Menu Close

Коэффициент теплопроводности пенополистирола: Теплопроводность пенополистирола разных марок, расчет необходимого слоя

Теплопроводные свойства пенополистиролаСтройкод

Утепление дома – задача со множеством вариантов и способов решения, один из которых – пенополистирол (или же, как его чаще называют в народе, пенопласт). Помимо практичности, небольшого веса, простоты в монтаже и экологичности, этот материал обладает крайне важным свойством для любого жилья – низкая теплопроводность, позволяющая сберечь помещение от холода.

Ключевые факторы высокой теплоизоляции пенопласта

Для начала уясним, что теплопроводность – это передача энергии от одних микрочастиц к другим при их соприкосновении. Чем меньше этот показатель, тем меньше тепла будет проводить через себя материал. Это и называется изоляционным свойством.

Наиболее низкой проводимостью тепловой энергии обладает воздух, что в первую очередь и используется при изготовлении пенопласта. Многочисленные ячейки его пористой структуры наполнены газом (воздухом), который составляет львиные 98% от состава всего материала.

Однако даже с таким преимуществом свойства пенопласта зависят ещё и от целого ряда дополнительных факторов, которые обязательно должны быть учтены при утеплении помещений:

  • Толщина слоя пенополистирола. Всегда можно добиться более качественного уровня теплоизоляции, попросту увеличив её используемые объёмы. Так, проводимость пенопласта толщиной в 500 мм будет гораздо более ниже, чем у аналогичного по плотности, но более тонкого слоя в 100 мм.
  • Влажность. Чем меньше её в материале, тем лучше. Любая жидкость всегда негативно сказывается на теплоизоляционных характеристиках.
  • Средние показатели температуры слоя. Увеличение нагрева также ухудшает теплоизоляционные свойства пенопласта.

В сравнительном познании

Строительный рынок невероятно богат на огромный ассортимент всевозможных утеплителей. В том же числе это касается и многочисленных разновидностей полистирольного пенопласта.

Характеристики каждого из них так или иначе разнятся между собой. К примеру, экструдированный вариант состоит из такого же вещества, что и обычный. Единственное отличие заключается в том, что в процессе изготовления первого применяется иная технология по созданию гранул. Благодаря чему он получается легче своего аналога. При этом экструдированный пенопласт обладает ещё и более лучшей теплоизоляцией.

Однако теплопроводность пенополистирола крайне зависима и от толщины используемых слоёв. Более очевидным образом это заметно в сравнении с иными утеплителями.

К примеру, лист из минеральной ваты толщиной в 100-120 мм вполне можно вытеснить менее габаритным 50-60 мм пенополистирольным вариантом (соотношение 1:2). Эти же 50 мм полностью равноценны 8.5 см кирпичной закладки и 21 см бетонного слоя.

С другой стороны, те же 100 мм «Пеноплекса» покажут ещё более низкую теплопроводность по сравнению с пенопластом. Для равных показателей потребуется соотношение 100 мм первого к 125 мм второго (1:1.25).

Решающий коэффициент теплопроводности

В расчётах этого параметра используется греческий символ λ, размерность которого определяется как Вт/(м*К):

  • Вт – это то количество энергии (Ватт), которое материал способен предавать через себя;
  • м – в метрах измеряется расстояние, на которое тепло проходит через какой-либо материал;
  • К – определённый перепад температур (Кельвины), при котором происходит передача энергии.

К примеру, наивысшими показателями теплопроводности обладают металлы, стекло, камни. Они не способны надолго сохранить энергию, в отличии от воздуха и газов – лучших природных теплоизоляторов. Поэтому пористая структура пенопласта обладает гораздо меньшей проводимостью тепла.



Среди всего множества строительных материалов особенно стоит отметить пенопласт ПСБ-С 15/25/35, пробковую мелочь и пенополиуретан – они заметно выделяются своим низким коэффициентом теплопроводности. Экструдированный пенополистирол в сравнении со своим обычным аналогом также выглядит довольно привлекательно: 0.03 Вт/(м*К) против 0.038.

Подробнее о габаритах приобретаемого пенополистирола

Эффективное применение любой теплоизоляции напрямую связано с правильным подбором размеров материала. За эти вычисления отвечает достаточно простой алгоритм, который без труда способен освоить любой гражданин со школьным аттестатом за плечами.

Общий порядок действий таков:

  1. Узнать общее теплосопротивление в условиях своего региона проживания. Эта величина климата постоянна. Для Юга России, к примеру, она составляет 2,8 кВт/м2. Для Средней полосы это значение равняется 4,2 кВт/м2.
  2. После этого необходимо выяснить значение теплосопротивления самой стены дома. Для этого потребуется знать её толщину p и λ материала, из которого она состоит (значение этого коэффициента для любого материала можно без труда найти в сети Интернет).

Уже на основе этих сведений находим R стены по формуле p/λ:

  1. Вычислить необходимое значение сопротивления для пенополистирола по формуле: R общее — R стены.
  2. Наконец, остаётся лишь узнать необходимую толщину пенопласта. Её находим по формуле p = R изоляции * λ. Обратите внимание, что в качестве λ здесь обозначен расчётный коэффициент теплопроводности материала.

Наглядный пример: резиденту одного из регионов Средней полосы нужно выяснить, какой толщины подобрать слой пенопласта, плотность которого составляет 30 кг/м3. Стена его дома состоит только из силикатного кирпича (утепляется участок длиной в 50 см).

Из всего набора условий выявляем начальные сведения:

  • Общее теплосопротивление в регионе = 4,2 кВт/м2
  • λ пенопласта = 0,047 Вт/(м*К)

Далее вычисляем R стен. Т.к. коэффициент теплопроводности силикатного кирпича составляет 0,7 Вт/(м*К), его значение сопротивления будет следующим:

R стены = 0,5/0,7 = 0,71 кВт/м2

Аналогичную величину рассчитываем и для пенопласта:

R пенополистирола = 4,2 – 0,71 = 3,49 кВт/м2

И уже на основе полученных данных узнаём необходимую для своих нужд толщину изоляционного слоя:

p = 3,49 * 0,047 = 0,16 м

Подобный алгоритм вычислений несомненно пригодится и в любой другой местности. Главное – правильно выяснить начальные данные. Всегда помните, что грамотный подбор пенопласта в необходимых размерах заведомо избавит от лишних материальных и временных затрат.

При этом итоговый результат окажется гораздо более лучше всех ожиданий. Сравните сами: 10 см пенополистирола способны заменить целую кладку в один кирпич (но только при условии 15-17 кг/м3 плотности). Однако листы с ещё более плотные листы дадут возможность обойтись уже без пары рядов камней. Наконец, даже вычисления доказывают, что пара сантиметров пенопласта полностью эквивалентны 50 см кирпичной стены.

Теплопроводность и плотность пенопласта — Блог о строительстве

Представлена сравнительная таблица значений коэффициента теплопроводности, плотности пеноплэкса и пенополистирола ПСБ различных марок в сухом состоянии при температуре 20…30°С.

Указан также диапазон их рабочей температуры.Теплоизоляцию пеноплэкс, в отличие от беспрессового пенополистирола ПСБ, производят при повышенных температуре и давлении с добавлением пенообразователя и выдавливают через экструдер. Такая технология производства обеспечивает пеноплэксу закрытую микропористую структуру.Пеноплэкс, по сравнению с пенополистиролом ПСБ, обладает более низким значением коэффициента теплопроводности λ, который составляет 0,03…0,036 Вт/(м·град). Теплопроводность пеноплэкса приблизительно на 30% ниже этого показателя у такого традиционного утеплителя, как минеральная вата.

Следует отметить, что коэффициент теплопроводности пенополистирола ПСБ в зависимости от марки находится в пределах 0,037…0,043 Вт/(м·град).Плотность пеноплэкса ρпо данным производителя находится в диапазоне от 22 до 47 кг/м3в зависимости от марки. Показатели плотности пенополистирола ПСБ ниже — плотность самых легких марок ПСБ-15 и ПСБ-25 может составлять от 6 до 25 кг/м3, соответственно.Максимальная температура применения пенополистирола пеноплэкс составляет 75°С.У пенопласта ПСБ она несколько выше и может достигать 80°С. При нагревании выше 75°С пеноплэкс не плавится, однако ухудшаются его прочностные характеристики.

Насколько при таких условиях увеличивается коэффициент теплопроводности этого теплоизоляционного материала, производителем не сообщается.Теплопроводность и плотность пеноплэкса и пенополистирола ПСБМарка пенополистиролаλ, Вт/(м·К)ρ, кг/м3tраб, °СПеноплэксПлиты Пеноплэкс комфорт0,0325…35-100…+75Пеноплэкс Фундамент0,0329…33-100…+75Пеноплэкс Кровля0,0326…34-100…+75Сегменты Пеноплэкс марки 350,0333…38-60…+75Сегменты Пеноплэкс марки 450,0338…45-60…+75Пеноплэкс Блок0,036от 25-100…+75Пеноплэкс 450,0340…47-100…+75Пеноплэкс Уклон0,03от 22-100…+75Пеноплэкс Фасад0,0325…33-100…+75Пеноплэкс Стена0,0325…32-70…+75Пеноплэкс Гео0,0328…36-100…+75Пеноплэкс Основа0,03от 22-100…+75Пенополистирол ПСБ (пенопласт)ПСБ-150,042…0,043до 15до 80ПСБ-250,039…0,04115…25до 80ПСБ-350,037…0,03825…35до 80ПСБ-500,04…0,04135…50до 80Следует отметить, что теплоизоляция пеноплэкс благодаря своей закрытой микропористой структуре практически не впитывает влагу, не подвергается воздействию плесени, грибков и других микроорганизмов, является экологичным и безопасным для человека утеплителем.

Кроме того, экструдированный пенополистирол пеноплэкс обладает достаточно высокой химической стойкостью ко многим используемым в строительстве материалам. Однако некоторые органические вещества и растворители, приведенные в таблице ниже, могут привести к размягчению, усадке и даже растворению теплоизоляционных плит.Химическая стойкость теплоизоляции пеноплэксВысокая хим. стойкостьНизкая хим.

стойкостьКислоты (органические и неорганические)Ароматические углеводороды (бензол, толуол, ксилол)Растворы солейАльдегиды (формальдегид, формалин)Едкие щелочиКетоны (ацетон, метилэтилкетон)Хлорная известьЭфиры (диэтиловый эфир, этилацетат, метилацетат)Спирт и спиртовые красителиБензин, керосин, дизельное топливоВода и краски на водной основеКаменноугольная смолаАммиак, фреоны, парафины, маслаПолиэфирные смолы (отвердители эпоксидных смол)Цементы, строительные растворы и бетоныМасляные краскиИсточники:Дата: 04-04-2015Просмотров: 257Комментариев: Рейтинг: 60Пенопласт считается наиболее эффективным строительным материалом, используемым для утепления строений внутри и снаружи.

Причиной широкой распространенности в строительстве вспененного полистирола или ППС являются отличные звуко- и теплоизоляционные свойства, плотность пенопласта.Пенопласт — это материал для утепления, который обладает хорошими звуко- и теплоизоляционными характеристиками.Стоимость пенополистирольных плит значительно ниже, чем на другие утеплители. Использование плит из пенополистирола в строительстве сопутствует сокращению эксплуатационных расходов на отопление либо охлаждение коммерческих или жилых помещений в десятки раз.

Как плотность пенопласта влияет на его стоимость?

Производство пенопласта.

Существует несколько точек зрения, связанных с понятием плотности. Единицей измерения данного параметра является килограмм на метр в кубе.

Эта величина вычисляется из отношения веса к объему. Нельзя со стопроцентной точностью определить качественные характеристики пенополистирола, связанные с его плотностью. Даже вес утеплителя не влияет на его способность к сохранению тепла.

Задумываясь над вопросом покупки утеплителя, покупатели всегда интересуются его плотностью. На основе этих данных можно судить о прочности материала, его весе и теплопроводности. Значения плотности пенопласта всегда относятся к определенному диапазону.

В процессе производства плит из пенополистирола производитель определяет себестоимость продукции. Исходя из формулы определения плотности, вес утеплителя будет влиять на данную величину.

Чем больше вес материала, тем он плотнее, поэтому его стоимость выше. Это связано с тем, что полистирол, как сырье для плит теплоизолятора, играет важную роль. Он составляет около 80% от общей себестоимости готовой продукции.

Вернуться к оглавлению

Пенопласт изготавливается из шариков пенополистирола, содержащих воздух.

Любой теплоизоляционный материал содержит воздух, находящийся в порах.

Улучшенный показатель теплопроводности зависит от количества атмосферного воздуха, содержащегося в материале. Чем его больше, тем меньше коэффициент теплопроводности. Производство пенопласта осуществляется из шариков пенополистирола, содержащих воздух.

Отсюда можно сделать вывод, что плотность пенополистиролане оказывает влияние на его теплопроводность. Если эта величина изменяется, то изменения теплопроводности происходят в пределах процентных долей. Стопроцентное содержание воздуха в утеплителе связано с его высокой теплосберегающей способностью, так как для воздуха характерен наиболее низкий коэффициент теплопроводности.

За счет низкой теплопроводности утеплителя обеспечивается высокая степень энергосбережения. Если сравнивать пенопласт с кирпичом, то их энергосберегающая способность будет существенно отличаться, поскольку 12 см толщины теплоизолятора соответствует 210 см мощности стены из кирпича или 45-сантиметровой деревянной стены.

Коэффициент теплопроводности пенопласта, выраженный в цифровом значении, принадлежит интервалу 0.037 Вт/мК — 0.043 Вт/мК. Данное значение можно сопоставить с показателем теплопроводности воздуха, равным 0.

027 Вт/мК.

Вернуться к оглавлению

Схема применения различных марок пенопласта.

Выпускаются следующие основные виды пенополистирола, отличающиеся по своей плотности и другим характеристикам:

ПСБ-С-15, плотность пенопласта до 15 кг/куб. м.ПСБ-С-25, от 15 кг/куб.

м до 25 кг/куб. м.ПСБ-С-35, от 25 кг/куб. м до 35 кг/куб.

м.ПСБ-С-50, от 35 кг/куб. м до 50 кг/куб. м.

Обозначение марок плит представляет буквенно-цифровой код.

Например, ПСБ расшифровывается как беспрессовый полистирол. Цифры указывают на значение верхнего предела плотности. Буква «С» в обозначении кода ПСБ-С расшифровывается как самозатухающий.

Вернуться к оглавлению

Плиты пенополистирола ПСБ-С-15 позволяют создавать ненагружаемую теплоизоляцию. Это связано с отсутствием нагрузок на утеплитель, теплопроводность и плотность которых составляет не больше 15 кг/куб.м.

