстановленным оксидом графена в качестве высокоэффективного анодного материала для натриевых и литий-ионных батарей. N. J. Chem. 42, 1467–1476. DOI: 10.1039 / C7NJ03581K

CrossRef Полный текст | Google Scholar

Чжао, Ю., и Мантирам, А. (2015).Bi 0,94 Sb 1,06 S 3 кластерные аноды с наностержнями для натрий-ионных аккумуляторов: повышенная обратимость за счет синергетического эффекта твердого раствора Bi 2 S 3 -Sb 2 S 3 . Chem. Матер. 27, 6139–6145. DOI: 10.1021 / acs.chemmater.5b02833

CrossRef Полный текст | Google Scholar

Zheng, P., Dai, Z., Zhang, Y., Dinh, K. N., Zheng, Y., Fan, H., et al. (2017). Масштабируемый синтез графеновых композитов, легированных SnS 2, / S для создания превосходных Li / Na-ионных аккумуляторов. Наноразмер 9, 14820–14825. DOI: 10.1039 / C7NR06044K

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Чжун, Дж., Сяо, X., Чжан, Ю., Чжан, Н., Чен, М., Фань, X., и др. (2019). Рациональная разработка композита Sn-Sb-S со структурой, напоминающей гортензию, в качестве перспективного анодного материала для натрий-ионных аккумуляторов. J. Alloys Compd. 793, 620–626. DOI: 10.1016 / j.jallcom.2019.04.232

CrossRef Полный текст | Google Scholar

Чжоу, Дж., Цинь, Дж., Го, Л., Чжао, Н., Ши, К., и Лю, Э. З. (2016). Масштабируемый синтез высококачественных нанолистов из дихалькогенидов переходных металлов и их применение в качестве анодов натрий-ионных аккумуляторов. J. Mater. Chem. А 4, 17370–17380. DOI: 10.1039 / C6TA07425A

CrossRef Полный текст | Google Scholar

Чжоу, К., Лю, Л., Хуан, З., И, Л., Ван, X., и Цао, Г. (2016). Co 3 S 4 @ полианилиновые нанотрубки в качестве высокоэффективных анодных материалов для ионно-натриевых батарей. J. Mater. Chem. А 4, 5505–5516. DOI: 10.1039 / C6TA01497F

CrossRef Полный текст | Google Scholar

Zhu, Y., Nie, P., Shen, L., Dong, S., Sheng, Q., Li, H., et al. (2015). Высокая производительность и превосходная циклическая стабильность подобного цветку анода Sb 2 S 3 для ионно-натриевых батарей большой емкости. Наноразмер 7, 3309–3315. DOI: 10.1039 / C4NR05242K

PubMed Аннотация | CrossRef Полный текст | Google Scholar

Battery Safety 101: Анатомия — PTC против PCB против CID — 18650 Battery

Различные виды защиты внутри и снаружи аккумуляторов 18650.

Рис. 1. Подробный обзор анатомии 18650. Обратите внимание на различные защитные устройства. НАСА.

Внутренние защитные устройства:

Переключатель PTC (давление, температура, ток).

  • Встроенный почти во все 18650
  • Запрещает сильные скачки тока
  • Защищает от высокого давления и перегрева
  • Сбрасывает и не отключает батарею навсегда при срабатывании триггера.Однако лучше не отключать их часто, поскольку это необратимо увеличивает их электрическое сопротивление в два раза и повышает вероятность их катастрофического отказа.
  • Может не работать, если модуль включен в последовательную и / или параллельную конфигурацию с несколькими ячейками
CID (устройство прерывания тока)

  • Встроенный почти во все 18650
  • Не видно, просто глядя на батарею
  • Совместно (размещены рядом) с PTC
  • — это клапан давления, который отключит ячейку навсегда из-за слишком высокого давления в ячейке.(Например, если аккумулятор слишком заряжен и его давление превышает 145 фунтов на кв. Дюйм.)
  • Работает, отсоединяя положительную клемму, делая положительный полюс бесполезным.
  • Не всегда сбрасывается, не всегда открывается полностью при необходимости
  • Может не работать, если модуль включен в последовательную и / или параллельную конфигурацию с несколькими ячейками
Расплав язычка / свинца (тип плавкой вставки)

Предохранители и перемычки, соединяющие батареи, соединенные вместе, предназначены для размыкания цепи под высоким напряжением.

Рисунок 2. Внешнее короткое замыкание в условиях вакуума. НАСА.

Биметаллические разъединители

Рис. 3. Как работает биметаллический разъединитель на батареях 18650 от HVAC.

Температурные изменения позволят металлам расширяться или сжиматься. Когда биметаллический нож «замкнут» или «опущен», он обеспечивает контакт и образует цепь. Поскольку ток выделяет тепло, металл начинает расширяться. Благодаря этому температура не станет слишком высокой или слишком низкой.

Внешние защитные устройства:

Диоды

Вы, наверное, слышали о светодиодах (светодиодах), но что такое диод? Это как клапан, только пусть ток течет в одну сторону. Для лучшего понимания посмотрите это видео:

Вентс
  • Обычно маленькие отверстия в верхней части аккумулятора
  • Вместо взрыва будет извергать токсичные химические вещества, такие как эфир
Тепловые предохранители (жесткие или сбрасываемые)
  • Иногда называют резисторами PTC
  • Часто скрывается под положительным колпачком
PCB — Платы со специализированными проводниками
  • Настоятельно рекомендуется для старых литий-ионных батарей.
  • Не требуется в новых, более безопасных химикатах, таких как
  • INR
  • В основном используется в фонариках, НЕ используется в испарителях или других устройствах с высокими стоками
  • Ограничивает разряд тока до 6 А или ниже
  • Защищает от перезарядки, чрезмерной разрядки, короткого замыкания и, возможно, других факторов.

Давайте посмотрим на популярную схему платы защиты, используемую на аккумуляторах 18650, плату Tenergy 23002 с отсечкой 6 А

Рисунок 4.Крупный план платы защиты 18650 PCB

Эта плата имеет следующие особенности:

  1. Защита от перезарядки
  2. Защита от заряда
  3. Защита от перегрузки
  4. Защита от перегрузки по току
  5. Короткая защита

Так выглядит аккумулятор 18650 при подключении к плате:

Рис. 5. Анатомия защищенной батареи 18650 от Lygte Info

Есть ли у вашей батареи схема защиты?

Батареи

18650, продаваемые в США, должны иметь защиту CID и PTC.Однако большинство ячеек для испарителей продаются без печатных плат. Это связано с тем, что печатная плата ограничивает разряд аккумулятора до 6 А, когда испарителям требуется 10–30 А.

Чтобы узнать, есть ли у вашего аккумулятора защита печатной платы, есть несколько знаков:

  • Ваш аккумулятор длиннее, чем у незащищенной версии (используйте Best 18650 Battery, чтобы узнать размер).
  • Нижняя часть вашей батареи не из стали (цвет — медь или другой цвет, отличный от вашей верхней крышки).
  • Вы можете почувствовать провод, идущий от отрицательного полюса к положительному на стороне батареи.

Какую батарею использует TESLA?

Tesla использует батареи 18650, но модифицировала их. Они убрали схемы защиты PTC и CID и сделали их по-настоящему простыми. Вместо того, чтобы полагаться на эти защитные устройства, TESLA сделала их собственными из пенопласта, который заливает аккумуляторный модуль и предотвращает возгорание.

JMMP | Бесплатный полнотекстовый | Механические усилия, возникающие при токарной обработке биметаллических предметов из алюминия, титана, чугуна и мягкой / нержавеющей стали

1.Введение

Исследования в области механической обработки в основном связаны с обработкой изделий из мономатериалов и специальных сплавов. С другой стороны, нельзя игнорировать исследования в области механической обработки объектов, изготовленных из нескольких материалов, в основном из-за растущих опасений по поводу устойчивости. Объяснение дано ниже.