Характеристики ПСБ-С-15.

Среди пенополистиролов цены на ПСБ-С-15 являются наиболее доступными. Основными свойствами утеплителя марки ПСБ-С-15 выделяют следующие:

    Величина прочности на сжатие ПСБ-С-15 составляет 10% деформации >0.05 МПa.Значение предела прочности при изгибе >0.07 МПa.Теплопроводность марки ПСБ-С-15 составляет не более 0.042 Вт/мК.Водопоглощение за 24 часа должно быть не боле 3% от общего объема.

Другое неоспоримое достоинство, которым обладает пенополистирол ПСБ-С-15, связано с его низкой деформируемостью, удобной укладкой, экономичностью. Пенопласт ПСБС-15 широко применяют с целью теплоизоляции бытовок, контейнеров, вагонов и иных конструкций, используемых в строительстве.

Вернуться к оглавлению

Плотность пенопласта рассчитывается по аналогии с определением плотности кирпича. Если один куб пенопласта имеет плотность 25, то его масса равняется 25 кг.

Прочность на сжатие и изгиб пенопласта зависит от его плотности. Марка пенопласта и его плотность — это совершенно разные характеристики. Так, в зависимости от марки пенопласта, например, СПБ-С25 или СПБ-С50, характеристика плотности колеблется в интервале 15-25 или 35-50.

В зависимости от обозначения пенопласта, он применяется в различных строительных сооружениях, что не вызывает ухудшения его качественных характеристик.

Характеристики плит ПСБ-С-25.

Например, пенопласт ПСБ-С-15 можно использовать, чтобы утеплять им фасады домов. Данный тип утеплителя в строительстве практически не используется.

Он применяется в конструкциях, прилегающих к сооружениям. Это могут быть веранды или открытые балконы, выполняющие декоративную функцию. С помощью пенопласта данного вида создают фигуры для фасадов, что позволяет:

    обрамлять окна, углы дома;разделить этажи с помощью карниза.

Пенопласт плотностью 25 используют, чтобы утеплить фасад дома.

За стандарт принимают пенопласт, который имеет толщину 5 см. Такой вид утеплителя используется для многих целей. Его толщина изменяется, что зависит от предпочтений заказчика.

Пенопласт наибольшей толщины применяют с целью утепления стен, подверженных влиянию масс атмосферного воздуха. Им можно изолировать стены, что препятствует образованию грибка.

Вернуться к оглавлению

Характеристики плит ПСБ-С-35.

С целью идеального выравнивания стен можно изменить толщину пенополистирольной плиты. Злоупотреблять размером толщины материала не следует, поскольку это вызовет определенные трудности с закреплением системы водоотливов на углах строения.

Перед выбором утеплителя необходимой толщины следует посмотреть, какое количество запаса от газовой трубы имеется, поскольку ее нельзя закрывать категорически, так как это нарушит эстетику вида строения. В этом случае важно правильно определиться с покупкой пенопласта ПСБ-С-35 толщиной 5 см, нежели видом материала плотностью 25 при толщине 10 см. Хотя их цены практически не отличаются.

Утеплителем плотностью 35 можно изолировать фасады строений, откосы окон и дверей.

Он имеет цену в два раза больше, чем материал из полистирола плотностью 25. Последним можно утеплять гаражи и нежилые конструкции, если его толщина равна 5 см. При толщине такого утеплителя в 7 см его можно применять при теплоизоляции жилых помещений.

За счет нормального уровня плотности можно использовать теплоизолятор с наименьшей толщиной, что не связано с ухудшением качества утепления. Если теплоизолятор из пенополистирола является более твердым, то с помощью него можно идеально проводить утепление подвальных помещений, стен и фундаментов.

Если пенополистирол хранился долгое время вне помещения, то его структура могла претерпеть изменения из-за атмосферных осадков и солнечного излучения. Плиты становятся желтыми, а их полезные свойства исчезают.

Источники:

  • thermalinfo.ru
  • ostroymaterialah.ru

Коэффициент теплопроводности экструдированного пенополистирола

Экструзионный пенополистирол ТЕХНОНИКОЛЬ XPS представляет собой теплоизоляционный материал с равномерно распределенными замкнутыми ячейками. ТЕХНОНИКОЛЬ XPS не впитывает воду, не набухает и не дает усадки, химически стоек и не подвержен гниению.

Высокая прочность позволяет получить ровное и одновременно жесткое основание, что существенно увеличивает срок эксплуатации всей теплоизоляционной системы.

ТЕХНОНИКОЛЬ XPS применяется в общегражданском строительстве при устройстве теплоизоляции фундамента, кровли, полов, утеплении фасадов.

Экструдированный пенополистирол (или экструзионный пенополистирол) — это новое слово в сфере теплоизоляционных технологий. Даже несмотря на то, что материал начали производить более 60-ти лет назад, он по-прежнему не имеет аналогов ни в России, ни в мире. Пенополистирол ТЕХНОНИКОЛЬ XPS — это универсальный утеплитель во всех отношениях.

Во-первых, экструдированный пенополистирол позволяет эффективно осуществлять теплоизоляцию самых различных объектов, конструкций и сооружений. Другими словами, он имеет поистине широкую сферу применения. ТЕХНОНИКОЛЬ XPS используют при устройстве теплоизоляции полов, стен, фундаментов, кровли, а также различных инженерных сооружений и дорог. Таким образом, экструдированный пенополистирол находит применение как в промышленном, так и в частном строительстве.

Во-вторых, утеплитель ТЕХНОНИКОЛЬ XPS обладает уникальными техническими характеристиками. Экструдированный пенополистирол имеет один из самых низких показателей теплопроводности в ряду другой аналогичной продукции. Кроме того, ТЕХНОНИКОЛЬ XPS характеризуется химической стойкостью, высокой прочностью на сжатие, водо- и паронепроницаемостью, а также устойчивостью к образованию плесени и грибков. Таким образом, экструдированный пенополистирол ТЕХНОНИКОЛЬ XPS не только обеспечивает теплоизоляцию, но и эффективно препятствует воздействию целого ряда других разрушительных и негативных факторов.

Кроме того, экструдированный пенополистирол относится к классу экологически чистых материалов, что делает его вне конкуренции в ряду других утеплителей.

Корпорация ТЕХНОНИКОЛЬ осуществляет производство экструзионного (экструдированного) пенополистирола с применением самых современных технологий и новейшего оборудования, что позволяет изготавливать действительно качественный, надежный и долговечный теплоизоляционный материал. В ассортименте компании представлен ТЕХНОНИКОЛЬ XPS нескольких видов, ориентированных на оптимальное решение задач по теплоизоляции.

XPS ТЕХНОПЛЕКС, ТЕХНОНИКОЛЬ CARBON ECO, ТЕХНОНИКОЛЬ CARBON ECO FAS, ТЕХНОНИКОЛЬ CARBON ECO SP, ТЕХНОНИКОЛЬ CARBON PROF, ТЕХНОНИКОЛЬ CARBON PROF SLOPE, ТЕХНОНИКОЛЬ CARBON SOLID, ТЕХНОНИКОЛЬ CARBON SAND. Данные виды экструзионного пенополистирола различаются показателями прочности на сжатие, водопоглощения, а также коэффициентами теплопроводности при различных условиях эксплуатации.

Правильно подобранный экструзионный пенополистирол — это эффективное решение проблем с теплоизоляцией на долгие годы вперед, высокая экономия затрат на отопление и гарантия долговечности конструкций и сооружений.

Пенополистирол экструдированный что это такое? Экструзионный (экструдированный) пенополистирол – синтетический материал для теплоизоляции, разработанный американской строительной компанией в 50-е годы ХХ века. Изготавливается с применением технологии вспенивания, в составе используются полимерные композиции. Материал продавливается через специальную форму и соединяется в цельный элемент.

Выпускается в форме плит, подложки. Встречается на рынке как декоративный элемент. Стандартный размер плит составляет 600х1200 или 600х2400 мм. Стандартные размеры установлены ГОСТами, но многие компании изменяют размеры, делая пластины другой ширины. Распространен размер 580 мм. Толщина элементов варьируется от 20 мм до 10 см, в зависимости от производителя.

В торговые точки материал завозится упаковками по несколько элементов. Количество единиц в одной упаковке зависит от толщины изделий. Например, если толщина плит составляет 5 см, упаковка содержит обычно 8 единиц товара. При толщине 10 см упаковывается 4 пластины.

Дополнительная информация: возможен выпуск пеноплистирола в качестве напольного покрытия. Современный рынок предлагает материалы под ламинат, паркет, линолеум. Возможно изготовление на основе материала декоративных элементов. Выглядят они в точности как из гипса.

Достоинства и недостатки

Как и любой другой материал, экструдированный пенополистирол обладает достоинствами и некоторыми недостатками. До приобретения и использования стоит с ними ознакомиться.

Достоинства экструдированного пенополистирола:

  • Поглощение влаги в пределах 0,2%. Этот показатель означает практически полную водонепроницаемость.
  • Минимальный показатель теплопроводности. При стандартной температуре 25 о С составляет около 0,032 Вт/м*К. Если сравнивать проводимость тепла, по показателям получается следующее: 55 см кирпича равняется 3 см пенополистирола.
  • Хорошо выдерживает деформацию. Использовать можно для кладки под отмостку, закладывать после фундамента.
  • Не вступает в реакцию с неорганическими химическими реагентами.
  • Выдерживает значительные перепады температур, показатели не меняются при температуре воздуха от -50 до +75 о С.
  • По документации, использовать материал можно в течение не менее полувека. За это время характеристики не изменятся.
  • Экологически чистое вещество. Используется не только как утеплитель, а, например, для производства легких одноразовых тарелок или других видов дешевой посуды. Из него производятся детские игрушки.
  • Имеет минимальный вес. Небольшой толщины достаточно для хорошего утепления.

Кроме многочисленных положительных характеристик, можно выделить некоторые недостатки:

  • сравнение с другими видами утеплителей показывает, что цена материала высокая;
  • сильная горючесть. В процессе горения выделяются вредные вещества, черный дым;
  • под воздействием ИК лучей разрушается. Для сохранения эксплуатационных характеристик необходимо спрятать от прямых солнечных лучей;
  • производители заверяют, что внутри утеплителя не заводятся грызуны. Действительно, они не живут внутри, но часто проделывают каналы для передвижения;
  • растворители разрушают структуру.

Кроме перечисленных недостатков, к ним можно добавить низкую проницаемость пара. Иногда это плюс, но если утеплять деревянный дом, возможно возникновение грибков, плесени. Как результат, появляется неприятный запах в жилище, постоянно ощущается сырость.

Область применения

Экструдированный серый пенополистирол имеет широкую область применения. Преимущественно используется для утеплительных работ. Ограничивается сфера использования только температурными показателями (не выше 75 о С). Материал можно укладывать во влажных местах, в землю.

Обычно сфера использования ограничивается только финансовыми возможностями. Дороговизна делает нецелесообразным применение во многих местах. В местах, где отсутствует необходимость высоких технических характеристик, вместо ППС используется обычный пенопласт, отзывы про который тоже положительные, чтобы сэкономить средства.

Используется для утепления:

  • бетонных или деревянных полов;
  • стен внутри помещения или снаружи здания. Совместим с любым материалом;
  • колодцев. Нередко бетонные кольца покрываются материалом для дополнительной защиты;
  • отмостки;
  • поверхности земли. Чтобы не произошло разрушение структуры, наносится краска. Даже тонкий слой не допустит порчи состава.

Кроме перечисленных сфер, материал применяется в дорожном строительстве. Входит в состав многих холодильных установок, как экструзия утеплитель. Используется в сельском хозяйстве. Пенополистиролом утепляют кровли, подземные этажи. Одно из перспективных направлений – производство сэндвич панелей.

Технические характеристики экструдированного пенополистирола

Материал обладает одними из самых высоких технических характеристик на рынке товаров для утепления. У любого газа теплопроводность намного ниже, чем у твердых тел. Для воздуха показатель составляет 0,026 Вт/м* о С. Экструдированный пенополистирол является воздушной смесью примерно на 90%. Обладает теплопроводностью в 0,03 Вт/м* о С. Почти как воздух, а значит, тепло удерживается идеально.

Материал выпускают с различными показателями плотности. Производители предлагают от 25 до 47 кг/м 3 . Чем выше цифра, тем большая прочность. По мере повышения плотности, прочность увеличивается от 20000 до 50000 кг/м 2 .

Вода впитывается пенополистиролом плохо. Примерно за месяц одна плитка способна впитать около 0,4% собственного объема, если погрузить ее полностью в воду. Дальше процент впитанной жидкости не увеличивается, а останавливается. Паропроницаемость минимальная. Составляет 0,0128 Мг/(м*ч*Па). Часто компании, специализирующиеся на выполнении ремонтных работ, предлагают не использовать пароизоляцию, ограничившись использованием только полистирола.

Утеплитель способен выдержать температуру в пределах от -50 до +75 о С. Его использование возможно почти в любом климате. Горючесть высокая, класс изменяется в зависимости от добавления дополнительных веществ, от Г1 до Г4.

В некоторых моделях проделана специальная выемка по краям. Сделана для повышения плотности прилегания плит за счет изоляции швов. Данное нововведение не дает образовываться прослойкам холода между элементами, обеспечивая полное сохранение тепла.

С пенополистиролом были проведены испытания. Смысл их – многократное замораживание, размораживание мокрой плитки. Определено опытным путем, что без изменения технических характеристик материал выдерживает 80 циклов. Для пользователей эта информация полезна: примерно столько лет способен выдержать состав при эксплуатации.

Дополнительная информация: по сравнению с пенопластом, пенополистирол выигрывает по сохранению тепла примерно в 2 раза. Повышена прочность, уменьшена толщина. По сравнению с другими утеплителями, звукопроницаемость не очень высокая. Компенсируется недостаток простотой укладки. Для здоровья полностью безопасен.

Правила выбора материала

Спрос на пенополистирол высокий, увеличивается ежегодно. Чтобы утеплитель прослужил как можно дольше, выполнял без сбоев все требуемые функции, необходимо правильно совершить покупку. Каждый производитель утверждает, что его изделие – самое лучшее на рынке, но это не всегда правда.

Правила выбора:

  • Обозначается полистирол двумя цифрами. Если маркировка ниже индекса 28, стоит отказаться от покупки. Проверка обязательна, некоторые марки изделия не подходят для фасадных работ, не справятся с утеплением дома. Выбирать материал с индексом 40 и выше. Неплохо зарекомендовала себя марка ПСБ-С-40, самозатухающий состав.
  • Перед покупкой посмотреть стандарты, на основе которых осуществлялось производство. Многие изготовители выполняют плиты не по ГОСТам, а собственным техническим условиям. Возможен некачественный товар. Обычно понижается плотность, за счет чего снижается себестоимость. Не стоит ориентироваться на число марки, обязательно ознакомиться с характеристиками.
  • Чтобы убедиться в высоком качестве продукции, можно отломить небольшой кусочек от края. Если на месте излома будут заметны небольшие шарики, пенополистирол, вероятно, низкосортный. На изломе должны быть многогранники правильной формы. Отломленный кусочек ровный. Тест показывает метод производства: экструзия, выполненная на профессиональном оборудовании, или кустарный способ, как у простого пенопласта.
  • Приобретать товар у зарекомендовавших себя производителей. Таковыми являются «Penoplex» УРСА, Кнауф и «Технониколь» – русские. «Басф» или «Новахимикалс» – зарубежные.

Не стоит забывать, что производство пенополистирола – сложный технологический процесс. Методы производства отличаются у многих производителей. Некоторые безопасны, другие способны нанести вред здоровью человека.

Марки производителя

Каждая марка производитель пенополистирола отличается от конкурентов некоторыми особенностями. Чтобы разобраться в многообразии предлагаемого выбора, стоит рассмотреть изделия каждого производителя подробней.

Кнауф

Производитель из Германии. Производство представлено многочисленными вариантами пеноплистирола.

Используются утеплители:

  • Knauf Therm Compack. Универсальный, используется для любого вида бытовой теплоизоляции. Имеет низкий коэффициент теплопроводности 0.032 Вт/мк, высокие звукоизоляционные свойства. Индекс снижения воздушного шума 47 Дб, ударный шум гасится, если показатель не превышает 24 Дб. Благодаря показателям хорошо подходит для утепления небольших помещений.

Поставляется плитами длиной 1х0,6 м. толщина 5 см. Паропроницаемость 0,033 мг/мчПа

  • Knauf Therm Roof Light. Плотность низкая, 10–15 кг/м³. используется для удержания тепла на стропильных каркасах домов. Характеристики: проводимость тепла 0,034 Вт/мк, проводимость пара – 0,035 Вт/мк.
  • Knauf Therm Wall – для утепления стен. Показатели совпадают с прошлыми конструкциями, отличается повышенная механическая прочность. 60 кПа – показатель устойчивости на сжатие. Выбор размеров плит широкий. Теплопроводность: 0,033 Вт/мк, паропроводность: 0,032 мг/мчПа. Г3 – класс горючести.

Имеются модели Knauf Therm Flor, подходящая для изоляции полов, с низкой теплопроводностью 0,03 Вт/мк и Knauf Therm 5 in 1. Последняя выделяется максимальной прочностью среди всех моделей компании. Выдерживает до 17 т/м 2 .

Производитель пенополистирола УРСА из России представляет несколько вариантов изделий.

Модель/ХарактеристикиURSA XPS N-IIIURSA XPS N-III-G4URSA XPS N-V
Теплопроводность0,032 Вт/мК0,032 Вт/мК0,033 Вт/мК
Температура примененияот -50 до +75от -50 до +75от -50 до +75
Водопоглощение0,3% от объема за 24 часа0,3% от объема за 24 часа0,3% от объема за 24 часа
Коэффициент паропроницаемости0,004 мг/мчПа0,004 мг/мчПа0,004 мг/мчПа
Прочность на сжатие25 т/м²25 т/м²50 т/м²

От других производителей изделия отличаются повышенными показателями прочности. Материал незаменим для профессионального строительства. Один из наиболее прочных вариантов, выдерживающий значительные нагрузки.

Пеноплэкс

Отечественный производитель пенополистирола. Обладает широким модельным рядом. Плиты можно использовать для различных вариантов утепления.

Выделяют следующие виды изделий:

  • Пеноплекс Стена
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность25,0-32,0 кг/м³
Прочность на сжатие0,20 МПа
Водопоглощение0,5%
ОгнестойкостьГ3
Диапазон температур-50 … +75 °С
  • Пеноплекс Фундамент
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность29,0-33,0 кг/м³
Прочность на сжатие0,27 МПа
Водопоглощение0,5%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
  • Пеноплекс Кровля
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность28,0-33,0 кг/м³
Прочность на сжатие0,25 МПа
Водопоглощение0,5%
ОгнестойкостьГ3
Диапазон температур-50 … +75 °С
  • Пеноплекс Комфорт
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность25,0-35,0 кг/м³
Прочность на сжатие0,20 МПа
Водопоглощение0,5%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
ХарактеристикиЗначение
Теплопроводность0,03 Вт/(м×°К)
Плотность35,0-47,0 кг/м³
Прочность на сжатие0,5 МПа
Водопоглощение0,4%
ОгнестойкостьГ4
Диапазон температур-50 … +75 °С
Технониколь

Считается лидером в области утеплительных материалов. С каждым годом объем выпускаемой продукции стремительно увеличивался. Сейчас утеплители стоят немного дороже, чем у конкурентов на российском рынке, но качество товара самое высокое. Специализируется на выпуске многочисленных наименований различных утеплителей. Пенополистирол представлен несколькими моделями.

Характеристики/МодельТехноплексCarbon EcoXPS 35-300Prof
Теплопроводность0,032 Вт/мк0,029 Вт/мк0,028 Вт/мк0,028 Вт/мк
Плотностьот 26 до 35 кг/м³26-32 кг/м³35 кг/м³30 кг/м³
Прочность на сжатие200 кПа250 кПа400 Кпа300 кПа
Водопоглощение0. 2%0.2%0.2%0.2%
ОгнестойкостьГ4Г4Г4Г4
Диапазон температур-50 … +75 °С-50 … +75 °С-50 … +75 °С-50 … +75 °С
Паропроницаемость0,01 мг/мчПа0,011 мг/мчПа0,01 мг/мчПа0,01 мг/мчПа

Часто задаваемые вопросы

– Что лучше под стяжку керамзит или пенополистирол?

Коэффициент теплопроводности керамзита в среднем 0,12, а пеноплэкса 0,03 Вт/м*С. Т.е. почти на порядок. Таким образом, для обеспечения требуемой теплоизоляции полов засыпка кермазита будет намного толще, чем уложить листы пеноплэкса и им подобным. И как следствие, вся конструкция полов с керамзитом будет много толще, чем конструкция полов с пеноплэксом.

– Пенополиуретан или пенополистирол что лучше?

Проведя сравнительный анализ обоих утеплителей, можно сказать следующее: пенополиуретан обладает более высокими характеристиками по шумоизоляции, влагостойкости, термостойкости. Имеет более высокий класс пожаробезопасности. Однако теплопроводность его на порядок ниже.

Учитывая, что речь идет о выборе материала для утепления, пенополистирол будет лучшим. Хотя, если учитывать опыт пользователей, нет необходимости использовать материал с настолько высокими показателями, как у полистирола. Потому предпочтение при покупке стоит отдать пенополиуретану.

– Вреден ли для здоровья человека пенополистирол?

Нет, материал полностью безопасен при использовании. Единственный момент – при горении выделяется едкий дым.

– Какие поверхности нельзя утеплять пенополистиролом?

Нельзя утеплять поверхности, температура которых превышает указанные пределы: -50 … +75 °С. Еще одно ограничение: в деревянных домах, где требуется хорошая пароизоляция, материал применять нежелательно. Возможно образование плесени, грибка между стеной и утеплителем. Из дома не будет выходить влажный воздух. В помещении будет постоянная высокая влажность.

Что такое экструдированный пенополистирол? Универсальный утеплитель. Считается одним из современных образцов материалов данного класса. При его использовании стоит соблюдать установленные температурные нормативы и другие важные требования. Если утепление ЭППС выполнено правильно, производители дают гарантию на срок службы полистирола не менее 50 лет.

Климат в России очень холодный, поэтому практически любой дом, построенный за городом, приходится утеплять. Для этого можно использовать самые разные материалы. Одним из наиболее популярных является пенополистирол. Монтируется этот утеплитель элементарно. Коэффициент же теплопроводности у него ниже, чем у любого другого современного изолятора.

Что представляет собой пенополистирол

Изготавливается этот материал примерно по тому же принципу, что и любые другие вспененные утеплители. Сначала в специальную установку наливается жидкий стирол. После добавления в него особого реагента происходит реакция с выделением большого количества пены. Готовая вспененная густая масса до застывания пропускается через формовочный аппарат. В результате получаются листы материала с огромным количеством мелких воздушных камер внутри.

Такая структура плит и объясняет высокие изоляционные качества пенополистирола. Ведь воздух, как известно, тепло сохраняет очень хорошо. Существуют виды пенополистирола, в ячейках которых содержатся и другие газы. Однако самыми эффективными изоляторами все же считаются плиты именно с воздушными камерами.

Входящие в структуру пенополистирола ячейки могут иметь размер от 2 до 8 мм. На их стенки при этом приходится примерно 2% массы материала. Таким образом, пенополистирол на 98% состоит из воздуха.

Что такое теплопроводность

Узнать, насколько хорошо тот или иной материал способен сохранять тепло, можно по коэффициенту его теплопроводности. Определяют этот показатель очень просто. Берут кусок материала площадью в 1 м2 и толщиной в метр. Одну из его сторон нагревают, а противоположную ей оставляют холодной. При этом разница температур должна быть десятикратной. Далее смотрят какое количество тепла достигнет холодной стороны за один час. Измеряют теплопроводность в ваттах, разделенных на произведения метра и градуса (Вт/мК). При покупке пенополистирола для обшивки дома, лоджии или балкона обязательно следует посмотреть на этот показатель.

От чего зависит теплопроводность

Способность пенополистирольных плит сохранять тепло зависит в основном от двух факторов: плотности и толщины. Первый показатель определяется по количеству и размеру воздушных камер, составляющих структуру материала. Чем плотнее плита, тем больший коэффициент теплопроводности у нее будет.

Зависимость от плотности

В таблице ниже можно посмотреть каким именно образом теплопроводность пенополистирола зависит от его плотности.

Плотность (кг/м3)Теплопроводность (Вт/мК)
100.044
150.038
200.035
250.034
300.033
350.032

Представленная выше справочная информация, однако, скорее всего, может пригодиться только владельцам домов, использовавшим пенополистирол для утепления стен, пола или потолка довольно-таки давно. Дело в том, что при изготовлении современных марок этого материала производители используют специальные графитовые добавки, в результате чего зависимость теплопроводности от плотности плит сводится практически на нет. В этом можно убедиться, взглянув на показатели в таблице:

МаркаТеплопроводность (Вт/мК)
EPS 500.031-0.032
EPS 700.033-0.032
EPS 800.031
EPS 1000.03-0.033
EPS 1200.031
EPS 1500.03-0.031
EPS 2000.031

Зависимость от толщины

Разумеется, чем толще материал, тем лучше он сохраняет тепло. У современного пенополистирола толщина может колебаться в пределах 10-200 мм. По этому показателю его принято классифицировать на три больших группы:

  1. Плиты до 30 мм. Этот тонкий материал обычно используется при утеплении перегородок и внутренних стен зданий. Коэффициент его теплопроводности не превышает 0.035 Вт/мК.
  2. Материал толщиной до 100 мм. Пенополистирол этой группы может применяться для обшивки как внешних, так и для внутренних стен. Тепло такие плиты сохраняют очень хорошо и с успехом используются даже в регионах страны с суровым климатом. К примеру, материал толщиной 50 мм имеет теплопроводность в 0.031-0.032 Вт/Мк.
  3. Пенополистирол толщиной более 100 мм. Такие габаритные плиты чаще всего используются для изготовления опалубок при заливке фундаментов на Крайнем Севере. Теплопроводность их не превышает 0.031 Вт/мК.

Расчет необходимой толщины материала

Точно вычислить толщину необходимого для утепления дома пенополистирола довольно-таки сложно. Дело в том, что при выполнении этой операции следует учитывать массу самых разных факторов. К примеру, таких, как теплопроводность материала, выбранного для сооружения утепляемых конструкций и его разновидность, климат местности, тип облицовки и пр. Однако примерно рассчитать необходимую толщину плит все-таки можно. Для этого понадобятся следующие справочные данные:

  • показатель требуемого теплосопротивления ограждающих конструкций для данного конкретного региона;
  • коэффициент теплопроводности выбранной марки утеплителя.

Собственно сам расчет производится по формуле R=p/k, где p — толщина пенопласта, R — показатель теплосопротивления, k — коэффициент теплопроводности. К примеру, для Урала показатель R равен 3,3 м2•°C/Вт. Допустим, для утепления стен выбран материал марки EPS 70 с коэффициентом теплопроводности 0.033 Вт/мК. В этом случае расчет будет выглядеть следующим образом:

То есть толщина утеплителя для наружных ограждающих конструкций на Урале должна составлять минимум 100 мм. Обычно владельцы домов холодных регионов обшивают стены, потолки и полы двумя слоями пенополистирола на 50 мм. При этом плиты верхнего слоя располагают таким образом, чтобы они перекрывали швы нижнего. Таким образом можно получить максимально эффективное утепление.

Экструдированный пенополистирол

Обычный утеплитель этого типа маркируется буквами EPS. Вторая разновидность материала — экструдированный пенополистирол обозначается буквами XPS. Отличаются такие плиты от обычных, прежде всего, структурой ячейки. Он у них не открытая, а закрытая. Поэтому экструдированный пенополистирол гораздо меньше простого набирает влагу. То есть способен сохранять свои теплоизоляционные качества в полной мере даже под воздействием самых неблагоприятных факторов внешней среды. Коэффициент теплопроводности экструдированного пенополистирола в зависимости от марки может составлять 0.027-0.033 Вт/мК.

Сравнение утеплителей

Таким образом, экструдированный и обычный пенополистирол считаются у владельцев загородных участков едва ли не самыми лучшими видами утеплителя. Ниже представляем вашему вниманию таблицу с коэффициентами теплопроводности других видов изоляторов.

МатериалКоэффициент теплопроводности (Вт/мК)
Минеральная вата0.045-0.07
Стекловата0.033-0.05
Керамзит0.16
Керамзитобетон0.31
Пенополиуретан0.02-0.041

Как видите, лучше пенополистирола, коэффициент теплопроводности которого составляет 0.031-0.033 Вт/мК, стены, потолки и полы можно утеплить только пенополиуретаном. Однако последний стоит очень дорого. К тому же при его нанесении используется специальное конструктивно сложное оборудование. А следовательно, наилучшим вариантом изолятора в плане способности сохранять тепло на данный момент является все же именно пенополистирол.

Коэффициент теплопроводности пенопласта


Теплопроводность пенопласта — точные цифры

Пенопласт имеет следующие преимущества перед другими утеплительными материалами: экологичность, лёгкость, гигроскопичность, невысокая стоимость. Однако, главное достоинство — низкая теплопроводность пенопласта, которая делает его одним из наиболее распространенных теплоизолирующих материалов.