В целом, устойчивость означает удовлетворение потребностей нынешнего поколения без ущерба для способности удовлетворять потребности будущих поколений [1]. Говоря более конкретно, устойчивость означает обеспечение эффективности использования материалов, энергоэффективности и эффективности компонентов, предпочтительно одновременно, для всех продуктов, обитающих в искусственном мире [2].Здесь материальная эффективность относится к использованию материалов и учитывает вопросы, касающиеся потребления энергии и истощения ресурсов при производстве первичных материалов; он также рассматривает такие вопросы, как снижение стоимости и веса продукта [2,3,4,5]. Энергоэффективность учитывает потребление энергии во время производственной деятельности (например, механической обработки и сборки) продукта [2,5]. Эффективность компонентов учитывает степень выполнения предполагаемых требований к функциональности, качеству и надежности компонентов, используемых в продукте [2].Взаимодействие этих показателей эффективности подробно представлено в [2], где делается вывод, что эффективность использования материалов более эффективна, чем две другие эффективности, в повышении устойчивости продукта. Например, объект из нескольких материалов лучше, чем его монометаллический аналог (например, объект, сделанный из алюминия и титана, лучше, чем его монометаллический аналог, сделанный только из титана, с точки зрения стоимости, веса и площади основания CO 2 ) [ 2]. Повышение эффективности использования материалов может повлиять на эффективность использования энергии и компонентов, что нежелательно.Следовательно, оптимизация необходима, чтобы получить лучшее, что может предложить объект из нескольких материалов. Тем не менее ожидается, что в ближайшие годы использование продуктов из нескольких материалов будет увеличиваться в связи с упомянутым выше фактом (т. Е. Повышением устойчивости объекта продукт с точки зрения материалоэффективности). В настоящее время как процессы физического соединения (например, сварка трением) [6,7,8,9], так и процессы аддитивного производства (например, селективное лазерное спекание) [10,11,12,13] используются для изготовления изделий из разнородных металлов. .Появление таких производственных процессов также ускорит использование продуктов из разных материалов, поскольку эти процессы помогают производить различные детали из разных типов разнородных металлов. Стоит отметить, что процессы аддитивного производства, которые добавляют материалы слой за слоем на основе твердотельной модели объекта, были признаны подходящими для изготовления очень сложных и сильно адаптированных объектов с использованием нескольких материалов [10,11,12,13]. Таким образом, процессы аддитивного производства (селективное лазерное спекание) позволяют легко изготовить объект из нескольких материалов, что часто бывает трудно достичь с помощью обычных производственных процессов (например,g., механическая обработка, литье, формовка и сварка). Вышеупомянутое объяснение относится к тому факту, что все больше и больше объектов, сделанных из различных материалов, будут населять наше окружение в ближайшие годы. Однако объект из нескольких материалов, изготовленный либо с помощью аддитивного производства, либо с помощью других производственных процессов (например, сварки трением), должен быть подвергнут механической обработке, чтобы обеспечить требуемую точность размеров и чистоту поверхности. Это требует знаний обработки многоматериальных объектов. В литературе встречается относительно ограниченное количество исследований, касающихся механической обработки объектов из разнородных материалов.В частности, отмечены исследования, опубликованные в [14,15,16,17,18,19,20,21]. Эти исследования показывают, что обработка многоматериального объекта влечет за собой некоторые уникальные свойства. Например, монометаллическую заготовку можно обрабатывать с любой стороны, тогда как при обработке заготовки из двух разных материалов направление обработки должно быть оптимизировано (например, обработка со стороны более мягкого материала к стороне более твердого материала или наоборот) [20 ]. Процесс количественной оценки шероховатости поверхности объекта, сделанного из двух разных металлов, требует некоторых нетрадиционных параметров (например,g., энтропия, распределение возможностей и т. д.) [19,21]. Основной проблемой такой уникальности является наличие зоны соединения или зоны термического влияния, где состав и свойства материала (особенно твердость) сильно различаются по сравнению с составляющими материалами. Авторы в [6,7,8,9,22] подробно описали этот вопрос. В зависимости от того, проходит ли режущий инструмент область соединения со стороны более мягкого материала на сторону более твердого материала или наоборот, характеристики обработки могут отличаться.В результате силы обработки (сила резания, сила подачи и т. Д.) Могут иметь другой характер, когда режущий инструмент проходит зону соединения либо со стороны более мягкого материала, либо со стороны более твердого материала, или наоборот. Поскольку силы механической обработки дают ценную информацию о явлениях механической обработки [23], стоит исследовать природу сил механической обработки, которые возникают, когда режущий инструмент проходит через область соединения с обеих сторон биметаллического образца. Исходя из этого, в данной статье представлены характеристики сил механической обработки, возникающих при токарной обработке трех наборов разнородных металлических образцов, изготовленных из алюминия-титана, алюминия-чугуна и нержавеющей стали-низкоуглеродистой стали.Соответственно, остальная часть этой статьи организована следующим образом. В разделе 2 описаны биметаллические образцы, экспериментальная установка и методика сбора данных. В разделе 3 представлены характеристики сил механической обработки, лежащих в основе нержавеющая сталь – низкоуглеродистая сталь, с точки зрения данных временного ряда и неопределенности. В разделе 4 представлены характеристики сил механической обработки, лежащих в основе алюминия-титана, с точки зрения данных временного ряда и неопределенности. В разделе 5 представлены характеристики сил механической обработки, лежащих в основе алюминия и чугуна, с точки зрения данных временного ряда и неопределенности.В разделе 6 обсуждается значение результатов. Раздел 7 содержит заключительные замечания этого исследования.