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Характеристики теплопроводности пенопласта

Для того чтобы рассмотреть такую характеристику, как теплопроводность пенопласта, разберемся для начала, что из себя представляет в принципе теплопроводность материалов. Теплопроводностью называют количественную характеристику способности тела проводить тепло.

Это количество тепловой энергии (Ватт), которое любой материал способен провести через себя (метр), при определенной температуре (С) за определенное время. Обозначается — λ и выражается Вт/м•С.

Определим оптимальные размеры данного утеплителя исходя из его теплопроводных характеристик. На рынке стройматериалов большое множество различных утеплителей. Пенопласт, как мы уже знаем, обладает теплопроводностью очень низкой, но эта величина зависит от марки материала.

Например, пенопласт марки ПСБ-С 50 имеет плотность 50 кг/м3. Таким образом, его теплопроводность составляет 0,041 Вт/м•С (данные указаны при 20-30 С). Для пенопласта марки ПСБ-С 25 значение будет 0,041 Вт/м•С, а марки ПСБ-С 35 – 0,038 Вт/м•С. Приведенные величины коэффициентов теплопроводности указаны для пенопласта одинаковой толщины.

Наиболее заметна теплопроводность пенопласта при сопоставлении значений с другими теплоизоляционными материалами. К примеру, лист пенопласта 30-40 мм аналогичен объёму минваты в несколько раз большей, а толщина листа 150 мм заменяет 185 мм пенополистирола. Конечно, есть материалы, у которых коэффициент ниже. К таким относится и пеноплекс. 30 мм пеноплекса смогут заменить 40 мм пенопласта, при аналогичных условиях.

Какие листы выбрать?

Чтобы добиться наиболее эффективной теплоизоляции стены, необходимо правильно рассчитать толщину используемого утеплителя. Для примера рассчитаем, какой толщины нужен утеплитель для стены толщиной в один кирпич.

Сначала необходимо узнать общее теплосопротивление. Это постоянное значение, зависящее от климатических условий в определенной области страны. На юге России она составляет 2,8 кВт/м2, для полосы умеренного климата — 4,2 кВт/м2. Затем найдем теплосопротивление кирпичной кладки: R = p/k, где p – толщина стены, а k – коэффициент, указывающий, насколько сильно стена проводит тепло.

Имея начальные данные, мы можем узнать, какое теплосопротивление утеплителя необходимо использовать, применив формулу p=R*k. где R — общее теплосопротивление, а k — значение теплопроводности утеплителя.

Возьмем для примера пенопласт марки ПСБ-С 35, имеющий плотность 35 кг/м3 для стены, толщиной в один кирпич (0,25 м) в регионе средней полосы России. Общее теплосопротивление имеет значение 4,2 кВт/м2.

Для начала необходимо узнать теплосопротивление нашей стены (R1). Коэффициент для силикатного пустотного кирпича составляет 0,76 Вт/м•С (k1), толщина – 0,25 м (p1). Находим теплосопротивление:

R1 = p1 / k1 = 0,25 / 0,76 = 0,32 (кВт/м2).

Теперь находим теплосопротивление для утеплителя (R2):

R2 = R – R1 = 4.2 – 0,32 = 3,88 (кВт/м2)

Значение теплосопротивления пенопласта ПСБ-С 35 (k2) равен 0,038 Вт/м•С. Находим требуемую толщину пенопласта (p2):

p2 = R2*k2 = 3.88*0.038 = 0.15 м.

Вывод: при заданных условиях нам необходим пенопласт ПСБ-С 35 15 см.

Аналогичным способом можно сделать расчеты для любого материала, используемого в качестве утеплителя. Коэффициенты теплопроводности разных строительных материалов можно найти в специальной литературе или в сети Интернет.

Коэффициент теплопроводности пенопласта: классификация и его особенности использования

Утеплить помещение можно различными методами. Например, использовать пенопласт. Его отличительная характеристика – это высокие эксплуатационные качества. Самым основным достоинством пенопласта является низкая теплопроводность. Это качество помогает хорошо сохранять тепло. Помимо этого, пенопласт имеет и другие плюсы.

  1. Практичность.
  2. Экологичность.
  3. Легкость.
  4. Простая установка.
  5. Способность выдерживать температурные перепады.
  6. Доступная цена.

Факторы, влияющие на теплопроводность

Плиты пенопласта изготавливаются различной толщины. Поэтому существуют многочисленные факторы, которые влияют на тепловодность материала.

  • Толщина слоя. Чтобы добиться качественного энергосбережения, необходимо делать слой толще. Например, слой в 5 см будет меньше пропускать тепла, чем слой в 1 см.
  • Структура материала. Его пористость усиливает изоляционные качества. Все потому что в ячейках содержится воздух. А он хорошо сохраняет теплопроводность пенопласта.
  • Влажность. В процессе хранения пенопласт необходимо защищать от влаги. Она неблагоприятно влияет на характеристики материала, даже наоборот.
  • Средняя температура слоя. Если температура увеличится, это повлечет за собой последствия. Эффективность использования изолятора станет хуже.

Строительный рынок предлагает большой выбор утеплительного материала. Пенопласт имеет низкую теплопроводность. Но этот показатель может меняться, в зависимости от разновидности полистирола. Если сравнивать с другими утеплителями, можно сделать определенные выводы. Например, лист пенопласта плотностью 50-60 мм можно заменить большим объемом минеральной ваты. Материал плотностью 100 мм можно заменить вспененным полистиролом с показателями 123 мм. Характеристики этих видов утеплителей немного схожи. Поэтому и разбежность небольшая. Показатели пенопласта превышают и характеристики базальтовой ваты.

Особенности теплопроводности

Пенополистирол хорошо сохраняет не только тепло, но и холод. Такие возможности объясняются благодаря его строению. В состав этого материала конструктивно входит огромное количество герметичных многогранных ячеек. Каждая имеет размер от 2 до 8 мм. И внутри каждой ячейки есть воздух, в составе 98%. Именно он и служит отличным теплоизолятором. Оставшиеся 2% всей массы материала приходится на полистирольные стенки ячеек.

В этом можно убедиться, если взять, например, кусок пенопласта. Толщиной 1 метр и площадью 1 квадратный метр. Одну сторону нагреть, а другую сторону оставить холодной. Разница между температурами будет десятикратная. Чтобы получить коэффициент теплопроводности, необходимо измерить количество теплоты, что переходит от теплой части листа на холодную.

Люди привыкли, постоянно интересоваться плотностью пенополистирола у продавцов. Все потому что плотность и тепло, тесно связаны между собой. На сегодняшний день современный пенопласт не требует проверки его плотности. Изготовление улучшенного утеплителя предусматривает добавление специальных графитовых веществ. Они делают коэффициент теплопроводности материала неизменным.

Теплопроводность пенополистирола в сравнении

Если сравнить пенопласт со многими другими строительными материалами, можно сделать колоссальные выводы.

Показатель теплопроводности пенопласта оставляет от 0,028 до 0,034 ватта на метр/Кельвин. Если плотность увеличивается, теплоизоляционные свойства экструзионного пенополистирола без графитовых добавок уменьшаются.

Слой экструзионного пенопласта в 2 см способен удержать тепло, как слой минеральной ваты в 3,8 см, как обычный пенопласт, слоем 3 см или как деревянная доска, толщина которой составляет 20 см. Для кирпича эти способности приравниваются к толщине стенки в 37 см. Для пенобетона – 27 см.

Классификация пенополистирола

Обычный пенопласт

Теплоизоляционный материал, который получают в результате вспенивания полистирола. Как уже упоминалось выше, его объем – это 98% воздуха, который запечатан в гранулы. Это говорит не только о его отличных теплоизоляционных качествах, но и о звукоизоляционных свойствах.

Главное преимущество материала – отсутствие способности поглощать влагу. Кроме того, он не гниет и биологически не разлагается. Долговечный материал, небольшой массы и удобный в использовании. Его можно приклеить к любому строительному материалу.

Пенополистирол легко подается горению, но в его составе есть такое вещество, как антипирена. Именно оно и наделяет пенопласт способностью самозатухать. Кроме того, пенополистирол нельзя использовать для утепления фасадов. Это объясняется его низкой паропроницаемостью. А для того чтобы провести работы с пенопластом под кровлей, следует хорошо продумать систему вентиляции.

Использование в зависимости от марки материала
  • ПСБ-С 15. Маркировка пенопласта говорит о том, что им можно утеплить конструкции, которые не подвергаются механическим нагрузкам. Например, утепление кровли, пространства между стропами и потолочного перекрытия.
  • ПСБ-С 25 и 25Ф. Распространенная маркировка пенополистирола. Говорит о том, что можно утеплять любую поверхность. Стены, фасады, потолки или напольное покрытие, кровлю.
  • ПСБ-С 35 и 50. Таким материалом можно утеплять объекты, которые находятся под постоянно высокой нагрузкой.
Экструдированный пенополистирол

Теплоизоляционный материал, который обладает высоким эффектом и качеством. Его чаще всего используют для утепления ограждающих конструкций. И коэффициент теплопроводности колеблется от 0,027 до 0,033 Вт/м К.

Структура материала ячеистая. И полная закрытость каждой ячейки обеспечивает абсолютную защиту от проникновения воды. Поэтому такой материал и рекомендуют использовать там, где влажность повышенная или там, где материал может контактировать с водой. Это утепление подвального помещения или фундамента коттеджа. Даже в условиях недостаточной гидроизоляции, экструдированный пенополистирол сохранит свои теплоизоляционные качества.

Кроме этого, такой материал отличается высокой устойчивостью к различным деформациям. Эта особенность позволяет использовать его как утеплитель для поверхностей, несущие большие нагрузки. Например, экструдированным пенополистиролом можно утеплить фасады. Особенно если материал облицовки очень тяжелый.

Что касается температуры. Пенополистирол способен выдерживать резкие скачки, от -120 до +175 градусов. При этом его структура остается целой и невредимой.

Недостатками этого материала является горючесть, но, как и пенопласт, его составные элементы способны заставить его затухнуть. Контакт пенополистирола со сложными углеводами может привести к разрушению.

  • Автор: Дмитрий Сергеевич Кириллов
  • Распечатать

Теплопроводность пенопласта от 50 мм до 150 мм — считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро ячеек, которые в свою очередь во много раз повышают площадь соприкосновения с воздухом. Можно с уверенность сказать, что пенопласт практически весь состоит из атмосферного воздуха, приблизительно на 98%, в свою очередь этот факт являет собой их предназначение – теплоизоляция зданий как снаружи, так и внутри.

Всем известно, еще из курсов физики, атмосферный воздух, является основным изолятором тепла во всех теплоизоляционных материалах, находится в обычном и разреженном состоянии, в толще материала. Тепло-сбережение, основное качество пенопласта.

Как было сказано раньше, пенопласт практически на 100% состоит из воздуха, а это в свою очередь определяет высокую способность пенопласта сохранять тепло. А связанно это с тем, что у воздуха самая низкая теплопроводность. Если посмотреть на цифры, то мы увидим, что теплопроводность пенопласта выражена в промежутке значений от 0,037Вт/мК до 0,043Вт/мК. Это можно сопоставить с теплопроводность воздуха — 0,027Вт/мК.

В то время как теплопроводность популярных материалов, таких как дерево (0,12Вт/мК), красный кирпич (0,7Вт/мК), керамзитная глина (0,12 Вт/мК) и других, используемых для строительства, намного выше.

Высокий уровень энергосбережения пенопласт обеспечивает за счет низкой теплопроводности. Например, если построить стену из кирпича толщиной 201 см или воспользоваться древесным материалом толщиной 45 см, то для пенопласта толщина составит всего на всего 12 см для определенной величины энергосбережения.

Поэтому самым эффективным материалом из немногих для теплоизоляции наружных и внутренних стен здания принято считать пенопласт. Затраты на отопление и охлаждение жилых помещений значительно сокращаются благодаря применению пенопласта в строительстве.

Превосходные качества пенополистирольных плит нашли свое применение и в других видах защиты, например: пенопласт, так же служит для защиты от промерзания подземных и наружных коммуникаций, за счет чего их эксплуатационный срок увеличивается в разы. Пенопласт применяют и в промышленном оборудовании (холодильные машины, холодильные камеры) и в складских помещениях.

Размеры листов

Изготовление пенополистирольных плит, осуществляется по нормам ГОСТ. При производстве пенопласта регулируется как состав, так и размеры листов. Стандартная длина листа колеблется от 100 см до 200 см. Ширина должна быть равна 100 см, а толщина от 2 см до 5 см. Теплопроводность пенопласта 50 мм – относительно высока, благодаря небольшой толщине и характеристикам материала, он является наиболее ходовым из всех.

А что же покупать?

На рынке строительных материалов представлен огромный выбор пенополистирольных плит. Высокая теплопроводность плит утеплителей зависит от их вида. Например: лист пенопласта ПСБ-С 15 обладает до 15 кг/м3 плотностью и 2 см толщиной. Для листа от 2-х до 50 см плотность составляет не более 35 кг/м3. При сравнении пенопласта с другими подобными материалами можно легко проследить зависимость теплопроводности пенополистирольных плит от его толщины.

Так, например: теплопроводность пенопласта 50 мм, больше в два раза, чем у минеральной ваты такого же объема, в таком случае теплопроводность пенопласта, толщина 150 мм, вообще в 6 раз превысит эти показатели. Базальтовая вата, тоже очень сильно проигрывает пенопласту.

Для того чтобы применить один из способов изоляции, необходимо верно выбрать габариты материала. По следующему алгоритму можно выполнить расчет:

  • Необходимо уточнить общее тепло-сопротивление. Эта величина зависит от региона, в котором необходимо выполнить расчет, а именно от его климата.
  • Для вычисления тепло-сопротивления стены можно воспользоваться формулой R=p/k, где ее толщина равна значению р, а k-коэффициент теплопроводности пенопласта.
  • Из постоянных показателей можно сделать вывод, какое сопротивление должно быть у изоляции.
  • Нужную величину можно вычислить по формуле р=R*k, найти значение R можно исходя из предыдущего шага и коэффициента теплопроводности.

Марки пенопласта

Если Вас заинтересовал вопрос, какой лучше всего марки приобрести пенопласт, и какая у него теплопроводность, то мы ответим вам на него. Ниже приведены самые популярные марки продукции, а также отображены величины плотности и коэффициент теплопроводности пенопласта.