2. Эксперименты по механической обработке и сбор данных

В этом разделе описываются биметаллические образцы, экспериментальная установка и метод сбора данных, используемый при токарной обработке биметаллических образцов.

Три различных набора биметаллических образцов были изготовлены с помощью сварки трением [6,7]. Описание режимов сварки можно найти в [2]. В таблице 1 перечислены материалы, использованные для приготовления образцов.Прочность на разрыв, относительное удлинение и твердость каждого материала также указаны в Таблице 1.

Первый набор образцов, обозначенный как SU – SC, был приготовлен путем соединения двух различных материалов, а именно нержавеющей стали (JIS: SUS304) и низкоуглеродистая сталь (JIS: S15CK). Химический состав (мас.%) Нержавеющей стали был следующим: 0,052 C, 0,416 Si, 1,529 Mn, 0,0319 P, 0,0186 S, 8,057 Ni, 18,293 Cr, 0,185 Mo, 0,483 Cu и 70,9345 Fe. Химический состав (мас.%) Мягкой стали был следующим: 0.15 C, 0,20 Si, 0,40 Mn, 0,19 P, 0,022 S, 0,03 Ni, 0,14 Cr, 0,02 Cu и 98,848 Fe. Предел прочности на разрыв (т.е. предел прочности), удлинение и твердость нержавеющей стали составляли 663 МПа, 55% и 182 HV соответственно. Предел прочности на разрыв (т.е. предел прочности), удлинение и твердость мягкой стали составляли 439 МПа, 38% и 132 HV соответственно. Второй набор образцов, обозначенный как Al – Ti, был приготовлен путем соединения двух различных материалов, а именно алюминия (JIS: A1070) и технического чистого (CP) титана.Химический состав (мас.%) Алюминия (JIS: A1070) был следующим: 0,03 Si, 0,10 Fe, 0,01 Cu, 0,02 Mg, 0,01 В, 0,01 Ti, другие ≤ 0,03 другие и 99,82 Al. Химический состав (мас.%) CP-титана был следующим: 0,0011 H, 0,089 O, 0,006 N, 0,038 Fe, 0,005 C и 99,8609 Ti. Предел прочности на разрыв (т.е. предел прочности), удлинение и твердость алюминия (JIS: A1070) составляли 120 МПа, 27% и 41 HV соответственно. Предел прочности на разрыв (т.е. предел прочности), относительное удлинение и твердость CP-титана составляли 401 МПа, 35% и 146 HV соответственно.Другой набор образцов, обозначенный как Al – CI, был приготовлен путем соединения двух различных материалов, а именно алюминия (JIS: A5052) и высокопрочного чугуна. Химический состав (мас.%) Алюминия (JIS: A5052) был следующим: 0,09 Si, 0,16 Fe, 0,02 Cu, 0,03 Mn, 2,6 Mg, 0,25 Cr, 0,01 Zn, ≤0,15 других и 96,69 Al. Химический состав (мас.%) Высокопрочного чугуна был следующим: 3,76 C, 2,91 Si, 0,49 P, 0,011 S, 0,029 Mg и 92,8 Fe. Предел прочности на разрыв (то есть предел прочности), удлинение и твердость алюминия (JIS: A5052) составляли 265 МПа, 17.4% и 86 HV соответственно. Предел прочности на разрыв (т.е. предел прочности), относительное удлинение и твердость высокопрочного чугуна составляли 442 МПа, 18,7%, 79,2 HRB соответственно.