  • ПCБ-C15. С теплопроводностью 0,042 Вт/мK, а плотность равна 11-15 кг/м3
  • ПCБ-C25. С теплопроводностью 0,039 Вт/мK, а плотность равна 15-25 кг/м3
  • ПCБ-С35. С теплопроводностью 0,037 Вт/мK, а плотность равна 25-35кг/м3

Завершает наш список пенопласт ПCБ-C5, теплопроводность которого составляет 0,04 Вт/мК, а плотность равна 35-50 кг/м3. Проведя анализ плотности и теплопроводности можно с уверенностью сказать, что плотность существенно не влияет на основное качество пенопласта, тепло-сбережение.

Коэффициент теплопроводности пенополистирола

Одна из самых важных характеристик при выборе любого утеплителя – теплопроводность. Ее коэффициент показывает, сколько тепла проходит через материал (пенопласт, Penoplex, кирпич, минвату) за определенное время. Чем дольше длится процесс такого теплообмена, тем ниже будет его значение и, соответственно, тем больше тепла останется внутри помещения.

Оглавление:

Что влияет на теплопередачу?

Существует несколько факторов, которые значительно влияют на ее величину:

  • наличие пор и их структура;
  • плотность, толщина;
  • влагопоглощаемость.

Благодаря наличию пор в материале, как, например, в пенопласте и Пеноплексе, они имеют низкую теплопередачу. Внутри гранул нет ничего, кроме воздуха, а он имеет самую малую величину коэффициента – 0,022 Вт/м·К. Закрытые и маленького размера поры также затрудняют передачу тепловой энергии, а если они открытые и соединены между собой, то появляется конвекция, из-за которой повышается теплопроводность.

Чем плотнее материал, тем быстрее он пропускает тепло, как, например, металл или графит. Для сравнения, плотность пенопласта составляет 18 кг/м3, а у сплошного силикатного кирпича – около 1800 кг/м3, следовательно, у первого теплопередача будет очень низкая, а у второго – весьма высокая. Ко всему этому немаловажное значение имеет способность утеплителя поглощать воду, так как при попадании влаги внутрь она вытесняет сухой воздух, тем самым повышая передачу тепловой энергии.

Таблица с величинами коэффициентов теплопроводности:

Наименование теплоизоляцииПлотность, кг/м3Теплопроводность, Вт/м·К
Минвата2000,08
1250,07
ПенополистиролПСБ-С 15до 150,043
ПСБ-С 2515,1-250,041
ПСБ-С 3515,1-350,038
ПСБ-С 5015,1-500,041
Пеноплекс33-450,03-0,032
Пустотелый керамический кирпич12000,52
Сплошной силикатный кирпич18000,47
Стекловата75-1750,032-0,041

Значение величины теплопроводности гранул пенопласта в зависимости от толщины:

Толщина, ммКоэффициент теплопередачи, Вт/м·К
300,04
500,03-0,037
1000,03-0,046
1500,02

Сравнение с другими утеплителями

Пенопласт получается в результате вспенивания полистирола, благодаря чему появляются наполненные газом поры, а Пеноплекс – экструдированный пенополистирол, произведенный методом экструзии, поэтому его гранулы имеют меньший размер. К тому же из-за равномерного и упорядоченного расположения ячеек в экструзионном, он является более прочным утеплителем, что позволяет ему сильнее изгибаться и меньше продавливаться под нагрузкой. Оба материала имеют наивысшие степени пожароопасности, поэтому обязательно следует учитывать это во время монтажа.

Сравнительная таблица Пеноплекса и пенополистирола:

ПенопластПеноплекс
Плотность, кг/м31825-32
Влагопоглощаемость, %0,8-1,20,4
Паропроницаемость, мг/(м·ч·Па)0,050,02
Теплопроводность, Вт/м·К0,031-0,0410,03

По величине теплопроводности пенопласт проигрывает Пеноплексу, и по другим показателям также. Но даже если утеплять дом обычным вспененным полистиролом, то теплопотери могут сократиться практически на 40%. Главное – провести все работы по монтажу согласно всем требования производителя, в том числе не допустить попадания влаги между стеной и теплоизоляцией и ограничить доступ для грызунов.

По всем свойствам пенопласт и в сравнении с минватой весьма различается:

Минвата
Плотность, кг/м310-300
Влагопоглощаемость, %более 1%
Паропроницаемость, мг/(м·ч·Па)0,4-0,5
Теплопередача, Вт/м·К0,045 (при 35 кг/м3) -0,7

По коэффициенту теплопередачи пенопласт имеет наилучшее значение, но по паропроницаемости показатель у минваты намного лучше, в итоге ее свободно можно использовать внутри жилых помещений, к тому же она огнеустойчива, в отличие от вспененного полистирола. Также благодаря производству из минерального сырья она не выделяет во время горения опасных веществ, и, разлагаясь, не загрязняет окружающую среду. Но минвата по сравнению со вспененным полистиролом имеет намного больший вес, поэтому для ее монтажа, особенно на стены, требуется крепкая конструкция.

Стоимость

Таблица цен, по которым можно купить пенопласт:

Наименование марки пенополистиролаРазмеры, мм (длина/ширина/толщина)Плотность, кг/м3Стоимость за м2, рубли
KnaufTherm Compack1000x600x5010-15150
Therm Wall Light1000x1200x10010-12190
1000х1200х5010-12100
1000х1200х2010-1240
Therm Facade1000x1200x10015,1-17,2390
Therm Wall2000х1200х5010-12150
ПСБ-С 151000х1000х201550
1000х1000х3060
1000х1000х4080
1000х1000х5090
1000х1000х100170
ПСБ-С 251000х1000х202080
1000х1000х30120
1000х1000х40140
1000х1000х50150
1000х1000х100300
ПСБ-С 351000х1000х2035100
1000х1000х30140
1000х1000х40180
1000х1000х50200
1000х1000х100400

Выбирая утеплитель, следует помнить, что чем выше коэффициент теплопередачи, тем большее количество слоев придется монтировать. Так, например, базальтовая минвата толщиной в 100 мм имеет практически такую же проводимость тепла – 0,042 Вт/м·К, как у пенополистирола размером 50 мм – 0,046 Вт/м·К, а теплопроводность Пеноплекса с 50 мм и 100 мм – 0,03 Вт/м·К. Каждый из них имеет свои плюсы и минусы, так минеральную вату рекомендуется использовать там, где требуется повышенная паропроницаемость и устойчивость к большим температурам, стекловату следует применять для гаражей или любых других мест, где высока вероятность возгорания.

Пенопласт и экструдированный пенополистирол все же лучше располагать снаружи здания, а не внутри, так меньше шансов для образования конденсата между стеной и утеплителем.

Технические характеристики плит ПЕНОПЛЭКС

 Свойства пеноплэкса

Основные свойства плит утеплителя пеноплэкс (экструзионный,экструдированный пенополистирол):

Теплопроводность плит утеплителя пеноплэкс

Экструзионный (экструдированный) пенополистирол — это эффективный теплоизолятор с коэффициентом теплопроводности 0,025-0,03 вт/мК. Благодаря ничтожному влагопоглощению и высокой стойкостью к воздействию циклов замораживания-оттаивания, экструзионный(экструдированный) пенополистирол сохраняют свои свойства в течение длительного времени. Коэффициент теплопроводности плит утеплителя пеноплэкс 0,030 Вт/(м×°С), что значительно ниже средних значений для большинства других теплоизоляционных материалов. Малое водопоглощение плит утеплителя пеноплэкс обеспечивает незначительное изменение теплопроводности во влажных условиях и может варьироваться в пределах 0,001-0,003 Вт/(м×°С). Это позволяет применять плиты утеплителя пеноплэкс в конструкциях полов, кровель, фундаментов и подвалов без дополнительной гидроизоляции.

Водопоглощение плит и низкая паропроницаемость утеплителя пеноплэкс 

Экструзионный (экструдированный) пенополистирол -это водонепроницаемый материал. Благодаря закрытой ячеистой структуре, экструзионный (эктсрудированный) пенополистирол не содержит пустот, способных поглощать воду.
Экструзионный (экструдированный) пенополистирол характеризуется влагостойкостью при длительном воздействии влаги, а также высокой стойкостью к воздействию пара, что обеспечивает сохранение эксплуатационных характеристик  экструзионного (экструдированного) пенополистирола в прямом контакте с водой в любом температурном режиме. Водопоглощение экструзионного (экструдированного) пенополистирола через 28 дней выдержки в воде не превышает 0,2%, а стойкость к диффузии водяных паров составляет 100-225. Сопротивление паропроницанию плит утеплителя пеноплэкс  толщиной 20 мм равноценно одному слою рубероида.

Перепады температуры для плит утеплителя пеноплэкс

Экструзионный пенополистирол сохраняет свои свойства после длительного воздействия циклов замораживания-оттаивания. После 1000 циклов воздействия изменение термического сопротивления экструзионного (экструдированного) пенополистирола не превышает 5%.

Механическая прочность плит утеплителя пеноплэкс

Экструзионный (экструдированный) пенополистирол характеризуется высокой прочностью на сжатие, значение которой зависит от плотности плит утеплителя пеноплэкс. Так плиты утеплителя пеноплэкс 45 (плотность 38,6 — 50,0 кг/м³) способны выдерживать нагрузку до 65 т/м² при 10% линейной деформации. Плиты утеплителя пеноплэкс обладают значительной прочностью (0,2-0,3 мПа) при длительном воздействии (1000 час.) нагрузки на сжатие. При этом плиты утеплителя пеноплэкс легко обрабатывается.

Химическая стойкость плит утеплителя пеноплэкс

Экструзионный (экструдированный) пенополистирол обладает достаточно высокой химической стойкостью по отношению к большинству используемых в строительстве материалов и веществ. Некоторые органические вещества могут привести к размягчению, усадке и даже растворению плит.

 Низкая химическая стойкость плит утеплителя пеноплэкс к следующим веществам:

    • Ароматические углеводороды (бензол, толуол, ксилол)
    • Альдегиды (формальдегид, формалин)
    • Кетоны (ацетон, метилэтилкетом)
    • Простые и сложные эфиры (диэтиловый эфир, растворители на основе этилацетата, метилацетата)
    • Бензин, керосин, дизельное топливо
    • Каменноугольная смола
    • Полиэфирные смолы (отвердители эпоксидных смол)
    • Масляные краски

Высокая химическая стойкость плит утеплителя пеноплэкс к следующим веществам:

    • Кислоты (органические и неорганические)
    • Растворы солей
    • Хлорная известь
    • Спирт и спиртовые красители
    • Вода и краски на водной основе
    • Аммиак, углекислый газ, кислород, ацетилен, пропан, бутан
    • Фторированные углеводороды (фреоны)
    • Цементы (строительные растворы и бетоны)
    • Животное и растительное масло, парафин

Экологичность  плит утеплителя пеноплэкс

Экструзионный (экструдированный) пенополистирол не подвержен биоразложению в условиях окружающей среды и не представляет никакой опасности экологии и здоровью человека. Изделия неядовитые, не имеют запаха и не образуют пыли.

Долговечность плит утеплителя пеноплэкс в ограждающих конструкциях зданий при температурно-влажностных воздействиях с учетом коэффициента запаса составляет не менее 50 лет. Эксплуатировать плиты утеплителя пеноплэкс рекомендуется в диапазоне температур от -50 до +75 °С. В этом температурном режиме все физические и теплотехнические характеристики материала остаются неизменными.

Плиты утеплителя пеноплэкс можно хранить на открытом воздухе в оригинальной упаковке, но при этом их необходимо предохранять от длительного воздействия солнечного света для предотвращения разрушения верхнего слоя плит.

Теплопроводность и плотность пенопласта — Строительный журнал Palitrabazar.ru

Основной характеристикой, благодаря которой пенополистирол получил широкое признание в качестве материала для утепления №1, является сверхнизкая теплопроводность пенопласта. Относительно небольшая прочность материала с лихвой компенсируется такими преимуществами, как стойкость к воздействию большинства агрессивных соединений, небольшой вес, нетоксичность и безопасность при работе. Хорошие теплоизолирующие свойства пенопласта дают возможность обустроить утепление дома по относительно небольшой цене, при этом долговечность такого утепления рассчитана на срок не менее 25 лет службы.

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Величина теплопроводности пенопласта, как и любого другого материала, зависит от трех основных составляющих:

уровня влажности среды, в которой используется утеплитель.

Как видно из схемы, при низких температурах воздуха градиент по толщине стенки линейно меняется от отрицательных значений на наружной поверхности облицовки до +20 о С внутри помещения. Необходимо так подобрать теплопроводность и толщину материала, чтобы точка росы или, другими словами, температура, при которой начинают конденсироваться пары воды, находилась внутри массива пенопласта.

Влияние плотности и влажности окружающей среды

Несмотря на все заверения производителей, пенопласт способен поглощать и проводить водяные пары, для сравнения, величина паропроницаемости для пенопластового листа всего лишь на 20% ниже проницаемости древесины. Естественно, наличие водяных паров в толще пенопласта существенным образом влияет на его теплопроводность. Найти зависимость в справочниках практически невозможно, поэтому при расчетах делают эмпирическую поправку на теплопроводность, исходя из толщины теплоизоляции.

Пенопласт способен поглощать в поверхностных слоях до 3% воды. Глубина поглощения составляет 2 мм, поэтому при определении теплопроводности материала эти миллиметры выбрасывают из эффективной толщины теплоизоляции. Поэтому лист пенопласта толщиной в 10 мм будет в сравнении с листом в 50 мм иметь теплопроводность не в 5 раз больше, а в 7 крат. При значительной толщине пенопласта, более 80 мм, теплосопротивление увеличивается значительно быстрее, чем его толщина.

Вторым фактором, влияющим на теплопроводность, является плотность материала. При одинаковой толщине материал разных марок может иметь плотность в два раза больше. Принято считать, что 98% структуры утеплителя составляет высушенный воздух. С увеличением вдвое количества полистирола в плите, естественно, теплопроводность также увеличивается, примерно на 3%.

Но дело даже не в количестве полистирола, меняется размер шариков и ячеек, из которых состоит пенопласт, образуются локальные участки с очень высокой теплопроводностью, или мостики холода. Особенно это касается трещин и стыков, любых зон деформации и установки креплений. Поэтому при установке зонтичных дюбелей количество креплений рекомендуют ограничивать 3 точками.

Влияние химического состава на теплопроводность

Мало кто обращает внимание на особые свойства пенопласта. Сегодня наиболее серьезной проблемой пенопласта считается его способность к воспламенению и выделению токсичных продуктов сгорания. СНиП и ГОСТ требуют, чтобы пенопласт, используемый для утепления жилых зданий, имел время самозатухания не более 4 с. Для этого используются соли ряда цветных металлов, таких как хром, никель, железо, включение в состав веществ, выделяющих углекислый газ при нагревании.