Обратите внимание, что предел прочности на разрыв, относительное удлинение и твердость одного из составляющих материалов больше, чем у другого для каждого набора образцов. Это обеспечивает обработку мягких и твердых материалов или наоборот в области соединения. На рис. 1 показаны изображения образцов, по одному от каждого набора образцов. Вспышка, образовавшаяся в области соединения (см. Рис. 1), была удалена с помощью токарной операции перед проведением экспериментов по механической обработке для получения данных усилия механической обработки.Условия сварки трением, использованные для подготовки биметаллических образцов (Рисунок 2), перечислены в Таблице 2. Как видно из Таблицы 2, для образцов, названных SU-SC, вращающийся материал был S15CK (т. Е. Низкоуглеродистая сталь). Для образцов, названных Al-Ti, вращающимся материалом был A1070 (то есть алюминий). Для других образцов вращающийся материал был A5052 (алюминий). Диаметр вращающегося материала (при сварке трением) для всех образцов составлял 12 мм. Скорость трения, давление трения и время осадки равнялись 27.5 с −1 (1650 об / мин), 30 МПа и 6 с соответственно для всех образцов. В то время как время трения для образцов, а именно SU-SC, Al-Ti и Al-CI, составляло 2 с, 1 с и 3 с соответственно. Давление осадки для образцов, а именно SU-SC, Al-Ti и Al-CI, составляло 270 МПа, 90 МПа и 200 МПа соответственно. С другой стороны, режимы резания для экспериментов по механической обработке суммированы в таблице 3 Твердосплавные пластины (TNMG160404-MF), поставляемые Sandvik TM , использовались в качестве режущих инструментов для экспериментов по механической обработке.Здесь использовались две скорости резания (v c ), 25 м / мин и 50 м / мин. Причина использования таких скоростей резания заключается в том, что большинство мастерских, где обработка выполняется в реальных условиях, часто вынуждены использовать очень низкие скорости резания из-за ограничений ресурсов: см. [24] для подробного описания выбор скорости резания на основе реальных ограничений. Однако скорость вращения патрона регулировалась в каждом цикле обработки, обеспечивая указанные скорости резания.Скорость резания также обеспечивает минимальный или минимальный износ инструмента во время каждого цикла обработки. Подобно скорости резания, использовались два значения подачи (f), 0,1 мм / об и 0,2 мм / об, в то время как глубина резания (a p ) оставалась постоянной (1 мм) для всех прогонов обработки. Эксперименты по механической обработке проводились в трех различных зонах каждого образца: зонах составляющих материалов и области соединения. На Рисунке 2 один из составляющих материалов обозначен как Материал A, а другой — как Материал B.Согласно таблице 1, материал A означает нержавеющую сталь (JIS: SUS304), алюминий (JIS: A1070) или алюминий (JIS: A5052) для образца SU – SC, Al – Ti или Al – CI соответственно. Аналогичным образом, материал B означает низкоуглеродистую сталь (JIS: S15CK), технический чистый (CP) титан или высокопрочный чугун для образца SU – SC, Al – Ti или Al – CI соответственно. Область стыка была обработана из обоих направления — направление твердого материала к мягкому и наоборот (т. е. от материала A к направлению материала B и наоборот) — для каждого образца.