В результате на практике пенопласт с индексом « С » — самозатухающий имеет теплопроводность значительно выше, чем обычные марки пенополистирола. Практика использования пенополистирола для утепления в Евросоюзе показала, что более выгодным и дешевым является нанесение на внешнюю поверхность немодифицированного пенопласта специального покрытия из газообразующих агентов. Такое решение позволяет сохранить теплосберегающие свойства и экологичность материала, одновременно значительно повысить пожаробезопасность.

Заключение

Теплопроводность пенопласта практически не меняется с течением времени, как, например, у минеральной ваты или газосиликатных блоков. Единственной проблемой является деградация пенополистирола под действием солнечных лучей и рассеянного ультрафиолета. При длительном облучении материал становится рыхлым, покрывается трещинами и легко наполняется конденсатом, поэтому для сохранения первоначального значения теплопроводности необходимо закрывать утеплитель облицовкой.

Теплопроводность пенопласта — точные цифры

Пенопласт имеет следующие преимущества перед другими утеплительными материалами: экологичность, лёгкость, гигроскопичность, невысокая стоимость. Однако, главное достоинство — низкая теплопроводность пенопласта, которая делает его одним из наиболее распространенных теплоизолирующих материалов.

Общее описание

Пенопласт представляет собой плиты различной толщины, состоящие из вспененного материала – полимера. Теплопроводность пенопласта обеспечивается воздухом, из которого он состоит на 95-98%, т.е. газа, который не пропускает тепло.

Так как пенопласт в своей основе состоит из воздуха, то он имеет крайне низкую плотность, и, соответственно, малый удельный вес. Также пенопласт обладает очень хорошей звукоизоляцией (тонкие перегородки ячеек, заполненные воздухом – очень плохой проводник звуков).

В зависимости от исходного сырья (полимера) и процессов изготовления, можно производить пенопласт разной плотности, устойчивости к воздействию механических факторов, устойчивости к иным видам воздействия. В связи с вышеперечисленным, обусловливается выбор определенного вида пенопласта и его применение.

Характеристики теплопроводности пенопласта

Для того чтобы рассмотреть такую характеристику, как теплопроводность пенопласта, разберемся для начала, что из себя представляет в принципе теплопроводность материалов. Теплопроводностью называют количественную характеристику способности тела проводить тепло.

Это количество тепловой энергии (Ватт), которое любой материал способен провести через себя (метр), при определенной температуре (С) за определенное время. Обозначается — λ и выражается Вт/м•С.

Определим оптимальные размеры данного утеплителя исходя из его теплопроводных характеристик. На рынке стройматериалов большое множество различных утеплителей. Пенопласт, как мы уже знаем, обладает теплопроводностью очень низкой, но эта величина зависит от марки материала.

Например, пенопласт марки ПСБ-С 50 имеет плотность 50 кг/м3. Таким образом, его теплопроводность составляет 0,041 Вт/м•С (данные указаны при 20-30 С). Для пенопласта марки ПСБ-С 25 значение будет 0,041 Вт/м•С, а марки ПСБ-С 35 – 0,038 Вт/м•С. Приведенные величины коэффициентов теплопроводности указаны для пенопласта одинаковой толщины.

Наиболее заметна теплопроводность пенопласта при сопоставлении значений с другими теплоизоляционными материалами. К примеру, лист пенопласта 30-40 мм аналогичен объёму минваты в несколько раз большей, а толщина листа 150 мм заменяет 185 мм пенополистирола. Конечно, есть материалы, у которых коэффициент ниже. К таким относится и пеноплекс. 30 мм пеноплекса смогут заменить 40 мм пенопласта, при аналогичных условиях.

Какие листы выбрать?

Чтобы добиться наиболее эффективной теплоизоляции стены, необходимо правильно рассчитать толщину используемого утеплителя. Для примера рассчитаем, какой толщины нужен утеплитель для стены толщиной в один кирпич.

Сначала необходимо узнать общее теплосопротивление. Это постоянное значение, зависящее от климатических условий в определенной области страны. На юге России она составляет 2,8 кВт/м2, для полосы умеренного климата — 4,2 кВт/м2. Затем найдем теплосопротивление кирпичной кладки: R = p/k, где p – толщина стены, а k – коэффициент, указывающий, насколько сильно стена проводит тепло.

Имея начальные данные, мы можем узнать, какое теплосопротивление утеплителя необходимо использовать, применив формулу p=R*k. где R — общее теплосопротивление, а k — значение теплопроводности утеплителя.

Возьмем для примера пенопласт марки ПСБ-С 35, имеющий плотность 35 кг/м3 для стены, толщиной в один кирпич (0,25 м) в регионе средней полосы России. Общее теплосопротивление имеет значение 4,2 кВт/м2.

Для начала необходимо узнать теплосопротивление нашей стены (R1). Коэффициент для силикатного пустотного кирпича составляет 0,76 Вт/м•С (k1), толщина – 0,25 м (p1). Находим теплосопротивление:

R1 = p1 / k1 = 0,25 / 0,76 = 0,32 (кВт/м2).

Теперь находим теплосопротивление для утеплителя (R2):

R2 = R – R1 = 4.2 – 0,32 = 3,88 (кВт/м2)

Значение теплосопротивления пенопласта ПСБ-С 35 (k2) равен 0,038 Вт/м•С. Находим требуемую толщину пенопласта (p2):

p2 = R2*k2 = 3.88*0.038 = 0.15 м.

Вывод: при заданных условиях нам необходим пенопласт ПСБ-С 35 15 см.

Аналогичным способом можно сделать расчеты для любого материала, используемого в качестве утеплителя. Коэффициенты теплопроводности разных строительных материалов можно найти в специальной литературе или в сети Интернет.

Теплопроводность и плотность пеноплэкса, сравнение с пенополистиролом ПСБ

Представлена сравнительная таблица значений коэффициента теплопроводности, плотности пеноплэкса и пенополистирола ПСБ различных марок в сухом состоянии при температуре 20…30°С. Указан также диапазон их рабочей температуры.

Теплоизоляцию пеноплэкс, в отличие от беспрессового пенополистирола ПСБ, производят при повышенных температуре и давлении с добавлением пенообразователя и выдавливают через экструдер. Такая технология производства обеспечивает пеноплэксу закрытую микропористую структуру.

Пеноплэкс, по сравнению с пенополистиролом ПСБ, обладает более низким значением коэффициента теплопроводности λ, который составляет 0,03…0,036 Вт/(м·град). Теплопроводность пеноплэкса приблизительно на 30% ниже этого показателя у такого традиционного утеплителя, как минеральная вата. Следует отметить, что коэффициент теплопроводности пенополистирола ПСБ в зависимости от марки находится в пределах 0,037…0,043 Вт/(м·град).

Плотность пеноплэкса ρ по данным производителя находится в диапазоне от 22 до 47 кг/м 3 в зависимости от марки. Показатели плотности пенополистирола ПСБ ниже — плотность самых легких марок ПСБ-15 и ПСБ-25 может составлять от 6 до 25 кг/м 3 , соответственно.

Максимальная температура применения пенополистирола пеноплэкс составляет 75°С. У пенопласта ПСБ она несколько выше и может достигать 80°С. При нагревании выше 75°С пеноплэкс не плавится, однако ухудшаются его прочностные характеристики. Насколько при таких условиях увеличивается коэффициент теплопроводности этого теплоизоляционного материала, производителем не сообщается.

Теплопроводность и плотность пеноплэкса и пенополистирола ПСБ
Марка пенополистиролаλ, Вт/(м·К)ρ, кг/м 3tраб, °С
Пеноплэкс
Плиты Пеноплэкс комфорт0,0325…35-100…+75
Пеноплэкс Фундамент0,0329…33-100…+75
Пеноплэкс Кровля0,0326…34-100…+75
Сегменты Пеноплэкс марки 350,0333…38-60…+75
Сегменты Пеноплэкс марки 450,0338…45-60…+75
Пеноплэкс Блок0,036от 25-100…+75
Пеноплэкс 450,0340…47-100…+75
Пеноплэкс Уклон0,03от 22-100…+75
Пеноплэкс Фасад0,0325…33-100…+75
Пеноплэкс Стена0,0325…32-70…+75
Пеноплэкс Гео0,0328…36-100…+75
Пеноплэкс Основа0,03от 22-100…+75
Пенополистирол ПСБ (пенопласт)
ПСБ-150,042…0,043до 15до 80
ПСБ-250,039…0,04115…25до 80
ПСБ-350,037…0,03825…35до 80
ПСБ-500,04…0,04135…50до 80

Следует отметить, что теплоизоляция пеноплэкс благодаря своей закрытой микропористой структуре практически не впитывает влагу, не подвергается воздействию плесени, грибков и других микроорганизмов, является экологичным и безопасным для человека утеплителем.

Кроме того, экструдированный пенополистирол пеноплэкс обладает достаточно высокой химической стойкостью ко многим используемым в строительстве материалам. Однако некоторые органические вещества и растворители, приведенные в таблице ниже, могут привести к размягчению, усадке и даже растворению теплоизоляционных плит.

Плотность пенопласта как показатель теплоизоляционных свойств

Пенопласт считается особенно эффективным строительным материалом, применяемым для утепления построек изнутри и снаружи. Основанием для широкого распространения в строительном деле вспененного ППС (или полистирола) являются плотность пенопласта и его превосходные тепло- и звукоизоляционные свойства материала. Множество марок материала открывают большие возможности по подбору наиболее подходящего варианта.

Определение и свойства

Пенопласт — это утепляющий материал, который обладает отличными тепло- и звукоизоляционными свойствами.

Стоимостное выражение пенополистирольных плит намного ниже, чем на остальные утеплители. Эксплуатация плит из пенополистирола в строительных работах сопутствует уменьшению эксплуатационных затрат на отопление или охлаждение жилых или коммерческих объектов в десятки раз.

Имеется несколько точек зрения, которые связаны с понятием плотности. Единица измерения этого параметра — килограмм на один метр в кубе. Эта величина рассчитывается из отношения веса к объему. Со стопроцентной точностью нельзя измерить качественные свойства пенополистирола, которые связаны с его непроницаемостью и плотностью. Даже вес этого утеплителя не оказывает влияние на его теплоизоляционные способности.

Размышляя над вопросом, какой утеплитель приобрести, клиенты всегда интересуются его плотностью. Через эти данные можно оценивать прочность материала, его вес и теплопроводность. Значение плотности всегда имеет отношение к определенному диапазону.

При производстве плит из пенополистирола изготовитель устанавливает себестоимость выпускаемой продукции. Отталкиваясь от формулы нахождения плотности, масса утеплителя будет влиять на указанное значение. Чем больше масса материала, тем он более плотный, и потому его сумма выше. Так происходит потому, что пенопласт как сырьевой материал для плит теплоизолятора, имеет важное значение. Он составляет приблизительно 80% от единой себестоимости готовой выпускаемой продукции.

Структура и состав готового материала

Пенoпласт изготавливают из шариков пенополистирола, которые наполнены воздухом.

Каждый теплоизоляционный материал обязательно содержит воздух, располагающийся в порах. Улучшенный показатель теплопроводимости напрямую зависит от размера атмосферных воздушных масс, содержащихся в материале. Чем их больше, тем меньше будет составляющая теплопроводности. Производственный процесс пенопласта происходит из шариков пенополистирола, сохраняющих воздух.

В связи с вышесказанным, можно сделать вывод, что концентрация пенополистирола влияет на его теплопроводность. Если же эта величина меняется, то перемены в показателях теплопроводности протекают в границах процентных долей. Стопроцентное сохранение воздуха в утеплителе сопряжено с его исключительной теплосберегающей способностью, поскольку для воздуха свойственен самый небольшой коэффициент теплопроводности.

Благодаря невысокой теплопроводности утеплителя обеспечивается высокий процент энергосбережения. Если сопоставлять кирпич с пенопластом, то их способность к энергосбережению будет заметно отличаться, потому что 12 см толщины теплоизолятора равносильны 210 см мощности кирпичной или 45 сантиметровой бревенчатой стены.

Схема применения различных марок

Выпускаются такие ключевые виды пенополистирола, имеющие отличия по плотности и прочим характеристикам:

  • ПCБ-C-15, плотность этой марки пенопласта до 15 кг/кyб.м.
  • ПCБ-C-25, от 15 кг/кyб.м. до 25 кг/кyб.м.
  • ПСБ-C-35, от 25 кг/кyб.м. до 35 кг/кyб.м.
  • ПCБ-C-50, от 35 кг/кyб.м. до 50 кг/кyб.м.

Составляющая теплопроводности пенопласта, выраженная в цифровом значении, относится к интервалу 0.037 Bт/мK — 0.043 Bт/мK. Указанное значение можно соотнести с показателем теплопроводимости воздуха, которое равно 0.027 Bт/мK.

Использование пенопласта ПСБ-С-15

Пенопласт ПСБ-С-15 можно применять для утепления фасадов домов. Такой тип утеплителя практически не используется в строительстве. Он используется в конструкциях, которые прилагаются к сооружениям. Это могут быть открытые балконы или веранды, которые выполняют декоративную функцию. Посредством пенопласта ПСБ-С-15 формируют фигуры для фасадов, а это позволяет:

  • обрамлять углы дома, окна;
  • разделять этажи через создание карнизов.

Для чего подходит ПCБ-C-25

Плотность пенопласта рассчитывают по аналогии с определением значения плотности кирпича. К примеру, если 1 куб пенопласта обладает плотностью 25, то его вес будет равен 25 кг. Прочность на изгиб и сжатие пенопласта находится в зависимости от его плотности. Плотность пенопласта и его марка — это абсолютно разные характеристики. Например, если взять к рассмотрению, CПБ-C25 или CПБ-C50, параметр плотности будет колебаться в промежутке 35−50 или 15−25.

Плиты, имеющие плотность 25, применяют, чтобы утеплять фасады дома. Стандартом считают пенопласт, толщина которого составляет 5 см. Этот вид утеплителя употребляется для многих целей. Его толщина может быть изменена — это будет зависеть от предпочтений потребителя.

Пенопласт максимальной толщины можно использовать с целью утепления стен, которые подвержены воздействию атмосферных масс. Им также можно изолировать стены, поскольку такой материал отлично препятствует появлению грибка.

Исходя из обозначения материала, он используется в различных строительных сооружениях, а это не ухудшает его качественных характеристик.

Применение пенопласта ПСБ-С-35

Для того чтобы, идеально выравнивать стены, можно поменять толщину пенополистирольной плитки. Злоупотреблять изменением размера толщины материала не рекомендуется, поскольку это спровоцирует на углах строения определенные проблемы с закреплением системы водоотливов.

Прежде чем выбирать утеплитель необходимой толщины, рекомендуется заранее узнать, каково количество запаса газовой трубы, потому что ее ни в коем случае нельзя закрывать, поскольку это может нарушить эстетику внешнего вида строения. В таком случае желательно предпочесть все-таки материал ПCБ-C-35 толщиной 5 см, чем материал плотностью 25 и толщиной 10 см, тем боле что их расценки практически не отличаются.

Утеплителем, плотность которого 35, можно изолировать откосы окон и дверей, фасады построек. Стоит он, как правило, вдвое больше, чем тот же материал из полистирола с плотностью 25. При толщине 5 см им можно утеплять нежилые конструкции и гаражи. При толщине аналогичного утеплителя в 7 сантиметров его можно использовать при термоизоляции жилых помещений.

Благодаря нормальному уровню плотности можно применять теплоизолятор с минимальной толщиной, что не подразумевает ухудшения качества утепления. В случае если теплоизолятор из пенополистирола оказывается более твердым, то с его помощью можно проводить идеальное утепление стен подвальных помещений и фундаментов.

Экстрол Малахит | Изоляционные материалы

«ЭКСТРОЛ МАЛАХИТ» — универсальные плиты, предназначенные для теплоизоляции ограждающих и заглубленных в грунт конструкций.

Новая марка теплоизоляционного материала разработана с учетом всех климатических особенностей Уральского региона!

Грамотная теплоизоляция с «ЭКСТРОЛ МАЛАХИТ» позволит максимально эффективно решить задачу сбережения тепла и сэкономит значительную сумму затрат на поддержание комфортных условий в вашем доме.

 

Материал «Экстрол» обладает уникальным сочетанием технических характеристик. Этот высококачественный универсальный теплоизоляционный материал – идеальное решение для задач по сбережению тепла.

Экструзионный пенополистирол «Экстрол» отличает максимальная теплоизоляция, минимальное поверхностное водопоглощение, долговечность, легкость и простота монтажа, высокая прочность, биологическая устойчивость и экологичность.

Применение

«ЭКСТРОЛ МАЛАХИТ» — это универсальные плиты, предназначенные для теплоизоляции ограждающих и заглубленных в грунт конструкций:

  • кровли,
  • стены,
  • полы,
  • потолки,
  • фундаменты,
  • отмостки,
  • цокольные этажи.

«Экстрол МАЛАХИТ» ориентирован на применение на различных объектах строительства, а так же может быть использован для благоустройства:

  • дома и дачи,
  • балконов и лоджий,
  • бани и садовых дорожек.
Плотность  23-28 Кг/м3 
Теплопроводность при 25±5 С0 0,029 Вт/м*K
Прочность на сжатие0,15-0,2 МПа
Группа горючестиГ4

Размеры

Длина (мм)11801180118011801180
Ширина (мм)580580580580580
Толщина (мм)20304050100
Площадь одного листа (м2)0.68440.68440.68440.68440.6844
Объем одного листа (м3)0.01370.02050.02740.03420.0684
Количество плит в одной упаковке (шт)20131084
Площадь упаковки (м2)13.6888.89726.8445.47522.7376
Объем упаковки (м3)0.2740.2670.2740.2740.274

Теплопроводность

63

9007 9007 34,7000
Материал Теплопроводность
(кал / сек) / (см 2 C / см)
Теплопроводность
(Вт / м K) *
Алмаз 1000
Серебро 1,01 406,0
Медь 0,99 385,0
Золото 314
Латунь… 109,0
Алюминий 0,50 205,0
Железо 0,163 79,5
Сталь 50,2
Меркурий 8,3
Лед 0,005 1,6
Стекло обычное 0,0025 0.8
Бетон 0,002 0,8
Вода при 20 ° C 0,0014 0,6
Асбест 0,0004 0,08
7 900000057
0,08
Стекловолокно 0,00015 0,04
Кирпич изоляционный 0,15
Кирпич красный 0,6
Пробковая плита 0,00011 0,04
Войлок 0,0001 0,04
Каменная вата ) 0,033
Полиуретан 0,02
Дерево 0,0001 0,12-0,04
Воздух при 0 ° C 0,024
Гелий (20 ° C) 0,138
Водород (20 ° C) 0,172
Азот (20 ° C) 0,0234
Кислород (20 ° C) 0,0238
Аэрогель кремнезема 0,003

* Большая часть от Янга, Хью Д., Университетская физика, 7-е изд.Таблица 15-5. Значения для аэрогеля алмаза и диоксида кремния из Справочника по химии и физике CRC.

Обратите внимание, что 1 (кал / сек) / (см 2 C / см) = 419 Вт / м K. Имея это в виду, два приведенных выше столбца не всегда совпадают. Все значения взяты из опубликованных таблиц, но не могут считаться достоверными.

Значение 0,02 Вт / мК для полиуретана можно принять как номинальное значение, которое определяет пенополиуретан как один из лучших изоляторов. NIST опубликовал программу численного приближения для расчета теплопроводности полиуретана на сайте http: // cryogenics.nist.gov/NewFiles/Polyurethane.html. Их расчет для полиуретана, наполненного фреоном, плотностью 1,99 фунт / фут 3 при 20 ° C дает теплопроводность 0,022 Вт / мК. Расчет для полиуретана с наполнителем CO 2 плотностью 2,00 фунт / фут 3 дает 0,035 Вт / мК.

Индекс

Таблицы

Артикул
Young
Ch 15.

(PDF) Теплоизоляционные свойства пенополистирола как конструкционного и изоляционного материала

4.РЕЗУЛЬТАТЫ

При определении значений теплопроводности строительных материалов, которые будут использоваться для теплоизоляции здания

, знание физических свойств материалов (конструкция, прочность на кручение

,

и т. Д.) И использование соответствующих методик позволит получить более

правильных полученные результаты. Определение коэффициентов теплопроводности после этапа производства строительных материалов

заставит производителя производить высококачественные материалы, а также

будет соответствовать соответствующим экономическим условиям за счет уменьшения толщины изоляционных материалов

, используемых в зданиях

Определено при испытаниях Для изделий из пенополистирола коэффициент теплопроводности

изменяется обратно пропорционально плотности.Таким образом, можно сделать вывод, что уменьшение коэффициента теплопроводности

обеспечивается увеличением количества зерен EPS в единице объема

,

, приводит к уменьшению объема пустот между зернами, а также приводит к увеличению количества пор в зернах EPS

. Тем не менее, это уменьшение коэффициента теплопроводности действительно до

оптимального значения из-за того, что уменьшение общего количества пустот в EPS

приведет к увеличению плотности, таким образом, значение коэффициента теплопроводности может увеличиться. .

В литературе и стандартах приводится только одно значение коэффициента теплопроводности

пенополистирола, и предлагается любой метод изменения этого значения в зависимости от веса единицы.

Будет более подходящим изменить значение коэффициента теплопроводности, например, способ

, указанный в PrEn 12524, в соответствии с количеством образцов, чтобы разработать новые

и более качественные материалы, используя результаты, полученные в ходе экспериментов, с использованием рассчитанного значения умножив значение коэффициента теплопроводности на коэффициент безопасности.

СПИСОК ЛИТЕРАТУРЫ

1. Брайант, С., Люм, Э., 1997. Система Брайанта Уоллинга. Concrete ’97 для 18-й конференции, проводимой раз в два года,

Future, Конференц-центр Аделаиды, 641-649.

2. Алдер, Г., 1999. Вызов 21 века. Компьютерная графика (ACM), 33 (3), 19-22.

3. Эдремит А., 1997. Проведение экономического анализа изоляционных материалов с помощью

Определение физических свойств; Магистерская работа, Технический университет Йылдыз,

Стамбул, стр.114, Турция. (На турецком языке)

4. Манселл, У.К., 1995. Стенные конструкции, оставшиеся на месте, революционизируют дом

Строительство. Concrete Construction, The Aberdeen Group, 12 стр., США.

5. Фиш, Х., июль 2002 г. Пластмассы — инновационный материал в строительстве и

строительстве, EUROCHEM — конференция 2002 / TOULOSUE

(http://www.apme.org). 30 апреля 2003 г.

6. Линч, Г., 1999. Combat Cold. Компьютерная графика (ACM), 33 (3), 24-25.

7.Шрив, Н., Бринк, А. Дж. (Перевод на турецкий язык Чаталташ И. А.), 1985. Chemical

Process Industries, p. 350, Стамбул, Турция.

8. Общество производителей полистирола, 2003 г. (http://www.pud.org.tr). 30 апреля

2003, Стамбул, Турция. (На турецком языке)

9. Йылмаз К., Колип А., Касап Х., 1997. Несущий полистирол с превосходной изоляцией

Панели, помещенные в стальную сетку, Симпозиум по изоляции’97, с. 75-82, Элязыг, Турция.

(на турецком языке)

Теплопроводность пенополистирола XPS (экструдированный полистирол)

Пенополистирол является хорошими теплоизоляционными материалами и поэтому часто используется в качестве строительных изоляционных материалов.Экструдированный пенополистирол (XPS) состоит из закрытых ячеек и обеспечивает улучшенную шероховатость поверхности, большую жесткость и пониженную теплопроводность. На изображении ниже показано применение изоляционного материала в типичной домашней конструкции. XPS применяется в этом случае для повышения эффективности изоляционной системы для каркасного потолка.

Поскольку теплопроводность материала XPS является ключевым показателем качества, производители и заказчики постоянно ищут простые способы получения данных о характеристиках теплопроводности материала.Недавно европейский производитель материала XPS отправил в нашу лабораторию несколько образцов для определения характеристик с помощью датчика C-Therm Modified Transient Plane Source. Производитель отправил несколько образцов купонов.

Хотя производитель образцов XPS вырезал образцы до меньших размеров, чем типичные размеры платы XPS — этого НЕ ОБЯЗАТЕЛЬНО — датчик MTPS может легко обрабатывать образцы большего формата — в конечном итоге образцы были определены по размеру из-за соображений доставки.

Тестовая установка MTPS

Испытательная установка соответствовала довольно типичной установке, когда образец помещался на датчик, как показано на рисунке ниже. Для лучшей поддержки образца на датчике использовалась удлинительная пластина. Для образцов большего размера датчик на тестовом образце был бы перевернут. Образец тестировали как сверху, так и снизу для оценки однородности / консистенции образца.

Результаты эксперимента

Результаты тестирования образца были доступны в течение 10 минут при тестировании как верхней, так и нижней части образца и обобщены в таблице ниже:

0,03 0,03 0,03 0,03
Образец Верх Низ
1 0.0334 0,0341
2 0,0344 0,0342
3 0,0341 0,0342
4 0,0343 0,0343 0,0343 0,0343
Среднее значение 0,0341 0,0341
Результаты испытаний на теплопроводность XPS (Вт / мК)

Результаты испытаний показали, что материал имеет отличную консистенцию и близко соответствует ожидаемому диапазону теплопроводности. материала.Все испытания проводились в условиях окружающей среды (приблизительно 24 ° C). Технические характеристики датчика MTPS предлагают точность <5% и точность <1%.

Таблица теплопроводности изоляционного материала

| Инженеры Edge

Связанные ресурсы: теплопередача

Таблица теплопроводности изоляционного материала

Теплообменная техника

Таблица теплопроводности различных изоляционных материалов

R-значений на дюйм в единицах СИ и британской системе мер (Типичные значения являются приблизительными и основаны на среднем значении имеющихся результатов.Диапазоны отмечены знаком «-».

Материал м 2 · К / (Вт · дюйм) футов 2 · ° F · ч / (БТЕ · дюйм) м · К / Ш
Панель с вакуумной изоляцией 7,04! 5,28–8,8 3000! R-30 – R-50
Аэрогель кремнезема 1,76! 1,76 1000! Р-10
Жесткая панель из полиуретана (расширенная CFC / HCFC) начальная 1.32! 1.23–1.41 0700! R-7 – R-8
Жесткая панель из полиуретана (вспененный CFC / HCFC), возраст 5–10 лет 1,1! 1,10 0625! Р-6.25
Полиуретановая жесткая панель (вспененный пентан) начальная 1,2! 1,20 0680! Р-6,8
Жесткая панель из полиуретана (вспененный пентан), возраст 5–10 лет 0,97! 0,97 0550! Р-5.5
Жесткая панель из полиуретана с пленочным покрытием (вспененный пентан) 45-48
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан) начальная 1,2! 1,20 0680! Р-6,8 55
Жесткая панель из полиизоцианурата, облицованная фольгой (вспененный пентан), возраст 5–10 лет 0,97! 0.97 0550! Р-5.5
Пена для распыления полиизоцианурата 1,11! 0,76–1,46 0430! R-4.3 – R-8.3
Пенополиуретан с закрытыми порами 1.055! 0.97–1.14 0550! R-5.5 – R-6.5
Фенольная аэрозольная пена 1.04! 0.85–1.23 0480! R-4.8 – R-7
Тинсулейт утеплитель для одежды 1.01! 1.01 0575! Р-5.75
Панели карбамидоформальдегидные 0,97! 0,88–1,06 0500! R-5 – R-6
Пена мочевины 0,924! 0,92 0525! Р-5.25
Экструдированный пенополистирол (XPS) высокой плотности 0,915! 0,88–0,95 0500! Р-5 – Р-5.4 26-40
Пенополистирол 0.88! 0,88 0500! Р-5.00
Жесткая фенольная панель 0,79! 0,70–0,88 0400! R-4 – R-5
Пена карбамидоформальдегидная 0,755! 0,70–0,81 0400! Р-4 – Р-4.6
Войлок из стекловолокна высокой плотности 0,755! 0,63–0,88 0360! R-3.6 – R-5
Экструдированный пенополистирол (XPS) низкой плотности 0.725! 0,63–0,82 0360! R-3.6 – R-4.7
Айсинен насыпной (заливной) 0,7! 0,70 0400! Р-4
Формованный пенополистирол (EPS) высокой плотности 0,7! 0,70 0420! Р-4.2 22-32
Пена для дома 0,686! 0,69 0390! Р-3.9
Рисовая шелуха 0.5! 0,50 0300! Р-3.0 24
Стекловолокно 0,655! 0,55–0,76 0310! R-3.1 – R-4.3
Хлопковые войлоки (утеплитель Blue Jean) 0,65! 0,65 0370! Р-3,7
Формованный пенополистирол (ППС) низкой плотности 0,65! 0,65 0385! Р-3.85
Айсинин спрей 0.63! 0,63 0360! Р-3.6
Пенополиуретан с открытыми порами 0,63! 0,63 0360! Р-3.6
Картон 0,61! 0,52–0,7 0300! R-3 – R-4
Войлок из каменной и шлаковой ваты 0,6! 0,52–0,68 0300! R-3 – R-3.85
Целлюлоза сыпучая 0.595! 0,52–0,67 0300! Р-3 – Р-3.8
Целлюлоза для влажного распыления 0,595! 0,52–0,67 0300! Р-3 – Р-3.8
Каменная и шлаковая вата сыпучая 0,545! 0,44–0,65 0250! Р-2,5 – Р-3,7
Стекловолокно насыпное 0,545! 0,44–0,65 0250! Р-2,5 – Р-3,7
Пенополиэтилен 0.52! 0,52 0300! Р-3
Пена цементная 0,52! 0,35–0,69 0200! Р-2 – Р-3.9
Перлит сыпучий 0,48! 0,48 0270! Р-2.7
Деревянные панели, например обшивка 0,44! 0,44 0250! Р-2,5 9
Жесткая панель из стекловолокна 0.44! 0,44 0250! Р-2,5
Вермикулит сыпучий 0,4! 0,38–0,42 0213! R-2.13 – R-2.4
Вермикулит 0,375! 0,38 0213! Р-2.13 16-17
Тюков соломы 0,26! 0,26 0145! Р-1.45 16-22
Бетон 0260! Р-2.6-R-3.2
Хвойная древесина (большая часть) 0,25! 0,25 0141! Р-1.41 7,7
Древесная щепа и прочие насыпные изделия из древесины 0,18! 0,18 0100! Р-1
Снег 0,18! 0,18 0100! Р-1
Твердая древесина (большая часть) 0.12! 0,12 0071! Р-0,71 5,5
Кирпич 0,03! 0,030 0020! Р-0,2 1,3–1,8
Стекло 0,024! 0,025 0024! Р-0,14
Наливной бетон 0,014! 0,014 0008! Р-0,08 0,43-0,87

Пробка

Пробка, вероятно, является одним из старейших изоляционных материалов, используемых в коммерческих целях, а в прошлом она была наиболее широко используемым изоляционным материалом в холодильной промышленности.В настоящее время из-за нехватки деревьев для производства пробки его цена относительно высока по сравнению с другими изоляционными материалами. Поэтому его использование очень ограничено, за исключением некоторых машинных оснований для уменьшения передачи вибрации. Он доступен в виде вспененных плит или плит, а также в виде гранул, его плотность варьируется от 110 до 130 кг / м 3, а среднее механическое сопротивление составляет 2,2 кг / м 2. Его можно использовать только при температуре до 65 ° C. Он обладает хорошей теплоизоляционной эффективностью, довольно устойчив к сжатию и трудно поддается горению.Его основным техническим ограничением является тенденция к поглощению влаги со средней проницаемостью для водяного пара 12,5 г см м -2 день -1 мм рт. Ст. В таблицах A и B приведены некоторые типичные характеристики пробки.

ТАБЛИЦА A
Значения теплопроводности и плотности при 0 ° C стекловолоконной изоляции

Тип

Плотность

Теплопроводность

(кг / м 3)

(Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1)

Тип I

10–18

0.044 / 0,038

Тип II

19-30

0,037 / 0,032

Тип III

31-45

0,034 / 0,029

Тип IV

46-65

0.033 / 0,028

Тип V

66-90

0,033 / 0,028

Тип VI

91

0,036 / 0,031

Стекловолокно, связанное смолой

64-144

0.036 / 0,031

Источник : Подготовлено авторами на основе данных из Melgarejo, 1995.

ТАБЛИЦА B
Значения теплопроводности и плотности пробковой изоляции при 20-25 ° C

Тип

Плотность

Теплопроводность

(кг / м 3)

(Вт · м -1 ° C -1) / (ккал · ч -1 м -1 ° C -1)

Гранулированный сыпучий, сухой

115

0.052 / 0,0447

Гранулированный

86

0,048 / 0,041

Плита пробковая вспененная

130

0,04 / 0,344

Доска пробковая вспененная

150

0.043 / 0,037

Вспененная связка со смолами / битумом

100–150

0,043 / 0,037

Вспененная связка со смолами / битумом

150–250

0,048 / 0,041

Источник : Подготовлено авторами на основе данных Melgarejo, 1995.

Связанные ресурсы:

© Copyright 2000-2021, Engineers Edge, LLC www.engineersedge.com
Все права защищены
Отказ от ответственности | Обратная связь | Реклама | Контакты

Дата / Время:

Исследование докторской степени, Публикации в бумажных материалах, Публикации в статьях, Публикации в научных исследованиях

Paper Publications — одна из ведущих индийских организаций по публикации исследовательских работ.Это объединение хорошо известных ученых, заслуженных профессоров, профессоров-исследователей, академиков и отраслевых консультантов для самого широкого распространения знаний по всему миру. Наша деятельность — международная публикация статей, организация конференций на международном и национальном уровне, публикация материалов конференций и поддержка исследовательской работы отдельных ученых и авторских коллективов. Мы работаем с авторами, чтобы подготовить публикации, характеризующиеся исключительно высоким качеством исследований.Нашим главным приоритетом является быстрое распространение научных знаний, поэтому все наши международные журналы имеют открытый доступ.

В состав нашего редакционного и консультативного совета входят известные авторы, профессора-исследователи ведущих университетов, выдающиеся академики из Великобритании, Франции, Германии, России, Индии, Малайзии, Соединенных Штатов Америки, Канады, Италии, Греции, Японии, Юга. Корея и Иран и многие другие. Члены нашей редакционной коллегии признательны за огромный оригинальный вклад исследовательской работы и получают большие исследовательские гранты от международной организации с высоким статусом.Многие члены редакционной коллегии постоянно работают в научно-исследовательских лабораториях для достижения качества и инноваций в исследованиях.

Все международные журналы публикаций Paper выбирают процесс двойного слепого рецензирования. Эта процедура обзора принята, в частности, для поддержания высокого качества публикации исследований во всех журналах. В этом случае автор и рецензент незнакомы друг с другом, поэтому автор избавлен от предубеждений при принятии решения о рецензировании.Помимо публикации научно-исследовательской работы, обзорной статьи, письма редактору и краткой заметки; Paper Publication также публикует полные или частичные диссертации, магистерские и дипломные проекты и диссертации.

В целом наш журнал посвящен темам, связанным с медициной, психологией, ветеринарными науками, здравоохранением, социальными науками, экономикой, социологией, науками о жизни, гуманитарными науками, менеджментом, инженерией и технологиями. У нас тоже есть отдельный сегмент — международный журнал, который занимается междисциплинарными и междисциплинарными областями исследований.Мы постоянно стремимся стать первоклассными поставщиками научных знаний. Мы предоставляем международные журналы с полным открытым доступом для распространения качественных исследований, знаний и образования среди человечества. В бумажном издании приветствуется авторский стиль написания рукописи. Автору предоставляется полная свобода без наложения ограничений на размер статьи или количество страниц.

Теплопроводность

Теплопроводность

Теплопроводность — это свойство материала.Не будет отличаться от размеры материала, но это зависит от температуры, плотность и влажность материала. Тепловой проводимость материала зависит от его температуры, плотности и содержание влаги. Теплопроводность, обычно встречающаяся в таблицах, составляет значение действительно для нормальной комнатной температуры. Это значение не будет отличаться значительно между 273 и 343 К (0 — 70 ° C). Когда высокие температуры например, в духовках, влияние температуры должно быть учтено.

Как правило, легкие материалы являются лучшими изоляторами, чем тяжелые, потому что легкие материалы часто содержат воздухозаборники. Сухой неподвижный воздух очень низкая проводимость. Слой воздуха не всегда будет хорошим изолятором, потому что тепло легко переносится излучением и конвекция.

Когда материал, например изоляционный, становится влажным, воздух корпуса наполняются водой и, поскольку вода является лучшим проводником чем воздух, увеличивается проводимость материала.Вот почему это очень важно устанавливать изоляционные материалы, когда они сухие и следите за тем, чтобы они оставались сухими.

Проводимость против проводимости

Электропроводность (k) — это свойство материала, означающее его способность проводить тепло через его внутреннюю структуру. Поведение по отношению к другому рука является свойством объекта и зависит как от его материала, так и от толщина. Электропроводность равна удельной электропроводности, умноженной на толщину, в дюймах. единиц Вт / м²К. Поскольку проводимость обратно пропорциональна удельному сопротивлению, поэтому общее сопротивление материала может быть выражено как его общее толщина, деленная на общую проводимость.В таблице ниже представлен список строительных материалов и их теплопроводности для сухой (закрытой) и влажные (наружные) условия.

Группа Материал Удельная масса (кг / м3) Теплопроводность (Вт / мК)
Сухая мокрый
Металл Алюминий 2800 204 204
Медь 9000 372 372
Свинец 12250 35 35
Сталь, Чугун 7800 52 52
цинк 7200 110 110
Натуральный камень Базальт, Гранит 3000 3.5 3,5
Голубой камень, Мрамор 2700 2,5 2,5
Песчаник 2600 1,6 1,6
Каменная кладка Кирпич 1600-1900 0,6-0,7 0,9–1,2
Кирпич силикатный 1900 0.9 1,4
1000-1400 0,5-0,7
Бетон Гравийный бетон 2300-2500 2,0 2,0
Легкий бетон 1600-1900 0,7-0,9 1,2–1,4
1000-1300 0.35-0,5 0,5-0,8
300-700 0,12-0,23
Пемзобетон 1000-1400 0,35-0,5 0,5–0,95
700–1000 0,23–0,35
Изоляционный бетон 300-700 0.12-0,23
Ячеистый бетон 1000-1300 0,35-0,5 0,7–1,2
400-700 0,17-0,23
Шлакобетон 1600-1900 0,45-0,70 0,7–1,0
1000-1300 0.23-0.30 0,35-0,5
Неорганическое Асбестоцемент 1600-1900 0,35-0,7 0,9–1,2
Гипсокартон 800-1400 0,23–0,45
Гипсокартон 900 0,20
Стекло 2500 0.8 0,8
Пеностекло 150 0,04
Минеральная вата 35-200 0,04
Плитка 2000 1,2 1,2
Пластыри Цемент 1900 0,9 1.5
Лайм 1600 0,7 0,8
Гипс 1300 0,5 0,8
Органическое Пробка (развернутая) 100-200 0,04–0,0045
Линолеум 1200 0,17
Резина 1200-1500 0.17-0,3
Древесноволокнистая плита 200-400 0,08-0,12 0,09–0,17
Дерево Твердая древесина 800 0,17 0,23
Хвойная древесина 550 0,14 0,17
Фанера 700 0.17 0,23
Оргалит 1000 0,3
Мягкая доска 300 0,08
ДСП 500–1000 0,1-0,3
Древесно-стружечная плита 350-700 0,1-0,2
Синтетика Полиэстер (GPV) 1200 0.17
Полиэтилен, полипропилен 930 0,17
Поливинилхлорид 1400 0,17
Синтетическая пена Пенополистирол, эксп. (PS) 10-40 0,035
То же, экструдированный 30-40 0.03
Пенополиуретан (PUR) 30–150 0,025–0,035
Твердая пена на основе фенольной кислоты 25-200 0,035
ПВХ-пена 20-50 0,035
Изоляция полости Изоляция стены полости 20–100 0.05
Битумные материалы Асфальт 2100 0,7
Битум 1050 0,2
Вода Вода 1000 0,58
Лед 900 2.2
Снег свежий 80-200 0,1-0,2
Снег, старый 200-800 0,5–1,8
Воздух Воздух 1,2 0,023
Почва Лесная почва 1450 0.8
Глина с песком 1780 0,9
Влажная песчаная почва 1700 2,0
Почва (сухая) 1600 0,3
Напольное покрытие Плитка напольная 2000 1.5
Паркет 800 0,17-0,27
Ковер нейлоновый войлочный 0,05
Ковер (поролон) 0,09
Пробка 200 0,06-0,07
Шерсть 400 0.07

EPS Технические характеристики | Физические свойства EPS

Физические свойства пенополистирола (EPS)

Федеральные спецификации: ASTM C 578-92

Минимальные и максимальные допустимые значения.

* R-значение означает сопротивление тепловому потоку. Чем выше значение R, тем больше сопротивление тепловому потоку. Типичные протестированные значения R основаны на данных, предоставленных Nova Chemical Co., BASF Corp. и Huntsman Chemical Company.

U.L. Файл № R12290 Контрольный № 85TO Классификация BRYX

Пенополистирол (EPS), продаваемый для использования в строительстве, имеет модификатор огнестойкости, но считается горючим, как и все органические материалы.Их нельзя хранить или устанавливать рядом с открытым пламенем или любым другим источником возгорания. Кроме того, когда изоляционная плита EPS устанавливается внутри конструкции, она должна быть защищена надлежащим тепловым барьером, а установщик должен изучить применимые местные, государственные и федеральные строительные нормы и правила, чтобы определить правильный тепловой барьер для конкретного применения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Недвижимость Квартир Тест ASTM Тип I Тип VIII Тип II Тип IX
Плотность, номинальная шт. C303 или D1622 1.00 # 1,25 # 1,50 # 2.00 #
Плотность, минимум шт. C303 или D1622 0,90 1,15 1,35 1.80
Плотность, диапазон шт. C303 или D1622 0,90–1,14 1,15–1,34 1,35–1,79 1,80–2,20
Коэффициент теплопроводности K при 25 ° F БТЕ / (час) (кв.футы) (Ф / дюйм) C177 или C518 0,23 0,22 0,21 0,20
Коэффициент теплопроводности K при 40 ° F БТЕ / (час) (кв.фут) (фут / дюйм) C177 или C518 0.24 0,235 0,22 0,21
Коэффициент теплопроводности K при 75 ° F БТЕ / (час) (кв.фут) (фут / дюйм) C177 или C518 0,26 0,255 0.24 0,23
Термическое сопротивление R-значение * при 25 ° F при толщине 1 дюйм 4,35 4,54 4,76 5,00
Термическое сопротивление R-значение * при 40 ° F при толщине 1 дюйм 4.17 4,25 4,55 4,76
Термическое сопротивление R-значение * при 75 ° F при толщине 1 дюйм 3,85 3,92 4.17 4,35
Деформация при сжатии 10% фунтов на кв. Дюйм D1621 10-14 13-18 15–21 25-33
Прочность на изгиб фунтов на кв. Дюйм C203 25-30 30-38 40-50 50-75
Предел прочности фунтов на кв. Дюйм D1623 16-20 17-21 18-22 23-27
Прочность на сдвиг фунтов на кв. Дюйм 18-22 23-25 ​​ 26-32 33-37
Модуль сдвига фунтов на кв. Дюйм 280-320 370-410 460-500 600-640
Модуль упругости фунтов на кв. Дюйм 180-220 250-310 320-360 460-500
Водопоглощение% C272 <4.0% <3,0% <3,0% <2,0%
Передача водяного пара Пермь. В E96 2,0-5,0 1,5–3,5 1.0-3,5 0,6–2,0