Для этого сигналы усилия обработки для длины обработки около 4 мм были записаны с использованием системы сбора данных на основе тензодатчика, как схематически показано на рисунке 2. Как видно на рисунке 2, система выдает усилия обработки из трех различных каналы. Один из каналов фиксирует силы в направлении скорости резания. Сигналы силы, зарегистрированные в этом канале, называются сигналами силы резания. Другой канал регистрирует силы в направлении подачи. Сигналы силы, записанные из этого канала, называются сигналами силы подачи.Другой канал регистрирует силы в направлении резцедержателя. Сигналы силы, зарегистрированные из этого канала, называются сигналами силы тяги. Сигналы записывались через каждые 0,2 мс для трех каналов. Следует отметить, что сигналы силы резания и подачи использовались для расчета мощности резания и, таким образом, для определения удельной энергии / давления резания. Сигналы осевой силы не использовались в расчетах, а регистрировались для того, чтобы иметь полную картину явлений механической обработки.Однако для анализа необработанные сигналы требуют дискретизации. На рисунке 3 схематично показан метод отбора проб. Описание выглядит следующим образом. Временной ряд сигналов силы состоит из сигналов, возникающих, когда режущий инструмент приближается к зоне резания, когда режущий инструмент удаляет материалы и когда режущий инструмент удаляется от зоны резания. Следовательно, необработанные сигналы, как показано на рисунке 3a, требуют дискретизации. Для выполнения выборки диапазон выборки, то есть временной интервал, был выбран таким образом, чтобы сигналы в диапазоне выборки состояли из сигналов силы резания / подачи / осевого усилия только тогда, когда режущий инструмент удаляет материалы либо из составляющего материала. зона (т.е., в зоне Материала A и Материала B) или в области соединения (т. е. в сегменте, где Материал A и B физически соединены). Случай, показанный на рисунке 3, соответствует выборке сигналов усилия обработки в области соединения. Сигналы силы после отбора проб сбрасывались на время, равное нулю. Таким образом, между необработанными и дискретизированными сигналами сохраняются следующие отношения. Пусть F RX (t), t = 0, Δ,…, T1, T1 + Δ,…, T2,… быть необработанными сигналами X, ∀X ∈ {C, F, T}. Здесь C, F и T означают сигналы силы резания, подачи и осевого усилия соответственно.Интервал [T1, T2] — это интервал выборки. Символ Δ — это интервал выборки необработанных сигналов F RX (t). Как упоминалось ранее, здесь Δ = 0,2 мс. Сегмент сигналов F RX (t = T1),…, F RX (t = T2) используется для получения дискретизированных сигналов. Однако временной интервал дискретизированного сигнала может быть увеличен для анализа. Пусть F SX (τ) будет дискретизированными сигналами. Таким образом, F SX (τ = 0) = F RX (t = T1), F SX (τ = λΔ) = F RX (t = T1 + λΔ),…, F SX (τ = nλΔ) = F RX (t = T2).Это означает, что дискретизированный сигнал состоит из n + 1 точек данных, и точки данных собираются с использованием временного интервала λΔ. Если λ = 5 и Δ = 0,2 мс, то λΔ = 1 мс, то есть временной интервал дискретизированного сигнала составляет 1 мс. Следовательно, F SX (τ) означает сигналы силы резания, подачи или осевого усилия с интервалом времени 1 мс, где X = C, F или T соответственно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *